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Fundamental question

Contraction inference:

A,A,Γ � C

A,Γ � C

“You can use your hypothesis as many times as you
like.”

Quite natural and inevitable in reasoning.

Why then do you study logics without contraction?
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Possible reasons

To understand contraction better.
(Contraction is available for closed Π1 provable formulas
in 2nd order BCI, etc.)

To make logic constructive. In BCK,

Excluded middle = Contraction + ¬¬A→ A.

Applications in linguistics etc.

To save naive comprehension in set theory.
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Cut-Elimination

Cut inference: Generalization of modus ponens

Γ1 � A A,Γ2 � C
Γ1,Γ2 � C

May introduce redundancy:
.... π1

� A
.... π2

� B
� A ∧B

.... π3

A � C
A ∧B � C

� C
Cut-Elimination Theorem (Genten 1934): There is a concrete

procedure to eliminate all cuts from a given proof in sequent

calculus..... π1

� A
.... π2

� B
� A ∧B

.... π3

A � C
A ∧B � C

� C
=⇒

.... π1

� A
.... π3

A � C
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Proofs-as-Programs correspondence

Formulas = Types (Specifications)

Proofs = Programs (with Verifications)

Cut-elimination = Computation

“A logic without cut-elimination is like a car without an
engine.” (Jean-Yves Girard)
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Feasibility

A useful program must be feasible (executable in, say,
polynomial time).

Unrestricted use of contraction leads to exponential
explosion of cut-elimination (=computation).

.... π1

A � B

.... π2

B,B � C
B � C

A � C
=⇒

.... π1

A � B

.... π1

A � B
.... π2

B,B � C
B,A � C

A,A � C
A � C
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Contraction has to be restricted

Contraction is

Perfectly sound in reasoning

Problematic in computation.

“A logic with untamed contraction is like a car with a
rocket engine.”
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Naive set theory

Naive comprehension principle: For any property A(x)

there exists a set {x|A(x)} such that for any t

t ∈ {x|A(x)} ⇐⇒ A(t)

Intuitive and powerful.

Compatible with cut-elimination procedure.

Inconsistent.
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Russell’s paradox⇒ Contradiction

Let R = {x|x �∈ x} and A ≡ R ∈ R. Then A � ¬A and
¬A � A.

A � ¬A
A � A
¬A,A �

A,A �
A � (Contr)

¬A � A
A � A
¬A,A �

¬A,¬A �
¬A � (Contr)

�

It requires of contraction to derive contradiction from the
paradox.

Naive comprehension is consistent when contraction is
restricted in the underlying logic (Grishin 74).
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Naive set theories with restricted contraction

Grishin’s set theory (1974),

BCK set theory (White 1987, Komori 1989),

Light linear set theory (Girard 1998)

Light affine set theory (Terui 2001),

Elementary affine set theory.
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BCK set theory

Terms: x, {x|A}
(when x a variable, A a formula.)

Formulas: t ∈ u, A−◦B, ∀x.A
(when t, u terms, A,B formulas, x a variable.)

Axioms and inference rules:

(A−◦B)−◦ ((C −◦A)−◦ (C −◦B) A−◦ (B −◦ A)

(A−◦ (B −◦ C))−◦ (B −◦ (A−◦ C)) ∀xA−◦A[t/x]

∀x(A−◦B)−◦ (A−◦ ∀xB) (x is not free in A.)

A A−◦B
B

A
∀xA

A[t/x]−◦ t ∈ {x|A} t ∈ {x|A} −◦ A[t/x]
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Sequent calculus for BCK set theory

Identity and Cut:

A � A (Id)
Γ1 � A A,Γ2 � C

Γ1,Γ2 � C (Cut)

Weakening:
Γ � C
A,Γ � C (Weak)

Implication:
Γ1 � A B,Γ2 � C
A−◦B,Γ1,Γ2 � C (−◦l) A,Γ � B

Γ � A−◦B (−◦r)
Set Quantifiers:

A[t/x],Γ � C
∀x.A,Γ � C (∀l) Γ � A

Γ � ∀x.A (∀r), x is not free in Γ

Comprehension:
A[t/x],Γ � C

t ∈ {x|A},Γ � C (∈ l) Γ � A[t/x]
Γ � t ∈ {x|A} (∈ r)
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Defined Connectives

A⊗B ≡ ∀x.((A−◦B −◦ t0 ∈ x)−◦ t0 ∈ x);
A⊕B ≡ ∀x.((A−◦ t0 ∈ x)−◦ (B −◦ t0 ∈ x)−◦ t0 ∈ x);

0 ≡ ∀x.t0 ∈ x;
∃y.A ≡ ∀x.(∀y.(A−◦ t0 ∈ x)−◦ t0 ∈ x),

where t0 is a fixed closed term and x is a fresh variable.

