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Abstract

We give presentations of the asymptotic expansions of the Kashaev invariant of the knots with
6 crossings. In particular, we show the volume conjecture for these knots, which states that the
leading terms of the expansions present the hyperbolic volume and the Chern-Simons invariant of
the complements of the knots. As higher coefficients of the expansions, we obtain a new series of
invariants of these knots.

A non-trivial part of the proof is to apply the saddle point method to calculate the asymptotic
expansion of an integral which presents the Kashaev invariant. A key step of this part is to give a
concrete homotopy of the (real 3-dimensional) domain of the integral in C3 in such a way that the
boundary of the domain always stays in a certain domain in C3 given by the potential function of
the hyperbolic structure.
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1 Introduction

In [12, 13] Kashaev defined the Kashaev invariant ⟨L ⟩
N
∈ C of a link L for N = 2, 3, · · ·

by using the quantum dilogarithm. In [14] he conjectured that, for any hyperbolic link L,
2π
N
log ⟨L ⟩

N
goes to the hyperbolic volume of S3−L as N → ∞, and verified the conjecture

for some simple knots, by formal calculations. In 1999, H. Murakami and J. Murakami
[18] proved that the Kashaev invariant ⟨L ⟩

N
of any link L is equal to the N -colored

Jones polynomial JN(L; e
2π

√
−1/N) of L evaluated at e2π

√
−1/N , where JN(L; q) denotes the

invariant obtained as the quantum invariant of links associated with the N -dimensional
irreducible representation of the quantum group Uq(sl2). Further, as an extension of

Kashaev’s conjecture, they conjectured that, for any knotK, 2π
N
log |JN(K; e2π

√
−1/N)| goes

to the (normalized) simplicial volume of S3−K. This is called the volume conjecture. As
a complexification of the volume conjecture, it is conjectured in [19] that, for a hyperbolic
link L,

JN(L; e
2π

√
−1/N) ∼

N→∞
eNς(L),

where we put

ς(L) =
1

2π
√
−1

(
cs(S3 − L) +

√
−1 vol(S3 − L)

)
,

The first author was partially supported by JSPS KAKENHI Grant Numbers 24340012, 16H02145 and 16K13754. The
second author was partially supported by JSPS KAKENHI Grant Number 15K04878.
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and “cs” and “vol” denote the Chern-Simons invariant and the hyperbolic volume. Fur-
thermore, it is conjectured [9] (see also [3, 10, 35]) from the viewpoint of the SL(2,C)
Chern-Simons theory that the asymptotic expansion of JN(K; e2π

√
−1/k) of a hyperbolic

knot K as N, k → ∞ fixing u = N/k is presented by the following form,

JN(K; e2π
√
−1/k) ∼

N,k→∞
u=N/k: fixed

eNςN3/2 ω ·
(
1 +

∞∑
i=1

κi ·
(2π√−1

N

)i)
(1)

for some scalars ς, ω, κi depending on K and u, though they do not discuss the Jones
polynomial in the Chern-Simons theory in the case of vanishing quantum dimension,
which is discussed in [29]. Further, the first author showed in [20] that, when K is the 52
knot, the asymptotic expansions of the Kashaev invariant is presented by the following
form,

⟨K ⟩
N

= eNς(K)N3/2 ω(K) ·
(
1 +

d∑
i=1

κi(K) ·
(2π√−1

N

)i
+O

( 1

Nd+1

))
, (2)

for any d, where ω(K) and κi(K)’s are some scalars.
The volume conjecture has been rigorously proved for some particular knots and links

such as torus knots [15] (see also [4]1), the figure-eight knot (by Ekholm, see also [1]2),
Whitehead doubles of (2, p)-torus knots [36], positive iterated torus knots [27], the 52 knot
[16, 20], and some links [8, 11, 26, 27, 28, 36]; for details see e.g. [17].

The aim of this paper is to extend the formula (2) to the knots with 6 crossings, that
is, we show the following theorem. In particular, this means that the volume conjecture
holds for these knots.

Theorem 1.1. The asymptotic expansions of the Kashaev invariant ⟨K ⟩
N

of the knots
K with 6 crossings are presented by the form (2) for any d, where ω(K) and κi(K)’s are
some constants depending on K.

The knots with 6 crossings are the 61, 62 and 63 knots, and all of them are hyperbolic.
Their ς(K) are presented by

ς(61) = ς(61) = 0.5035603...+
√
−1 · 1.08078... ,

ς(62) = 0.700414...− √
−1 · 0.934648... ,

ς(63) = 0.906072... .

We note that their ω(K) and κi(K)’s are also their invariants; in particular, we will show
that their ω(K) are presented by

ω(61) = ω(61) = −0.52139...− √
−1 · 0.071732... ,

ω(62) = −0.42920...+
√
−1 · 0.20337... ,

1A detailed asymptotic expansion of the colored Jones polynomial for torus knots is given in [4].
2A detailed proof of the volume conjecture for the figure-eight knot was given in [1] and the term N3/2 in (1) and (2)

was also verified there.
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ω(63) = 0.416927... .

We note that the values of ς(63) and ω(63) are real, since the 63 knot is amphicheiral.
It is shown [22] that 2

√
−1ω2(K) for these knots is equal to the twisted Reidemeister

torsion associated with the action on sl2 of the holonomy representation of the hyperbolic
structure. We also remark that Dimofte and Garoufalidis [2] define a formal power series
from an ideal tetrahedral decomposition of a knot complement, which is expected to be
equal to the asymptotic expansion of the Kashaev invariant of the knot.

We show proofs of the theorem for the 61, 62, 63 knots in Sections 3.1, 4.1, 5.1 respec-
tively. An outline of the proofs is as follows. From the definition of the Kashaev invariant,
the Kashaev invariant of K is presented by a sum. We rewrite the sum by an integral by
the Poisson summation formula (Proposition 2.3). When we apply the Poisson summation
formula, the right-hand side of the Poisson summation formula consists of infinitely many
summands, and we show that we can ignore them except for the one at 0 in the sense
that they are of sufficiently small order at N → ∞. Further, by the saddle point method
(Proposition 2.6), we calculate the asymptotic expansion of the integral, and obtain the
presentation of the theorem.

A non-trivial part of the proof is to apply the saddle point method, whose concrete
procedure is quite different from the proof for the 52 knot in [20]. In this part, we need
to calculate the asymptotic behavior of an integral of the following form as N → ∞,∫

∆′
exp

(
N
(
V (t, s, u)− ς

))
dt ds du,

for a certain function V (t, s, u) which depends onN , where V (t, s, u) converges to V̂ (t, s, u)

as N → ∞, and ς is a critical value of V̂ (t, s, u). Here, V̂ (t, s, u) is the potential function
of the hyperbolic structure of the knot complement. As we mention in Remark 2.7, the
above calculation is reduced to the calculation of the following case,∫

∆′
exp

(
N
(
V̂ (t, s, u)− ς

))
dt ds du.

The domain ∆′ of the integral is a compact domain in R3, and its boundary is included
in the following domain {

(t, s, u) ∈ C3
∣∣ Re (V̂ (t, s, u)− ς

)
< 0
}
. (3)

The critical value ς is given by a critical point (t0, s0, u0), and it is located near ∆′ in
C3. In order to apply the saddle point method, we need to show that we can move ∆′

into imaginary direction by a homotopy in such a way that the new domain ∆′
1 contains

(t0, s0, u0), and ∆′
1 −{(t0, s0, u0)} is included in (3), and the boundary of ∆′ always stays

in (3) when we apply the homotopy. We note that, when we restrict the domain (3) to a
sufficiently small neighborhood of (t0, s0, u0), the resulting space is homotopy equivalent
to a 2-sphere. The existence of the above homotopy means that the boundary of ∆′ is
homotopic to this 2-sphere in the domain (3). It is a non-trivial task to see that they are
homotopic in the domain (3), since it is not easy to see the topological type of the domain
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(3) directly. We give such a homotopy concretely in Sections 3.5, 4.5, 5.5 for the 61, 62,
63 knots respectively. This part of the proof is quite non-trivial; in fact, we note that we
can not make such a homotopy for the 72 knot as shown in [21].

By the method of this paper, the asymptotic behavior of the Kashaev invariant is
discussed for the hyperbolic knots with 7 crossings in [21] and for some hyperbolic knots
with 8 crossings in [24].

The paper is organized as follows. In Section 2, we review definitions and basic prop-
erties of the notation used in this paper. In Sections 3, 4, 5, we show proofs of Theorem
1.1 for the 61, 62, 63 knots respectively. In Appendices A, B, C and D, we show proofs of
some lemmas used in Sections 3, 4, 5.

The authors would like to thank Tudor Dimofte, Kazuo Habiro, Hitoshi Murakami,
Toshie Takata and Dylan Thurston for helpful comments.

2 Preliminaries

In this section, we review definitions and basic properties of the notation used in this
paper.

2.1 Integral presentation of (q)n

In this section, we review the integral expression of q-factorials (q)n and their basic prop-
erties.

Let N be an integer ≥ 2. We put q = exp(2π
√
−1/N), and put

(x)n = (1− x)(1− x2) · · · (1− xn)

for n ≥ 0. It is known [18] (see also [20]) that for any n,m with n ≤ m,

(q)n(q)N−n−1 = N, (4)∑
n≤k≤m

1

(q)m−k(q)k−n
= 1. (5)

Following Faddeev [5], we define a holomorphic function φ(t) on {t ∈ C | 0 < Re t < 1}
by

φ(t) =

∫ ∞

−∞

e(2t−1)xdx

4x sinhx sinh(x/N)
,

noting that this integrand has poles at nπ
√
−1 (n ∈ Z), where, to avoid the pole at 0, we

choose the following contour of the integral,

γ = (−∞,−1 ] ∪
{
z ∈ C

∣∣ |z| = 1, Im z ≥ 0
}

∪ [ 1,∞).

It is known [7, 31] that

(q)n = exp
(
φ
( 1

2N

)
− φ

(2n+ 1

2N

))
,

(q)n = exp
(
φ
(
1− 2n+ 1

2N

)
− φ

(
1− 1

2N

))
.

(6)
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We put ℏ = 2π
√
−1/N , and put

Φd(z) = Li2
(
z
)
+
∑

1≤k≤d

ℏ2kc2k ·
(
z
d

dz

)2k−2 z

1− z
,

where we define c2k by
t/2

sinh(t/2)
=
∑
k≥0

c2k t
2k.

Then, it is known [7, 31] (see also [20]) that, for any d ≥ 0,

φ(t) =
N

2π
√
−1

Φd(e
2π

√
−1 t) +O(ℏ2d+1), (7)

φ(k)(t) =
N

2π
√
−1

( d
dt

)k
Φd(e

2π
√
−1 t) +O(ℏ2d+1), (8)

for each k > 0. More precisely, as for the convergence of 1
N
φ(t) as N → ∞, we recall the

following proposition.

Proposition 2.1 (See [20]). We fix any sufficiently small δ > 0 and any M > 0. Let d
be any non-negative integer. Then, in the domain{

t ∈ C
∣∣ δ ≤ Re t ≤ 1− δ, |Im t| ≤M

}
, (9)

φ(t) is presented by

φ(t) =
N

2π
√
−1

Li2(e
2π

√
−1 t) +O

( 1
N

)
,

where O(1/N) means the error term whose absolute value is bounded by C/N for some
C > 0, which is independent of t (but possibly dependent on δ). In particular, 1

N
φ(t)

uniformly converges to 1
2π

√
−1

Li2(e
2π

√
−1 t) in the domain (9).

As for properties of φ(t), it is a consequence of (4) and (6) (see [20]) that, for any t ∈ C
with 0 < Re t < 1,

φ(t) + φ(1− t) = 2π
√
−1
(
− N

2

(
t2 − t+

1

6

)
+

1

24N

)
. (10)

Further, the following formulas are known (due to Kashaev, see [20]),

φ
( 1

2N

)
=

N

2π
√
−1

π2

6
+

1

2
logN +

π
√
−1

4
− π

√
−1

12N
,

φ
(
1− 1

2N

)
=

N

2π
√
−1

π2

6
− 1

2
logN +

π
√
−1

4
− π

√
−1

12N
.

(11)
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2.2 Some behaviors of the dilogarithm function

In this section, we show some behaviors of the dilogarithm function.

We put

Λ(t) = Re
( 1

2π
√
−1

Li2(e
2π

√
−1 t)

)
.

Since
Λ′(t) = − log 2 sin πt, Λ′′(t) = −π cotπt,

the behavior of Λ(t) is as follows.

t 0 · · · 1
6 · · · 1

2 · · · 5
6 · · · 1

Λ(t) 0 → Λ(1
6
) → 0 → −Λ(1

6
) → 0

Λ′(t) + 0 − − − 0 +

Λ′′(t) − − − 0 + + +

Here, Λ(1
6
) = 0.161533... . For the graph of Λ(t), see Figure 1.

0.60.2 0.4 0.8

−

−

−

0.05

0.05

0.10

0.10

0.15

0.15

1.0

Figure 1: The graph of Λ(t) for 0 ≤ t ≤ 1

Further, the behavior of Li2
(
e2π

√
−1 (t+X

√
−1)
)
fixing t is presented by the following

lemma.

Lemma 2.2. Let t be a real number with 0 < t < 1. Then, there exists C > 0 such that({
0 if X ≥ 0

2π
(
t− 1

2

)
X if X < 0

)
− C < Re

( 1

2π
√
−1

Li2
(
e2π

√
−1 (t+X

√
−1)
))

<

({
0 if X ≥ 0

2π
(
t− 1

2

)
X if X < 0

)
+ C

for any X ∈ R.

Proof. Since

lim
X→∞

Re
( 1

2π
√
−1

Li2
(
e2π

√
−1 (t+X

√
−1)
))

= Re
( 1

2π
√
−1

Li2(1)
)

= 0,

the “X ≥ 0” part of the lemma is satisfied.
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Further, by (7) and (10),

Li2
(
e2π

√
−1 t̃
)
+ Li2

(
e−2π

√
−1 t̃
)

= 2π2
(
t̃2 − t̃+

1

6

)
.

Hence,

Re
1

2π
√
−1

(
Li2
(
e2π

√
−1 (t+X

√
−1)
)
+ Li2

(
e−2π

√
−1 (t+X

√
−1)
))

= 2π
(
t− 1

2

)
X.

Therefore, we obtain the “X < 0” part of the lemma from the “X ≥ 0” part.

2.3 Definition of the Kashaev invariant

In this section, we review the definition of the Kashaev invariant of oriented knots.

Following Yokota [33],3 we review the definition of the Kashaev invariant. We put

N = {0, 1, · · · , N − 1}.

For i, j, k, l ∈ N , we put

Ri j
k l =

N q−
1
2
+i−k θi jk l

(q)[i−j](q)[j−l](q)[l−k−1](q)[k−i]
, R

i j

k l =
N q

1
2
+j−l θi jk l

(q)[i−j](q)[j−l](q)[l−k−1](q)[k−i]
,

where [m] ∈ N denotes the residue of m modulo N , and we put

θi jk l =

{
1 if [i− j] + [j − l] + [l − k − 1] + [k − i] = N − 1,

0 otherwise.

Let K be an oriented knot. We consider a 1-tangle whose closure is isotopic to K such
that its string is oriented downward at its end points. Let D be a diagram of the 1-tangle.
We present D by a union of elementary tangle diagrams shown in (12). We decompose
the string of D into edges by cutting it at crossings and critical points with respect to the
height function of R2. A labeling is an assignment of an element of N to each edge. Here,
we assign 0 to the two edges adjacent to the end points of D. For example, see (28). We
define the weights of labeled elementary tangle diagrams by

W
( i j

k l

)
= Ri j

k l , W
(

k l

)
= q−1/2δk,l−1 , W

(
k l

)
= δk,l ,

W
( i j

k l

)
= R

i j

k l , W
( i j )

= q1/2δi,j+1 , W
( i j )

= δi,j .

(12)

3We make a minor modification of the definition of weights of critical points from the definition in [33], in order to make
⟨K ⟩N invariant under Reidemeister moves.

7



Then, the Kashaev invariant ⟨K ⟩
N
of K is defined by

⟨K ⟩
N

=
∑

labelings

∏
crossings

ofD

W (crossings)
∏

critical
points ofD

W (critical points) ∈ C.

2.4 The Poisson summation formula

In this section, we review the Poisson summation formula and a proposition obtained
from it.

Recall (see e.g. [23]) that the Poisson summation formula states that∑
m∈Zn

f(m) =
∑

m∈Zn

f̂(m) (13)

for a continuous integrable function f on Rn which satisfies that

|f(z)| ≤ C
(
1 + |z|

)−n−δ
, |f̂(z)| ≤ C

(
1 + |z|

)−n−δ
(14)

for some C, δ > 0, where f̂ is the Fourier transform of f defined by

f̂(w) =

∫
Rn

f(z) e−2π
√
−1wT zdz.

The following proposition is obtained from the Poisson summation formula.

Proposition 2.3 (see [20]). For (c1, c2, c3) ∈ C3 and an oriented 3-ball D′ in R3, we put

Λ =
{( i
N

+ c1,
j

N
+ c2,

k

N
+ c3

)
∈ C3

∣∣∣ i, j, k ∈ Z,
( i
N
,
j

N
,
k

N

)
∈ D′

}
,

D =
{
(t+ c1, s+ c2, u+ c3) ∈ C3

∣∣ (t, s, u) ∈ D′ ⊂ R3
}
.

Let ψ(t, s, u) be a holomorphic function defined in a neighborhood of 0 ∈ C3 including D.
We assume that ∂D is included in the domain{

(t, s, u) ∈ C3
∣∣ Reψ(t, s, u) < −ε0

}
for some ε0 > 0. Further, we assume that ∂D is null-homotopic in each of the following
domains,{

(t+ δ
√
−1, s, u) ∈ C3

∣∣ (t, s, u) ∈ D′, δ ≥ 0, Reψ(t+ δ
√
−1, s, u) < 2πδ

}
, (15){

(t− δ
√
−1, s, u) ∈ C3

∣∣ (t, s, u) ∈ D′, δ ≥ 0, Reψ(t− δ
√
−1, s, u) < 2πδ

}
, (16){

(t, s+ δ
√
−1, u) ∈ C3

∣∣ (t, s, u) ∈ D′, δ ≥ 0, Reψ(t, s+ δ
√
−1, u) < 2πδ

}
, (17){

(t, s− δ
√
−1, u) ∈ C3

∣∣ (t, s, u) ∈ D′, δ ≥ 0, Reψ(t, s− δ
√
−1, u) < 2πδ

}
, (18){

(t, s, u+ δ
√
−1) ∈ C3

∣∣ (t, s, u) ∈ D′, δ ≥ 0, Reψ(t, s, u+ δ
√
−1) < 2πδ

}
, (19){

(t, s, u− δ
√
−1) ∈ C3

∣∣ (t, s, u) ∈ D′, δ ≥ 0, Reψ(t, s, u− δ
√
−1) < 2πδ

}
. (20)
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Then,
1

N3

∑
(t,s,u)∈Λ

eN ψ(t,s,u) =

∫
D

eN ψ(t,s,u)dt ds du +O(e−Nε),

for some ε > 0.

Proof. We briefly review the proof; for details, see [20].
The sum of the left-hand side of the required formula is rewritten,∑

i,j,k

exp
(
N · ψ

( i
N

+ c1,
j

N
+ c2,

k

N
+ c3

))
. (21)

In order to apply the Poisson summation formula, we put

f(t, s, u) = g
( t
N

+ c1,
s

N
+ c2,

u

N
+ c3

)
exp

(
N · ψ

( t
N

+ c1,
s

N
+ c2,

u

N
+ c3

))
,

where g is a differentiable function on Rn+ c satisfying that

g(x, y, z) =

{
1 if (x, y, z) ∈ D,

0 if (x, y, z) /∈ N(D),

0 ≤ g(x, y, z) ≤ 1 if (x, y, z) ∈ N(D)−D.

Here, N(D) is a neighborhood of D in R3+ (c1, c2, c3) such that N(D) − D is included
in the domain

{
(t, s, u) ∈ C3 | Reψ(t, s, u) < −ε0/2

}
. Then, the Fourier transform of f

is given by

f̂(m1,m2,m3) =

∫
R3

g
( t
N

+ c1,
s

N
+ c2,

u

N
+ c3

)
× exp

(
N · ψ

( t
N

+ c1,
s

N
+ c2,

u

N
+ c3

))
e−2π

√
−1 (m1t+m2s+m3u)dt ds du

= N3

∫
R3+(c1,c2,c3)

g(x, y, z) eN
(
ψ(x,y,z)−2π

√
−1 (m1(x−c1)+m2(y−c2)+m3(z−c3)

)
dx dy dz,

where we put x = t/N +c1, y = s/N +c2 and z = u/N +c3. Further,

(ζ21 + ζ22 + ζ23 )
2 f̂(ζ1, ζ2, ζ3)

= N3
( −1

4π2N

)2 ∫
R3+(c1,c2,c3)

g(x, y, z) eN ψ(x,y,z)

×
(( ∂2
∂x2

+
∂2

∂y2
+

∂2

∂z2
)2
e−2π

√
−1N

(
ζ1(x−c1)+ζ2(y−c2)+ζ3(z−c3)

))
dx dy dz

= N3
( −1

4π2N

)2 ∫
R3+(c1,c2,c3)

(( ∂2
∂x2

+
∂2

∂y2
+

∂2

∂z2
)2
g(x, y, z) eN ψ(x,y,z)

)
× e−2π

√
−1N

(
ζ1(x−c1)+ζ2(y−c2)+ζ3(z−c3)

)
dx dy dz

= N3
( −1

4π2N

)2 ∫
R3+(c1,c2,c3)

h(x, y, z) eN ψ(x,y,z) e−2π
√
−1N

(
ζ1(x−c1)+ζ2(y−c2)+ζ3(z−c3)

)
dx dy dz,

9



where h(x, y, z) is some polynomial in derivatives of g(x, y, z) and ψ(x, y, z). Here,
we obtain the second equality by repeatedly using the fact that

∫ a
b
F ′(w)G(w)dw +∫ a

b
F (w)G′(w)dw =

∫ a
b

(
F (w)G(w)

)′
dw = 0 if F (w)G(w) = 0 for w ∈ R − (a, b). Since

the above integral is bounded independently of (x, y, z), f̂(x, y, z) satisfies the assumption
(14) of the Poisson summation formula. Further, f(t, s, u) also satisfies (14). Therefore,
by the Poisson summation formula (13),

(21) =
∑

m1,m2,m3 ∈Z

f̂(m1,m2,m3).

