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Abstract

We prove a propagation theorem of multiplicity-free property from
fibers to spaces of global sections for holomorphic vector bundles,
which yields various multiplicity-free results in representation theory
for both finite and infinite dimensional cases.

The key geometric condition in our theorem is an orbit-preserving
anti-holomorphic diffeomorphism on the base space, which brings us
to the concept of visible actions on complex manifolds.
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1 Introduction

Propagation of unitarity from fibers to spaces of sections (more generally,
stalks to cohomologies) is one of the most fundamental results in representa-
tion theory. Propagation theory of unitarity was established by Mackey [12]
for induced representations in 1950s and by Vogan [17] and Wallach [18] for
cohomologically induced representations in 1980s.

Multiplicity-freeness is another important concept in representation the-
ory that generalizes irreducibility. The goal of this paper is to provide a
propagation theorem of multiplicity-freeness from fibers to spaces of sections
for holomorphic vector bundles.

Let us begin by recalling the definition of multiplicity-freeness for unitary
representations. By a theorem of Mautner–Teleman, any unitary represen-
tation π of a locally compact group G can be decomposed into the direct
integral of irreducible unitary representations:

π '
∫ ⊕

bG mπ(τ)τdµ(τ),

where Ĝ is the set of equivalence classes of irreducible unitary representations,
µ is a measure on Ĝ, and m : Ĝ → N ∪ {∞} is a measurable function that
stands for ‘multiplicity’. We shall say that π is multiplicity-free if the ring of
continuous G-intertwining endomorphisms is commutative. This condition
implies that m is not greater than one almost everywhere with respect to µ.

Multiplicity-free representations arise in broad range of mathematics such
as expanding functions (Taylor series, Fourier expansion, spherical harmon-
ics, . . . ) and classical identities (the Cappeli identity, many formulae of
special functions, . . . ), though we may not be aware of even the fact that the
representation is there. Multiplicity-free representations are a special class
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of representations, by which one could expect beautiful and powerful appli-
cations to other fields, and on which one could expect a simple and detailed
study.

To state our main results, let H be a Lie group, and V → D an H-
equivariant holomorphic vector bundle. We naturally have a representation of
H on the space O(D,V) of global holomorphic sections. Then, the first form
of our multiplicity-free theorem is stated briefly as follows (see Theorem 2.2
for details):

Theorem 1.1. Any unitary representation of H which is realized in O(D,V)
is multiplicity-free if the H-equivariant bundle V → D satisfies the following
three conditions:

(1.1) (Fiber) For every x ∈ D, the isotropy representation of Hx on the
fiber Vx is multiplicity-free.

(1.2) (Base space) There exists an anti-holomorphic bundle endomor-
phism σ, which preserves every H-orbit on the base space D.

(1.3) (Compatibility) See (2.2.3).

The compatibility condition (1.3) is less important because it is often
automatically fulfilled by the choice of σ (for example, see Remark 5.2.3; see
also [9, Appendix]). Thus, for the propagation of multiplicity-free property
from fibers Vx to the space O(D,V) of sections, the geometric condition (1.2)
on the base space D is crucial.

The geometric condition (1.2) is made clear by the concept of visible
actions on complex manifolds (more precisely, S-visible actions; see Defini-
tion 4.2). Thus, the second form of our multiplicity-free theorem is formalized
in Theorem 4.3 in terms of S-visible actions. Here, S is a totally real slice of
the H-action on the base space. If H acts transitively, then even irreducibil-
ity propagates (see Proposition 2.5). In general, the smaller the codimension
of generic H-orbits on D is, the smaller the slice S we may take and the
more likely the multiplicity-free assumption on fibers (see (4.3.2)) tends to
be fulfilled. It is noteworthy that coisotropic actions (or multiplicity-free ac-
tions) on symplectic manifolds in the sense of Guillemin and Sternberg [3] or
Huckleberry and Wurzbacher [4] and polar actions on Riemannian manifolds
(see Podestà–Thorbergsson [14], for example) are relevant to visible actions
on complex manifolds. The relation among these three concepts is discussed
in [8, Section 4].
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The third form of our multiplicity-free theorem is formalized in the setting
where the bundle V → D is associated to a principal bundleK → P → D and
to a representation (µ, V ) of the structure group K. This is Theorem 5.3.
This form is intended for actual applications, in particular, for branching
problems (decompositions of irreducible representations when restricted to
subgroups).

Our multiplicity-free theorem has a wide range of applications for both
finite and infinite dimensional cases, for both discrete and continuous spec-
tra, and for both classical and exceptional cases. For example, Theorem 5.3
explains the multiplicity-free property of the Plancherel formula for line bun-
dles (and also for some vector bundles) over Riemannian symmetric spaces,
the Hua–Kostant–SchmidK-type formula [8, 15], and the canonical represen-
tation in the sense of Vershik–Gelfand–Graev (e.g. [1]). These are examples
of infinite dimensional multiplicity-free representations. Our theorem also
gives a geometric explanation of the complete list of multiplicity-free tensor
product of (finite dimensional) representations for GL(n) which was recently
found by Stembridge [16] by combinatorial method.