A−◦B −◦A⊗B (A−◦B −◦ C)−◦ (A⊗B −◦ C)

A−◦A⊕B (A−◦ C)−◦ (B −◦ C)−◦ (A⊕B −◦ C)

A−◦ ¬A−◦ 0 0−◦A
A[t/x]−◦ ∃x.A A−◦ C implies (∃x.A)−◦ C if x �∈ FV (C).
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Cut-elimination for BCK set theory

Principal cut for naive comprehension:

Γ � A[t/x]
Γ � t ∈ {x|A}

A[t/x],∆ � C
t ∈ {x|A},∆ � C

Γ,∆ � C
=⇒

Γ � A[t/x] A[t/x],∆ � C
Γ,∆ � C

Elimination of a principal cut always reduces the size of
a proof.

Cut-elimination can be done in linear steps (in terms of
proofnets).
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Consequences of cut-elimination

Consistency: BCK set theory is provably consistent (in
contrast to the alleged consistency of ZF).

Disjunction property: If A⊕ B is provable, then either A
or B is provable.

Existential property: If ∃x.A is provable, then A[t/x] is
provable for some term t.

Proof: A cut-free proof of
∃x.A ≡ ∀x.(∀y.(A−◦ t0 ∈ x)−◦ t0 ∈ x) looks like:

....
� A[u/y] t0 ∈ x � t0 ∈ x

A[u/y] −◦ t0 ∈ x � t0 ∈ x

∀y.(A −◦ t0 ∈ x) � t0 ∈ x

� ∀y.(A −◦ t0 ∈ x) −◦ t0 ∈ x

� ∀x.(∀y.(A −◦ t0 ∈ x) −◦ t0 ∈ x)
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Identity of BCK sets

Equality: t = u ≡ ∀x.(t ∈ x−◦ u ∈ x)

BCK set theory proves
1. t = t.
2. t = u−◦ (A[t/x]−◦A[u/x]).
3. t = u−◦ u = t.
4. t = u⊗ u = r −◦ t = r.
5. t = u−◦ t = u⊗ t = u.

(take A ≡ (t = x⊗ t = x) and apply 2, 1.)

Proposition: t = u is provable iff t and u are syntactically
identical.

In particular, {x|A⊕B} = {x|B ⊕A} is not provable.
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Basic constructions

∅ ≡ {x|x �= x}; {t} ≡ {x|x = t};
{t, u} ≡ {x|x = t⊕ x = u};
t ∪ u ≡ {x|x ∈ t⊕ x ∈ u}; 〈t, u〉 ≡ {{t}, {t, u}};

BCK set theory proves

1. t �∈ ∅.
2. t ∈ {u} ◦−◦ t = u.

3. t ∈ {u, v} ◦−◦ t = u⊕ t = v.

4. 〈t, u〉 = 〈r, s〉 ◦−◦ t = r ⊗ u = s.
(The standard proof applies, since contraction is
available for equational formulas.)
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Axioms of ZF (1)

Proposition(Grishin 74): Extensionality principle

∀x.(x ∈ t ◦−◦ x ∈ u)−◦ t = u

implies Contraction. Thus BCK set theory + Extensionality is

inconsistent.

Proof. We have contraction for equational formulas. So it

suffices to show that every formula A is equivalent to an

equational formula t = u.

Let t ≡ {x|x = x} and u ≡ {x|x = x⊗A}.
A ◦−◦ (x = x ◦−◦ x = x⊗A), x not free in A

A ◦−◦ (x ∈ t ◦−◦ x ∈ u)
A ◦−◦ ∀x.(x ∈ t ◦−◦ x ∈ u)
A ◦−◦ t = u

A weaker form of extensionality is also inconsistent. See [?].
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Axioms of ZF (2)

Constructive axioms: Ok, but uniqueness is not
guaranteed.

Separation, Replacement: Part of naive
comprehension.

Regularity: Inconsistent. Let V ≡ {x|x = x}. Then

· · · V ∈ V ∈ V

Infinity: Provable, but “infinity” no more means infinity...

Let suc(t) ≡ t ∪ {t} and

N ′ ≡ {n|∀α.(∅ ∈ α⊗ ∀x.(x ∈ α−◦ suc(x) ∈ α))−◦ n ∈ α}
Then ∅, suc(∅) ∈ N ′ holds, but suc(suc(∅)) ∈ N ′ does not
hold.
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Booleans in BCK set theory

true ≡ ∅
false ≡ {∅}

B ≡ {x|x = true⊕ x = false}
neg(x, y) ≡ (x = true⊗ y = false)⊕ (x = false⊗ y = true)

disj(x, y, z) ≡ (x = true⊗ z = true)⊕ (x = false⊗ y = z)

We have contraction for booleans: x ∈ B−◦ x ∈ B⊗ x ∈ B.