When (m1,m2,m3) ̸= (0, 0, 0), we have that

f̂(m1,m2,m3) = N2
( −1

4π2N

)2 · 1

(m2
1 +m2

2 +m2
3)

2

×
∫
R3+(c1,c2,c3)

h(x, y, z) eN
(
ψ(x,y,z)−2π

√
−1 (m1(x−c1)+m2(y−c2)+m3(z−c3))

)
dx dy dz

= N2
( −1

4π2N

)2 · 1

(m2
1 +m2

2 +m2
3)

2

×
∫
D

Ψ(x, y, z) eN
(
ψ(x,y,z)−2π

√
−1 (m1(x−c1)+m2(y−c2)+m3(z−c3))

)
dx dy dz

(22)

+N2
( −1

4π2N

)2 · 1

(m2
1 +m2

2 +m2
3)

2

×
∫
N(D)−D
h(x, y, z) eN

(
ψ(x,y,z)−2π

√
−1 (m1(x−c1)+m2(y−c2)+m3(z−c3))

)
dx dy dz,

(23)

where Ψ(x, y, z) is some polynomial in (at most the 4th) derivatives of ψ(x, y, z). Further,
since Reψ(x, y, z) < ε0/2 for (x, y, z) ∈ N(D)−D,∑

(m1,m2,m3 )̸=(0,0,0)

(23) = O(e−Nε1)

for some ε1 > 0. Furthermore, when m1 > 0, pushing the contour D into the domain
(16), we obtain ∑

m1,m2,m3 ∈Z
m1>0

(22) = O(e−Nε2)

for some ε2 > 0. Similarly we obtain∑
m1,m2,m3 ∈Z

m1<0

(22) = O(e−Nε3)

for some ε3 > 0, by pushing D into the domain (15). Hence,∑
(m1,m2,m3 )̸=(0,0,0)

(22) =
∑

(m1,m2,m3 )̸=(0,0,0)
m1=0

(22) +O(e−Nε4)
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for some ε4 > 0. By repeating this argument for m2 and m3, we obtain∑
(m1,m2,m3 )̸=(0,0,0)

(22) = O(e−Nε5)

for some ε5 > 0. Therefore,

(21) = f̂(0, 0, 0) +O(e−Nε6) = N3

∫
D

eN ψ(x,y,z)dx dy dz +O(e−Nε6)

for some ε6 > 0, and this implies the required formula.

Remark 2.4. By modifying the proof of Proposition 2.3, we can show that, instead of
the domains (15)–(20), we can use the domains (17)–(20) and{

(t+ δ
√
−1, s− δ

√
−1, u) ∈ C3

∣∣
(t, s, u) ∈ ∆′, δ ≥ 0, Reψ(t+ δ

√
−1, s− δ

√
−1, u) < 2πδ

}
,

(24){
(t− δ

√
−1, s+ δ

√
−1, u) ∈ C3

∣∣
(t, s, u) ∈ ∆′, δ ≥ 0, Reψ(t− δ

√
−1, s+ δ

√
−1, u) < 2πδ

}
.

(25)

In this case, we can prove the proposition by considering the cases wherem1 ̸= m2,m2 ̸= 0
or m3 ̸= 0, instead of the cases where m1 ̸= 0, m2 ̸= 0 or m3 ̸= 0.

Remark 2.5. Similarly as in [20, Remark 4.8], Proposition 2.3 can naturally be extended
to the case where the holomorphic function ψ(t, s, u) depends on N , if ψ(t, s, u) uniformly
converges to ψ0(t, s, u) as N → ∞, and ψ0(t, s, u) satisfies the assumption of the proposi-
tion, and |Ψ(t, s, u)| is bounded by a constant which is independent of N . We note that
we can choose ε of the proposition independently of N in this case.

2.5 The saddle point method

In this section, we review a proposition obtained from the saddle point method.

Proposition 2.6 (see [20]). Let A be a non-singular symmetric complex 3×3 matrix, and
let ψ(z1, z2, z3) and r(z1, z2, z3) be holomorphic functions of the forms,

ψ(z1, z2, z3) = zTA z+ r(z1, z2, z3),

r(z1, z2, z3) =
∑

i,j,k bijkzizjzk +
∑

i,j,k,l cijklzizjzkzl + · · · ,
(26)

defined in a neighborhood of 0 ∈ C3. The restriction of the domain{
(z1, z2, z3) ∈ C3

∣∣ Reψ(z1, z2, z3) < 0
}

(27)

to a neighborhood of 0 ∈ C3 is homotopy equivalent to S2. Let D be an oriented 3-ball
embedded in C3 such that ∂D is included in the domain (27) whose inclusion is homotopic
to a homotopy equivalence to the above S2 in the domain (27). Then,∫

D

eN ψ(z1,z2,z3)dz1 dz2 dz3 =
π3/2

N3/2
√

det(−A)

(
1 +

d∑
i=1

λi
N i

+O
( 1

Nd+1

))
,

11



for any d, where we choose the sign of
√

det(−A) as explained in [20], and λi’s are con-
stants presented by using coefficients of the expansion of ψ(z1, z2, z3); such presentations
are obtained by formally expanding the following formula,

1 +
∞∑
i=1

λi
N i

= exp
(
N r
( ∂

∂w1

,
∂

∂w2

,
∂

∂w3

))
exp

(
− 1

4N

w1

w2

w3

TA−1

w1

w2

w3

)∣∣∣∣∣
w1=w2=w3=0

.

For a proof of the proposition, see [20].

Remark 2.7. As mentioned in [20, Remark 3.6], we can extend Proposition 2.6 to the
case where ψ(z1, z2, z3) depends on N in such a way that ψ(z1, z2, z3) is of the form

ψ(z1, z2, z3) = ψ0(z1, z2, z3) + ψ1(z1, z2, z3)
1

N
+ ψ2(z1, z2, z3)

1

N2

+ · · ·+ ψm(z1, z2, z3)
1

Nm
+ rm(z1, z2, z3)

1

Nm+1
,

where ψi(z1, z2, z3)’s are holomorphic functions independent of N , and we assume that
ψ0(z1, z2, z3) satisfies the assumption of the proposition and |rm(z1, z2, z3)| is bounded by
a constant which is independent of N .

3 The 61 knot

In this section, we show Theorem 1.1 for the 61 knot. We give a proof of the theorem in
Section 3.1, using lemmas shown in Section 3.2–3.5.

3.1 Proof of Theorem 1.1 for the 61 knot

In this section, we show a proof of Theorem 1.1 for the 61 knot.

Since the Kashaev invariant of the mirror image of a knot is equal to the complex
conjugate of the Kashaev invariant of the original knot, it is sufficient to show the theorem
for the mirror image 61 of the 61 knot. The 61 knot is the closure of the following tangle.

0
0 0

N−1 n
i

j
0

1

k

k−1 0

0
l 0

1
0

(28)
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As shown in [33], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
of the 61 knot is presented by

⟨ 61 ⟩
N

=
∑ N q

1
2

(q)N−n−1(q)n
× N q

1
2
+i

(q)n−i(q)i(q)N−n−1

× N q−
1
2
−i

(q)N−j(q)j−i−1(q)i

× N q−
1
2
+k

(q)k−j(q)j−1(q)N−k
× N q−

1
2
−k+1

(q)N−l(q)l−k(q)k−1

× N q−
1
2

(q)N−l(q)l−1

=
∑

0≤i<j≤k≤N

N4 q−1

(q)i(q)i(q)j−i−1(q)j−1(q)N−j(q)k−j(q)k−1(q)N−k

=
∑

0≤i≤j≤k<N

N4 q−1

(q)i(q)i(q)j−i(q)j(q)N−j−1(q)k−j(q)k(q)N−k−1

=
∑

0≤ i,j,k
i+j+k<N

N4 q−1

(q)i(q)i(q)j(q)i+j(q)N−i−j−1(q)k(q)i+j+k(q)N−i−j−k−1

, (29)

where the second equality is obtained by (4) and (5), the third equality is obtained by
replacing j and k with j + 1 and k + 1 respectively, and the last equality is obtained by
replacing j and k with i+ j and i+ j + k respectively.

Proof of Theorem 1.1 for the 61 knot. By (6), the above presentation of ⟨ 61 ⟩
N
is rewrit-

ten

⟨ 61 ⟩
N

= N4q−1
∑

0≤ i,j,k
i+j+k<N

exp
(
N Ṽ

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

))
,

where we put

Ṽ (t, s, u) =
1

N

(
φ(t)− φ(1− t) + φ(s)− φ

(
t+ s− 1

2N

)
− φ

(
1− t− s+

1

2N

)
+ φ(u)− φ

(
t+ s+ u− 1

N

)
− φ(1− t− s− u+

1

N

)
− 3φ

( 1

2N

)
+ 5φ

(
1− 1

2N

))
=

1

N

(
2φ(t) + φ(s) + φ(u)

)
+

1

2π
√
−1

· π
2

3
− 4

N
logN +

π
√
−1

2N
− π

√
−1

6N2

+ 2π
√
−1 · 1

2

((
t+s+u− 1

N

)2
+
(
t+s− 1

2N

)2
+ t2 − 3t− 2s− u+

1

2
+

3

2N
− 1

4N2

)
.

Here, we obtain the last equality by (10) and (11). Hence, by putting

V (t, s, u) = Ṽ (t, s, u) +
4

N
logN

13



=
1

N

(
2φ(t) + φ(s) + φ(u)

)
+

1

2π
√
−1

· π
2

3
+
π
√
−1

2N
− π

√
−1

6N2

+ 2π
√
−1 · 1

2

((
t+s+u− 1

N

)2
+
(
t+s− 1

2N

)2
+ t2 − 3t− 2s− u+

1

2
+

3

2N
− 1

4N2

)
,

the presentation of ⟨ 61 ⟩
N
is rewritten

⟨ 61 ⟩
N

= q−1
∑

0≤ i,j,k
i+j+k<N

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

))

= q−1
∑

i,j,k∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
)∈∆

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

))
,

where the range ∆ of (2i+1
2N

, 2j+1
2N

, 2k+1
2N

) of the above sum is given by the following domain,

∆ =
{
(t, s, u) ∈ R3

∣∣ 0 ≤ t, s, u ≤ 1, t+ s+ u ≤ 1 +
1

N

}
.

By Proposition 2.1, as N → ∞, V (t, s, u) converges to the following V̂ (t, s, u) in the
interior of ∆,

V̂ (t, s, u) =
1

2π
√
−1

(
2 Li2(e

2π
√
−1 t) + Li2(e

2π
√
−1 s) + Li2(e

2π
√
−1u) +

π2

3

)
+ 2π

√
−1 · 1

2

(
(t+ s+ u)2 + (t+ s)2 + t2 − 3t− 2s− u+

1

2

)
.

By concrete computation, we can check that the boundary of ∆ is included in the domain{
(t, s, u) ∈ ∆

∣∣ Re V̂ (t, s, u) < ς
R
− ε
}

(30)

for some sufficiently small ε > 0, where we put ς
R
= 0.5035603... as in (41); we will know

later that this value is equal to the real part of the critical value of V̂ at the critical point of
Lemma 3.3. Since we will know later that the sum of the problem is of the order O(eNςR ),
we can ignore the sum of the problem restricted in the above domain, and hence, we can
remove this domain from ∆; see Appendix D for concrete procedure of this argument.
Therefore, we can choose a new domain ∆′ in the interior of ∆ such that ∆−∆′ ⊂ (30);
more concretely, we can choose ∆′ as

∆′ =
{
(t, s, u) ∈ ∆

∣∣∣ 0.03 ≤ t ≤ 0.4, 0.001 ≤ s ≤ 0.5,
0.001 ≤ u ≤ 0.5, t+s+u ≤ 0.94

}
, (31)

where we calculate the concrete values of the bounds of these inequalities in Section 3.2.
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Hence, since ∆−∆′ ⊂ (30), we obtain the second equality of the following formula,

⟨ 61 ⟩
N

= eNςq−1
∑

i,j,k∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
)∈∆

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

)
−Nς

)

= eNς

(
q−1

∑
i,j,k∈Z

( 2i+1
2N

, 2j+1
2N

, 2k+1
2N

)∈∆′

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

)
−Nς

)
+O(e−Nε)

)
, (32)

for some ε > 0. To be precise, in order to obtain the second equality, we need to estimate
of the summand of the above sum in terms of V̂ (2i+1

2N
, 2j+1

2N
, 2k+1

2N
); see Appendix D for the

proof of the equality of (32).
Further, by Proposition 2.3 (Poisson summation formula, see also Remark 2.5), the

above sum is presented by

⟨ 61 ⟩
N

= eNς

(
N3q−1

∫
∆′

exp
(
N · V (t, s, u)−Nς

)
dt ds du +O(e−Nε)

)
, (33)

noting that we verify the assumption of Proposition 2.3 in Lemma 3.4. Furthermore, by
Proposition 2.6 (saddle point method, see also Remark 2.7), there exist some κ′i’s such
that

⟨ 61 ⟩
N

= N3q−1 exp
(
N · V (tc, sc, uc)

)
· (2π)

3/2

N3/2

(
det(−H)

)−1/2
(
1 +

d∑
i=1

κ′iℏi +O(ℏd+1)
)
,

for any d > 0, noting that we verify the assumption of Proposition 2.6 in Lemma 3.9.
Here, (tc, sc, uc) is the critical point of V which corresponds to the critical point (t0, s0, u0)

of V̂ of Lemma 3.3, and H is the Hesse matrix of V at (tc, sc, uc).
We calculate the right-hand side of the above formula. Since tc = t0 + O(ℏ), sc =

s0 +O(ℏ) and uc = u0 +O(ℏ), we have that V (tc, sc, uc) = V (t0, s0, u0) +O(ℏ2). Further,
by comparing V (t0, s0, u0) and V̂ (t0, s0, u0) = ς, we have that

V (t0, s0, u0) = ς +
π
√
−1

2N
− 2π

√
−1

N

(
t0 + s0 + u0 −

1

2

)
− 2π

√
−1

2N

(
t0 + s0 −

1

2

)
+O(ℏ2).

Therefore, there exist some κi’s such that

⟨ 61 ⟩
N

= eNςN3/2 ω ·
(
1 +

d∑
i=1

κiℏi +O(ℏd+1)
)
,

for any d > 0. Here, we put

ω = (2π)3/2
√
−1
(
− x0y0z0

)−1(− x0y0
)−1/2(

det(−H0)
)−1/2

= −0.52139...+
√
−1 · 0.071732... ,

where we put x0 = e2π
√
−1 t0 , y0 = e2π

√
−1 s0 , z0 = e2π

√
−1u0 , and H0 is the Hesse matrix of

V̂ at (t0, s0, u0) whose concrete presentation is given in (42); see also [22] for a relation of
this value and the twisted Reidemeister torsion. Hence, we obtain the theorem for the 61
knot.
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3.2 Estimate of the range of ∆′

In this section, we calculate the concrete values of the bounds of the inequalities in (31)
so that they satisfy that ∆−∆′ ⊂ (30).

Putting Λ as in Section 2.2, we have that

Re V̂ (t, s, u) = 2Λ(t) + Λ(s) + Λ(u).

We consider the domain{
(t, s, u) ∈ ∆

∣∣ 2Λ(t) + Λ(s) + Λ(u) ≥ ς
R

}
, (34)

where we put ς
R
= 0.5035603... as in (41). We note that this domain is symmetric with

respect to the exchange of s and u. The aim of this section is to show that this domain
is included in the interior of the domain ∆′ of (31). For this purpose, we estimate ranges
of t, s, u and t+s+u in the domain (34).

We calculate the minimal value tmin and the maximal value tmax of t. Since Λ( · ) ≤
Λ(1

6
),

2 Λ(t) ≥ ς
R
− 2Λ

(1
6

)
= 0.180494... .

The minimal and maximal values of t are solutions of the following equation,

2Λ(t) = ς
R
− 2Λ

(1
6

)
. (35)

Noting that the behavior of Λ(t) is as shown in Section 2.2, this equation has exactly
two solutions in 0 < t < 0.5. By calculating a solution of this equation by Newton’s
method from t = 0.01, we obtain tmin = 0.0364809... , and from t = 0.4, we obtain
tmax = 0.363674... . Therefore, we obtain an estimate of t in ∆′ as

0.03 ≤ t ≤ 0.4.

Remark 3.1. To be precise, the above argument is not partially rigorous, since we do
not estimate the error terms of the numerical solutions of Newton’s method, though the
above argument is practically useful, since we can guess that such error terms would be
sufficiently small for the above purpose. In order to complete the above argument, we
give a rigorous proof of estimates of solutions of (35) in Lemma A.1.

We calculate the minimal value smin and the maximal value smax of s. Since Λ( · ) ≤
Λ(1

6
),

Λ(s) ≥ ς
R
− 3Λ

(1
6

)
= 0.0189614... .

The minimal and maximal values of s are solutions of the following equation,

Λ(s) = ς
R
− 3Λ

(1
6

)
.

Similarly as above, we note that this equation has exactly two solutions in 0 < s < 0.5.
By calculating a solution of the equation by Newton’s method from s = 0.001, we obtain
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smin = 0.00406176... , and from s = 0.5, we obtain smax = 0.472596... . Therefore, we
obtain an estimate of s in ∆′ as

0.001 ≤ s ≤ 0.5.

To be precise (see Remark 3.1), we can rigorously verify the above estimate of the solutions
of the above equation in a similar way as in Section A.1.

We obtain the estimate of u in ∆′ from the above formula by the symmetry with
respect to the exchange of s and u.

Before calculating t+s+u, we show that the domain (34) is convex, as follows. As
mentioned in Section 2.2, the function Λ(t) is a concave function for 0 < t < 0.5, whose
second derivative is negative. Hence, the function 2Λ(t) + Λ(s) + Λ(u) is concave on{
(t, s, u)

∣∣ 0 < t, s, u < 0.5
}
, whose Hesse matrix is negative definite. Therefore, the

domain (34) is convex. Further, we note that its boundary is a smooth closed surface
in
{
(t, s, u)

∣∣ 0 < t, s, u < 0.5
}
, whose Gaussian curvature is positive everywhere (see

Lemma B.2).
We calculate the maximal value (t+s+u)max of t+s+u. We consider the plane t+s+u = c

for a constant c. The range of t+s+u is given as the range of c such that this plane and
the domain (34) has non-empty intersection. Since the domain (34) is a compact convex
domain whose boundary is a smooth closed surface, the maximal and minimal values are
given by the planes tangent to this domain. Putting w = t+s+u, the tangent points of
such planes are given by solutions of the following equations,

2Λ(w − s− u) + Λ(s) + Λ(u) = ς
R
,

∂

∂s

(
2Λ(w − s− u) + Λ(s) + Λ(u)

)
= 0,

∂

∂u

(
2Λ(w − s− u) + Λ(s) + Λ(u)

)
= 0.

These equations are rewritten
2Λ(w − s− u) + Λ(s) + Λ(u) = ς

R
,

−2Λ′(w − s− u) + Λ′(s) = 0,

−2Λ′(w − s− u) + Λ′(u) = 0.

Since the boundary of the domain (34) is a smooth closed surface whose Gaussian curva-
ture is positive everywhere (see Lemma B.2), there are exactly two such tangent points,
and the above system of equations has exactly two solutions, corresponding to the maxi-
mal and minimal values of t+s+u; we put the maximal value to be wmax. Since the above
system of equations is symmetric with respect to the exchange of s and u, the (unique)
solution of the form (wmax, s, u) satisfies that s = u. Hence, we can rewrite the above
system of equations as {

2Λ(w − 2s) + 2Λ(s) = ς
R
,

−2Λ′(w − 2s) + Λ′(s) = 0.
(36)
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By calculating a solution of these equations by Newton’s method from (w, s) = (1, 0.3),
we obtain (t+s+u)max = 0.925048... . Therefore, we obtain an estimate of t+ s+ u in ∆′

as
t+ s+ u ≤ 0.94.

Remark 3.2. To be precise, the above argument is not partially rigorous, since we do
not estimate the error term of the numerical solution of Newton’s method, though the
above argument is practically useful, since we can guess that such an error term would
be sufficiently small for the above purpose. In order to complete the above argument, we
give a rigorous proof of an estimate of a solution of (36) in Lemma A.2.

3.3 Calculation of the critical value

In this section, we calculate the concrete values of a critical point and the Hesse matrix
of V̂ .