This paper plays the central role in a series of our papers [7, 8, 9, 10, 11].
The paper [7, 8] discussed various applications including the aforementioned
multiplicity-free theorems by using Theorem 5.3. Classification results on
visible actions on complex manifolds are discussed in subsequent papers [10,
11].

Acknowledgement. I owe much to Professor J. Faraut for enlightening
discussions, in particular, for explaining the idea of [2] in an early stage of
this work. Substantial part of this research was made during my visit to
Harvard University. I express my gratitude to Professor W. Schmid who
gave me a wonderful atmosphere of research.

2 Complex geometry and multiplicity-free the-

orem

This section gives a first form of our multiplicity-free theorem. We may
regard it as a propagation theorem of multiplicity-free property from fibers
to spaces of sections in the setting where there may exist infinitely many
orbits on base spaces. The main result of this section is Theorem 2.2. We
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shall reformulate it by means of visible actions in Section 4, and furthermore
present its group theoretic version in Section 5.

2.1 Equivariant holomorphic vector bundle

Let V = qx∈DVx → D be a Hermitian holomorphic vector bundle over a
connected complex manifold D. We denote by O(D,V) the space of holo-
morphic sections of V → D. It carries a Fréchet topology by the uniform
convergence on compact sets.

Suppose a Lie group H acts on the bundle V → D by automorphisms.
This means that the action of H on the total space, denoted by Lh : V → V ,
and the action on the base space, denoted simply by h : D → D, x 7→ h·x, are
both biholomorphic for h ∈ H, and that the induced linear map Lh : Vx →
Vh·x between the fibers is unitary for any x ∈ D. In particular, we have a
unitary representation of the isotropy subgroup Hx := {h ∈ H : h · x = x}
on the fiber Vx.

The action of H on the bundle V → D gives rise to a continuous repre-
sentation on O(D,V) by the pull-back of sections, namely, s 7→ Lhs(h

−1· )
for h ∈ H and s ∈ O(D,V).

Definition 2.1. Suppose π is a unitary representation of H defined on a
Hilbert space H. We will say π is realized in O(D,V) if there is an injective
continuous H-intertwining map from H into O(D,V).

Let {Uα} be trivializing neighborhoods of D, and gαβ : Uα ∩ Uβ →
GL(n,C) be the transition functions for the holomorphic vector bundle V →
D. Then, the anti-holomorphic vector bundle V → D is defined to be the
complex vector bundle with the transition functions gαβ. We denote by
O(D,V) the space of anti-holomorphic sections for V → D.

Suppose σ is an anti-holomorphic diffeomorphism of D. Then the pull-
back σ∗V = qx∈DVσ(x) is an anti-holomorphic vector bundle over D. In
turn, σ∗V → D is a holomorphic vector bundle over D. The fiber at x ∈ D
is identified with Vσ(x), the complex conjugate vector space of Vσ(x) (see
Section 3.1).

The holomorphic vector bundle σ∗V is isomorphic to V if and only if σ
lifts to an anti-holomorphic endomorphism σ̃ of V . In fact, such σ̃ induces a
conjugate linear isomorphism σ̃x : Vx → Vσ(x), which then defines a C-linear
isomorphism

(2.1.1) Ψx : Vx → (σ∗V)x, v 7→ σ̃x(v)
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via the identification (σ∗V)x ' Vσ(x). Then, Ψ : V → σ∗V is an isomorphism
of holomorphic vector bundles such that its restriction to the base space D
is the identity. For simplicity, we shall use the letter σ in place of σ̃. For a
Hermitian vector bundle V , by a bundle endomorphism σ, we mean that σx

is furthermore isometric (or equivalently, Ψx is unitary) for any x ∈ D.

2.2 Multiplicity-free theorem (first form)

The following is a first form of our multiplicity-free theorem:

Theorem 2.2. Let V → D be a Hermitian holomorphic vector bundle, on
which a Lie group H acts by automorphisms. Assume:

(2.2.1) the isotropy representation of Hx on the fiber Vx is multiplicity-free
for any x ∈ D.

We write its irreducible decomposition as Vx =
n(x)⊕
i=1

V(i)
x . Assume furthermore

that there exists an anti-holomorphic bundle endomorphism σ satisfying the
following two conditions: for any x ∈ D,

(2.2.2) there exists h ∈ H such that σ(x) = h · x, and

(2.2.3) σx(V(i)
x ) = Lh(V(i)

x ) for any i (1 ≤ i ≤ n(x)).

Then, any unitary representation that is realized in O(D,V) is multiplicity-
free.

We shall give a proof of Theorem 2.2 in Section 3.

Remark 2.2.1. 1) The conditions (2.2.1) – (2.2.3) of Theorem 2.2 is local in
the sense that the same conclusion holds if D′ is an H-invariant open subset
of D, and if the conditions (2.2.1) – (2.2.3) are satisfied for x ∈ D′. This
is clear because the restriction map O(D,V) → O(D′,V|D′) is injective and
continuous.
2) The proof in Section 3 shows that one can replace Hx with its arbitrary
subgroup H ′

x in (2.2.1). (Such a replacement makes (2.2.1) stronger, and
(2.2.3) weaker.)