Theorem: For any boolean circuit C(x1, . . . , xn), there exists
a formula FC(x1, . . . , xn, y) such that it represents C and

� ∀x1, . . . , xn ∈ B.∃y ∈ B.FC(x1, . . . , xn, y)

has a proof of size O(|C|) in BCK set theory.
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P-completeness of Disjunction Property

Disjunction Property Problem: Given a proof of � C ⊕D,
determine which one of � C or � D holds.

Theorem: DPP is P-complete (under logspace-reducibility).

Proof:
(In P) By cut-elimination (in quadratic time).
(P-hard) Reduction of Circuit Value Problem; given a circuit
C and truth values b1, . . . , bn, construct a proof of

� AC(b1, . . . , bn, true)⊕ AC(b1, . . . , bn, false)

in logspace, by noting that

∃y ∈ B.AC(�b, y) ◦−◦ AC(�b, true)⊕ AC(�b, false).
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Fixpoint theorems

Fixpoint theorem 1: For every formula A(α) with a propositional

variable α, there exists a formula B such that B ◦−◦ A(B).

Proof: Let B ≡ {x|A(x ∈ x)} ∈ {x|A(x ∈ x)}.
Fixpoint theorem 2: For every formula A(x, y) with term variables

x, y, there exists a term (set) f such that x ∈ f ◦−◦ A(x, f).
Proof: Let

s ≡ {z | ∃u∃v(z = 〈u, v〉 ⊗A[{w | 〈w, v〉 ∈ v}/y, u/x])};
f ≡ {w | 〈w, s〉 ∈ s},

where u, v and w are fresh variables.
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Natural numbers (1)

Numerals:

0 ≡ ∅, S(t) ≡ 〈∅, t〉, n ≡ Sn(0).

Inequality: 〈x, y〉 ∈ leq ◦−◦ x = y ⊕ ∃y′(〈x, y′〉 ∈ leq⊗ y = S(y′))

The set of natural numbers:

x ∈ N ◦−◦ x = 0⊕ ∃y ∈ N.x = S(y)

Proposition: BCK set theory proves

1. S(t) �= 0.

2. S(t) = S(u) ◦−◦ t = u.

Proposition: n �= m is provable iff n �= m.

Proposition: 〈x, n〉 ∈ leq ◦−◦ x = 0⊕ · · · ⊕ x = n is provable.
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Natural Numbers (2)

Proposition: t ∈ N is provable iff t is a numeral.

Proof:

(⇐): By induction on n such that t ≡ n.

(⇒): By induction on the size of term t. If � t ∈ N∗ is provable, then

either � t = 0 or � ∃y ∈ N∗(t = S(y)) is provable by DPP.

In the former case, t ≡ 0. In the latter case, there is some term u

such that � u ∈ N∗ and � t = S(u) are provable by the existential

property. Thus t ≡ S(u), and hence the induction hypothesis

applies to u, as it means that u is smaller than t. It follows that

u ≡ m for some m ∈ N. Therefore t ≡ m+ 1.
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Addition and multiplication (1)

Addition:

〈x, y, z〉 ∈ add ◦−◦ (y = 0⊗x = z)⊕∃y′∃z′(y = S(y′)⊗z = S(z′)⊗〈x, y′, z′〉 ∈ add).

Multiplication: 〈x, y, z〉 ∈ mult ◦−◦
(y = 0 ⊗ z = 0) ⊕ ∃y′∃z′(y = S(y′) ⊗ 〈x, y′, z′〉 ∈ mult ⊗ 〈z′, x, z〉 ∈ add).

Proposition: BCK set theory proves

1. 〈x, 0, z〉 ∈ add ◦−◦ x = z.

2. 〈x, S(y), z〉 ∈ add ◦−◦ ∃z′(z = S(z′)⊗ 〈x, y, z′〉 ∈ add).

3. 〈x, 0, z〉 ∈ mult ◦−◦ z = 0.