The differentials of V̂ are presented by

∂

∂t
V̂ (t, s, u) = −2 log(1− x) + 2π

√
−1
(
3t+ 2s+ u− 3

2

)
, (37)

∂

∂s
V̂ (t, s, u) = − log(1− y) + 2π

√
−1 (2t+ 2s+ u− 1), (38)

∂

∂u
V̂ (t, s, u) = − log(1− z) + 2π

√
−1
(
t+ s+ u− 1

2

)
, (39)

where x = e2π
√
−1 t, y = e2π

√
−1 s and z = e2π

√
−1u.

Lemma 3.3. V̂ has a unique critical point (t0, s0, u0) in P
−1(∆′), where P : C3 → R3 is

the projection to the real parts of the entries.

Proof. Any critical point of V̂ is given by a solution of ∂
∂t
V̂ = ∂

∂s
V̂ = ∂

∂u
V̂ = 0, and these

equations are rewritten,

(1− x)2 = −x3 y2 z, 1− y = x2 y2 z, 1− z = −x y z.

Putting y′ = xy and z′ = xyz, they are rewritten,

(1− x)2 = −x y′z′, 1− y′

x
= y′z′, 1− z′

y′
= −z′.

From the third formula, we have that y′ = z′/(1+z′). Hence, from the second formula, we
have that x = −z′/(z′2 − z′ − 1). By substituting them into the first formula, we obtain
that

2z′
4 − z′

3 − 2z′
2
+ z′ + 1 = 0.

Its solutions are given by

z′ = −0.677958...± √
−1 · 0.15778... , 0.927958...± √

−1 · 0.413327... .
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Further, their corresponding values of (t, s) are given by

(t, s) = (0.16676...− √
−1 · 0.0928453... , 0.224343...− √

−1 · 0.0127069...),
(0.83324...− √

−1 · 0.0928453... , 0.775657...− √
−1 · 0.0127069...),

(0.111002...+
√
−1 · 0.0376865... , 0.922078...+

√
−1 · 0.0678661...),

(0.888998...+
√
−1 · 0.0376865... , 0.0779221...+

√
−1 · 0.0678661...).

Among these, the first solution is in ∆′, from which we have that

x0 = 0.895123...+
√
−1 · 1.55249... , t0 = 0.16676...− √

−1 · 0.0928453... ,
y0 = 0.17385...+

√
−1 · 1.06907... , s0 = 0.224343...− √

−1 · 0.0127069... ,
z0 = 0.322042...+

√
−1 · 0.15778... , u0 = 0.0725053...+

√
−1 · 0.163214... ,

where x0 = e2π
√
−1 t0 , y0 = e2π

√
−1 s0 and z0 = e2π

√
−1u0 . These give a unique critical point

of V̂ in P−1(∆′).

The critical value of V̂ at the critical point of Lemma 3.3 is presented by

ς = V̂ (t0, s0, u0)

=
1

2π
√
−1

(
2 Li2(x0) + Li2(y0) + Li2(z0) +

π2

3

)
+ 2π

√
−1 · 1

2

(
(t0 + s0 + u0)

2 + (t0 + s0)
2 + t20 − 3t0 − 2s0 − u0 +

1

2

)
(40)

= 0.5035603...− √
−1 · 1.08078... .

Further, we put its real part to be ς
R
,

ς
R

= Re ς = 0.5035603... . (41)

We calculate the Hesse matrix of V̂ . Since x = e2π
√
−1 t, d

dt
= 2π

√
−1 x d

dx
. Hence, from

(37), we have that

∂2

∂t2
V̂ = 2π

√
−1 x

∂

∂x

(
− 2 log(1− x)

)
+ 2π

√
−1 · 3 = 2π

√
−1 · 3− x

1− x
.

Similarly, we have that

∂2

∂t∂s
V̂ = 2π

√
−1 · 2, ∂2

∂t∂u
V̂ = 2π

√
−1,

∂2

∂s2
V̂ =

2− y

1− y
,

∂2

∂s∂u
V̂ = 2π

√
−1,

∂2

∂u2
V̂ =

1

1− z
.

Hence, the Hesse matrix of V̂ at (t0, s0, u0) is presented by

H0 = 2π
√
−1


3− x0
1− x0

2 1

2
2− y0
1− y0

1

1 1
1

1− z0

 . (42)
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3.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma 3.4,
which is used in the proof of Theorem 1.1 for the 61 knot in Section 3.1. As we mentioned
in Remark 2.5, we verify the assumption for V̂ (t, s, u) instead of V (t, s, u), since V (t, s, u)

converges uniformly to V̂ (t, s, u) on ∆′ in the form mentioned in Remark 2.5.

Re V̂ (t, s, u) has a unique maximal point in ∆′ at

x0 = y0 = y0 = eπ
√
−1/3, t0 = s0 = u0 =

1

6
,

and its maximal value is 0.646131... . Hence,

Re V̂ (t, s, u)− ς
R

≤ 0.142571... (43)

for any (t, s, u) ∈ ∆′. Therefore, in the proof of Lemma 3.4, it is sufficient to decrease,

say, Re V̂ (t, s, u + δ
√
−1) − 2πδ by this value, by moving δ (though we do not use this

value in the proof of the lemma).

Lemma 3.4. V̂ (t, s, u)− ς
R
satisfies the assumption of Proposition 2.3.

Proof. We show that ∂∆′ is null-homotopic in each of (17)–(20), (24) and (25).

As for (19), we show that we can move ∆′ into the following domain,{
(t, s, u+ δ

√
−1) ∈ C3

∣∣ (t, s, u) ∈ ∆′, δ ≥ 0, Re V̂ (t, s, u+ δ
√
−1)− ς

R
− 2πδ < 0

}
.

Hence, putting
F (δ) = Re V̂ (t, s, u+ δ

√
−1)− ς

R
− 2πδ,

it is sufficient to show that there exists δ0 > 0 such that

F (δ0) < 0 for any (t, s, u) ∈ ∆′, and

F (δ) < 0 for any (t, s, u) ∈ ∂∆′ and δ ∈ [0, δ0].
(44)

Therefore, it is sufficient to show that

d

dδ
F (δ) =

∂

∂δ
Re V̂ (t, s, u+ δ

√
−1)− ς

R
− 2π < −ε′,

for some ε′ > 0 (because, if the above formula holds, then (44) holds for a sufficiently
large δ0). Hence, it is sufficient to show that

Re
( ∂
∂δ

V̂ (t, s, u+ δ
√
−1)

)
< 2π − ε′.

Further, as for (20), similarly as above, it is sufficient to show that

Re
( ∂
∂δ

V̂ (t, s, u− δ
√
−1)

)
< 2π − ε′

for some ε′ > 0.
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Hence, as for (19) and (20), it is sufficient to show that

−(2π − ε′) < Re
( ∂
∂δ
V̂ (t, s, u+ δ

√
−1)

)
< 2π − ε′ (45)

for some ε′ > 0. The middle term is calculated as

Re
( ∂
∂δ
V̂ (t, s, u+ δ

√
−1)

)
= Re

(√
−1 · ∂

∂u
V̂ (t, s, u+ δ

√
−1)

)
= −Im

(
− log(1− z) + 2π

√
−1
(
t+ s+ u− 1

2

))
= Arg (1− z)− 2π

(
t+ s+ u− 1

2

)
,

where z = e2π
√
−1u. Since 0 < u ≤ 1

2
,

−2π
(1
2
− u
)
< Arg (1− z) < 0.

Hence,

−2π(t+ s) < Re
( ∂
∂δ
V̂ (t, s, u+ δ

√
−1)

)
< 2π

(1
2
− t− s− u

)
.

Therefore, since t+ s ≤ 0.4 + 0.5 = 0.9 and t, s, u ≥ 0,

−2π · 0.9 < Re
( ∂
∂δ
V̂ (t, s, u+ δ

√
−1)

)
< 2π · 0.5,

and hence, (45) is satisfied.

As for (17) and (18), similarly as above, it is sufficient to show that

−(2π − ε′) < Re
( ∂
∂δ
V̂ (t, s+ δ

√
−1, u)

)
< 2π − ε′ (46)

for some ε′ > 0. The middle term is calculated as

Re
( ∂
∂δ
V̂ (t, s+ δ

√
−1, u)

)
= Arg (1− y)− 2π

(
2t+ 2s+ u− 1

)
,

where y = e2π
√
−1 s. Since 0 < s ≤ 1

2
,

−2π
(1
2
− s
)
< Arg (1− y) < 0.

Hence,

−2π
(
2t+ s+ u− 1

2

)
< Re

( ∂
∂δ
V̂ (t, s+ δ

√
−1, u)

)
< 2π(1− 2t− 2s− u).

Therefore, since t+ (t+ s+ u) ≤ 0.4 + 0.94 = 1.34 and t ≥ 0.03, s, u ≥ 0,

−2π · 0.84 < Re
( ∂
∂δ
V̂ (t, s+ δ

√
−1, u)

)
< 2π · 0.94,
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and hence, (46) is satisfied.

As for (24) and (25), similarly as above, it is sufficient to show that

−(2π − ε′) < Re
( ∂
∂δ
V̂ (t+ δ

√
−1, s− δ

√
−1, u)

)
< 2π − ε′ (47)

for some ε′ > 0. The middle term is calculated as

Re
( ∂
∂δ
V̂ (t+ δ

√
−1, s− δ

√
−1, u)

)
= 2Arg (1− x)− Arg (1− y)− 2π

(
t− 1

2

)
,

where x = e2π
√
−1 t. Since 0 < t ≤ 1

2
,

−2π
(1
2
− t
)
< Arg (1− x) < 0.

Further, since Arg (1− y) is in the range mentioned above,

−2π
(1
2
− t
)
< Re

( ∂
∂δ
V̂ (t+ δ

√
−1, s− δ

√
−1, u)

)
< 2π

(
1− t− s

)
.

Therefore, since t ≥ 0.03 and s ≥ 0,

−2π · 0.5 < Re
( ∂
∂δ
V̂ (t+ δ

√
−1, s− δ

√
−1, u)

)
< 2π · 0.97,

and hence, (47) is satisfied.

3.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 3.9. In
order to show this lemma, we show Lemmas 3.5–3.8 in advance. As we mentioned in
Remark 2.7, we verify the assumption for V̂ (t, s, u) instead of V (t, s, u), since V (t, s, u)

converges uniformly to V̂ (t, s, u) on ∆′ in the form mentioned in Remark 2.7.

In the proof of Lemma 3.9, by (43), it is sufficient to decrease Re V̂ (t, s, u) by 0.142571...
by pushing t, s, u into the imaginary directions. In order to calculate this concretely,
putting

f(X, Y, Z) = Re V̂ (t+X
√
−1, s+ Y

√
−1, u+ Z

√
−1)− ς

R
,

we consider the behavior of f at each fiber of the projection C3 → R3.

Lemma 3.5 ([34]). Fixing X and Y , we regard f as a function of Z.
(1) If t+ s+ u ≥ 1

2
, then f is monotonically decreasing.

(2) If t+ s+ u < 1
2
, then f has a unique minimal point at Z = g3(t, s, u), where

g3(t, s, u) =
1

2π
log

sin 2π(t+ s)

sin 2π(1
2
− t− s− u)

.

In particular, g3(t, s, u) goes to ∞ as t+ s+ u→ 1
2
− 0.
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Proof. As a function of Z, the differential of f is presented by

∂f

∂Z
= Arg (1− z)− 2π

(
t+ s+ u− 1

2

)
,

where z = e2π
√
−1 (u+Z

√
−1). Since 0 < u < 1

2
,

−2π
(1
2
− u
)
< Arg (1− z) < 0,

and Arg (1− z) is monotonically increasing as a function of Z. Further,

∂f

∂Z

∣∣∣
Z→∞

= 2π
(1
2
− t− s− u

)
,

∂f

∂Z

∣∣∣
Z→−∞

= −2π
(1
2
− u
)
− 2π

(
t+ s+ u− 1

2

)
= −2π(t+ s) < 0.

If t+ s+ u ≥ 1
2
, then ∂f

∂Z
is always negative, and (1) holds.

If t+ s+ u < 1
2
, then there is a unique zero of ∂f

∂Z
, which gives a unique minimal point

of f . When ∂f
∂Z

= 0, we have that −Arg (1− z) = 2π(1
2
− t− s− u), and t, s, u and Z are

related as shown in the following picture.

0 2πu

e−2πZ

1 1

z

2π( 12−t−s−u)

Hence,
e−2πZ

sin 2π(1
2
− t− s− u)

=
1

sin 2π(t+ s)
.

Therefore,

Z =
1

2π
log

sin 2π(t+ s)

sin 2π(1
2
− t− s− u)

,

and this gives the minimal point of the lemma. Hence, (2) holds.

Lemma 3.6 ([34]). Fixing X and Z, we regard f as a function of Y .
(1) If 2t+ 2s+ u ≥ 1, then f is monotonically decreasing.
(2) If 2t + 2s + u < 1 and 2t + s + u > 1

2
, then f has a unique minimal point at

Y = g2(t, s, u), where

g2(t, s, u) =
1

2π
log

sin 2π(2t+ s+ u− 1
2
)

sin 2π(1− 2t− 2s− u)
.

In particular, g2(t, s, u) goes to ∞ as 2t+2s+u→ 1−0, and goes to −∞ as 2t+s+u→
1
2
+ 0.

(3) If 2t+ s+ u ≤ 1
2
, then f is monotonically increasing.
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Proof. As a function of Y , the differential of f is presented by

∂f

∂Y
= Arg (1− y)− 2π

(
2t+ 2s+ u− 1

)
,

where y = e2π
√
−1 (s+Y

√
−1). Since 0 < s < 1

2
,

−2π
(1
2
− s
)
< Arg (1− y) < 0,

and Arg (1− y) is monotonically increasing as a function of Y . Further,

∂f

∂Y

∣∣∣
Y→∞

= 2π
(
1− 2t− 2s− u

)
,

∂f

∂Y

∣∣∣
Y→−∞

= −2π
(1
2
− s
)
− 2π

(
2t+ 2s+ u− 1

)
= −2π

(
2t+ s+ u− 1

2

)
.

If 2t+ 2s+ u ≥ 1, then ∂f
∂Y

is always negative, and (1) holds.

If 2t+ s+ u ≤ 1
2
, then ∂f

∂Y
is always positive, and (3) holds.

If 2t + 2s + u < 1 and 2t + s + u > 1
2
, then there is a unique zero of ∂f

∂Y
, which gives

a unique minimal point of f . We can obtain the value of the minimal point in the same
way as in the proof of Lemma 3.5.

Lemma 3.7 ([34]). Fixing Y and Z, we regard f as a function of X.
(1) If 3t+ 2s+ u ≥ 3

2
, then f is monotonically decreasing.

(2) If 3t + 2s + u < 3
2
and t + 2s + u > 1

2
, then f has a unique minimal point at

X = g1(t, s, u), where

g1(t, s, u) =
1

2π
log

sin 2π(t+ 2s+ u− 1
2
)

sin 2π(3
2
− 3t− 2s− u)

.

In particular, g1(t, s, u) goes to ∞ as 3t+2s+u→ 3
2
−0, and goes to −∞ as t+2s+u→

1
2
+ 0.

(3) If t+ 2s+ u ≤ 1
2
, then f is monotonically increasing.

Proof. As a function of X, the differential of f is presented by

∂f

∂X
= 2Arg (1− x)− 2π

(
3t+ 2s+ u− 3

2

)
,

where x = e2π
√
−1 (t+X

√
−1). Since 0 < t < 1

2
,

−2π
(1
2
− t
)
< Arg (1− x) < 0,

and Arg (1− x) is monotonically increasing as a function of X. Further,

∂f

∂X

∣∣∣
X→∞

= 2π
(3
2
− 3t− 2s− u

)
,
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∂f

∂X

∣∣∣
X→−∞

= −2π
(
1− 2t

)
− 2π

(
3t+ 2s+ u− 3

2

)
= −2π

(
t+ 2s+ u− 1

2

)
.

If 3t+ 2s+ u ≥ 3
2
, then ∂f

∂X
is always negative, and (1) holds.

If t+ 2s+ u ≤ 1
2
, then ∂f

∂X
is always positive, and (3) holds.

If 3t + 2s + u < 3
2
and t + 2s + u > 1

2
, then there is a unique zero of ∂f

∂X
, which gives

a unique minimal point of f . We can obtain the value of the minimal point in the same
way as in the proof of Lemma 3.5.

Lemma 3.8 ([34]). For each (t, s, u) ∈ ∆′ satisfying that 2t+ 2s+ u < 1, t+ s+ u < 1
2
,

t + 2s + u > 1
2
and 2t + s + u > 1

2
, f has a unique minimal point and no other critical

points.

Proof. From the definition of f ,

f(X, Y, Z) = Re
( 1

2π
√
−1

· 2 Li2(e2π
√
−1 (t+X

√
−1))

)
+ 2π

(3
2
− 3t− 2s− u

)
X

+Re
( 1

2π
√
−1

· Li2(e2π
√
−1 (s+Y

√
−1))

)
+ 2π

(
1− 2t− 2s− u

)
Y

+Re
( 1

2π
√
−1

· Li2(e2π
√
−1 (u+Z

√
−1))

)
+ 2π

(1
2
− t− s− u

)
Z.

By Lemma 3.7, fixing Y and Z, f has a unique minimal point at X = g1(t, s, u). By
Lemma 3.6, fixing X and Z, f has a unique minimal point at Y = g2(t, s, u). By
Lemma 3.5, fixing X and Y , f has a unique minimal point at Z = g3(t, s, u). Since the
contribution to f from X, Y and Z are independent, f has a unique minimal point at
(X, Y, Z) =

(
g1(t, s, u), g2(t, s, u), g3(t, s, u)

)
.

Lemma 3.9 ([34]). When we apply Proposition 2.6 to (33), the assumption of Proposition
2.6 holds.

Proof. We show that there exists a homotopy ∆′
δ (0 ≤ δ ≤ 1) between ∆′

0 = ∆′ and ∆′
1

such that

(t0, s0, u0) ∈ ∆′
1, (48)

∆′
1 − {(t0, s0, u0)} ⊂

{
(t, s, u) ∈ C3

∣∣ Re V̂ (t, s, u) < ς
R

}
, (49)

∂∆′
δ ⊂

{
(t, s, u) ∈ C3

∣∣ Re V̂ (t, s, u) < ς
R

}
. (50)

For a sufficiently large R > 0, we put

ĝ1(t, s, u) =


R if 3t+ 2s+ u ≥ 3

2
,

max
{
−R, min {R, g1(t, s, u)}

}
if 3t+ 2s+ u < 3

2
and t+ 2s+ u > 1

2
,

−R if t+ 2s+ u ≤ 1
2
,

ĝ2(t, s, u) =


R if 2t+ 2s+ u ≥ 1,

max
{
−R, min {R, g2(t, s, u)}

}
if 2t+ 2s+ u < 1 and 2t+ s+ u > 1

2
,

−R if 2t+ s+ u ≤ 1
2
,
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ĝ3(t, s, u) =

{
R if t+ s+ u ≥ 1

2
,

min {R, g3(t, s, u)} if t+ s+ u < 1
2
.

We note that, since g3(t, s, u) → ∞ as t+s+u→ 1
2
, ĝ3(t, s, u) is continuous, and similarly,

we can check that ĝ1(t, s, u) and ĝ2(t, s, u) are also continuous. We set the ending of the
homotopy by

∆′
1 =

{(
t+ ĝ1(t, s, u)

√
−1, s+ ĝ2(t, s, u)

√
−1, u+ ĝ3(t, s, u)

√
−1
)
∈ C3

∣∣ (t, s, u) ∈ ∆′}.
Further, we define the internal part ∆′

δ (0 < δ < 1) of the homotopy by setting it along
the flow from

(
t, s, u

)
determined by the vector field

(
− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z

)
.

We show (50), as follows. From the definition of ∆′,

∂∆′ ⊂
{
(t, s, u) ∈ C3

∣∣ Re V̂ (t, s, u) < ς
R

}
.

Further, by the construction of the homotopy, Re V̂ monotonically decreases by the ho-
motopy. Hence, (50) holds.

We show (48) and (49), as follows. Consider the following functions

F (t, s, u,X, Y, Z) = Re V̂
(
t+X

√
−1, s+ Y

√
−1, u+ Z

√
−1
)
,

h(t, s, u) = F
(
t, s, u, ĝ1(t, s, u), ĝ2(t, s, u), ĝ3(t, s, u)

)
.

When 3t+2s+u ≥ 3
2
, −h(t, s, u) is sufficiently large (because we let R be sufficiently large),

and (49) holds in this case. Similarly, we can check that (49) holds when ĝi(t, s, u) = ±R.
The remaining case is the case where ĝi(t, s, u) = gi(t, s, u) for i = 1, 2, 3. In this case,
we show (49), as follows. It is shown from the definitions of gi(t, s, u) that ∂F

∂X
= 0

at X = g1(t, s, u) and ∂F
∂Y

= 0 at Y = g2(t, s, u) and ∂F
∂Z

= 0 at Z = g3(t, s, u). Hence,

Im ∂V̂
∂t

= Im ∂V̂
∂s

= Im ∂V̂
∂u

= 0 at
(
t+g1(t, s, u)

√
−1, s+g2(t, s, u)

√
−1, u+g3(t, s, u)

√
−1
)
.