In the following two subsections, we explain special cases of Theorem 2.2.
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2.3 Line bundle case

We begin with the observation that the assumptions (2.2.1) and (2.2.3) are
automatically fulfilled if Vx is irreducible, in particular, if V → D is a line
bundle. Hence, we have:

Corollary 2.3. In the setting of Theorem 2.2, assume V → D is a line
bundle. If there exists an anti-holomorphic bundle endomorphism satisfy-
ing (2.2.2), then any unitary representation that is realized in O(D,V) is
multiplicity-free.

This case was announced in [6] with a sketch of proof, and its applications
are extensively discussed in [9] for the branching problems (i.e. the decompo-
sition of the restriction of unitary representations) with respect to reductive
symmetric pairs.

2.4 Trivial bundle case

If the vector bundle is the trivial line bundle V = D × C, then any anti-
holomorphic diffeomorphism onD lifts to an anti-holomorphic endomorphism
of V by (x, u) 7→ (σ(x), ū). Hence, we have:

Corollary 2.4. If there exists an anti-holomorphic diffeomorphism σ of D
satisfying (2.2.2), then any unitary representation which is realized in O(D)
is multiplicity-free.

This result was previously proved in Faraut and Thomas [2] under the
assumption that σ2 = id.

2.5 Propagation of irreducibility

The strongest condition on group actions is transitivity. Transitivity on base
spaces guarantees that even irreducibility propagates from fibers to spaces of
sections. The following result is due to S. Kobayashi [5].

Proposition 2.5. In the setting of Theorem 2.2, suppose that H acts tran-
sitively on D and that Hx acts irreduciblly on Vx for some (equivalently, for
any) x ∈ D. Then, there exists at most one unitary representation π that
can be realized in O(D,V). In particular, such π is irreducible if exists.
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Proof. This is an immediate consequence of Lemma 3.3 and Proposition 3.4
(n(x) = 1 case) below, which will be used in the proof of Theorem 2.2 in
Section 3.

We note that the condition (2.2.2) is much weaker than the transitivity of
the group H on D. Our geometric condition (2.2.2) brings us to the concept
of visible actions, which we shall discuss in Section 4.

3 Proof of Theorem 2.2

This section is devoted entirely to the proof of Theorem 2.2.

3.1 Some linear algebra

We begin carefully with basic notations.
Given a complex Hermitian vector space V , we define a complex Her-

mitian vector space V as a collection of the symbol v (v ∈ V ) equipped
with a scalar multiplication av̄ := av for a ∈ C, and with an inner product
(ū, v̄) := (v, u).

The complex dual space V ∨ is identified with V by V ∼−→V ∨, v̄ 7→ (·, v).
In particular, we have a natural isomorphism of complex vector spaces:

(3.1.1) V ⊗ V ∼−→ End(V ).

Given a unitary map A : V → W between Hermitian vector spaces, we
define a unitary map A : V → W by v 7→ Av. Then the induced map
A⊗ A : V ⊗ V → W ⊗W gives rise to a complex linear isomorphism:

(3.1.2) A] : End(V ) → End(W ).

Then, it is readily seen from the unitarity of A that

(3.1.3) A](idV ) = idW .

In particular, if an endomorphism of V is diagonalized with respect to an
orthogonal direct sum decomposition V =

⊕n
i=1 V

(i), then we have the fol-
lowing formula of A]:

(3.1.4) A]

(
n∑

i=1

λi idV (i)

)
=

n∑
i=1

λi idA(V (i)) (λ1, . . . , λn ∈ C).
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3.2 Reproducing kernel for vector bundles

This subsection summarizes some basic results on reproducing kernels for
holomorphic vector bundles. The results here are standard for the trivial
bundle case.

Suppose we are given a continuous embedding H ↪→ O(D,V) of a Hilbert
space H into the Fréchet space O(D,V) of holomorphic sections of the holo-
morphic vector bundle V → D. The continuity implies in particular that for
each y ∈ D the point evaluation map:

H → Vy, f 7→ f(y)

is continuous. Then, by the Riesz representation theorem, there exists uniquely
KH(·, y) ∈ H ⊗ Vy such that

(3.2.1) (f,KH(·, y))H = f(y) for any f ∈ H.

We take an orthonormal basis {ϕν} of H, and expand KH as

(3.2.2) KH(·, y) =
∑

ν

aν(y)ϕν(·).

It follows from (3.2.1) that the coefficient aν(y) is given by

aν(y) = (KH(·, y), ϕν(·))H = ϕν(y),

and the expansion of KH converges in H. By the continuity H ↪→ O(D,V)
again, (3.2.2) converges uniformly on each compact set for each fixed y ∈ D.
Thus, KH(x, y) is given by the formula:

(3.2.3) KH(x, y) ≡ K(x, y) =
∑

ν

ϕν(x)ϕν(y) ∈ Vx ⊗ Vy ,

and defines a smooth section of the exterior tensor product bundle V �V →
D ×D which is holomorphic in the first argument and anti-holomorphic in
the second. We will say KH is the reproducing kernel of the Hilbert space
H ⊂ O(D,V).