4. 〈x, S(y), z〉 ∈ mult ◦−◦ ∃z′(〈z′, x, z〉 ∈ add⊗ 〈x, y, z′〉 ∈ mult).
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Addition and multiplication (2)

Proofs of (1) and (2):

〈x, 0, z〉 ∈ add ◦−◦ (0 = 0 ⊗ x = z) ⊕ ∃y′∃z′(0 = S(y′) ⊗ z = S(z′) ⊗ 〈x, y′, z′〉
◦−◦ x = z

〈x, S(y), z〉 ∈ add ◦−◦ (S(y) = 0 ⊗ x = z) ⊕ ∃y′∃z′(S(y) = S(y′) ⊗ z = S(z′) ⊗ 〈x,

◦−◦ ∃z′(z = S(z′) ⊗ 〈x, y, z′〉 ∈ add)

Proposition: Let n+m = k, n ·m = l. BCK set theory proves

1. 〈n,m, k〉 ∈ add

2. ∀z.〈n,m, z〉 ∈ add−◦ z = k

3. 〈n,m, l〉 ∈ mult

4. ∀z.〈n,m, z〉 ∈ mult−◦ z = l

Proof: By induction on m.
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Embedding classical arithmetic (1)

Arithmetical terms: x, 0, s(a), a + b, a · b
∆0 formulas:
a = b,¬F, F ∧G,F ∨G,F → G,∃x ≤ a.F,∀x ≤ a.G
(where x does not occur in a.)

Σ1 formulas: ∃x1 · · · ∃xn.F where F is ∆0.

Truth values of closed Σ1 formulas: naturally defined.

Shizuoka Univ., 06/09/2003 – p.27/??



Embedding classical arithmetic (2)

For each arithmetical term a whose variables are from
�x = x1, . . . , xk, define a BCK formula V ala(�x, y) as
follows:

V alxi(�x, y) ≡ y = xi, V al0(�x, y) ≡ y = 0

V als(a)(�x, y) ≡ ∃y′.V ala(�x, y′) ⊗ y = S(y′)

V ala+b(�x, y) ≡ ∃y1∃y2.V ala(�x, y1) ⊗ V alb(�x, y2) ⊗ 〈y1, y2, y〉 ∈ add

V ala·b(�x, y) ≡ ∃y1∃y2.V ala(�x, y1) ⊗ V alb(�x, y2) ⊗ 〈y1, y2, y〉 ∈ mult

Proposition: For any arithmetical term a and
�m = m1, . . . ,mk, if the value of a[�m/�x] is n, then BCK set
theory proves

V ala(�m, n)⊗ ∀z.V ala(�m, z)−◦ z = n.
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Embedding classical arithmetic (3)

Proof: By induction on a.

a ≡ xi: mi = mi ⊗ ∀z.z = mi −◦ z = mi

a ≡ 0: 0 = 0⊗ ∀z.z = 0−◦ z = 0

a ≡ b+ c: when the values of b and c are n1 and n2, we have

V alb(�m,n1)⊗ V alc(�m,n2)⊗ 〈n1, n2, n〉 ∈ add,

from which V ala(�m,n) follows. Now, working within BCK set

theory, suppose V ala(�m, z). Then there are y1, y2 such that

V alb(�m, y1), V alb(�m, y2) and 〈y1, y2, z〉 ∈ add. By IH,

y1 = n1 and y2 = n2, so z = n by what precedes.
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Embedding classical arithmetic (4)

For each ∆0 formula F whose free variables are from

�x = x1, . . . , xk, define a BCK formula SatF (�x) as follows:

Sata=b(�x) ≡ ∃z.V ala(�x, z)⊗ V alb(�x, z)
Sat¬F (�x) ≡ ¬SatF (�x)

SatF∧G(�x) ≡ SatF (�x)⊗ SatG(�x)

SatF∨G(�x) ≡ SatF (�x)⊕ SatG(�x)

SatF→G(�x) ≡ SatF (�x)−◦ SatG(�x)

Sat∃y≤a.F (�x) ≡ ∃z(V ala(�x, z)⊗ ∃y(〈y, z〉 ∈ leq⊗ SatF (�x, y)))

Sat∀y≤a.F (�x) ≡ ∃z(V ala(�x, z)⊗ ∀y(〈y, z〉 ∈ leq−◦ SatF (�x, y)))

Theorem: For any ∆0 formula F and �m = m1, . . . ,mk,

F [�m/�x] is true⇐⇒ SatF (�m) is provable,
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Embedding classical arithmetic (5)

Proof: By induction on F .

F ≡ (a = b): If a[�m/�x] = b[�m/�x] = n, we have

V ala(�m,n)⊗ V alb(�m,n).
If a[�m/�x] = n1, b[�m/�x] = n2 and n1 �= n2, we have

V ala(�m, z) � z = n1 and V alb(�m, z) � z = n2,

from which SatF (�m) � n1 = n2 � 0 follows.

F ≡ ¬G: Immediate.

F ≡ G ∧H: The case F [�m/�x] true is obvious. If it is false,

one of the conjuncts, say G[�m/�x], is false. By IH, ¬SatG(�m)
is provable, which implies ¬(SatG(�m)⊗ SatH(�m)).