Further, ∂h
∂t

= Re ∂V̂
∂t

and ∂h
∂s

= Re ∂V̂
∂s

and ∂h
∂u

= Re ∂V̂
∂u

at
(
t + g1(t, s, u)

√
−1, s +

g2(t, s, u)
√
−1, u+ g3(t, s, u)

√
−1
)
. Therefore, when (t, s, u) is a critial point of h(t, s, u),(

t+ g1(t, s, u)
√
−1, s+ g2(t, s, u)

√
−1, u+ g3(t, s, u)

√
−1
)
is a critical point of V̂ . Hence,

by Lemma 3.3, h(t, s, u) has a unique maximal point at (t, s, u) = (Re t0,Re s0,Reu0).
Therefore, (48) and (49) hold.

4 The 62 knot

In this section, we show Theorem 1.1 for the 62 knot. We give a proof of the theorem in
Section 4.1, using lemmas shown in Section 4.2–4.5.

4.1 Proof of Theorem 1.1 for the 62 knot

In this section, we show a proof of Theorem 1.1 for the 62 knot.
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The 62 knot is the closure of the following tangle.

0

0
0

i n 0

j
0 1

N−1
k 0

l 0

0

As shown in [33], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
of the 62 knot is presented by

⟨ 62 ⟩N =
∑ N q−

1
2

(q)N−n(q)n−1

× N q
1
2
−i

(q)N−i(q)i−j−1(q)j
× N q−

1
2
+i

(q)i−n(q)n−1(q)N−i

× N q
1
2

(q)j(q)N−k−1(q)k−j
× N q

1
2

(q)k(q)N−l−1(q)l−k
× N q

1
2

(q)l(q)N−l−1

=
∑

0≤j<i≤N
j≤k<N

N4 q

(q)N−i(q)N−i(q)i−j−1(q)j(q)j(q)k−j(q)k(q)N−k−1

=
∑

0≤j≤i<N
0≤k<N−j

N4 q

(q)N−i−1(q)N−i−1(q)i−j(q)j(q)j(q)k(q)j+k(q)N−j−k−1

(51)

where the second equality is obtained by (4) and (5), and the last equality is obtained by
replacing i with i+ 1 and replacing k with j + k.

Proof of Theorem 1.1 for the 62 knot. By (6), the above presentation of ⟨ 62 ⟩N is rewritten

⟨ 62 ⟩N = N4 q
∑

0≤j≤i<N
0≤k<N−j

exp
(
N Ṽ

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

))
,

where we put

Ṽ (t, s, u) =
1

N

(
φ(1− t)− φ(t)− φ

(
1− t+ s− 1

2N

)
+ φ(s)− φ(1− s) + φ(u)

− φ
(
1− s− u+

1

2N

)
− φ

(
s+ u− 1

2N

)
− 3φ

( 1

2N

)
+ 5φ

(
1− 1

2N

))
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=
1

N

(
− 2φ(t)− φ

(
1− t+ s− 1

2N

)
+ 2φ(s) + φ(u)

)
− 4

N
logN

+
1

2π
√
−1

· π
2

3
+
π
√
−1

2N
− π

√
−1

6N2

+ 2π
√
−1 · 1

2

(
− t2 + s2 +

(
s+ u− 1

2N

)2
+ t− 2s− u+

1

6
+

1

2N
− 1

12N2

)
.

Here, we obtain the last equality by (10) and (11). Hence, by putting

V (t, s, u) = Ṽ (t, s, u) +
4

N
logN

=
1

N

(
− 2φ(t)− φ

(
1− t+ s− 1

2N

)
+ 2φ(s) + φ(u)

)
+

1

2π
√
−1

· π
2

3
+
π
√
−1

2N
− π

√
−1

6N2

+ 2π
√
−1 · 1

2

(
− t2 + s2 +

(
s+ u− 1

2N

)2
+ t− 2s− u+

1

6
+

1

2N
− 1

12N2

)
,

the presentation of ⟨ 62 ⟩N is rewritten

⟨ 62 ⟩N = q
∑

0≤j≤i<N
0≤k<N−j

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

))

= q
∑

i,j,k∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
)∈∆

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

))
,

where the range ∆ of (2i+1
2N

, 2j+1
2N

, 2k+1
2N

) of the above sum is given by the following domain,

∆ =
{
(t, s, u) ∈ R3

∣∣ 0 ≤ s ≤ t ≤ 1, 0 ≤ u ≤ 1− s
}
.

By Proposition 2.1, as N → ∞, V (t, s, u) converges to the following V̂ (t, s, u) in the
interior of ∆,

V̂ (t, s, u) =
1

2π
√
−1

(
− 2 Li2(e

2π
√
−1 t)− Li2(e

2π
√
−1 (s−t))

+ 2Li2(e
2π

√
−1 s) + Li2(e

2π
√
−1u) +

π2

3

)
+ 2π

√
−1 · 1

2

(
− t2 + s2 + (s+ u)2 + t− s− (s+ u) +

1

6

)
.

By concrete computation, we can check that the boundary of ∆ is included in the domain{
(t, s, u) ∈ ∆

∣∣ Re V̂ (t, s, u) < ς
R
− ε
}

(52)

for some sufficiently small ε > 0, where we put ς
R
= 0.700414... as in (63); we will know

later that this value is equal to the real part of the critical value of V̂ at the critical point
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of Lemma 4.2. Hence, similarly as in Section 3.1, we choose a new domain ∆′, which
satisfies that ∆−∆′ ⊂ (52), as

∆′ =

{
(t, s, u) ∈ ∆

∣∣∣∣∣ 0.6 ≤ t ≤ 0.86, 0.14 ≤ s ≤ 0.4, 0.05 ≤ u ≤ 0.4,

0.3 ≤ t− s ≤ 0.67, 2s+ u ≤ 0.97

}
, (53)

where we calculate the concrete values of the bounds of these inequalities in Section 4.2.
Then, similarly as in Section 3.1, we can restrict ∆ to ∆′ as

⟨ 62 ⟩N = eNς

(
q
∑

i,j,k∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
)∈∆′

exp
(
N ·V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

)
−Nς

)
+O(e−Nε)

)
, (54)

for some ε > 0.
Further, by Proposition 2.3 (Poisson summation formula, see also Remark 2.5), the

above sum is presented by

⟨ 62 ⟩N = eNς

(
N3q

∫
∆′

exp
(
N · V (t, s, u)−Nς

)
dt ds du +O(e−Nε)

)
, (55)

noting that we verify the assumption of Proposition 2.3 in Lemma 4.3. Furthermore, by
Proposition 2.6 (saddle point method, see also Remark 2.7), there exist some κ′i’s such
that

⟨ 62 ⟩N = N3q exp
(
N · V (tc, sc, uc)

)
· (2π)

3/2

N3/2

(
det(−H)

)−1/2
(
1 +

d∑
i=1

κ′iℏi +O(ℏd+1)
)
,

for any d > 0, noting that we verify the assumption of Proposition 2.6 in Lemma 4.9.
Here, (tc, sc, uc) is the critical point of V which corresponds to the critical point (t0, s0, u0)

of V̂ of Lemma 4.2, and H is the Hesse matrix of V at (tc, sc, uc).
We calculate the right-hand side of the above formula. Similarly as in Section 3.1, we

have that V (tc, sc, uc) = V (t0, s0, u0) +O(ℏ2). Further,

φ
(
1− t0 + s0 −

1

2N

)
= φ

(
1− t0 + s0

)
− φ′(1− t0 + s0

)
· 1

2N
+O(ℏ2)

= φ
(
1− t0 + s0

)
+

1

2
log
(
1− y0

x0

)
+O(ℏ2),

where we put x0 = e2π
√
−1 t0 and y0 = e2π

√
−1 s0 . Hence, by comparing V (t0, s0, u0) and

V̂ (t0, s0, u0) = ς, we have that

V (t0, s0, u0) = ς +
π
√
−1

2N
− 1

2N
log
(
1− y0

x0

)
− 2π

√
−1

2N

(
s0 + u0 −

1

2

)
+O(ℏ2).

Therefore, there exist some κi’s such that

⟨ 62 ⟩N = eNςN3/2 ω ·
(
1 +

d∑
i=1

κiℏi +O(ℏd+1)
)
,
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for any d > 0. Here, we put

ω = (2π)3/2
√
−1
(
1− y0

x0

)−1/2(− y0z0
)−1/2(

det(−H0)
)−1/2

= −0.42920...+
√
−1 · 0.20337... ,

where we put z0 = e2π
√
−1u0 , and H0 is the Hesse matrix of V̂ at (t0, s0, u0) whose concrete

presentation is given in (64); see also [22] for a relation of this value and the twisted
Reidemeister torsion. Hence, we obtain the theorem for the 62 knot.

4.2 Estimate of the range of ∆′

In this section, we calculate the concrete values of the bounds of the inequalities in (53)
so that they satisfy that ∆−∆′ ⊂ (52).

Putting Λ as in Section 2.2, we have that

Re V̂ (t, s, u) = −2Λ(t) + Λ(t− s) + 2Λ(s) + Λ(u).

We consider the domain{
(t, s, u) ∈ ∆

∣∣ − 2Λ(t) + Λ(t− s) + 2Λ(s) + Λ(u) ≥ ς
R

}
. (56)

We note that this domain is symmetric with respect to the exchange of (t, s, u) and
(1−s, 1− t, u). The aim of this section is to show that this domain is included in the
interior of the domain ∆′ of (53).

In order to estimate t and s, we consider the area of (t, s) such that (t, s, u) belongs to
the domain (56) for some u. Since Λ( · ) ≤ Λ(1

6
),

−2Λ(t) ≥ ς
R
− 4Λ

(1
6

)
= 0.054282... > 0,

and hence, 1
2
< t < 1. Similarly, we have that 0 < s < 1

2
. Further, since Λ(u) ≤ Λ(1

6
),

−2Λ(t) + Λ(t− s) + 2Λ(s) ≥ ς
R
− Λ

(1
6

)
= 0.538881... .

We consider the following domain{
(t, s) | 0.5 < t < 1, 0 < s < 0.5, −2Λ(t) + Λ(t− s) + 2Λ(s) ≥ ς

R
− Λ

(1
6

)}
. (57)

We graphically show this domain in Figure 2.
Before calculating t and s, we show that the domain (57) is convex. We put F (t, s) =

−2Λ(t) + Λ(t− s) + 2Λ(s). Its differentials are given by

∂F

∂t
= −2Λ′(t) + Λ′(t− s),

∂F

∂s
= 2Λ′(s)− Λ′(t− s).

Hence,

∂2F

∂t2
= −2Λ′′(t) + Λ′′(t− s) = 2π cotπt− π cotπ(t− s),
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Figure 2: The domain (57)

∂2F

∂t ∂s
= −Λ′′(t− s) = π cotπ(t− s),

∂2F

∂s2
= 2Λ′′(s) + Λ′′(t− s) = −2π cotπs− π cotπ(t− s).

We put a = − cotπt and b = cot πs, noting that they are positive since 0.5 < t < 1 and
0 < s < 0.5. Further, noting that cot(α+β) = (cotα cot β − 1)/(cotα + cot β), we have
that

1

π
· ∂

2F

∂t2
= −2a+

ab− 1

a+ b
,

1

π
· ∂

2F

∂t ∂s
= −ab− 1

a+ b
,

1

π
· ∂

2F

∂s2
= −2b+

ab− 1

a+ b
.

We put the Hesse matrix of F to be H. Then,

1

π
·traceH = −2a−2b+2·ab−1

a+ b
= −

2
(
(a+b)2 − ab+ 1

)
a+ b

= −
2
(
a2 + b2 + ab+ 1

)
a+ b

< 0.

Further,
1

π2
· detH = 4ab− (2a+ 2b) · ab− 1

a+ b
= 2(ab+ 1) > 0.

Hence, the two eigenvalues of H are nagative, and H is negative definite. Therefore, F
is a concave function on

{
(t, s)

∣∣ 0.5 < t < 1, 0 < s < 0.5
}
, whose Hesse matrix is

negative definite. Hence, the domain (57) is a compact convex domain, and its boundary
is a smooth closed curve whose curvature is non-zero everywhere (see Lemma B.1).

We calculate the minimal value tmin and the maximal value tmax of t in the domain
(57). We consider the line t = c in the (t, s) plane for a constant c. The values tmin and
tmax are given when this line is tangent to the domain (57). The tangent points of such
lines are given by the following equations, −2Λ(t) + Λ(t− s) + 2Λ(s) = ς

R
− Λ

(
1
6

)
,

∂

∂s

(
− 2Λ(t) + Λ(t− s) + 2Λ(s)

)
= 0.
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Since the curvature of the boundary curve of the domain (57) is non-zero everywhere (see
Lemma B.1), there are exactly two such tangent points, and the above system of equations
has exactly two solutions tmin and tmax. By calculating a solution by Newton’s method
from (t, s) = (0.6, 0.25), we obtain tmin = 0.619717... , and from (t, s) = (0.85, 0.25), we
obtain tmax = 0.857766... . Therefore, we obtain an estimate of t in ∆′ as

0.6 ≤ t ≤ 0.86.

To be precise (see Remark 3.2), we can rigorously verify the above estimate of the solutions
of the above system of equations in a similar way as in Section A.2.

We obtain an estimate of s in ∆′ from the above formula by using the symmetry
exchanging (t, s) and (1−s, 1−t), and hence, we obtain that

0.14 ≤ s ≤ 0.4.

We calculate the minimal value umin and the maximal value umax of u. The maximal
point of −2Λ(t) + Λ(t− s) + 2Λ(s) is given by a solution of the following equations,

∂

∂t

(
− 2Λ(t) + Λ(t− s) + 2Λ(s)

)
= 0,

∂

∂s

(
− 2Λ(t) + Λ(t− s) + 2Λ(s)

)
= 0.

Their solution is (t, s) = (3
4
, 1
4
). Hence,

Λ(u) ≥ ς
R
− 4Λ

(1
4

)
= 0.117292... .

By calculating solutions of the equality of the above formula by Newton’s method, we
obtain umin = 0.0586318... and umax = 0.315289... . Therefore, we obtain an estimate of
u in ∆′ as

0.05 ≤ u ≤ 0.4.

To be precise (see Remark 3.1), we can rigorously verify the above estimate in a similar
way as in Section A.1.

We calculate the minimal value (t − s)min and the maximal value (t − s)max of t − s.
Putting w = t− s, they satisfy the following equations, −2Λ(t) + Λ(w) + 2Λ(t− w) = ς

R
− Λ

(
1
6

)
,

∂

∂t

(
− 2Λ(t) + Λ(w) + 2Λ(t− w)

)
= 0.

We note that this system of equations has exactly two solutions. By calculating a solution
of them by Newton’s method from (t, w) = (0.65, 0.3), we obtain (t− s)min = 0.334132...,
and from (t, w) = (0.85, 0.7), we obtain (t− s)max = 0.665868... . Therefore, we obtain an
estimate of t− s in ∆′ as

0.3 ≤ t− s ≤ 0.67.

To be precise (see Remark 3.2), we can rigorously verify the above estimate of the solutions
of the above system of equations in a similar way as in Section A.2.
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Before calculating 2s+ u, we show that the domain (56) is convex. Since the function
−2Λ(t) + Λ(t− s) + 2Λ(s) and Λ(u) are concave functions whose Hesse matrices are
negative definite, the function −2Λ(t) + Λ(t−s) + 2Λ(s) + Λ(u) is also such a function
on
{
(t, s, u)

∣∣ 0.5 < t < 1, 0 < s < 0.5, 0 < u < 0.5
}
. Hence, the domain is a convex

domain and its boundary is a smooth closed surface whose Gaussian curvature is positive
everywhere (see Lemma B.2).

We calculate the maximal value (2s+u)max of 2s+u. We consider the plane 2s+u = c
for a constant c. The maximal value (2s + u)max is obtained when this plane is tangent
to the domain (56); we note that there are exactly two such tangent points. Putting
2w′ = 2s+ u, such tangent points are given by the following equations,

−2Λ(t) + Λ
(
t− w′ + 1

2
u
)
+ 2Λ

(
w′ − 1

2
u
)
+ Λ(u) = ς

R
,

∂

∂t

(
− 2Λ(t) + Λ

(
t− w′ +

1

2
u
)
+ 2Λ

(
w′ − 1

2
u
)
+ Λ(u)

)
= 0,

∂

∂u

(
− 2Λ(t) + Λ

(
t− w′ +

1

2
u
)
+ 2Λ

(
w′ − 1

2
u
)
+ Λ(u)

)
= 0.

(58)

We note that this system of equations has exactly two solutions. By calculating a solution
of them by Newton’s method from (t, w′, u) = (0.75, 0.5, 0.25), we obtain (2s + u)max =
0.958506... . Therefore, we obtain an estimate of 2s+ u in ∆′ as

2s+ u ≤ 0.97.

Remark 4.1. To be precise, the above argument is not partially rigorous, since we do
not estimate the error term of the numerical solution of Newton’s method, though the
above argument is practically useful, since we can guess that such an error term would
be sufficiently small for the above purpose. In order to complete the above argument, we
give a rigorous proof of an estimate of a solution of (58) in Lemma A.3.

4.3 Calculation of the critical value

In this section, we calculate the concrete values of a critical point and the Hesse matrix
of V̂ .

The differentials of V̂ are presented by

∂

∂t
V̂ (t, s, u) = 2 log(1− x)− log

(
1− y

x

)
− 2π

√
−1
(
t− 1

2

)
, (59)

∂

∂s
V̂ (t, s, u) = −2 log(1− y) + log

(
1− y

x

)
+ 2π

√
−1
(
2s+ u− 1

)
, (60)

∂

∂u
V̂ (t, s, u) = − log(1− z) + 2π

√
−1
(
s+ u− 1

2

)
, (61)

where x = e2π
√
−1 t, y = e2π

√
−1 s and z = e2π

√
−1u.

Lemma 4.2. V̂ has a unique critical point (t0, s0, u0) in P
−1(∆′), where P : C3 → R3 is

the projection to the real parts of the entries.
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Proof. Any critical point of V̂ is given by a solution of ∂
∂t
V̂ = ∂

∂s
V̂ = ∂

∂u
V̂ = 0, and these

equations are rewritten,

(1− x)2 = −x
(
1− y

x

)
, (1− y)2 = y2 z

(
1− y

x

)
, 1− z = −y z.

By using the first and third formula, we remove y and z from the second formula, to
obtain

x5 − 2x4 + 2x3 − 3x2 + 2x− 1 = 0.

Its solutions are given by

x = −0.232705...± √
−1 · 1.09381... , 0.438694...± √

−1 · 0.557752... , 1.58802... .

Since x = e2π
√
−1 t,

t = 0.283362...− √
−1 · 0.0177936... , 0.716638...− √

−1 · 0.0177936... ,
0.143927...+

√
−1 · 0.0545975... , 0.856073...+

√
−1 · 0.0545975... ,

− √
−1 · 0.0736072... .

Among these, the second and fourth solutions are in the range of t in ∆′. Further, as for
the fourth solution, s = 0.0243944...+

√
−1 · 0.127823... , and this is not in ∆′. From the

second solution, we have that

x0 = −0.232705...− √
−1 · 1.09381... , t0 = 0.716638...− √

−1 · 0.0177936... ,
y0 = 0.0904327...+

√
−1 · 1.60288... , s0 = 0.24103...− √

−1 · 0.0753425... ,
z0 = 0.267792...+

√
−1 · 0.471915... , u0 = 0.167853...+

√
−1 · 0.0973042... ,

where x0 = e2π
√
−1 t0 , y0 = e2π

√
−1 s0 and z0 = e2π

√
−1u0 . These give a unique critical point

in P−1(∆′).

The critical value of V̂ at the critical point of Lemma 4.2 is presented by

ς = V̂ (t0, s0, u0)

=
1

2π
√
−1

(
− 2 Li2(x0)− Li2

(y0
x0

)
+ 2Li2(y0) + Li2(z0) +

π2

3

)
+ 2π

√
−1 · 1

2

(
− t20 + s20 + (s0 + u0)

2 + t0 − s0 − (s0 + u0) +
1

6

)
(62)

= 0.700414...− √
−1 · 0.934648... .

Further, we put its real part to be ς
R
,

ς
R

= Re ς = 0.700414... . (63)

We calculate the Hesse matrix of V̂ . Since x = e2π
√
−1 t, d

dt
= 2π

√
−1 x d

dx
. Hence, from

(59), we have that

∂2

∂t2
V̂ = 2π

√
−1 x

∂

∂x

(
2 log(1−x)−log

(
1− y

x

))
−2π

√
−1 = 2π

√
−1
(
− 1 + x

1− x
−

y
x

1− y
x

)
.
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By calculating other entries similarly, the Hesse matrix of V̂ at (t0, s0, u0) is presented by

H0 = 2π
√
−1


−1 + x0
1− x0

−
y0
x0

1− y0
x0

y0
x0

1− y0
x0

0

y0
x0

1− y0
x0

2

1− y0
−

y0
x0

1− y0
x0

1

0 1
1

1− z0

 . (64)

4.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma 4.3,
which is used in the proof of Theorem 1.1 for the 62 knot in Section 4.1. As we mentioned
in Remark 2.5, we verify the assumption for V̂ (t, s, u) instead of V (t, s, u), since V (t, s, u)

converges uniformly to V̂ (t, s, u) on ∆′ in the form mentioned in Remark 2.5.

By computer calculation, we can see that the maximal value of Re V̂ − ς
R
is about

0.06. Therefore, in the proof of Lemma 4.3, it is sufficient to decrease, say, Re V̂ (t, s, u+
δ
√
−1) − 2πδ by 0.06, by moving δ (though we do not use this value in the proof of the

lemma).

Lemma 4.3. V̂ (t, s, u)− ς
R
satisfies the assumption of Proposition 2.3.