For the convenience of the reader, we pin down basic properties of repro-
ducing kernels for holomorphic vector bundles in a way that we use later.
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Lemma 3.2. 1) Let Ki(x, y) be the reproducing kernels of Hilbert spaces
Hi ⊂ O(D,V) with inner products ( , )Hi

, respectively, for i = 1, 2. If
K1 ≡ K2, then the two subspaces H1 and H2 coincide and the inner products
( , )H1 and ( , )H2 are the same.
2) If K1(x, x) = K2(x, x) for any x ∈ D, then K1 ≡ K2.

Proof. 1) Let us reconstruct the Hilbert spaceH from the reproducing kernel

K. For each y ∈ D and v∗ ∈ V∗y := Vy
∨
, we define ψ(y, v∗) by

ψ(y, v∗) := 〈K(·, y), v∗〉 ∈ H.

Here, 〈 , 〉 denotes the canonical pairing between Vy and Vy
∨
. We claim

that the C-span of {ψ(y, v∗) : y ∈ D, v∗ ∈ V∗y} is dense in H. This is because
(f, ψ(y, v∗))H = 〈f(y), v∗〉 for any f ∈ H by (3.2.1). Thus, the Hilbert space
H is reconstructed from the pre-Hilbert structure

(3.2.4) (ψ(y1, v
∗
1), ψ(y2, v

∗
2))H := 〈K(y2, y1), v

∗
2 ⊗ v∗1〉.

2) We denote by D the complex manifold endowed with the conjugate com-
plex structure on the same real manifold D. Then, V → D is a holomorphic
vector bundle, and we can form a holomorphic vector bundle V�V → D×D.
In turn, Ki(·, ·) are regarded as its holomorphic sections. As the diago-
nal embedding ι : D → D × D, z 7→ (z, z) is totally real, our assumption
(K1 −K2)|ι(D) ≡ 0 implies K1 −K2 ≡ 0 by the unicity theorem of holomor-
phic functions.

3.3 Equivariance of the reproducing kernel

Next, suppose that the Hermitian holomorphic vector bundle V → D is
H-equivariant and that (π,H) is a unitary representation of H realized in
O(D,V). Let KH be the reproducing kernel of the embedding H ↪→ O(D,V).
We shall see how the unitarity of (π,H) is reflected in the reproducing kernel
KH.

We regard KH(x, x) ∈ Vx ⊗ Vx as an element of End(Vx) via the isomor-
phism (3.1.1). Then, we have:

Lemma 3.3. With the notation (3.1.2) applied to Lh : Vx → Vh·x, we have

KH(h · x, h · x) = (Lh)]KH(x, x) for any h ∈ H.

In particular, KH(x, x) ∈ EndHx(Vx) for any x ∈ D.
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Proof. Let {ϕν} be an orthonormal basis of H. Since (π,H) is a unitary
representation, {π(h)−1ϕν} is also an orthonormal basis of H for every fixed
h ∈ H. Because the formula (3.2.3) of the reproducing kernel is valid for any
orthonormal basis, we have

KH(x, y) =
∑

ν

(π(h)−1ϕν)(x)(π(h)−1ϕν)(y)(3.3.1)

=
∑

ν

Lh−1ϕν(h · x)Lh−1ϕν(h · y)

= (Lh−1 ⊗ Lh−1)KH(h · x, h · y)

for any x, y ∈ D. Hence, (Lh ⊗ Lh)KH(x, y) = KH(h · x, h · y) and Lemma
follows.

3.4 Diagonalization of the reproducing kernel

The reproducing kernel for a holomorphic vector bundle is a matrix valued
section as we have defined in (3.2.3). The multiplicity-free property of the
isotropy representation on the fiber diagonalizes the reproducing kernel:

Proposition 3.4. Suppose (π,H) is a unitary representation of H realized
in O(D,V). Assume that the isotropy representation of Hx on the fiber Vx

decomposes as a multiplicity-free sum of irreducible representations of H as

Vx =
n⊕

i=1

V(i)
x . (Here, n ≡ n(x) may depend on x ∈ D.) Then, the reproducing

kernel is of the form

KH(x, x) =
n∑

i=1

λ(i)(x) idV(i)
x

for some complex numbers λ(1)(x), . . . , λ(n)(x).

Proof. A direct consequence of Lemma 3.3 and Schur’s lemma.

3.5 Construction of an anti-linear isometry J

In the setting of Theorem 2.2, suppose that σ is an anti-holomorphic bundle
endomorphism. We define a conjugate linear map

(3.5.1) J : O(D,V) → O(D,V), f 7→ σ−1 ◦ f ◦ σ,

namely, Jf(x) := σ−1(f(σ(x)) for x ∈ D.
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Lemma 3.5. If the conditions (2.2.1) – (2.2.3) are satisfied, then J is an
isometry from H onto H for any unitary representation (π,H) realized in
O(D,V).