F ≡ ∀y ≤ a.G: Use x ≤ n ◦−◦ x = 0⊕ · · · ⊕ x = n.
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Embedding classical arithmetic (6)

For each Σ1 formula F whose free variables are from

�x = x1, . . . , xk, define a BCK formula SatF (�x) by:

Sat∃y.F (�x) ≡ ∃y(y ∈ N ⊗ SatF (�x, y)).

Theorem: For any Σ1 formula F and �m = m1, . . . ,mk,

F [�m/�x] is true⇐⇒ SatF (�m) is provable.

Proof: By induction on F

∃y.F [�m/�x] is true

⇐⇒ F [�m/�x, n/y] is true for some n

⇐⇒ SatF (�m,n) and n ∈ N are provable for some n

⇐⇒ ∃y(y ∈ N ⊗ SatF (�m, y)) is provable.
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Embedding classical arithmetic (7)

Corollary: Every r.e. predicate is weakly numeralwise

representable in BCK set theory. Namely, for every r.e.

predicate ψ ⊆ N, there exists a formula A(x) such that for any

n ∈ N

ψ(n) ⇐⇒ � A(n) is provable in BCK set theory.

Corollary: BCK set theory is undecidable.

Corollary: For any closed ∆0 formula F , BCK set theory proves

SatF ⊕ ¬SatF .

Question: To what extent we may have excluded middle in BCK

set theory? Is the above result related to the availability of

contraction for closed provable Π1 formulas in 2nd order MLL?
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Expressivity of BCK set theory

Definability is rich (as it weakly numeralwise represents
all r.e. predicates)

Computability is too weak (as cut-elimination can be
done in linear steps)

In analogy, BCK set theory corresponds to Robinson’s
Q in arithmetic. We need to strengthen it to get a
computationally more interesting system (like S1

2 ,
I∆0 + exp, IΣ1, PA, etc.).

⇒ Light affine set theory (LAST) and Elementary affine
set theory (EAST).
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Background on LAST and EAST (1)

Light linear logic (LLL, Girard 1998): subsystem of linear
logic corresponding to polynomial time complexity.

Proofs of LLL precisely captures the polynomial time
functions via the Curry-Howard correspondence.

Light linear set theory: LLL+ Naive comprehension.
Considered as a basis of "polytime mathematics".
But formal justification is not given enough.
Complexity is light, but syntax is "heavy".
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Background on LAST and EAST (2)

Intuitionistic light affine logic (ILAL, Asperti 1998):
Intuitionistic LLL + Weakening.

Drastic simplification of LLL with the same
computational power.
Set theory has not been developed on it.

NB. Multiplicative LLL is already complete for PTIME
(Mairson-Terui, ICTCS 2003)

Cf. Elementary linear logic (Girard 1998): Subsystem of
linear logic corresponding to the elementary recursive
functions.
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Our contributions

Light affine set theory (LAST): ILAL+ Naive
comprehension.

Every provably total function in LAST is polynomial
time computable and vice versa. ⇒ LAST as a
formalization of polynomial time mathematics.

Elementary affine set theory (EAST): Elementary
version of LAST.

Every provably total function in EAST is (Kalmar-)
elementary recursive and vice versa.
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Elementary affine set theory

Extend BCK set theory with modally controlled
Contraction.

Contraction inference rule controlled by modality !:
!A, !A,Γ � C

!A,Γ � C

EAST: BCK set theory + K-controlled contraction

K: !(A−◦B)−◦!A−◦!B
In sequent calculus,

A1, . . . , An � B

!A1, . . . , !An �!B
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Naive comprehension is inconsistent with T-Contraction

T :!A−◦A

D �!¬D

!¬D � D
¬D, !¬D �
!¬D, !¬D � (T )

!¬D � (Contr)

D �
� ¬D
�!¬D

!¬D � D
¬D, !¬D �
!¬D, !¬D � (T )

!¬D � (Contr)

�
Also inconsistent with KD4

D :!A−◦?A
4 :!A−◦!!A
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Hierarchy of Naive Set Theories

K (=Elementary Logic)

T
K4

KD4

S4(=Linear/Intuitionistic Logic)

inconsistent

consistent

Monotonic K-bounded (=Light Logic)
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Expressivity of EAST

Define N by

x ∈ N ◦−◦ ∀α.!∀y.(y ∈ α−◦ S(y) ∈ α)−◦!(0 ∈ α−◦ x ∈ α)

A numeric function φ is provably total in EAST if there is a
term f which represents φ and for some d ≥ 0,

� ∀x ∈ N.!d(∃!y ∈ N.〈x, y〉 ∈ f)

is provable in EAST.