Proof. We show that ∂∆′ is null-homotopic in each of (15)–(20).

As for (15) and (16), similarly as the proof of Lemma 3.4, it is sufficient to show that

−(2π − ε′) < Re
( ∂
∂δ
V̂ (t+ δ

√
−1, s, u)

)
< 2π − ε′ (65)

for some ε′ > 0. The middle term is calculated as

Re
( ∂
∂δ
V̂ (t+ δ

√
−1, s, u)

)
= −2Arg (1− x) + Arg

(
1− y

x

)
+ 2π

(
t− 1

2

)
,

where x = e2π
√
−1 (t+X

√
−1) and y/x = e−2π

√
−1 (t−s)e2π(X−Y ). Since 0.6 ≤ t ≤ 0.9,

0 < Arg (1− x) < 2π
(
t− 1

2

)
.

Hence,

−2π
(
t− 1

2

)
< −2Arg (1− x) + 2π

(
t− 1

2

)
< 2π

(
t− 1

2

)
.

Further,

min
{
0, −2π

(
t− s− 1

2

)}
< Arg

(
1− y

x

)
< max

{
2π
(1
2
− t+ s

)
, 0
}
.

Therefore,

min
{
−2π

(
t−1

2

)
, −2π

(
2t−s−1

)}
< Re

( ∂
∂δ
V̂ (t+δ

√
−1, s, u)

)
< max

{
2π·s, 2π

(
t−1

2

)}
.
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Since t ≤ 0.9, t+ (t− s) ≤ 0.9 + 0.67 = 1.57 and s ≤ 0.4,

−2π · 0.6 < Re
( ∂
∂δ
V̂ (t+ δ

√
−1, s, u)

)
< 2π · 0.4,

and hence, (65) is satisfied.

As for (17) and (18), similarly as above, it is sufficient to show that

−(2π − ε′) < Re
( ∂
∂δ
V̂ (t, s+ δ

√
−1, u)

)
< 2π − ε′ (66)

for some ε′ > 0. The middle term is calculated as

Re
( ∂
∂δ
V̂ (t, s+ δ

√
−1, u)

)
= 2Arg (1− y)− Arg

(
1− y

x

)
− 2π(2s+ u− 1),

where y = e2π
√
−1 (s+Y

√
−1) and y/x = e−2π

√
−1 (t−s)e2π(X−Y ). Since 0.14 ≤ s ≤ 0.4,

−2π
(1
2
− s
)
< Arg (1− y) < 0.

Hence,
−2π · u < 2Arg (1− y)− 2π(2s+ u− 1) < 2π(1− 2s− u).

Since u ≤ 0.4 and 2s+ u ≥ 0.33,

−2π · 0.4 < 2Arg (1− y)− 2π(2s+ u− 1) < 2π · 0.67.

Further,

min
{
0, −2π

(
t− s− 1

2

)}
< Arg

(
1− y

x

)
< max

{
2π
(1
2
− t+ s

)
, 0
}
.

Since 0.3 ≤ t− s ≤ 0.67,

−2π · 0.17 < Arg
(
1− y

x

)
< 2π · 0.2.

Therefore,

−2π · 0.57 < Re
( ∂
∂δ
V̂ (t, s+ δ

√
−1, u)

)
< 2π · 0.87,

and hence, (66) is satisfied.

As for (19) and (20), similarly as above, it is sufficient to show that

−(2π − ε′) < Re
( ∂
∂δ
V̂ (t, s, u+ δ

√
−1)

)
< 2π − ε′ (67)

for some ε′ > 0. The middle term is calculated as

Re
( ∂
∂δ
V̂ (t, s, u+ δ

√
−1)

)
= Arg (1− z)− 2π

(
s+ u− 1

2

)
,
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where z = e2π
√
−1 (u+Z

√
−1). Since 0.05 ≤ u ≤ 0.4,

−2π
(1
2
− u
)
< Arg (1− z) < 0.

Therefore,

−2π · s < Re
( ∂
∂δ
V̂ (t, s, u+ δ

√
−1)

)
< 2π

(1
2
− s− u

)
.

Since s ≤ 0.4 and s+ u ≥ 0.19,

−2π · 0.4 < Re
( ∂
∂δ
V̂ (t, s, u+ δ

√
−1)

)
< 2π · 0.31,

and hence, (67) is satisfied.

4.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 4.9. In
order to show this lemma, we show Lemmas 4.4–4.8 in advance. As we mentioned in
Remark 2.7, we verify the assumption for V̂ (t, s, u) instead of V (t, s, u), since V (t, s, u)

converges uniformly to V̂ (t, s, u) on ∆′ in the form mentioned in Remark 2.7.

−

−

0

0
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− 5 5

10

10

−10 10

Figure 3: Contour lines of Re V̂ (0.8 +X
√
−1, 0.18 + Y

√
−1, 0.1)− ς

R

In the proof of Lemma 4.9, as mentioned at the beginning of Section 4.4, it is sufficient
to decrease Re V̂ (t, s, u) by 0.06, by pushing t, s, u into the imaginary directions. In order
to calculate this concretely, putting

f(X, Y, Z) = Re V̂ (t+X
√
−1, s+ Y

√
−1, u+ Z

√
−1)− ς

R

as in Section 3.5, we consider the behavior of f at each fiber of the projection C3 → R3.
Then, unlike Section 3.5, there are some (t, s, u) ∈ R3 such that, fixing X and Z, f has
a maximal point as a function of Y ; for example, see Figure 3. We also note that the
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Hessian of f is not positive where the contour lines are not convex, though we like to
show that the Hesse matrix of f is positive definite at any critical point of f .

Lemma 4.4. Fixing X and Y , we regard f as a function of Z.
(1) If s+ u ≥ 1

2
, then f is monotonically decreasing.

(2) If s+ u < 1
2
, then f has a unique minimal point at Z = g3(t, s, u), where

g3(t, s, u) =
1

2π
log

sin 2πs

sin 2π
(
1
2
− s− u

) .
In particular, this minimal point goes to ∞ as s+ u→ 1

2
− 0.

Proof. As a function of Z, the differential of f is presented by

∂f

∂Z
= Arg (1− z)− 2π

(
s+ u− 1

2

)
,

where z = e2π
√
−1 (u+Z

√
−1). Hence, we can show the lemma in a similar way as the proof

of Lemma 3.5.

When we regard f as a function of Z fixing X and Y , by Lemma 4.4, f has a unique
minimal point at Z = g3(t, s, u); we note that this minimal point does not depend on X
and Y . In order to consider the behavior of f , putting

f̌(X, Y ) = f
(
X,Y, g3(t, s, u)

)
, (68)

we consider the behavior of f̌ in each fiber of the projection C3 → R3 at (t, s, u) ∈ ∆′ ⊂ R3.

Lemma 4.5. For each (t, s, u) ∈ ∆′ satisfying that t− 1
2
< s+u < 1

2
, f̌ has a unique

minimal point and no other critical points.

Proof. The differentials of f̌ are presented by

∂f̌

∂X
=

∂f

∂X
= Im

(
− 2 log(1− x) + log

(
1− y

x

))
+ 2π

(
t− 1

2

)
,

∂f̌

∂Y
=

∂f

∂Y
= Im

(
2 log(1− y)− log

(
1− y

x

))
− 2π

(
2s+ u− 1

)
,

where x = e2π
√
−1 (t+X

√
−1) and y = e2π

√
−1 (s+Y

√
−1). Hence, since dx

dX
= −2πx,

∂2f̌

∂X2
= Im

(( 2

1− x
+

y
x2

1− y
x

) dx
dX

)
= 2π Im

(
− 2x

1− x
−

y
x

1− y
x

)
= 2π Im

(
− 2

1− x
− 1

1− y
x

)
,

where we obtain the last equality by changing the content of the parentheses by a real
number, which does not change its imaginary part. Similarly, we have that

∂2f̌

∂X∂Y
= 2π Im

1

1− y
x

,
∂2f̌

∂Y 2
= 2π Im

( 2

1− y
− 1

1− y
x

)
.
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Therefore, the Hesse matrix of f̌ is presented by

2π

(
2a1 + b −b
−b 2a2 + b

)
, (69)

where we put

a1 = − Im
1

1− x
, a2 = Im

1

1− y
, b = − Im

1

1− y
x

.

Since 0.6 ≤ t ≤ 0.9, Im (1 − x) > 0, and hence, a1 > 0. Similarly, since 0.14 ≤ s ≤ 0.4,
we have that a2 > 0.

When t− s ≤ 1
2
, we have that Im

(
1− y

x

)
≥ 0, and hence, b ≥ 0. Then, we can verify

that the trace and the determinant of the Hesse matrix (69) are positive. Hence, the
Hesse matrix (69) is positive definite. Therefore, by Lemma 4.7, f̌ has a unique minimal
point and no other critical points, as required.

When t− s > 1
2
, putting b′ = −b, we have that b′ > 0. Since any critical point of f̌ is

in the domain (72) by Lemma 4.6 below, it is sufficient (by Lemma 4.7) to show that the
Hesse matrix (69) is positive definite in the domain (72). Hence, it is sufficient to show
that (

the trace of (69)
)

= 4π(a1 + a2 − b′) > 0, (70)(
the determinant of (69)

)
= 4π2

(
(2a1 − b′)(2a2 − b′)− b′

2)
= 8π2a1a2b

′( 2
b′
− 1

a1
− 1

a2

)
> 0. (71)

We show that (71) ⇒ (70), as follows. Suppose that (71) holds. Then, 1
b′
> 1

2

(
1
a1
+ 1

a2

)
.

Since a1, a2 and b′ are positive, 1
b′
> 1

a1
or 1

b′
> 1

a2
. Hence, b′ < a1 or b′ < a2. Therefore,

(70) holds.

We show (71), as follows. Since x = e2π
√
−1 (t+X

√
−1), a1 is presented by

a1 = − Im
1

1− x
= − Im

1− x∣∣1− x
∣∣2 = − e−2πX sin 2πt

(1− e2π
√
−1 te−2πX)(1− e−2π

√
−1 te−2πX)

= − sin 2πt

e2πX + e−2πX − 2 cos 2πt
=

sin 2π(1− t)

e2πX + e−2πX − 2 cos 2π(1− t)
.

Hence,
1

a1
=

e2πX + e−2πX − 2 cos 2π(1− t)

sin 2π(1− t)
.

Similarly, we have that

1

a2
=

e2πY + e−2πY − 2 cos 2πs

sin 2πs
,

1

b′
=

e2π(X−Y ) + e2π(Y−X) − 2 cos 2π(1− t+ s)

sin 2π(1− t+ s)
.
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Therefore, the differential of 2
b′
− 1

a1
− 1

a2
with respect to X is given by

1

2π
· ∂

∂X

( 2
b′
− 1

a1
− 1

a2

)
= 2 · e

2π(X−Y ) − e2π(Y−X)

sin 2π(1− t+ s)
− e2πX − e−2πX

sin 2π(1− t)
.

Since X > 0, Y < 0, 0.33 ≤ 1− t+ s < 0.5 and 0.1 ≤ 1− t ≤ 0.4,

1

2π
· ∂

∂X

( 2
b′
− 1

a1
− 1

a2

)
>
(
e2πX − e−2πX

)( 2

sin 2π(1− t+ s)
− 1

sin 2π(1− t)

)
>
(
e2πX − e−2πX

)( 2

sin 2π · 0.33
−max

{ 1

sin 2π · 0.1
,

1

sin 2π · 0.4
})

>
(
e2πX − e−2πX

)( 2

0.876307...
−max

{ 1

0.587785...
,

1

0.587785...

})
>
(
e2πX − e−2πX

)
· 0.581004... > 0.

Hence, it is sufficient to show the required inequality when X = 0. Similarly, since X > 0,
Y < 0, 0.33 ≤ 1− t+ s < 0.5 and 0.14 ≤ s ≤ 0.4,

− 1

2π
· ∂

∂Y

( 2
b′
− 1

a1
− 1

a2

)
= 2 · e

2π(X−Y ) − e2π(Y−X)

sin 2π(1− t+ s)
− e−2πY − e2πY

sin 2πs

>
(
e−2πY − e2πY

)( 2

sin 2π(1− t+ s)
− 1

sin 2πs

)
>
(
e−2πY − e2πY

)( 2

sin 2π · 0.33
−max

{ 1

sin 2π · 0.14
,

1

sin 2π · 0.4
})

>
(
e−2πY − e2πY

)( 2

0.876307...
−max

{ 1

0.770513...
,

1

0.587785...

})
>
(
e−2πY − e2πY

)
· 0.581004... > 0.

Hence, it is sufficient to show the required inequality when Y = 0. When X = Y = 0,

1

2

( 2
b′
− 1

a1
− 1

a2

)
= 2 · 1− cos 2π(1− t+ s)

sin 2π(1− t+ s)
− 1− cos 2π(1− t)

sin 2π(1− t)
− 1− cos 2πs

sin 2πs
.

Further, since 1−cos 2πα
sin 2πα

= 2 sin2 πα
2 sinπα cosπα

= tan πα,

1

2

( 2
b′
− 1

a1
− 1

a2

)
= 2 tan π(1− t+ s)− tanπ(1− t)− tan πs > 0.

Hence, we obtain (71), as required.

The following two lemmas are used in the proof of Lemma 4.5.

Lemma 4.6. Let f̌ be as defined in (68). If s < t− 1
2
< s+u < 1

2
, then any critical point

of f̌ is in the following domain,{
(X, Y ) ∈ R2

∣∣ X > 0, Y < 0
}
. (72)
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Proof. Let (X,Y ) be a critical point of f̌ .

We show that X > 0, as follows. Since ∂f̌
∂X

= 0,

−2Arg (1− x) + 2π
(
t− 1

2

)
= −Arg

(
1− y

x

)
,

where x = e2π
√
−1 (t+X

√
−1) and y/x = e−2π

√
−1 (t−s)e2π(X−Y ). Since 1

2
< t − s ≤ 0.67,

the right-hand side of the above formula is positive. Further, since 0.6 ≤ t ≤ 0.9, the
left-hand side is monotonically increasing with respect to X, and is equal to 0 at X = 0.
Therefore, X > 0.

We show that Y < 0, as follows. Since ∂f̌
∂Y

= 0,

2Arg (1− y) = Arg
(
1− y

x

)
+ 2π

(
2s+ u− 1

)
,

where y = e2π
√
−1 (s+Y

√
−1) and y/x = e−2π

√
−1 (t−s)e2π(X−Y ). Since Arg

(
1 − y

x

)
< 0 as

mentioned above,
2Arg (1− y) < 2π

(
2s+ u− 1

)
.

Hence,

2Arg (1− y) + 2π
(1
2
− s
)
< 2π

(
s+ u− 1

2

)
.

From the assumption of the lemma, the right-hand side of the above formula is negative.
Further, since 0.14 ≤ s ≤ 0.4, the left-hand side is monotonically increasing with respect
to Y , and is equal to 0 at Y = 0. Therefore, Y < 0.

Lemma 4.7. For each (t, s, u) ∈ ∆′ satisfying that t − 1
2
< s + u, f̌(X, Y ) → ∞ as

X2 + Y 2 → ∞.

Proof. From the definition of V̂ , we have that

Re V̂
(
t+X

√
−1, s+ Y

√
−1, u+ Z

√
−1
)

= Re
1

2π
√
−1

(
− 2 Li2(e

2π
√
−1 (t+X

√
−1))− Li2(e

2π
√
−1 (s−t+Y

√
−1−X

√
−1))

+ 2Li2(e
2π

√
−1 (s+Y

√
−1)) + Li2(e

2π
√
−1 (u+Z

√
−1))

)
+ 2π

(
t− 1

2

)
X − 2π

(
s− 1

2

)
Y − 2π

(
s+ u− 1

2

)
(Y + Z).

Since f̌ is defined from the above formula by fixing Z, it is sufficient to show that

Re
1

2π
√
−1

(
− 2 Li2(e

2π
√
−1 (t+X

√
−1)) + 2Li2(e

2π
√
−1 (s+Y

√
−1))

− Li2(e
2π

√
−1 (s−t+Y

√
−1−X

√
−1))

)
+ 2π

(
t− 1

2

)
X + 2π

(
1− 2s− u

)
Y
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goes to ∞ as X2 + Y 2 → ∞. Hence, putting

F (X, Y ) =

({(
t− 1

2

)
X if X ≥ 0

−
(
t− 1

2

)
X if X < 0

)
+

({
(1− 2s− u)Y if Y ≥ 0

−uY if Y < 0

)

+

({(
t− s+ 1

2

)
(X − Y ) if X ≥ Y

0 if X < Y

)
,

(73)

by Lemma 2.2, it is sufficient to show that F (X, Y ) → ∞ as X2 + Y 2 → ∞.
We show that F (X, Y ) → ∞ as X2 + Y 2 → ∞, as follows. As for the first summand

of (73), since t > 0.5, this summand goes to ∞ as |X| → ∞. As for the second summand
of (73), since 1 − 2s − u > 0 and u > 0, this summand goes to ∞ as |Y | → ∞. As for
the third summand of (73), since t − s + 1

2
> 0, this summand is non-negative. Hence,

F (X, Y ) → ∞ as X2 + Y 2 → ∞, as required.

Lemma 4.8. Suppose that t− 1
2
≥ s+u, and consider the flow from (X, Y ) = (0, 0) along

the vector field
(
− ∂f̌

∂X
,− ∂f̌

∂Y

)
. Then, Y → −∞.

Proof. The differential of f̌ with respect to X is presented by

∂f̌

∂X
=

∂f

∂X
= −2Arg (1− x) + Arg

(
1− y

x

)
+ 2π

(
t− 1

2

)
,

where x = e2π
√
−1 (t+X

√
−1) and y

x
= e−2π

√
−1 (t−s)e2π(X−Y ). In particular, when X = 0,

noting that Arg (1− x) = π
(
t− 1

2

)
,

∂f̌

∂X

∣∣∣
X=0

= Arg
(
1− y

x

)
< 0,

since 1
2
< t − s ≤ 0.7. Hence, the flow of the lemma goes in the domain {X > 0}. We

suppose that X > 0 in the following of this proof.
The differential of f̌ with respect to Y is presented by

∂f̌

∂Y
=

∂f

∂Y
= 2Arg (1− y)− Arg

(
1− y

x

)
− 2π(2s+ u− 1),

where y = e2π
√
−1 (s+Y

√
−1) and y

x
= e−2π

√
−1 (t−s)e2π(X−Y ). Hence,

∂f̌

∂Y

∣∣∣
Y→−∞

= −2 · 2π
(1
2
− s
)
+2π

(
t− s− 1

2

)
− 2π(2s+u− 1) = 2π

(
t− s−u− 1

2

)
≥ 0.

Further, when Y ≤ 0, similarly as in the proof of Lemma 4.5, we have that

1

2π
· ∂

2f̌

∂Y 2
= Im

( 2

1− y
− 1

1− y
x

)
=

2 sin 2πs

e2πY + e−2πY − cos 2πs
− sin 2π(1− t+ s)

e2π(X−Y ) + e2π(Y−X) − cos 2π(1− t+ s)
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>
2 sin 2πs− sin 2π(1− t+ s)

e2πY + e−2πY − cos 2πs
,

where we obtain the last inequality since 0.14 ≤ s ≤ 1− t+ s < 1
2
. Further, since

sin 2πs ≥ max
{
sin 2π · 0.14, sin 2π(1− t+ s)

}
= max

{
0.770513... , sin 2π(1− t+ s)

}
>

1

2
sin 2π(1− t+ s),

we have that ∂
2f̌
∂Y 2 > 0. Hence, ∂f̌

∂Y
is monotonically increasing. Therefore, since ∂f̌

∂Y

∣∣∣
Y→−∞

≥

0 as shown above, we have that ∂f̌
∂Y

≥ 0. Hence, by the flow of the lemma, Y → −∞.

Lemma 4.9. When we apply Proposition 2.6 to (55), the assumption of Proposition 2.6
holds.

Proof. We show that there exists a homotopy ∆′
δ (0 ≤ δ ≤ 2) between ∆′

0 = ∆′ and ∆′
2

such that

(t0, s0, u0) ∈ ∆′
2, (74)

∆′
2 − {(t0, s0, u0)} ⊂

{
(t, s, u) ∈ C3

∣∣ Re V̂ (t, s, u) < ς
R

}
, (75)

∂∆′
δ ⊂

{
(t, s, u) ∈ C3

∣∣ Re V̂ (t, s, u) < ς
R

}
. (76)

For a sufficiently large R > 0, we put

ĝ3(t, s, u) =

{
min {R, g3(t, s, u)} if s+ u < 1

2
,

R if s+ u ≥ 1
2
,

where g3(t, s, u) is given in Lemma 4.4. We note that, since g3(t, s, u) → ∞ as s+u→ 1
2
−0,

ĝ3(t, s, u) is continuous. We set the middle part ∆′
1 of the homotopy by

∆′
1 =

{(
t, s, u+ ĝ3(t, s, u)

√
−1
)
∈ C3

∣∣ (t, s, u) ∈ ∆′}.
Further, we define the internal part ∆′

δ (0 < δ < 1) of the homotopy by setting it along
the flow from (t, s, u) determined by the vector field

(
0, 0,− ∂f

∂Z

)
. By Lemma 4.4, such a

flow goes to ∆′
1. We note that, when s + u ≥ 1

2
, Re V̂ is sufficiently small on ∆′

1. It is a

problem how to move ∆′
1 further to make Re V̂ smaller, when s+ u < 1

2
.