Proof. We define a Hilbert space H̃ := J(H), equipped with the inner prod-
uct

(Jf1, Jf2) eH := (f2, f1)H for f1, f2 ∈ H.

Let us show that the reproducing kernel K eH for H̃ coincides with KH. To see
this, we take an orthonormal basis {ϕν} ofH. Then, {Jϕν} is an orthonormal

basis of H̃, and therefore

K eH(x, y) =
∑

ν

Jϕν(x)Jϕν(y)

=
∑

ν

σ−1
x (ϕν(σ(x))) σ−1

y (ϕν(σ(y)))

=
(
σ−1

x ⊗ σ−1
y

)
KH(σ(x), σ(y)).

For x = y, this formula can be restated as

(3.5.2) K eH(x, x) = (σ−1
x )]KH(σ(x), σ(x))

with the notation (3.1.2) applied to the unitary map σ−1
x : Vσ(x) → Vx. We

fix x ∈ D, and take h ∈ H such that σ(x) = h · x (see (2.2.2)). Then,

(3.5.3) K eH(x, x) = (σ−1
x )]KH(h · x, h · x) = (σ−1

x )](Lh)]KH(x, x).

Here, the last equality follows from Lemma 3.3.
Since the action of Hx on Vx is multiplicity-free, it follows from Proposi-

tion 3.4 that there exist complex numbers λ(i)(x) such that

KH(x, x) =
∑

i

λ(i)(x) idV(i)
x
.

Then by (3.1.3) we have

(3.5.4) (Lh)]KH(x, x) =
∑

i

λ(i)(x) id
Lh(V(i)

x )
.
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Furthermore, since σ−1
x (Lh(V(i)

x )) = V(i)
x by the assumption (2.2.3), it follows

from (3.1.4) that

(3.5.5) (σ−1
x )]

(∑
i

λ(i)(x) id
Lh(V(i)

x )

)
=
∑

i

λ(i)(x) idV(i)
x
.

Combining (3.5.3), (3.5.4) and (3.5.5), we get

K eH(x, x) = KH(x, x).

Then, by Lemma 3.2, the Hilbert space H̃ coincides with H and

(Jf1, Jf2)H = (Jf1, Jf2) eH = (f2, f1)H for f1, f2 ∈ H.

This is what we wanted to prove.

Remark 3.5.1. In terms of the bundle isomorphism Ψ : V → σ∗V (see (2.1.1)),
J is given by (Jf)(x) = Ψ−1

x (f(σ(x))). We note

J2 = id on O(D,V)

if σ2 = idV , or equivalently, if σ2 = idD and Ψσ(x) ◦Ψx = idVx for any x ∈ D.
However, we do not use this condition to prove Theorem 2.2.

3.6 Proof of Theorem 2.2

As a final step, we need the following lemma which was proved in [2] under
the assumption that J2 = id and that V → D is the trivial line bundle. For
the sake of completeness, we give a proof here.

Lemma 3.6. For A ∈ EndH(H), the adjoint operator A∗ is given by

(3.6.1) A∗ = JAJ−1.

Proof. We divide the proof into two steps.
Step 1 (self-adjoint case). We may and do assume that A − I is positive
definite because neither the assumption nor the conclusion changes if we
replace A by A + cI (c ∈ R). Here, we note that A + cI is positive definite
if c is greater than the operator norm ‖A‖.
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From now, assume A ∈ EndH(H) is a self-adjoint operator such that A−I
is positive definite. We introduce a pre-Hilbert structure on H by

(3.6.2) (f1, f2)HA
:= (Af1, f2)H for f1, f2 ∈ H.

Since A− I is positive definite, we have

(f, f)H ≤ (f, f)HA
≤ ‖A‖(f, f)H for f ∈ H.

Therefore, H is still complete with respect to the new inner product ( , )HA
.

The resulting Hilbert space will be denoted by HA.
If f1, f2 ∈ H and g ∈ H, then

(π(g)f1, π(g)f2)HA
= (Aπ(g)f1, π(g)f2)H

= (π(g)Af1, π(g)f2)H = (Af1, f2)H = (f1, f2)HA
.

Therefore, π also defines a unitary representation onHA. Applying Lemma 3.5
to both HA and H, we have

(Af1, f2)H = (f1, f2)HA
= (Jf2, Jf1)HA

= (AJf2, Jf1)H

= (Jf2, A
∗Jf1)H = (Jf2, JJ

−1A∗Jf1)H = (J−1A∗Jf1, f2)H.

Hence, A = J−1A∗J .
Step 2 (general case). Suppose A ∈ EndH(H). Then A∗ also commutes
with π(g) (g ∈ H) because π is unitary. We put B := 1

2
(A + A∗) and C :=

√
−1
2

(A∗−A). Then, both B and C are self-adjoint operators commuting with
π(g) (g ∈ H). It follows from Step 1 that B∗ = JBJ−1 and C∗ = JCJ−1.
Since J is conjugate-linear, we have (

√
−1C)∗ = J(

√
−1C)J−1. Hence, A =

B +
√
−1C also satisfies A∗ = JAJ−1.