Theorem: φ is provably total in EAST

⇐⇒ φ is an elementary recursive function (i.e. the runtime

of φ is bounded by a tower of exponentials).
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Light affine set theory

LAST: BCK set theory + monotonic K-bounded
Contraction

Multi-modal system with two modalities §, !, where !
controls Contraction.

K: §(A−◦B)−◦ §A−◦ §B
K-boundedness: !A−◦ §A
Monotonicity: A � B implies !A �!B.

B � A
!B �!A (!), B can be absent.

Γ,∆ � A

!Γ, §∆ � §A (§)
!A, !A,Γ � C

!A,Γ � C
(Contr)
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Natural Numbers in LAST

Define

N ≡ {x|∀α.!∀y(y ∈ α−◦ S(y) ∈ α)−◦ §(0 ∈ α−◦ x ∈ α)}.

Then LAST proves

1. 0 ∈ N.

2. t ∈ N−◦ S(t) ∈ N.

LAST proves t ∈ N iff t ≡ n for some n ∈ N .

Shizuoka Univ., 06/09/2003 – p.43/??



Proof of “0 is a natural number”

0 ∈ α � 0 ∈ α

� 0 ∈ α−◦ 0 ∈ α

� §(0 ∈ α−◦ 0 ∈ α)

!∀y(y ∈ α−◦ S(y) ∈ α) � §(0 ∈ α−◦ 0 ∈ α)

�!∀y(y ∈ α−◦ S(y) ∈ α)−◦ §(0 ∈ α−◦ 0 ∈ α)

� ∀α.!∀y(y ∈ α−◦ S(y) ∈ α)−◦ §(0 ∈ α−◦ 0 ∈ α)

� 0 ∈ N
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Proof of “2 is a natural number”

0 ∈ α−◦ S(0) ∈ α, S(0) ∈ α−◦ S(S(0)) ∈ α � 0 ∈ α−◦ S(S(0)) ∈ α
∀y(y ∈ α−◦ S(y) ∈ α),∀y(y ∈ α−◦ S(y) ∈ α) � 0 ∈ α−◦ S(S(0)) ∈ α

!∀y(y ∈ α−◦ S(y) ∈ α), !∀y(y ∈ α−◦ S(y) ∈ α) � §(0 ∈ α−◦ S(S(0)) ∈ α
!∀y(y ∈ α−◦ S(y) ∈ α) � §(0 ∈ α−◦ S(S(0)) ∈ α)

�!∀y(y ∈ α−◦ S(y) ∈ α)−◦ §(0 ∈ α−◦ S(S(0)) ∈ α)

� ∀α.!∀y(y ∈ α−◦ S(y) ∈ α)−◦ §(0 ∈ α−◦ S(S(0)) ∈ α)

� S(S(0)) ∈ N
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Proof of “Successor of a natural number is a natural number”

0 ∈ α � 0 ∈ α

t ∈ α � t ∈ α S(t) ∈ α � S(t) ∈ α

t ∈ α −◦ S(t) ∈ α, t ∈ α � S(t) ∈ α

∀y(y ∈ α −◦ S(y) ∈ α), t ∈ α � S(t) ∈ α

0 ∈ α, ∀y(y ∈ α −◦ S(y) ∈ α), 0 ∈ α −◦ t ∈ α � S(t) ∈ α

∀y(y ∈ α −◦ S(y) ∈ α), 0 ∈ α −◦ t ∈ α � 0 ∈ α −◦ S(t) ∈ α

!∀y(y ∈ α −◦ S(y) ∈ α), §(0 ∈ α −◦ t ∈ α) � §(0 ∈ α −◦ S(t) ∈ α)

!∀y(y ∈ α −◦ S(y) ∈ α)2, !∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) � §(0 ∈ α −◦ S(t) ∈
!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) �!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ S(t) ∈

∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) � ∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ S(

t ∈ N � S(t) ∈ N
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Light Induction

The Light induction principle

� A(0) B,A(y)) � A(S(y))

!B,� ∀x ∈ N.§A(x)

is available in LAST.

