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Abstract. How many Reidemeister moves do we need for unknotting a given diagram of

the trivial knot? Hass and Lagarias gave an upper bound. We give an upper bound for

deforming a diagram of a split link to be disconnected.

On the other hand, the absolute value of the writhe gives a lower bound of the number

of Reidemeister I moves for unknotting. That of a complexity of knot diagram “cowrithe”

works for Reidemeister II, III moves.

We give an example of an infinite sequence of diagrams Dn of the trivial knot with an

O(n) number of crossings such that the author expects the number of Reidemeister moves

needed for unknotting it to be O(n2). However, writhe and cowrithe do not prove this.

1. An upper bound for the number of Reidemeister moves for unlinking

A Reidemeister move is a local move of a link diagram as in Figure 1. Any such move

does not change the link type. As Alexander and Briggs [1] and Reidemeister [7] showed

that, for any pair of diagrams D1, D2 which represent the same link type, there is a finite

sequence of Reidemeister moves which deforms D1 to D2.

Let D be a diagram of the trivial knot. We consider sequences of Reidemeister moves

which unknot D, i.e., deform D to have no crossing. Over all such sequences, we set ur(D)

to be the minimal number of the moves in a sequence. Then let ur(n) denote the maximum

ur(D) over all digrams of the trivial knot with n crossings. In [3], J. Hass and J. Lagarias

gave an upper bound for ur(n), showing that ur(n) ≤ 2cn, where c = 1011. (See also [2].)

The author is partially supported by Grant-in-Aid for Scientific Research (No. 15740047), Ministry of

Education, Science, Sports and Technology, Japan.
1



2 CHUICHIRO HAYASHI

Figure 1

We obtain a similar upper bound for splitting links. The difficulty is that we cannot deform

a link along a splitting sphere because they are disjoint.

Theorem 1.1. Let D be a connected diagram of a split link with n crossings. Suppose that

D does not have a monogon face nor a bigon face which we can apply Reidemeister II move

to delete it. Assume that every component of the link has both over crossing points and

under crossing points. Then there is a sequence of at most
∑

2128n

k=0
3Pk Reidemeister moves

which deforms D to be disconnected, where P0 = 2129n and Pk+1 = 3Pk .

2. A lower bound for the number of Reidemeister moves for unknotting

It is well-known that the absolute value of the writhe |w(D)| gives a lower bound of the

number of Reidemeister I moves for unknotting. We introduce a tool for estimation of the

number of Reidemeister II, III moves. Let D ⊂ S2 be a diagram of a knot K ⊂ S3. We

consider another complexity cowrithe x(D). Let Ch(D) denote the chord diagram of D.

That is, for an embedding f : S1 → K ⊂ S3 of the unit circle S1 ⊂ R
2, a projection

π : K → D ⊂ S2 and every crossing point P of D, the two preimage points (π ◦ f)−1(P ) in

S1 are connected by a chord ChP , i.e., a straight line segment in R
2. The union of S1 and

the chords is Ch(D). Let sgn (P ) be the sign of a crossing P of D, for an arbitral orientation

of D. For every pair of distinct crossings A and B of D, set x({A, B}) = sgn (A) · sgn (B)

if the chords ChA and ChB intersect in R
2. Otherwise, we set x({A, B}) = 0. Then the

cowrithe is determined by x(D) =
∑

x({A, B}), where the sum is taken over all the pairs

of distinct crossings of D.

For example, let 6′3 be the usual diagram of 63 with the crossing P changed as in Figure

2. There x({P, T}) = −1, x({P, U}) = −1, x({Q,R}) = +1, x({Q,S}) = +1, x({R,S}) =

+1, x({R, T}) = −1, x({R,U}) = −1, x({S, T}) = −1, x({S, U}) = −1, x({T, U}) = +1

and x({X, Y }) = 0 for the other pairs X, Y . Hence x(6′3) = −2.

This cowrithe is a special case of < A, G > defined by M. Polyak and O. Viro in page

447 in [5], and appears in the equation in page 450 in [5] and in Corollary 4.B. on Vassiliev

invariant of degree 2 in [6]. Another complexity An is used in [4] for proving that the
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Figure 2

oriented usual diagram of figure 8 knot needs at least two Reidemeister III moves for being

transformed into its inverse.

x(D) is almost an invariant in the sense that any Reidemeister move changes it by at

most a constant value.

Theorem 2.1. A Reidemeister I move does not change x(D). A Reidemeister II move

deleting a bigon face f increases x(D) by 1 if the orientations of the edges of f are incoherent

on the boundary circle of f with respect to an orientation of D. Otherwise, it does not

change x(D). A Reidemeiter III move changes x(D) by ±1.

Corollary 2.2. Let D be a diagram of the trivial knot. In any sequence of Reidemeister

moves which unknots D, there are at least |x(D)| Reidemeister II or III moves. Hence it

is composed of at least |w(D)| + |x(D)| Reidemeister moves.

3. Examples of diagrams of the trivial knot

In this appendix, we give an example of an infinite sequence of diagrams Dn of the

trivial knot with an O(n) number of crossings such that the author expects the number of

Reidemeister moves needed for unknotting it to be O(n2). However, he has no proof.

Figure 3

Let R0
k

be a piece of a knot diagram in an annulus and Rk another piece of knot diagram

in a disc as in Figure 3, We paste n − 1 copies of R0
k

and a copy of Rk to obtain a piece of
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a knot diagram Rkn in a disc so that the inner boundary rectangle of the i-th copy of R0
k

(resp. that of the (n−1)-st R0
k
) is glued with the outer boundary rectangle of the (i+1)-st

copy of R0
k

(resp. the boundary rectangle of Rk).

Let Lkn be the mirror image of Rkn about a vertical straight line. We glue Lkn on the

left side of Rkn and close off the ends as in Figure 4. This diagram clearly represents the

trivial knot and has 2(2k + 5)n crossing points. For every k, the author expects that the

number of Reidemeister moves needed for unknotting Dkn is O(n2).

Figure 4

Figure 5
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