Proof of Theorem 2.2. Let A, B ∈ EndH(H). By Lemma 3.6, we have

AB = J−1(AB)∗J = J−1B∗JJ−1A∗J = BA.

Therefore, the ring EndH(H) is commutative.

4 Visible actions on complex manifolds

This section analyzes the geometric condition (2.2.2) on the complex man-
ifold D. We shall introduce the concept of S-visible actions, with which
Theorem 2.2 is reformulated in a simpler manner (see Theorem 4.3).
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4.1 Visible actions on complex manifolds

Suppose a Lie group H acts holomorphically on a connected complex mani-
fold D.

Definition 4.1. We say the action is S-visible if there exist a subset S of D
such that

(4.1.1) D′ := H · S is open in D,

and an anti-holomorphic diffeomorphism σ of D′ satisfying the following two
conditions:

(4.1.2) σ|S = id,

(4.1.3) σ preserves every H-orbit in D′.

Remark 4.1.1. The above condition is local in the sense that we may replace
S by its subset S ′ in Definition 4.1 as far as H · S ′ is open in D.

Remark 4.1.2. By the definition of D′, it is obvious that

(4.1.4) S meets every H-orbit in D′.

Thus, Definition 4.1 is essentially the same with strong visibility in the sense
of [8, Definition 3.3.1]. In fact, the difference is only an additional require-
ment that S is a smooth submanifold in [8]. We note that if S is a smooth
submanifold in Definition 4.1, then S is totally real by the condition (4.1.2),
and consequently, the H-action becomes visible (see [8, Theorem 4.3]).

4.2 Compatible automorphism

Retain the setting of Definition 4.1. Suppose σ is an anti-holomorphic diffeo-
morphism of D′. Twisting the original H-action by σ, we can define another
holomorphic action of H on D′ by

D′ → D′, x 7→ σ(h · σ−1(x)).

If this action can be realized by H, namely, if there exists a group automor-
phism σ̃ of H such that

σ̃(h) · x = σ(h · σ−1(x)) for any x ∈ D′,

we say σ̃ is compatible with σ. This condition is restated simply as

(4.2.1) σ̃(h) · σ(y) = σ(h · y) for any y ∈ D′.
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Definition 4.2. We say an S-visible action has a compatible automorphism
of the transformation group H if there exists an automorphism σ̃ of the group
H satisfying the condition (4.2.1).

We remark that the condition (4.1.3) follows from (4.1.1) and (4.1.2) if
there exists σ̃ satisfying (4.2.1). In fact, any H-orbit in D′ is of the form
H · x for some x ∈ S, and then

σ(H · x) = σ̃(H) · σ(x) = H · x

by (4.1.2) and (4.2.1).
Suppose V → D is an H-equivariant holomorphic vector bundle. If there

is a compatible automorphism σ̃ of H with an anti-holomorphic diffeomor-
phism σ on D, then we have the following isomorphism:

(σ∗V)h·y ' Vσ(h·y) = V σ̃(h)·σ(y) for h ∈ H and y ∈ D.

Therefore, we can let H act equivariantly on the holomorphic vector bundle
σ∗V → D by defining the left translation on σ∗V as

Lσ
h : (σ∗V)y → (σ∗V)h·y

via the identification with the left translation Lσ̃(h) : Vσ(y) → V σ̃(h)·σ(y). Then,
the two H-equivariant holomorphic vector bundles V and σ∗V are isomorphic
if and only if σ lifts to an anti-holomorphic bundle endomorphism σ (we use
the same letter) which respects the H-action in the sense that

(4.2.2) Lσ̃(h) ◦ σ = σ ◦ Lh on V for any h ∈ H.

4.3 Propagation of multiplicity-free property

By using the concept of S-visible actions, we give a second form of our main
theorem as follows:

Theorem 4.3. Let V → D be an H-equivariant Hermitian holomorphic
vector bundle. Assume the following three conditions are satisfied:

(4.3.1) (Base space) The action on the base space D is S-visible with a
compatible automorphism of the group H (Definition 4.2).

(4.3.2) (Fiber) The isotropy representation of Hx on Vx is multiplicity-free
for any x ∈ S.
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We write its irreducible decomposition as

Vx =

n(x)⊕
i=1

V(i)
x .

(4.3.3) (Compatibility) σ lifts to an anti-holomorphic endomorphism (we
use the same letter σ) of the H-equivariant Hermitian holomorphic
vector bundle V such that

(4.3.3)(a) σx(V(i)
x ) = V(i)

x for 1 ≤ i ≤ n(x), x ∈ S.

Then, any unitary representation which is realized in O(D,V) is multiplicity-
free.

The difference from the previous conditions (2.2.1) and (2.2.3) in Theo-
rem 2.2 is that the conditions (4.3.2) and (4.3.3)(a) concern only with the
slice S, while we had to deal with the whole D (or at least its open subset)
in Theorem 2.2.

Remark 4.3.1. We can sometimes find a slice S such that the isotropy sub-
group Hx is independent of generic x ∈ S. Bearing this in mind, we set

HS :=
⋂
x∈S

Hx

= {g ∈ H : gx = x for any x ∈ S}.