Proof:

B, A[y/x] � A[S(y)/x]

B, y ∈ {x|A} � S(y) ∈ {x|A}
B � ∀y(y ∈ {x|A} −◦ S(y) ∈ {x|A})
!B �!∀y(y ∈ {x|A} −◦ S(y) ∈ {x|A})

Γ � A[0/x]

Γ � 0 ∈ {x|A}
A[t/x] � A[t/x]

t ∈ {x|A} � A[t/x]

Γ, 0 ∈ {x|A} −◦ t ∈ {x|A} � A[t/x]

§Γ, §(0 ∈ {x|A} −◦ t ∈ {x|A}) � §A[t/x]

§Γ, !B, !∀y(y ∈ {x|A} −◦ S(y) ∈ {x|A}) −◦ §(0 ∈ {x|A} −◦ t ∈ {x|A}) � §A[t/x]

§Γ, !B, ∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) � §A[t/x]

§Γ, !B, t ∈ N � §A[t/x]
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Totality of addition

Prove

(i) � ∀x ∈ N.∃!z ∈ N(〈x, 0, z〉 ∈ add) and

(ii) ∀x ∈ N.∃!z ∈ N(〈x, y, z〉 ∈ add) � ∀x ∈ N.∃!z ∈ N(〈x, S(y), z〉 ∈
add).

By light induction on y,

(*) y ∈ N � §(∀x ∈ N.∃!z ∈ N(〈x, y, z〉 ∈ add)).

Therefore,

∀x ∈ N.∀y ∈ N.§∃!z ∈ N(〈x, y, z〉 ∈ add).
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Totality of multiplication

We have 〈x, y, z〉 ∈ mult, 〈z, x,w〉 ∈ add � 〈x, S(y), w〉 ∈ mult.

∃!z ∈ N(〈x, y, z〉 ∈ mult),∀z ∈ N.∃!w ∈ N(〈z, x,w〉 ∈ add)
� ∃!w ∈ N(〈x, S(y), w〉 ∈ mult).

§∃!z ∈ N(〈x, y, z〉 ∈ mult), §∀z ∈ N.∃!w ∈ N(〈z, x,w〉 ∈ add)
� §∃!w ∈ N(〈x, S(y), w〉 ∈ mult).

By (*),

x ∈ N, §∃!z ∈ N(〈x, y, z〉 ∈ mult) � §∃!w ∈ N(〈x, S(y), w〉 ∈ mult).
On the other hand,

� §∃!z ∈ N(〈x, 0, z〉 ∈ mult)
By Light Induction,

!x ∈ N, y ∈ N � §2∃!z ∈ N(〈x, y, z〉 ∈ mult).

Hence,

∀x ∈ N.∀y ∈ N.§§§∃!z ∈ N(〈x, y, z〉 ∈ mult). Shizuoka Univ., 06/09/2003 – p.49/??



Exponentiation is not total

Define by fixpoint: 〈y, z〉 ∈ exp ◦−◦ (y = 0⊗ z = 1)⊕
∃y′∃x(y = S(y′)⊗ 〈y′, x〉 ∈ exp⊗ 〈x, x, z〉 ∈ add).

(based on:

20 = 1

2n+1 = 2n + 2n )

Then we have

(i) � ∃!z ∈ N(〈0, z〉 ∈ exp)

(ii) ∃!z ∈ N.§§(〈y, z〉 ∈ exp) � §§∃!z ∈ N(〈S(y), z〉 ∈ exp).

But light induction cannot be applied!
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Expressivity of LAST

The set of 0-1 words: x ∈W ◦−◦
∀α.!∀y.(y ∈ α−◦S0(y) ∈ α)−◦!∀y.(y ∈ α−◦S1(y) ∈ α)−◦ §(ε ∈ α−◦ x ∈ α),

where ε ≡ ∅ and Si(t) ≡ 〈i, t〉 for i = 0, 1.

A function φ over {0, 1}∗ is provably total in LAST if there is a term f

which represents φ and for some d ≥ 0,

∀x ∈W.§d(∃!y ∈W.〈x, y〉 ∈ f)

is provable in LAST.

Theorem: If φ is a polynomial time function, then φ is provably total

in LAST.
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Interpretation of LAST proofs asλ terms

x :A � x :A
Id

Γ1 � N :A x :A, Γ2 � M :C

Γ1, Γ2 � M[N/x] :C
Cut

Γ � M :C
x :A, Γ � M :C

Weak
x :!A,y :!A,Γ � M :C

z :!A,Γ � M[z/x,z/y] :C
Cntr

Γ1 � N :A1 x :A2, Γ2 � M :C

Γ1, y :A1 −◦ A2, Γ2 � M[yN/x] :C
−◦l x :A1, Γ � M :A2

Γ � λx.M :A1 −◦ A2
−◦r

x :B � M :A
x :!B � M :!A

!
Γ, ∆ � M :A

!Γ, §∆ � M :§A §

x :A[u/x],Γ � M :C

x :∀x.A, Γ � M :C
∀l

Γ � M :A
Γ � M :∀x.A

∀r

x :A[u/x],Γ � M :C

x :u ∈ {x|A}, Γ � M :C
∈ l

Γ � M :A[u/x]

Γ � M :u ∈ {x|A} ∈ r
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Example of Proof Interpretation