We consider the behavior of the flow from each point of ∆′
1 determined by the vector

field
(
− ∂f̌

∂X
,− ∂f̌

∂Y
, 0
)
. When t− 1

2
< s+ u, by Lemma 4.5, f̌ has a unique minimal point,

and the flow goes to it; we put this minimal point to be
(
g1(t, s, u), g2(t, s, u)

)
. When

t− 1
2
≥ s+ u, by Lemma 4.8, Y goes to −∞ by the flow. We put

ĝ2(t, s, u) =

{
max {−R, g2(t, s, u)} if t− 1

2
< s+ u,

−R if t− 1
2
≥ s+ u.
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We note that, since g2(t, s, u) → −∞ as t−s−u→ 1
2
−0, ĝ2(t, s, u) is continuous. We put

ĝ1(t, s, u) so that
(
ĝ1(t, s, u), ĝ2(t, s, u)

)
is on the flow. We set the ending of the homotopy

by

∆′
2 =

{(
t+ ĝ1(t, s, u)

√
−1, s+ ĝ2(t, s, u)

√
−1, u+ ĝ3(t, s, u)

√
−1
)
∈ C3

∣∣ (t, s, u) ∈ ∆′}.
Further, we define the internal part ∆′

δ (1 < δ < 2) of the homotopy by setting it along

the flow from
(
t, s, u+ ĝ3(t, s, u)

√
−1
)
determined by the vector field

(
− ∂f̌

∂X
,− ∂f̌

∂Y
, 0
)
.

We show (76), as follows. From the definition of ∆′,

∂∆′ ⊂
{
(t, s, u) ∈ C3

∣∣ Re V̂ (t, s, u) < ς
R

}
.

Further, by the construction of the homotopy, Re V̂ monotonically decreases by the ho-
motopy. Hence, (76) holds.

We show (74) and (75), as follows. Consider the following functions

F (t, s, u,X, Y, Z) = Re V̂
(
t+X

√
−1, s+ Y

√
−1, u+ Z

√
−1
)
,

h(t, s, u) = F
(
t, s, u, ĝ1(t, s, u), ĝ2(t, s, u), ĝ3(t, s, u)

)
.

When t − 1
2
≥ s + u or s + u ≥ 1

2
, −h(t, s, u) is sufficiently large (because we let R be

sufficiently large), and (75) holds in this case. When t − 1
2
< s + u < 1

2
, similarly as

in the proof of Lemma 3.9, we can show that, if (t, s, u) is a critical point of h(t, s, u),(
t+ g1(t, s, u)

√
−1, s+ g2(t, s, u)

√
−1, u+ g3(t, s, u)

√
−1
)
is a critical point of V̂ . Hence,

by Lemma 4.2, h(t, s, u) has a unique maximal point at (t, s, u) = (Re t0,Re s0,Reu0).
Therefore, (74) and (75) hold.

5 The 63 knot

In this section, we show Theorem 1.1 for the 63 knot. We give a proof of the theorem in
Section 5.1, using lemmas shown in Section 5.2–5.5.

5.1 Proof of Theorem 1.1 for the 63 knot

In this section, we show a proof of Theorem 1.1 for the 63 knot.
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The 63 knot is the closure of the following tangle.

0

0 n

0

i

0
0

N−1

j

0

k
1

l 0

0

As shown in [33], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
of the 63 knot is presented by

⟨ 63 ⟩N =
∑ N q

1
2
−n

(q)N−n(q)n−1

× N q
1
2
+n−i

(q)N−n(q)n−i(q)i−1

× N q−
1
2
−k

(q)N−j(q)j−k−1(q)k

× N q
1
2
+i−1

(q)j−i(q)i−1(q)N−j
× N q−

1
2
+k−l

(q)k(q)N−l−1(q)l−k
× N q−

1
2
+l+1

(q)l(q)N−l−1

=
∑

0<i≤j≤N
0≤k<j

N4

(q)i−1(q)i−1(q)j−i(q)N−j(q)N−j(q)j−k−1(q)k(q)k

=
∑

0≤i≤j<N
0≤k≤j

N4

(q)i(q)i(q)j−i(q)N−j−1(q)N−j−1(q)j−k(q)k(q)k
(77)

where the second equality is obtained by (4) and (5), and the last equality is obtained by
replacing i with i+ 1 and replacing j with j + 1.

Proof of Theorem 1.1 for the 63 knot. By (6), the above presentation of ⟨ 63 ⟩N is rewritten

⟨ 63 ⟩N = N4
∑

0≤i≤j<N
0≤k≤j

exp
(
N Ṽ

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

))
,

where we put

Ṽ (t, s, u) =
1

N

(
φ(t)− φ(1− t)− φ

(
1− s+ t− 1

2N

)
− φ(s) + φ(1− s)

+ φ
(
s− u+

1

2N

)
+ φ(u)− φ(1− u)− 4φ

( 1

2N

)
+ 4φ

(
1− 1

2N

))
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=
1

N

(
2φ(t)− φ

(
1− s+ t− 1

2N

)
− 2φ(s) + φ

(
s− u+

1

2N

)
+ 2φ(u)

)
+ 2π

√
−1 · 1

2

(
t2 − s2 + u2 − t+ s− u+

1

6

)
− 4

N
logN.

Here, we obtain the last equality by (10) and (11). Hence, by putting

V (t, s, u) = Ṽ (t, s, u) +
4

N
logN

=
1

N

(
2φ(t)− φ

(
1− s+ t− 1

2N

)
− 2φ(s) + φ

(
s− u+

1

2N

)
+ 2φ(u)

)
+ 2π

√
−1 · 1

2

(
t2 − s2 + u2 − t+ s− u+

1

6

)
,

the presentation of ⟨ 63 ⟩N is rewritten

⟨ 63 ⟩N =
∑

0≤i≤j<N
0≤k≤j

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

))

=
∑

i,j,k∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
)∈∆

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

))
,

where the range ∆ of (2i+1
2N

, 2j+1
2N

, 2k+1
2N

) of the above sum is given by the following domain,

∆ =
{
(t, s, u) ∈ R3

∣∣ 0 ≤ t ≤ s ≤ 1, 0 ≤ u ≤ s
}
.

By Proposition 2.1, as N → ∞, V (t, s, u) converges to the following V̂ (t, s, u) in the
interior of ∆,

V̂ (t, s, u) =
1

2π
√
−1

(
2 Li2(e

2π
√
−1 t)− Li2(e

−2π
√
−1 (s−t))− 2 Li2(e

2π
√
−1 s)

+ Li2(e
2π

√
−1 (s−u)) + 2Li2(e

2π
√
−1u)

)
+ 2π

√
−1 · 1

2

(
t2 − s2 + u2 − t+ s− u+

1

6

)
.

By concrete computation, we can check that the boundary of ∆ is included in the domain{
(t, s, u) ∈ ∆

∣∣ Re V̂ (t, s, u) < ς − ε
}

(78)

for some sufficiently small ε > 0, where ς is given by (86), noting that ς is real unlike the
cases of the 61 and 62 knots. Hence, similarly as in Section 3.1, we choose a new domain
∆′, which satisfies that ∆−∆′ ⊂ (78), as

∆′ =

{
(t, s, u) ∈ ∆

∣∣∣∣∣ 0.18 ≤ t ≤ 0.3, 0.54 ≤ s ≤ 0.7, 0.18 ≤ u ≤ 0.3
0.3 ≤ s− t ≤ 0.47, 0.3 ≤ s− u ≤ 0.47

}
, (79)

where we calculate the concrete values of the bounds of these inequalities in Section 5.2.
Then, similarly as in Section 3.1, we can restrict ∆ to ∆′ as

⟨ 63 ⟩N = eNς

( ∑
i,j,k∈Z

( 2i+1
2N

, 2j+1
2N

, 2k+1
2N

)∈∆′

exp
(
N ·V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

)
−Nς

)
+O(e−Nε)

)
, (80)
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for some ε > 0.
Further, by Proposition 2.3 (Poisson summation formula, see also Remark 2.5), the

above sum is presented by

⟨ 63 ⟩N = eNς

(
N3

∫
∆′

exp
(
N · V (t, s, u)−Nς

)
dt ds du +O(e−Nε)

)
, (81)

noting that we verify the assumption of Proposition 2.3 in Lemma 5.2. Furthermore, by
Proposition 2.6 (saddle point method, see also Remark 2.7), there exist some κ′i’s such
that

⟨ 63 ⟩N = N3 exp
(
N · V (tc, sc, uc)

)
· (2π)

3/2

N3/2

(
det(−H)

)−1/2
(
1 +

d∑
i=1

κ′iℏi +O(ℏd+1)
)
,

for any d > 0, noting that we verify the assumption of Proposition 2.6 in Lemma 5.5.
Here, (tc, sc, uc) is the critical point of V which corresponds to the critical point (t0, s0, u0)

of V̂ of Lemma 5.1, and H is the Hesse matrix of V at (tc, sc, uc).
We calculate the right-hand side of the above formula. Similarly as in Section 3.1, we

have that V (tc, sc, uc) = V (t0, s0, u0)+O(ℏ2). Further, similarly as in Section 4.1, we have
that

φ
(
1− s0 + t0 −

1

2N

)
= φ

(
1− s0 + t0

)
+

1

2
log
(
1− x0

y0

)
+O(ℏ2),

φ
(
s0 − u0 +

1

2N

)
= φ

(
s0 − u0

)
− 1

2
log
(
1− y0

z0

)
+O(ℏ2),

where we put x0 = e2π
√
−1 t0 , y0 = e2π

√
−1 s0 and z0 = e2π

√
−1u0 . Hence, by comparing

V (t0, s0, u0) and V̂ (t0, s0, u0) = ς, we have that

V (t0, s0, u0) = ς − 1

2N
log
(
1− x0

y0

)
− 1

2N
log
(
1− y0

z0

)
+O(ℏ2).

Therefore, there exist some κi’s such that

⟨ 63 ⟩N = eNςN3/2 ω ·
(
1 +

d∑
i=1

κiℏi +O(ℏd+1)
)

for any d > 0. Here, we put

ω = (2π)3/2
(
1− x0

y0

)−1/2(
1− y0

z0

)−1/2(
det(−H0)

)−1/2
= 0.416927...

where H0 is the Hesse matrix of V̂ at (t0, s0, u0) whose concrete presentation is given in
(88); see also [22] for a relation of this value and the twisted Reidemeister torsion. Hence,
we obtain the theorem for the 63 knot.
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5.2 Estimate of the range of ∆′

In this section, we calculate the concrete values of the bounds of the inequalities in (79)
so that they satisfy that ∆−∆′ ⊂ (78).

Putting Λ as in Section 2.2, we have that

Re V̂ (t, s, u) = 2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u).

We consider the domain{
(t, s, u) ∈ ∆

∣∣ 2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u) ≥ ς
}
, (82)

where we put ς = 0.906072... as in (86). We note that this domain is symmetric with
respect to the exchange of t and u. The aim of this section is to show that this domain
is included in the interior of the domain ∆′ of (79). We graphically show the set of (t, s)

satisfying that Re V̂ (t, s, u) ≥ ς for some u in Figure 4.

0.20 0.25 0.30

0.55

0.60

0.65

0
.1
8
≤
t

s−
t ≤

0.
47

0.54 ≤ s

0.3 ≤ s−t

t ≤ 0.3

s ≤ 0.7

Figure 4: The set of (t, s) satisfying that Re V̂ (t, s, u) ≥ ς for some u

We can show (see Lemma C.1) that the domain (82) is a compact convex domain and
its boundary is a smooth closed surface whose Gaussian curvature is positive everywhere.

We calculate the minimal value tmin and the maximal value tmax of t. We consider the
plane t = c for a constant c. The range of t is given as the range of c such that this plane
and the domain (82) has non-empty intersection. Since the domain (82) is a compact
convex domain whose boundary is a smooth closed surface, the maximal and minimal
values are given by the planes tangent to this domain. The tangent points of such planes
are given by solutions of the following equations,

2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u) = ς,
∂

∂s

(
2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u)

)
= 0,

∂

∂u

(
2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u)

)
= 0.

Since the boundary of the domain (82) is a smooth closed surface whose Gaussian cur-
vature is positive everywhere, there are exactly two such tangent points, and the above
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system of equations has exactly two solutions, corresponding to the minimal and maximal
values of t. By calculating a solution by Newton’s method from (t, s, u) = (0.2, 0.6, 0.2),
we obtain tmin = 0.186629... , and from (t, s, u) = (0.3, 0.6, 0.3), we obtain tmax =
0.296109... . Therefore, we obtain an estimate of t in ∆′ as

0.18 ≤ t ≤ 0.3.

To be precise (see Remark 4.1), we can rigorously verify the above estimate of the solutions
of the above system of equations in a similar way as in Section A.3.

We calculate the minimal value smin and the maximal value smax of s. They satisfy the
following equations,

2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u) = ς,
∂

∂t

(
2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u)

)
= 0,

∂

∂u

(
2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u)

)
= 0.

They are rewritten
2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u) = ς,

2Λ′(t) = Λ′(s− t),

2Λ′(u) = Λ′(s− u).

We note that this system of equations has exactly two solutions. Since the above system
of equations is symmetric with respect to the exchange of t and u, the solutions of the
form (t, smin, u) and (t, smax, u) satisfy that t = u. Hence, the above system of equations
is rewritten {

2Λ(t) + Λ(s− t)− Λ(s) = 1
2
ς,

2Λ′(t) = Λ′(s− t).

We note again that this system of equations has exactly two solutions. By calculating
a solution of them by Newton’s method from (t, s) = (0.25, 0.55), we obtain smin =
0.547094... , and from (t, s) = (0.25, 0.7), we obtain smax = 0.688624... . Therefore, we
obtain an estimate of s in ∆′ as

0.54 ≤ s ≤ 0.7.

To be precise (see Remark 3.2), we can rigorously verify the above estimate of the solutions
of the above system of equations in a similar way as in Section A.2.

We calculate the minimal value (s − t)min and the maximal value (s − t)max of s − t.
Putting w = s− t, they satisfy the following equations,

2Λ(t) + Λ(w)− 2Λ(t+ w) + Λ(t+ w − u) + 2Λ(u) = ς,
∂

∂t

(
2Λ(t) + Λ(w)− 2Λ(t+ w) + Λ(t+ w − u) + 2Λ(u)

)
= 0,

∂

∂u

(
2Λ(t) + Λ(w)− 2Λ(t+ w) + Λ(t+ w − u) + 2Λ(u)

)
= 0.
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We note that this system of equations has exactly two solutions. By calculating a solution
by Newton’s method from (w, t, u) = (0.3, 0.25, 0.25), we obtain (s− t)min = 0.301964... ,
and from (w, t, u) = (0.5, 0.2, 0.2), we obtain (s − t)max = 0.462284... . Therefore, we
obtain an estimate of s− t in ∆′ as

0.3 ≤ s− t ≤ 0.47.

To be precise (see Remark 4.1), we can rigorously verify the above estimate of the solutions
of the above system of equations in a similar way as in Section A.3.

We obtain the other bounds of ∆′ from the above bounds by the symmetry with respect
to the exchange of t and u.

5.3 Calculation of the critical value

In this section, we calculate the concrete values of a critical point and the Hesse matrix
of V̂ .

The differentials of V̂ are presented by

∂

∂t
V̂ (t, s, u) = −2 log(1− x) + log

(
1− x

y

)
+ 2π

√
−1
(
t− 1

2

)
, (83)

∂

∂s
V̂ (t, s, u) = 2 log(1− y)− log

(
1− x

y

)
− log

(
1− y

z

)
− 2π

√
−1
(
s− 1

2

)
, (84)

∂

∂u
V̂ (t, s, u) = −2 log(1− z) + log

(
1− y

z

)
+ 2π

√
−1
(
u− 1

2

)
, (85)

where x = e2π
√
−1 t, y = e2π

√
−1 s and z = e2π

√
−1u.

Lemma 5.1. V̂ has a unique critical point (t0, s0, u0) in P
−1(∆′), where P : C3 → R3 is

the projection to the real parts of the entries.

Proof. Any critical point of V̂ is given by a solution of ∂
∂t
V̂ = ∂

∂s
V̂ = ∂

∂u
V̂ = 0, and these

equations are rewritten,

(1− x)2 = −x
(
1− x

y

)
,

(1− y)2 = −y
(
1− x

y

)(
1− y

z

)
,

(1− z)2 = −z
(
1− y

z

)
.

From the first formula, we have that y = x2/(x2−x+1). Hence, from the second formula,
we have that z = x3/

(
(x− 1)(x2 + 1)

)
. By substituting these into the third formula, we

obtain
x6 − 2x5 + 5x4 − 6x3 + 5x2 − 3x+ 1 = 0.

Its solutions are given by

x = 0.108378...± √
−1 · 0.818891... , 0.23185...± √

−1 · 1.65564... ,
0.659772...± √

−1 · 0.298454... .
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Since x = e2π
√
−1 t,

t = 0.229058...+
√
−1 · 0.030418... , 0.770942...+

√
−1 · 0.030418... ,

0.227856...− √
−1 · 0.081789... , 0.772144...− √

−1 · 0.081789... ,
0.067611...+

√
−1 · 0.051371... , 0.932389...+

√
−1 · 0.051371... .

Among these, the first and third solutions are in the range of t in ∆′. Further, as for the
third solution, u = 0.932389...− √

−1 · 0.0513713... , and this is not in ∆′. From the first
solution, we have that

x0 = 0.108378...+
√
−1 · 0.818891... , t0 = 0.229058...+

√
−1 · 0.030418... ,

y0 = −0.57395...− √
−1 · 0.818891... , s0 = 0.652705... ,

z0 = 0.158836...+
√
−1 · 1.20014... , u0 = 0.229058...− √

−1 · 0.030418... ,

where x0 = e2π
√
−1 t0 , y0 = e2π

√
−1 s0 and z0 = e2π

√
−1u0 . These give a unique critical point

of V̂ in P−1(∆′).

The critical value of V̂ at the critical point of Lemma 5.1 is presented by

ς = V̂ (t0, s0, u0)

=
1

2π
√
−1

(
2 Li2(x0)− Li2

(x0
y0

)
− 2 Li2(y0) + Li2

(y0
z0

)
+ 2Li2(z0)

)
+ 2π

√
−1 · 1

2

(
t20 − s20 + u20 − t0 + s0 − u0 +

1

6

)
(86)

= 0.906072... ,

noting that this value is real, since the 63 knot is amphicheiral and the above value is
invariant under the symmetry

(t, s, u) 7−→ (u, s, t), (x, y, z) 7−→ (1/z, 1/y, 1/x). (87)

We calculate the Hesse matrix of V̂ . Since x = e2π
√
−1 t, d

dt
= 2π

√
−1 x d

dx
. Hence, from

(83), we have that

∂2

∂t2
V̂ = 2π

√
−1
(
x
( 2

1− x
−

1
y

1− x
y

)
+ 1
)

= 2π
√
−1
(1 + x

1− x
−

x
y

1− x
y

)
.

By calculating other entries similarly, the Hesse matrix of V̂ at (t0, s0, u0) is presented by

H0 = 2π
√
−1



1 + x0
1− x0

−
x0
y0

1− x0
y0

x0
y0

1− x0
y0

0

x0
y0

1− x0
y0

−1 + y0
1− y0

−
x0
y0

1− x0
y0

+

y0
z0

1− y0
z0

−
y0
z0

1− y0
z0

0 −
y0
z0

1− y0
z0

1 + z0
1− z0

+

y0
z0

1− y0
z0


. (88)
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5.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma 5.2,
which is used in the proof of Theorem 1.1 for the 63 knot in Section 5.1. As we mentioned
in Remark 2.5, we verify the assumption for V̂ (t, s, u) instead of V (t, s, u), since V (t, s, u)

converges uniformly to V̂ (t, s, u) on ∆′ in the form mentioned in Remark 2.5.

By computer calculation, we can see that the maximal value of Re V̂ − ς is about
0.02. Therefore, in the proof of Lemma 5.2, it is sufficient to decrease, say, Re V̂ (t, s, u+
δ
√
−1) − 2πδ by 0.02, by moving δ (though we do not use this value in the proof of the

lemma).

Lemma 5.2. V̂ (t, s, u)− ς satisfies the assumption of Proposition 2.3.

Proof. We show that ∂∆′ is null-homotopic in each of (15)–(20).

As for (15) and (16), similarly as the proof of Lemma 3.4, it is sufficient to show that

−(2π − ε′) < Re
( ∂
∂δ
V̂ (t+ δ

√
−1, s, u)

)
< 2π − ε′ (89)

for some ε′ > 0. The middle term is calculated as

Re
( ∂
∂δ
V̂ (t+ δ

√
−1, s, u)

)
= 2Arg (1− x)− Arg

(
1− x

y

)
− 2π

(
t− 1

2

)
,

where x = e2π
√
−1(t+δ

√
−1). Since 0.18 ≤ t ≤ 0.3,

−2π
(1
2
− t
)
< Arg (1− x) < 0.

Further, since 0.3 ≤ s− t ≤ 0.47,

0 < Arg
(
1− x

y

)
< 2π

(1
2
− s+ t

)
.

Therefore,

−2π(1− s) < Re
( ∂
∂δ
V̂ (t+ δ

√
−1, s, u)

)
< 2π

(1
2
− t
)
.

Since s ≥ 0.54 and t ≥ 0.18,

−2π · 0.46 < Re
( ∂
∂δ
V̂ (t+ δ

√
−1, s, u)

)
< 2π · 0.32,

and hence, (89) is satisfied.