Theorem 4.3 still holds if we replace Hx with HS (see also Remark 2.2.1(2)).

Proof. We shall reduce Theorem 4.3 to Theorem 2.2 by using theH-equivariance
of the bundle endomorphism σ. Let us show that the conditions (2.2.1),
(2.2.2) and (2.2.3) are satisfied for the H-invariant open subset D′ := H · S
of D.

First we observe that the condition (4.1.3) implies (2.2.2) because σ(x) ∈
σ(H · x) = H · x for any x ∈ D′.

Next, take any element x ∈ D′ and we write x = h · x0 (h ∈ H, x0 ∈ S).
We set

V(i)
x := Lh(V(i)

x0
) (1 ≤ i ≤ n(x0)).

17



Through the group isomorphism Hx0

∼−→Hx, l 7→ hlh−1 and the left transla-
tion Lh : Vx0 → Vx, we get the isomorphism between the two isotropy repre-
sentations, Hx0 → GL(Vx0) and Hx → GL(Vx), because Lhlh−1 = Lh◦Ll◦L−1

h

(l ∈ Hx0). In particular, the direct sum

Vx =

n(x0)⊕
i=1

V(i)
x

gives a multiplicity-free decomposition of irreducible representations of Hx.
Hence, the condition (2.2.1) is satisfied for all x ∈ D′.

Finally, we set g := σ̃(h)h−1 ∈ H. As σ(x0) = x0, we have

σ(x) = σ(h · x0) = σ̃(h) · σ(x0) = σ̃(h) · x0 = g · x.

Besides, we have for any i (1 ≤ i ≤ n(x) = n(x0)),

σx(V(i)
x ) = σx(Lh(V(i)

x0
))

= Lσ̃(h)(σx0(V(i)
x0

)) by (4.2.2)

= Lσ̃(h)

(
V(i)

x0

)
by (4.3.3)(a)

= Lσ̃(h)h−1Lh(V(i)
x0

)

= Lg(V(i)
x ).

Hence, the condition (2.2.3) holds for any x ∈ D′. Therefore, all the assump-
tions of Theorem 2.2 are satisfied for the open subset D′. Now, Theorem 4.3
follows from Theorem 2.2 and Remark 2.2.1 (1).

5 Multiplicity-free theorem for associated bun-

dles

This section provides a third form of our multiplicity-free theorem (see Theo-
rem 5.3). It is intended for actual applications to group representation theory,
especially to branching problems. The idea here is to reformalize the geo-
metric condition of Theorem 4.3 (second form) in terms of the representation
of the structure group of an equivariant principal bundle.

Theorem 5.3 is used as a main machinery in [7, 8] (referred to as [7,
Theorem 1.3] and [8, Theorem 2], of which we have postponed the proof
to this article) for various multiplicity-free theorems including the following
cases:
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• tensor product representations of GL(n) [7, Theorem 3.6],

• branching problems for GL(n) ↓ GL(n1)×GL(n2)×GL(n3) ([7, The-
orem 3.4]),

• Plancherel formulae for vector bundles over Riemannian symmetric
spaces ([8, Theorems 21 and 30]).

5.1 Automorphisms on equivariant principal bundles

We begin with the setting where a Hermitian holomorphic vector bundle
V over a connected complex manifold D is given as the associated bundle
V ' P ×K V to the following data (P,K, µ, V ):

K is a Lie group,

$ : P → D is a principal K-bundle,

V is a finite dimensional Hermitian vector space,

µ : K → GLC(V ) is a unitary representation.

Suppose that a Lie group H acts on P from the left, commuting with the
right action of K. Then H acts also on the Hermitian vector bundle V → D
by automorphisms.

We take p ∈ P , and set x := $(p) ∈ D. If h ∈ Hx, then $(hp) = h · x =
x = $(p). Therefore, there is a unique element of K, denoted by ip(h), such
that

(5.1.1) hp = p ip(h).

The correspondence h 7→ ip(h) gives rise to a Lie group homomorphism
ip : Hx → K. We set

(5.1.2) H(p) := ip(Hx).

Then, H(p) is a subgroup of K.

Definition 5.1. By an automorphism of the H-equivariant principal K-
bundle $ : P → D, we mean that there exist a diffeomorphism σ : P → P
and Lie group automorphisms σ : K → K and σ : H → H (by a little abuse
of notation, we use the same letter σ) such that

(5.1.3) σ(hpk) = σ(h)σ(p)σ(k) (h ∈ H, k ∈ K, p ∈ P ).
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The condition (5.1.3) immediately implies:

(5.1.4) σ induces an action (denoted again by σ) on P/K ' D,

(5.1.5) the induced action σ on D is compatible with σ ∈ Aut(H) (see
(4.2.1) for the definition).

We write P σ for the set of fixed points by σ, that is,

P σ := {p ∈ P : σ(p) = p}.

Then, we have:

Lemma 5.1. σ(H(p)) = H(p) if p ∈ P σ.