0 ∈ α � 0 ∈ α

t ∈ α � t ∈ α S(t) ∈ α � S(t) ∈ α

t ∈ α −◦ S(t) ∈ α, t ∈ α � S(t) ∈ α

∀y(y ∈ α −◦ S(y) ∈ α), t ∈ α � S(t) ∈ α

0 ∈ α, ∀y(y ∈ α −◦ S(y) ∈ α), 0 ∈ α −◦ t ∈ α � S(t) ∈ α

∀y(y ∈ α −◦ S(y) ∈ α), 0 ∈ α −◦ t ∈ α � 0 ∈ α −◦ S(t) ∈ α

!∀y(y ∈ α −◦ S(y) ∈ α), §(0 ∈ α −◦ t ∈ α) � §(0 ∈ α −◦ S(t) ∈ α)

!∀y(y ∈ α −◦ S(y) ∈ α)2, !∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) � §(0 ∈ α −◦ S(t) ∈
!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) �!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ S(t) ∈

∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) � ∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ S(

t ∈ N � S(t) ∈ N

⇓ interpreted by

Suc(n) ≡ λfx.f(nfx)
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Main Properties of Interpretation

A proof in LAST is canonical if it does not contain A−◦!B, !!B,

§!B (! always appears as !A−◦B).

In what follows, we assume that all proofs are canonical.

Subject Reduction: Γ � M : C, M→β M
′ =⇒ Γ � M′ : C.

Church-Rosser: M1 ←−∗ M0 −→∗M2 implies M1 −→∗M3 ←−∗ M2 for

some term M3.

Polynomial Time Strong Normalization: Let A be a Π1 type of

depth d (d counts the nesting of !, §). Then any term M : A
reduces to its normal form within O(|M|2d+1

) reduction steps.

This result holds independently of which reduction strategy we

take.
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Program Extraction

Program extraction theorem: If

Total(f) ≡ ∀x ∈W.§d(∃!y ∈W.〈x, y〉 ∈ f)

has a (canonical) proof in LAST, then we can extract from that proof

a λ term corresponding to f .

Corollary: φ : {0, 1}∗ −→ {0, 1}∗ is a polynomial time function⇐⇒ φ

is provably total in LAST.
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Conclusion

Restricting Contraction is reasonable when feasible

constructivity is concerned.

When Contraction is restricted, naive comprehension is fully

available. Naive comprehension endows a system with rich

definitional power (but not computational power).

LAST: A formalization of feasible mathematics.

Problem 1: Extend EAST (to primitive recursive functions, etc.)

Are there “strongest” naive set theories?

Problem 2: Intuitive semantics (cf. Komori 89, Shirahata 9?).

Problem 3: Find a concrete example of mathematical theorems

provable in LAST and extract a polynomial time program from

the proof.

Shizuoka Univ., 06/09/2003 – p.56/??


	Fundamental question
	Possible reasons
	Cut-Elimination
	Proofs-as-Programs correspondence
	Feasibility
	Contraction has to be restricted
	Naive set theory
	large Russell's paradox $Rightarrow $ Contradiction
	large Naive set theories with restricted contraction
	BCK set theory
	Sequent calculus for BCK set theory
	Defined Connectives
	Cut-elimination for BCK set theory
	Consequences of cut-elimination
	Identity of BCK sets
	Basic constructions
	Axioms of ZF (1)
	Axioms of ZF (2)
	Booleans in BCK set theory
	P-completeness of Disjunction Property
	Fixpoint theorems
	Natural numbers (1)
	Natural Numbers (2)
	Addition and multiplication (1)
	Addition and multiplication (2)
	Embedding classical arithmetic (1)
	Embedding classical arithmetic (2)
	Embedding classical arithmetic (3)
	Embedding classical arithmetic (4)
	Embedding classical arithmetic (5)
	Embedding classical arithmetic (6)
	Embedding classical arithmetic (7)
	Expressivity of BCK set theory
	Background on LAST  and EAST  (1)
	Background on LAST  and EAST  (2)
	Our contributions
	Elementary affine set theory
	
ormalsize Naive comprehension is inconsistent with T-Contraction
	Hierarchy of Naive Set Theories
	Expressivity of EAST 
	Light affine set theory
	Natural Numbers in LAST 
	Proof of ``0 is a natural number''
	Proof of ``2 is a natural number''
	small Proof of ``Successor of a natural number is a natural number''
	Light Induction
	Totality of addition
	Totality of multiplication
	Exponentiation is not total
	Expressivity of LAST 
	
ormalsize Interpretation of LAST  proofs as $lambda $ terms
	 Example of Proof Interpretation
	Main Properties of Interpretation
	Program Extraction
	Conclusion