As for (17) and (18), similarly as above, it is sufficient to show that

−(2π − ε′) < Re
( ∂
∂δ
V̂ (t, s+ δ

√
−1, u)

)
< 2π − ε′ (90)

for some ε′ > 0. The middle term is calculated as

Re
( ∂
∂δ
V̂ (t, s+ δ

√
−1, u)

)
= −2Arg (1− y) + Arg

(
1− x

y

)
+Arg

(
1− y

z

)
+ 2π

(
s− 1

2

)
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where y = e2π
√
−1(s+δ

√
−1). Since 0.54 ≤ s ≤ 0.7,

0 < Arg (1− y) < 2π
(
s− 1

2

)
.

Further, since 0.3 ≤ s− t ≤ 0.47,

0 < Arg
(
1− x

y

)
< 2π

(1
2
− s+ t

)
.

Furthermore, since 0.3 ≤ s− u ≤ 0.47,

−2π
(1
2
− s+ u

)
< Arg

(
1− y

z

)
< 0.

Therefore,

−2π · u < Re
( ∂
∂δ
V̂ (t, s+ δ

√
−1, u)

)
< 2π · t.

Since u ≤ 0.3 and t ≤ 0.3,

−2π · 0.3 < Re
( ∂
∂δ
V̂ (t, s+ δ

√
−1, u)

)
< 2π · 0.3,

and hence, (90) is satisfied.

As for (19) and (20), similarly as above, it is sufficient to show that

−(2π − ε′) < Re
( ∂
∂δ
V̂ (t, s, u+ δ

√
−1)

)
< 2π − ε′

for some ε′ > 0. We obtain this formula from (89) by the symmetry (87).

5.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 5.5. In
order to show this lemma, we show Lemmas 5.3 and 5.4 in advance. As we mentioned in
Remark 2.7, we verify the assumption for V̂ (t, s, u) instead of V (t, s, u), since V (t, s, u)

converges uniformly to V̂ (t, s, u) on ∆′ in the form mentioned in Remark 2.7.

In the proof of Lemma 5.5, as mentioned at the beginning of Section 5.4, it is sufficient
to decrease Re V̂ (t, s, u) by 0.02, by pushing t, s, u into the imaginary directions. In order
to calculate this concretely, putting

f(X, Y, Z) = Re V̂ (t+X
√
−1, s+ Y

√
−1, u+ Z

√
−1)− ς,

as in Section 3.5, we consider the behavior of f at each fiber of the projection C3 → R3.

Lemma 5.3. For each (t, s, u) ∈ ∆′, f has a unique minimal point and no other critical
points.
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Proof. By Lemma 5.4, it is sufficient to show that the Hesse matrix of f is positive definite
at any (X,Y, Z) ∈ R3. Similarly as in the proof of Lemma 4.5, we have that

∂2f

∂X2
= 2π Im

( 2

1− x
− 1

1− x
y

)
,

∂2f

∂X ∂Y
= 2π Im

1

1− x
y

,

∂2f

∂Y 2
= 2π Im

(
− 2

1− y
− 1

1− x
y

+
1

1− y
z

)
,

∂2f

∂Y ∂Z
= −2π Im

1

1− y
z

,

∂2f

∂Z2
= 2π Im

( 2

1− z
+

1

1− y
z

)
,

where x = e2π
√
−1 (t+X

√
−1), y = e2π

√
−1 (s+Y

√
−1) and z = e2π

√
−1 (u+Z

√
−1). Hence, the Hesse

matrix is presented by

2π

a1 + b1 −b1 0
−b1 a2 + b1 + b2 −b2
0 −b2 a3 + b2

 ,

where we put

a1 = Im
2

1− x
, a2 = Im

−2

1− y
, a3 = Im

2

1− z
, b1 = Im

−1

1− x
y

, b2 = Im
1

1− y
z

,

noting that these numbers are positive since (t, s, u) ∈ ∆′. Since the above matrix is
equivalent as a quadratic form to the following matrix,

2π

a1 + b1 0 0
0 a2 +

a1b1
a1+b1

+ a3b2
a3+b2

0

0 0 a3 + b2

 ,

the Hesse matrix of f is positive definite, as required.

The following lemma is used in the proof of Lemma 5.3.

Lemma 5.4. For each (t, s, u) ∈ ∆′, f(X,Y, Z) → ∞ as X2 + Y 2 + Z2 → ∞.

Proof. From the definition of f , we have that

f(X, Y, Z) = Re
1

2π
√
−1

(
2 Li2(e

2π
√
−1 (t+X

√
−1))− Li2(e

2π
√
−1 (1+t−s)+2π(Y−X))

− 2 Li2(e
2π

√
−1 (s+Y

√
−1)) + Li2(e

2π
√
−1 (s−u)+2π(Z−Y )) + 2Li2(e

2π
√
−1 (u+Z

√
−1))

)
− 2π

(
t− 1

2

)
X + 2π

(
s− 1

2

)
Y − 2π

(
u− 1

2

)
Z − ς.
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Hence, by Lemma 2.2, putting

F (X, Y, Z) =

({(
1
2
− t
)
X if X ≥ 0

−
(
1
2
− t
)
X if X < 0

)
+

({
0 if X ≥ Y(
1
2
− s+ t

)
(Y −X) if X < Y

)

+

({(
s− 1

2

)
Y if Y ≥ 0

−
(
s− 1

2

)
Y if Y < 0

)
+

({
0 if Y ≥ Z(
1
2
− s+ u

)
(Z − Y ) if Y < Z

)

+

({(
1
2
− u
)
Z if X ≥ 0

−
(
1
2
− u
)
Z if X < 0

)
,

it is sufficient to show that F (X, Y, Z) → ∞ asX2+Y 2+Z2 → ∞. Since F (cX, c Y, c Z) =
c F (X, Y, Z) for any c > 0, it is sufficient to show that F (X, Y, Z) is positive on the unit
sphere {(X, Y, Z) ∈ R3 | X2 + Y 2 + Z2 = 1}.

Note that all of the five summands in the right-hand side of the formula of F (X, Y, Z)
are non-negative. Further, the first summand is positive if X ̸= 0, the third summand
is positive if Y ̸= 0, and the last summand is positive if Z ̸= 0. Hence, F (X, Y, Z) is
positive on the unit sphere, as required.

Lemma 5.5. When we apply Proposition 2.6 to (81), the assumption of Proposition 2.6
holds.

Proof. We show that there exists a homotopy ∆′
δ (0 ≤ δ ≤ 1) between ∆′

0 = ∆′ and ∆′
1

such that

(t0, s0, u0) ∈ ∆′
1, (91)

∆′
1 − {(t0, s0, u0)} ⊂

{
(t, s, u) ∈ C3

∣∣ Re V̂ (t, s, u) < ς
}
, (92)

∂∆′
δ ⊂

{
(t, s, u) ∈ C3

∣∣ Re V̂ (t, s, u) < ς
}
. (93)

At each fiber of the projection C3 → R3, we consider the behavior of f(X, Y, Z) =

Re V̂ (t + X
√
−1, s + Y

√
−1, u + Z

√
−1) − ς. By Lemma 5.3, f has a unique minimal

point. We put this minimal point to be (X, Y, Z) =
(
g1(t, s, u), g2(t, s, u), g3(t, s, u)

)
. We

define the ending of the homotopy to be the set of these minimal points,

∆′
1 =

{(
t+ g1(t, s, u)

√
−1, s+ g2(t, s, u)

√
−1, u+ g3(t, s, u)

√
−1
)
∈ C3

∣∣ (t, s, u) ∈ ∆′}.
Further, we define the internal part of the homotopy by setting it along the flow from
(t, s, u) determined by the vector field

(
− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z

)
.

We can show (91), (92) and (93) by Lemma 5.1 in a similar way as the proof of Lemma
3.9.

A Estimate of solutions of systems of equations

In Sections 3.2, 4.2 and 5.2, we estimate solutions of some systems of equations by using
numerical solutions obtained by Newton’s method. As mentioned in Remarks 3.1, 3.2 and
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4.1, this argument is not partially rigorous, since we do not estimate the error terms of
such solutions. In order to complete their proofs, we show how to estimate such solutions
rigorously in this appendix. We explain 1-, 2-, 3-variable cases in Sections A.1, A.2, A.3
respectively.

A.1 Estimate of solutions of (35)

In this section, we explain how to estimate solutions in 1-variable case. We explain it for
solutions of (35); we can estimate solutions in other 1-variable cases in similar ways.

As mentioned in Section 3.2, there are exactly two solutions of (35) in 0 < t < 0.5. We
put them to be tmin and tmax (such that tmin < tmax). As we mentioned in Remark 3.1,
we give a rigorous proof of estimates of them in the following lemma.

Lemma A.1. 0.03 ≤ tmin and tmax ≤ 0.4.

Proof. We put

P (t) = 2Λ(t)− ς
R
+ 2Λ

(1
6

)
.

Then, (35) is rewritten as P (t) = 0. Since

P (0.03) = −0.020344... < 0, P
(1
6

)
= 0.142571... > 0, P (0.4) = −0.045188... < 0,

we have that

0.03 < tmin <
1

6
< tmax < 0.4,

as required.

A.2 Estimate of a solution of (36)

In this section, we explain how to estimate a solution in 2-variable case. We explain it
for a solution of (36); we can estimate solutions in other 2-variable cases in similar ways.

As mentioned in Section 3.2, there are exactly two solutions of (36). We put wmax to
be w of the solution whose w is the larger one. As we mentioned in Remark 3.2, we give
a rigorous proof of an estimate of wmax in the following lemma.

Lemma A.2. wmax ≤ 0.94.

Proof. The system of equations (36) is rewritten{
Λ(w − 2s) + Λ(s)− 1

2
ς
R

= 0,

2Λ′(w − 2s) = Λ′(s).

Since Λ′(t) = − log 2 sin πt, the second equation is rewritten

2 sin2 π(w − 2s) = sinπs.
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We put t = w − s − u = w − 2s. Since 0.03 ≤ t ≤ 0.4 as shown in Section 3.2,
sinπ(w − 2s) > 0. Therefore,

sin π(w − 2s) =

√
1

2
sinπs ,

and

w = 2s+
1

π
arcsin

√
1

2
sinπs .

We put the right-hand side of this formula to be f(s), that is, w = f(s).
In order to transform a range of s to a range of w later, we show that f(s) is mono-

tonically increasing in an area where we consider a solution, as follows. We put

F (w, s) = 2 sin2 π(w − 2s)− sin πs.

Since F (w, s) = 0,
d

ds
F
(
f(s), s

)
=

∂F

∂w
· f ′(s) +

∂F

∂s
= 0.

Hence, since

∂F

∂w
= 4π sinπ(w−2s) cos π(w−2s) = 2π sin 2π(w−2s),

∂F

∂s
= −4π sin 2π(w−2s)− π sin πs,

we have that

f ′(s) = −
∂F
∂w
∂F
∂s

= 2 +
cosπs

2 sin 2π(w−2s)
= 2 +

cosπs

2 sin 2πt
> 0,

where we obtain the last inequality since 0.001 ≤ s ≤ 0.5 and 0.03 ≤ t ≤ 0.4 as shown in
Section 3.2. Therefore, f(s) is monotonically increasing in the area of such s and t.

We estimate a solution of (36) by rewriting it as a 1-variable equation, as follows. We
put

P (s) = Λ
(
f(s)− 2s

)
+ Λ(s)− 1

2
ς
R
.

Then, (36) is rewritten as P (s) = 0. Since

P (0.346) = 0.0003872... > 0, P (0.347) = −0.0002516... < 0,

a solution of P (s) = 0 is in the following range,

0.346 < s < 0.347.

Further, since f(s) is monotonically increasing, w of a solution of (36) is in the following
range

f(0.346) < wmax < f(0.347).

Therefore,
wmax < f(0.347) = 0.925927... < 0.94,

as required.
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A.3 Estimate of a solution of (58)

In this section, we explain how to estimate a solution in 3-variable case. We explain it
for a solution of (58); we can estimate solutions in other 3-variable cases in similar ways.

As mentioned in Section 4.2, there are exactly two solutions of (58). These solutions
give the maximal and minimal values of 2s+u. We put the solution for the maximal value
to be (t1, s1, u1). Then, the maximal value of 2s + u is given by (2s + u)max = 2s1 + u1.
As we mentioned in Remark 4.1, we give a rigorous proof of an estimate of (2s+ u)max in
the following lemma.

Lemma A.3. (2s+ u)max ≤ 0.97.

Proof. The system of equations (58) is rewritten
−2Λ(t) + Λ

(
t− w′ + 1

2
u
)
+ 2Λ

(
w′ − 1

2
u
)
+ Λ(u)− ς

R
= 0,

−2Λ′(t) + Λ′(t− w′ + 1
2
u
)

= 0,
1
2
Λ
(
t− w′ + 1

2
u
)
− Λ

(
w′ − 1

2
u
)
+ Λ′(u) = 0,

where ς
R
= 0.700414248... . Putting s = w′ − 1

2
, they are rewritten

−2Λ(t) + Λ(t− s) + 2Λ(s) + Λ(u)− ς
R

= 0,

2Λ′(t) = Λ′(t− s),
1
2
Λ′(t− s)− Λ′(s) + Λ′(u) = 0.

(94)

The second equation is rewritten

2 sin2 πt = sin π(t− s).

Hence,4

s = t− 1

π
arcsin

(
2 sin2 πt

)
.

We put the right-hand side of this formula to be f(t), that is, s = f(t). By the second
and third equations of (94), we obtain that

Λ′(u) = Λ′(s)− Λ′(t).

Hence,

u =
1

π
arcsin

( sin πs

2 sin πt

)
.

Putting s = f(t), we put the right-hand side of this formula to be g(t), that is, u = g(t).
Further, putting

P (t) = −2Λ(t) + Λ
(
t− f(t)

)
+ 2Λ

(
f(t)

)
+ Λ

(
g(t)

)
− ς

R
,

the system of equations (94) is rewritten as a single equation P (t) = 0.

4Here, we choose a branch of arcsin as −π/2 ≤ arcsin(·) ≤ π/2. By choosing another branch, we obtain an estimate of
the minimal value of 2s+ u.
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We estimate the solution (t1, s1, u1), as follows. Since

P (0.7586) = 0.000307098... > 0, P (0.7587) = −0.000200034... < 0,

we have that
0.7586 < t1 < 0.7587.

In this range, arcsin
(
2 sin2 πt

)
is monotonically decreasing. Hence,

f(0.7586) < s1 < f(0.7587).

Further, since

f(0.7586) = 0.363692... > 0.3636, f(0.7587) = 0.364407... < 0.3645,

we have that
0.3636 < s1 < 0.3645.

In these ranges, sinπs
sinπt

is monotonically increasing with respect to t and s respectively.
Hence,

1

π
arcsin

( sinπ 0.3636

2 sin π 0.7586

)
< u1 <

1

π
arcsin

( sinπ 0.3645

2 sinπ 0.7587

)
.

Therefore, we obtain that

(2s+ u)max = 2s1 + u1 < 2 · 0.3645 + 1

π
arcsin

( sin π 0.3645

2 sin π 0.7587

)
= 0.959440... ≤ 0.97,

as required.

B Curvature of the boundary of the domain {Re V̂ ≥ ς
R
}

In Sections 3.2, 4.2 and 5.2, we estimated the maximal and minimal values of some linear
function L(t, s, u) on the domain

{
(t, s, u) | Re V̂ (t, s, u) ≥ ς

R

}
. This domain is a convex

domain whose boundary is a smooth closed surface. These maximal and minimal values
are obtained when the plane L(t, s, u) = c (where c is a constant) is tangent to this
domain. In order to show that there are exactly two such planes,5 we show that Gaussian
curvature of the boundary surface of this domain is positive in this section. We explain
2-, 3-variable cases in Sections B.1 and B.2 respectively.

B.1 Curvature of the boundary of a convex domain in a plane

In this section, we consider 2-variable case.

Let F (x, z) be a smooth concave function whose maximal value is positive. Then, the
domain {

(x, z) ∈ R2
∣∣ F (x, z) ≥ 0

}
(95)

is a convex domain and its boundary is a smooth curve. The aim of this section is to
show the following lemma.

5We use this fact, when we show that the system of equations presenting such tangent points has exactly two solutions
in Sections 3.2, 4.2, 5.2 and Appendix A.
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Lemma B.1. Let F (x, z) be a smooth concave function whose maximal value is positive
and Hesse matrix is negative definite. Then, the domain (95) is a convex domain and its
boundary is a smooth curve whose curvature is non-zero everywhere.

Proof. We choose any point on the boundary of the domain (95). It is sufficient to show
that the curvature of the boundary curve at this point is non-zero. By changing the
coordinate (x, z) by an affine transformation appropriately, we can assume that this point
is the origin (0, 0), and the domain (95) is in the upper half plane and it is tangent to the
x-axis at the origin. Then, in a neighborhood of the origin, we can present the boundary
curve as z = f(x) with some smooth function f defined in a neighborhood of 0. It is
sufficient to show that f ′′(0) ̸= 0.

We show that f ′′(0) ̸= 0, as follows. Since the boundary curve is given by F (x, z) = 0,
we have that F

(
x, f(x)

)
= 0. Its differential is given by

Fx(x, z) + Fz(x, z) f
′(x) = 0,

where the subscripts of x and z means ∂
∂x

and ∂
∂z

respectively. Since the domain (95) is
tangent to the x-axis at the origin, Fx(0, 0) = f ′(0) = 0. Further, the differential of the
above formula is given by

Fxx(x, z) + 2Fxz(x, z) f
′(x) + Fzz(x, z)

(
f ′(x)

)2
+ Fz(x, z) f

′′(x) = 0.

By putting x = z = 0, we have that

Fxx(0, 0) + Fz(0, 0) f
′′(0) = 0.

We obtain
(
Fxx
)
from the Hesse matrix(

Fxx Fxz
Fxz Fzz

)
by restricting R2 to R×{0}. Since the Hesse matrix is negative definite, we obtain that
Fxx(x, z) < 0 for any (x, z). Further, we consider the function g(z) = F (0, z). This is a
concave function such that g′′(z) < 0 and the maximal point z0 of g(z) is positive. Hence,
the function g′(z) is monotonically decreasing, and g′(z0) = 0 for z0 > 0. Therefore,
Fz(0, 0) = g′(0) > 0. Hence, we obtain that

f ′′(0) = −Fxx(0, 0)
Fz(0, 0)

> 0,

as required.

B.2 Curvature of the boundary of the domain {Re V̂ (t, s, u) ≥ ς
R
}

In this section, we consider 3-variable case. Instead of the function Re V̂ (t, s, u)− ς
R
, we

consider a function F (x, y, z) in general.

Let F (x, y, z) be a smooth concave function whose maximal value is positive. Then,
the domain {

(x, y, z) ∈ R3
∣∣ F (x, y, z) ≥ 0

}
(96)
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is a convex domain and its boundary is a smooth surface. The aim of this section is to
show the following lemma.

Lemma B.2. Let F (x, y, z) be a smooth concave function whose maximal value is positive
and Hesse matrix is negative definite. Then, the domain (96) is a convex domain and its
boundary is a smooth surface whose Gaussian curvature is positive everywhere.

Proof. We choose any point on the boundary of the domain (96). Similarly as in the proof
of Lemma B.1, we can assume that this point is the origin (0, 0, 0), and the domain (96)
is in the upper half space and it is tangent to the (x, y)-plane at the origin. Then, in a
neighborhood of the origin, we can present the boundary curve as z = f(x, y) with some
smooth function f defined in a neighborhood of 0. It is sufficient to show that the Hesse
matrix of f is positive definite at the origin.

We show that the Hesse matrix of f is positive definite at the origin, as follows. Since
the boundary curve is given by F (x, y, z) = 0, we have that F

(
x, y, f(x, y)

)
= 0. Its

differentials are given by

Fx(x, y, z) + Fz(x, y, z) fx(x, y) = 0,

Fy(x, y, z) + Fz(x, y, z) fy(x, y) = 0.

Since the domain (95) is tangent to the (x, y)-plane at the origin, fx(0, 0) = fy(0, 0) = 0.
Further, the differentials of the above formulas are given by

Fxx(x, y, z) + 2Fxz(x, y, z) fx(x, y) + Fzz(x, y, z)
(
fx(x, y)

)2
+ Fz(x, y, z) fxx(x, y) = 0,

Fxy(x, y, z) + Fxz(x, y, z) fy(x, y) + Fyz(x, y, z) fx(x, y)

+ Fzz(x, y, z) fx(x, y) fy(x, y) + Fz(x, y, z) fxy(x, y) = 0,

Fyy(x, y, z) + 2Fyz(x, y, z) fy(x, y) + Fzz(x, y, z)
(
fx(x, y)

)2
+ Fz(x, y, z) fyy(x, y) = 0.

By putting x = y = z = 0, we have that

Fxx(0, 0, 0) + Fz(0, 0, 0) fxx(0, 0) = 0,

Fxy(0, 0, 0) + Fz(0, 0, 0) fxy(0, 0) = 0,

Fyy(0, 0, 0) + Fz(0, 0, 0) fyy(0, 0) = 0.

Further, by considering the function g(z) = F (0, 0, z), we can show that Fz(0, 0, 0) =
g′(0) > 0, similarly as in the proof of Lemma B.1. Furthermore, we obtain the following
matrix

−Fz(0, 0, 0)
(
fxx(0, 0) fxy(0, 0)
fxy(0, 0) fyy(0, 0)

)
=

(
Fxx(0, 0, 0) Fxy(0, 0, 0)
Fxy(0, 0, 0) Fyy(0, 0, 0)

)
from the Hesse matrix of F by restricting R3 to R2×{0}. Therefore, the above matrix
is negative definite. Hence, the Hesse matrix of f is positive definite at the origin, as
required.

C On the domain {Re V̂ (t, s, u) ≥ ς} for the 63 knot

In Section 5.1, we put

∆ =
{
(t, s, u) ∈ R3

∣∣ 0 ≤ t ≤ s < 1, 0 ≤ u ≤ s
}
,
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and consider the following domain in (82), which we put to be ∆̂ in this section,

∆̂ =
{
(t, s, u) ∈ ∆

∣∣ 2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u)− ς ≥ 0
}
.

We note that this domain is symmetric with respect to the exchange of t and u. The aim
of this section is to show the following lemma.

Lemma C.1. ∆̂ is a compact convex domain in the interior of ∆, and the boundary of
∆̂ is a smooth closed surface whose Gaussian curvature is positive everywhere.

We show a proof of the lemma later in this section. Before showing it, we show some
lemmas.

Lemma C.2. The boundary of ∆ is included in the complement of ∆̂ in ∆. That is, ∆̂
is included in the interior of ∆.

Proof. We consider the defining inequality of ∆̂,

2 Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u)− ς ≥ 0. (97)

It is sufficient to show that any boundary point of ∆ does not satisfy this inequality. The
boundary of ∆ consists of five faces: {t = 0}, {t = s}, {s = 1}, {u = 0} and {u = s}.

When t = 0, the left-hand side of (97) is rewritten

−Λ(s) + Λ(s− u) + 2Λ(u)− ς ≤ 4Λ
(1
6

)
− ς = −0.25994... < 0.

Hence, the face {t = 0} is included in the complement of ∆̂.
When t = s, the left-hand side of (97) is rewritten

Λ(t− u) + 2Λ(u)− ς ≤ 3Λ
(1
6

)
− ς = −0.421473... < 0.

Hence, the face {t = s} is included in the complement of ∆̂.
When s = 1, the left-hand side of (97) is rewritten

Λ(t) + Λ(u)− ς ≤ 2Λ
(1
6

)
− ς = −0.583006... < 0.

Hence, the face {s = 1} is included in the complement of ∆̂.

Further, it is shown that the other faces are included in the complement of ∆̂ from the
above results by the symmetry with respect to the exchange of t and u.

Therefore, we obtain the lemma.

Lemma C.3. Let (t, s, u) ∈ ∆̂. Then, s > 0.5.

Proof. We suppose that s was less than or equal to 0.5 (and show a contradiction). The

function of the defining inequality of ∆̂ splits into the following two summands,

2 Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u)− ς

=
(
2Λ(t) + Λ(s− t)− Λ(s)− 1

2
ς
)
+
(
2Λ(u) + Λ(s− u)− Λ(s)− 1

2
ς
)
. (98)
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We show that, for such an arbitrarily fixed s, the first summand is negative,

2 Λ(t) + Λ(s− t)− Λ(s)− 1

2
ς < 0 for 0 ≤ t ≤ s. (99)

(Then, it is shown similarly that the second summand of (98) is also negative, and this

contradicts the defining inequality of ∆̂, which implies the assumption of the lemma.)
Hence, it is sufficient to show (99) for s ≤ 0.5.

We show (99), as follows. For a fixed s ≤ 0.5, we put

f(t) = 2Λ(t) + Λ(s− t)− Λ(s)− 1

2
ς

for 0 ≤ t ≤ s. Then,
f ′(t) = 2Λ′(t)− Λ′(s− t).

Since Λ(t) and Λ(s − t) are concave functions in 0 ≤ t ≤ s whose second derivatives are
negative, f(t) has a unique maximal point in 0 ≤ t ≤ s, noting that limt→+0 f

′(t) = ∞
and limt→s−0 f

′(t) = −∞. We put such a unique maximal point to be t̂ , that is, t̂ is a
unique solution of f ′(t) = 0 in 0 ≤ t ≤ s. Since f ′( t̂) = 0,

2Λ′( t̂) = Λ′(s− t̂).

Further, since Λ′(t) = − log 2 sin πt,

sin π(s− t̂) = 2 sin2 π t̂.

Since 2 sin2 π t̂ ≤ 1 and 0 ≤ t̂ ≤ 0.5, we have that 0 ≤ t̂ ≤ 0.25. Hence,

s = t̂ +
1

π
arcsin

(
2 sin2 π t̂

)
.

We put the right-hand side of this formula to be g( t̂), that is, s = g( t̂). Since sin2 π t̂ is
monotonically increasing in 0 ≤ t̂ ≤ 0.25, g( t̂) is also monotonically increasing. We note
that g(0) = 0 and g(0.25) = 0.75. So, in fact, we can define g( t̂) for 0 ≤ t̂ ≤ 0.25, but we
substantially consider the case where

0 ≤ t̂ ≤ g−1(0.5) = 0.2148... ≤ 0.22.

In order to show (99), it is sufficient to show that

2Λ( t̂) + Λ
(
g( t̂)− t̂

)
− Λ

(
g( t̂)

)
− 1

2
ς < 0

for 0 ≤ t̂ ≤ g−1(0.5). We put the left-hand side of the above formula to be P ( t̂). We
have that

P ′( t̂) = 2Λ′( t̂) + Λ′(g( t̂)− t̂
)(
g′( t̂)− 1

)
− Λ′(g( t̂)) g′( t̂)

= Λ′(s− t̂) + Λ′(s− t̂)
(
g′( t̂)− 1

)
− Λ′(s) g′( t̂)

=
(
Λ′(s− t̂)− Λ′(s)

)
g′( t̂),
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where we obtain the second equality by 2Λ′( t̂) = Λ′(s− t̂). Since g( t̂) is monotonically
increasing, g′( t̂) > 0. Further, since Λ′(v) is monotonically decreasing in 0 < v ≤ 0.5 and
0 ≤ s− t̂ ≤ s ≤ 0.5, we have that Λ′(s− t̂) − Λ′(s) > 0 for 0 < t̂ ≤ g−1(0.5). Therefore,
P ′( t̂) > 0, and P ( t̂) is monotonically increasing. Since

P (0) = −0.453036... < 0 and P (0.22) = −0.00453122... < 0,

we obtain that P ( t̂) < 0 for 0 ≤ t̂ ≤ g−1(0.5). This implies (99), completing the proof of
the lemma.

Lemma C.4. Let (t, s, u) ∈ ∆̂. Then, t < 0.5 or u < 0.5.

Proof. We suppose that 0.5 ≤ t ≤ 1 and 0.5 ≤ u ≤ 1. Then, the function of the defining
inequality of ∆̂ is calculated as

2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u)− ς

≤ Λ(s− t)− 2Λ(s) + Λ(s− u)− ς ≤ 4Λ
(1
6

)
− ς = −0.25994... < 0,

and this contradicts the defining inequality of ∆̂, which implies the assumption of the
lemma.

Hence, t < 0.5 or u < 0.5, as required.

Lemma C.5. Let (t, s, u) ∈ ∆̂. Then, t < 0.5 and u < 0.5.

Proof. By Lemma C.4, we have that t < 0.5 or u < 0.5. We consider each of these two
cases in the following of this proof.

We suppose that t < 0.5. Then, we show that u < 0.5, as follows. We consider the
maximal value of 2Λ(t)+Λ(s− t)− 2Λ(s) for 0 ≤ t < 0.5 and 0.5 < s ≤ 1. As we showed
in Section 4.2 (exchanging t and s), when (t, s) = (1

4
, 3
4
), this maximal value is given by

4Λ(1
4
). Hence, by the defining inequality of ∆̂,

0 ≤
(
2Λ(t) + Λ(s− t)− 2Λ(s)

)
+ Λ(s− u) + 2Λ(u)− ς

≤ 4Λ
(1
4

)
+ Λ(s− u) + 2Λ(u)− ς .

Therefore,

2 Λ(u) ≥ ς − 4Λ
(1
4

)
− Λ(s− u) ≥ ς − 4Λ

(1
4

)
− Λ

(1
6

)
= 0.161417... > 0.

Hence, u < 0.5, and we obtain the conclusion of the lemma in this case.
We suppose that u < 0.5. Then, it is shown that t < 0.5 from the above argument by

exchanging t and u. Hence, we also obtain the conclusion of the lemma in this case.

We now show a proof of Lemma C.1 by using above lemmas.
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Proof of Lemma C.1. By Lemmas C.2, C.3 and C.5, the domain ∆̂ is included in{
(t, s, u)

∣∣ 0 < t < 0.5, 0.5 < s < 1, 0 < u < 0.5
}
.

We put H to be the Hesse matrix of the function

2Λ(t) + Λ(s− t)− 2Λ(s) + Λ(s− u) + 2Λ(u)− ς,

which defines ∆̂. By Lemma B.2, it is sufficient to show that H is negative definite.
We show that H is negative definite, as follows. We have that

H =

2Λ′′(t) + Λ′′(s− t) −Λ′′(s− t) 0
−Λ′′(s− t) −2Λ′′(s) + Λ′′(s− t) + Λ′′(s− u) −Λ′′(s− u)

0 −Λ′′(s− u) 2Λ′′(u) + Λ′′(s− u)


= −π

2 cot πt+ cot π(s−t) − cotπ(s−t) 0
− cotπ(s−t) −2 cotπs+ cot π(s−t) + cot π(s−u) − cotπ(s−u)

0 − cot π(s−u) 2 cot πu+ cot π(s−u)

 .

We put a = cot πt, b = − cot πs and c = cot πu, noting that they are positive. Further,
noting that cot(α+β) = (cotα cot β − 1)/(cotα + cot β), we have that

− 1

π
H =

2a− ab−1
a+b

ab−1
a+b

0
ab−1
a+b

2b− ab−1
a+b

− bc−1
b+c

bc−1
b+c

0 bc−1
b+c

2c− bc−1
b+c

 .

It is sufficient to show that the above matrix is positive definite. By Lemma C.6 below,
it is sufficient to show that(

2a− ab−1
a+b

ab−1
a+b

ab−1
a+b

b− ab−1
a+b

)
and

(
b− bc−1

b+c
bc−1
b+c

bc−1
b+c

2c− bc−1
b+c

)
are positive definite. Further, by Lemma C.7 below, they are positive definite. Therefore,
H is negative definite, as required.

The following two lemmas are used in the above proof of Lemma C.1.

Lemma C.6. Let αi and βi be real numbers. If

(
α1 α2

α2 α3

)
and

(
β3 β2
β2 β1

)
are positive

definite, then α1 α2 0
α2 α3+β3 β2
0 β2 β1


is positive definite.

Proof. Since
(
α1

)
is obtained from

(
α1 α2

α2 α3

)
by restricting R2 to R×{0},

(
α1

)
is positive

definite, i.e., α1 > 0. Hence,

(
α1 α2

α2 α3

)
is related to

(
α1 0
0 α3 − α2

2/α1

)
by an elementary
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transformation as a quadratic form. Therefore, α3 − α2
2/α1 > 0. In the same way, we

obtain that β1 > 0 and β3 − β2
2/β1 > 0. Further, the required matrix is related to the

following matrix by elementary transformations,α1 0 0

0 α3 − α2
2

α1
+ β3 − β2

2

β1
0

0 0 β3

 .

Since the diagonal entries are positive, the required matrix is positive definite.

Lemma C.7. Let a, b and c be positive real numbers. Then, the following matrices are
positive definite, (

2a− ab−1
a+b

ab−1
a+b

ab−1
a+b

b− ab−1
a+b

)
,

(
b− bc−1

b+c
bc−1
b+c

bc−1
b+c

2c− bc−1
b+c

)
.

Proof. We show the lemma for the first matrix, as follows. Its trace is given by

2a+ b− 2 · ab− 1

a+ b
=

(2a+ b)(a+ b)− 2ab+ 2

a+ b
=

2a2 + b2 + ab+ 2

a+ b
> 0.

Further, its determinant is given by

2ab− (2a+ b) · ab− 1

a+ b
=

2ab(a+ b)− (2a+ b)(ab− 1)

a+ b
=

ab2 + 2a+ b

a+ b
> 0.

Hence, the two eigenvalues of this matrix are positive, and the first matrix of the lemma
is positive definite.

It is shown that the second matrix is also positive definite from the above argument
replacing a with c.

D Estimate of |(q)n| and restriction of ∆ to ∆′

In this section, we give an estimate of 1
N
log |(q)n| in Lemma D.2. By using this estimate,

we explain why we can restrict ∆ to ∆′ in Sections 3.1, 4.1 and 5.1.

We explain the motivation to show Lemma D.2. By (6) and (11), we have that

log
∣∣(q)n∣∣ = Reφ

( 1

2N

)
− Reφ

(2n+ 1

2N

)
=

1

2
logN − Reφ

(2n+ 1

2N

)
.

We arbitrarily fix a sufficiently small δ > 0. Then, we can show by Proposition 2.1 that

Re
1

N
φ
(2n+ 1

2N

)
= Re

1

2π
√
−1

Li2
(
e(2n+1)/(2N)

)
+O

( 1

N2

)
= Λ

(2n+ 1

2N

)
+O

( 1

N2

)
,

for sufficiently large N and any integer n such that δ ≤ 2n+1
2N

≤ 1− δ, where O( 1
N2 ) means

that the absolute value of the error term is bounded by C1/N
2 with some constant C1,
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which is independent of N and n (but might be dependent on δ). Hence, there exists
C > 0 such that ∣∣∣ 1

N
log
∣∣(q)n∣∣ + Λ

(2n+ 1

2N

) ∣∣∣ ≤ C · logN
N

for sufficiently large N and any integer n such that δ ≤ 2n+1
2N

≤ 1− δ. The aim of Lemma
D.2 is to extend this estimate to the case where δ = 0.

Before we show Lemma D.2, we show the following lemma.

Lemma D.1. There exist C1, C2 > 0 such that∣∣∣Λ( 1
N

) ∣∣∣ ≤ C1 ·
logN

N
,

∣∣∣Λ( 1

2N

) ∣∣∣ ≤ C2 ·
logN

N
,

for any sufficiently large N . That is,

Λ
( 1
N

)
= O

( logN
N

)
, Λ

( 1

2N

)
= O

( logN
N

)
.

Proof. Since Λ′(t) = − log 2 sin πt, we have that

Λ(t) =

∫ t

0

(
− log 2 sin πs

)
ds.

Let t be sufficiently small. Since sinx ≥ x− 1
6
x3 = x(1− 1

6
x2) for sufficiently small x,

Λ(t) ≤
∫ t

0

(
− log 2πs (1− 1

6
π2s2)

)
ds =

∫ t

0

(
− log 2πs− log(1− 1

6
π2s2)

)
ds

≤
∫ t

0

(
− log 2πs− 2s2

)
ds = −t log 2πt+ t+

2

3
t3,

where we obtain the second inequality, since − log(1− 1
6
π2s2) = 1

6
π2s2 + O(s4) ≤ 2s2 for

sufficiently small s. Hence,

Λ
( 1
N

)
≤ − 1

N
log

2π

N
+

1

N
+

2

3N3
= O

( logN
N

)
.

Since Λ(t) is non-negative for sufficiently small t, we obtain the first formula of the lemma.
We obtain the second formula of the lemma from the first formula by replacing N with

2N .

Lemma D.2. There exists C > 0 such that∣∣∣ 1
N

log
∣∣(q)n∣∣ + Λ

(2n+ 1

2N

) ∣∣∣ ≤ C · logN
N

for any sufficiently large N and any integer n such that 0 ≤ n < N . That is,

1

N
log
∣∣(q)n∣∣ = −Λ

(2n+ 1

2N

)
+O

( logN
N

)
as N → ∞ fixing a value of n/N .
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Proof. When n = 0, we can verify the lemma by Lemma D.1. So, we assume that
1 ≤ n ≤ N − 1, in the following of this proof. From the definition of (q)n , we have that

log
∣∣(q)n∣∣ = log

∏
1≤j≤n

∣∣1− qj
∣∣ =

∑
1≤j≤n

log 2 sin π
j

N
= −

∑
1≤j≤n

Λ′( j
N

)
. (100)

Further, we note that Λ′(t) is a convex function for 0 < t < 1, since Λ′′′(t) = π2/ sin2 πt ≥
π2 for 0 < t < 1.

We give a lower bound of “ 1
N
log
∣∣(q)n∣∣+ Λ

(
2n+1
2N

)
”, as follows. Since Λ′(t) is a convex

function, the tangent line of the graph of Λ′(t) at t = N/j is located under the graph of
Λ′(t). Hence, by integrating them for 2j−1

2N
≤ t ≤ 2j+1

2N
, we obtain that

1

N
Λ′( j

N

)
≤
∫ (2j+1)/(2N)

(2j−1)/(2N)

Λ′(t) dt.

Further, by making the sum of the above formula over 1 ≤ j ≤ n, we have that

1

N

∑
1≤j≤n

Λ′( j
N

)
≤
∫ (2n+1)/(2N)

1/(2N)

Λ′(t) dt = Λ
(2n+ 1

2N

)
− Λ

( 1

2N

)
.

Therefore, by (100),

1

N
log
∣∣(q)n∣∣ + Λ

(2n+ 1

2N

)
≥ Λ

( 1

2N

)
= O

( logN
N

)
, (101)

where we obtain the last equality by Lemma D.1.
We give an upper bound of “ 1

N
log
∣∣(q)n∣∣+Λ

(
2n+1
2N

)
”, as follows. Since Λ′(t) is a convex

function, the line connecting
(
j
N
,Λ′( j

N
)
)
and

(
j+1
N
,Λ′( j+1

N
)
)
is located over the graph of

Λ′(t). Hence, by integrating them for j
N

≤ t ≤ j+1
N

, we obtain that∫ (j+1)/N

j/N

Λ′(t) dt ≤ 1

2N

(
Λ′( j

N

)
+ Λ′(j + 1

N

))
.

Further, by making the sum of the above formula over 1 ≤ j ≤ n, we have that∫ n/N

1/N

Λ′(t) dt ≤ 1

N

∑
1≤j≤n

Λ′( j
N

)
− 1

2N

(
Λ′( 1

N

)
+ Λ′( n

N

))
.

Furthermore, in a similar way as above, we have that∫ (2n+1)/(2N)

n/N

Λ′(t) dt ≤ 1

4N

(
Λ′( n

N

)
+ Λ′(2n+ 1

2N

))
.

Hence, as the sum of the above two formulas, we obtain the following inequality,

Λ
(2n+1

2N

)
− Λ

( 1

2N

)
=

∫ (2n+1)/(2N)

1/(2N)

Λ′(t) dt

≤ 1

N

∑
1≤j≤n

Λ′( j
N

)
− 1

2N
Λ′( 1

N

)
− 1

4N
Λ′( n

N

)
+

1

4N
Λ′(2n+1

N

)
.
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Therefore, by (100),

1

N
log
∣∣(q)n∣∣+ Λ

(2n+1

2N

)
≤ Λ

( 1

2N

)
− 1

2N
Λ′( 1

N

)
− 1

4N
Λ′( n

N

)
+

1

4N
Λ′(2n+1

N

)
= O

( logN
N

)
,

(102)

where we obtain the last equality by Lemma D.1 and from the fact that Λ′(t) = − log 2 sinπt,
noting that 1 ≤ n ≤ N − 1.

Therefore, by (101) and (102), we obtain the required formula of the lemma.

Restriction of ∆ to ∆′ for the 61 knot

We explain why we can restrict ∆ to ∆′ in Section 3.1, that is, we show the equality
of (32).

Proof of the equality of (32). By Lemma D.2, we can show that

1

N
log
∣∣the summand of (29)

∣∣ = Re V̂
(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

)
+O

( logN
N

)
. (103)

We note that this convergence is uniform, i.e., the absolute value of the error term is
bounded by C · logN

N
, where C is a constant which is independent of i, j, k. We recall that

∆′ is a domain in ∆ satisfying (30) for some ε > 0. Then, in order to show the equality
of (32), it is sufficient to show that the following sum is of the order O(e−Nε

′
) for some

ε′ > 0, ∣∣∣∣∣ ∑
i,j,k∈Z

( 2i+1
2N

, 2j+1
2N

, 2k+1
2N

)∈∆−∆′

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

)
−Nς

) ∣∣∣∣∣
≤

∑
i,j,k∈Z

( 2i+1
2N

, 2j+1
2N

, 2k+1
2N

)∈∆−∆′

∣∣∣ exp(N · V
(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

)
−Nς

) ∣∣∣
=

∑
i,j,k∈Z

( 2i+1
2N

, 2j+1
2N

, 2k+1
2N

)∈∆−∆′

exp
(
N · ReV

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

)
−Nς

R

)
. (104)

By (103), the convergence of ReV (·) to Re V̂ (·) is uniform. Hence, for any ε1 > 0,

ReV
(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

)
≤ Re V̂

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

)
+ ε1

for sufficiently large N . Therefore, by choosing sufficiently small ε1, we have that

(104) ≤
∑

i,j,k∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
)∈∆−∆′

exp
(
N · Re V̂

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N

)
−Nς

R
+Nε1

)
= O

(
e−N ε2

)
,

for some ε2 > 0. Hence, we obtain the equality of (32).
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Restriction of ∆ to ∆′ for the 62 knot and the 63 knot

In similar ways as above, we can restrict ∆ to ∆′ for the sums of ⟨ 62 ⟩N and ⟨ 63 ⟩N .
That is, we can show (54) and (80) by using Lemma D.2 in similar ways as in the above
proof for the 61 knot.
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