Proof. Take h ∈ Hx. Applying σ to the equations h · x = x (∈ D) and
hp = pip(h) (∈ P ), we have σ(h) · x = x and σ(h)p = pσ(ip(h)) from (5.1.3).
Hence, σ(h) ∈ Hx and ip(σ(h)) = σ(ip(h)). Therefore, σ(Hx) ⊂ Hx and
σ(H(p)) ⊂ H(p). Likewise, σ−1(Hx) ⊂ Hx and σ−1(H(p)) ⊂ H(p). Hence, we
have proved σ(Hx) = Hx and σ(H(p)) = H(p).

5.2 Multiplicity-free theorem

For a representation µ of K, we denote by µ∨ the contragredient representa-
tion of µ. It is isomorphic to the conjugate representation µ if µ is unitary.

Proposition 5.2. Retain the setting of Subsection 5.1. Assume that there
exist an automorphism σ of the H-equivariant principal K-bundle $ : P → D
such that

the induced action of σ on D is anti-holomorphic,(5.2.1)

and a subset B of P σ satisfying the following two conditions:

HBK contains a non-empty open subset of P .(5.2.2)

The restriction µ|H(b)
is multiplicity-free as an H(b)-module for

any b ∈ B.
(5.2.3)

We write its irreducible decomposition as µ|H(b)
'

n⊕
i=1

ν
(i)
b . Further, we as-

sume:
µ ◦ σ ' µ∨ as K-modules.(5.2.4) (a)

For any b ∈ B and i, ν(i) ◦ σ ' ν(i)∨ as H(b)-modules.(5.2.4) (b)

Then, any unitary representation of H that is realized in O(D,V) is multiplicity-
free.
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The proof of Proposition 5.2 is given in Section 6

Remark 5.2.1. Loosely, the conditions (5.2.2) and (5.2.3) mean that the holo-
morphic bundle V → D cannot be ‘too large’, with respect to the transforma-
tion group H. The remaining condition (5.2.4) is often automatically fulfilled
(e.g. Corollary 5.4).

Remark 5.2.2. As in Remark 2.2.1, Proposition 5.2 still holds if H(b) is re-
placed by its arbitrary subgroup H ′

(b) for each b ∈ B in (5.2.3) and (5.2.4) (b).

Remark 5.2.3. For a connected compact Lie groupK, the condition (5.2.4) (a)
is satisfied for any finite dimensional representation µ of K if we take σ ∈
Aut(K) to be a Weyl involution. We recall that σ is a Weyl involution if there
exists a Cartan subalgebra t of the Lie algebra k of K such that dσ = − id
on t. It is noteworthy that any simply-connected compact Lie group admits
a Weyl involution.

5.3 Multiplicity-free theorem (third form)

In the assumption of Proposition 5.2, the subgroups H(b) may depend on b
(see (5.2.3) and (5.2.4) (b)). For actual applications, we give a weaker but
simpler form by taking just one subgroup M instead of a family of subgroups
H(b).

For a subset B of P , we define the following subgroup MH(B) of K:

MH(B) := {k ∈ K : for each b ∈ B, there is h ∈ H such that hb = bk}
(5.3.1)

=
⋂
b∈B

KHb ,

where KHb denotes the isotropy subgroup at Kb in the left coset space H\P ,
which is acted on by K from the right. Then MH(B) is σ-stable if B ⊂ P σ,
as is readily seen from (5.1.3).

Theorem 5.3. Assume that there exist an automorphism σ of the H-equivariant
principal K-bundle $ : P → D satisfying (5.2.1) and a subset B of P σ with
the following three conditions (5.3.2) – (5.3.4): Let M := MH(B).

HBK contains a non-empty open subset of P .(5.3.2)

The restriction µ|M is multiplicity-free.(5.3.3)
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We shall write its irreducible decomposition as µ|M '
n⊕

i=1

ν(i).

µ ◦ σ ' µ∨ as representations of K.(5.3.4) (a)

ν(i) ◦ σ ' ν(i)∨ as representations of M for any i (1 ≤ i ≤ n).(5.3.4) (b)

Then, any unitary representation of H which is realized in O(D,V) is multiplicity-
free.

Remark 5.3.1. Theorem 5.3 still holds if we replace M with an arbitrary
σ-stable subgroup of MH(B) to verify the conditions (5.3.3) and (5.3.4) (b).

Assuming Proposition 5.2, we first complete the proof of Theorem 5.3.

Proof of Theorem 5.3. In view of Proposition 5.2 and Remark 5.2.2, it is
sufficient to show MH(B) ⊂ H(b) for any b ∈ B.

To see this, take any k ∈ MH(B). By the definition (5.3.1), there exists
h ∈ H such that hb = bk. Then, h ∈ H$(b). Since ib(h) ∈ K is characterized
by the property hb = b ib(h) (see (5.1.1)), k coincides with ib(h). Hence, k =
ib(h) ∈ ib(H$(b)) = H(b) (see (5.1.2)). Thus, we have proved MH(B) ⊂ H(b)

for any b ∈ B.

5.4 Line bundle case

In general, the condition (5.3.2) tends to be fulfilled if B is large, while the
condition (5.3.3) tends to be fulfilled if B is small (namely, if M is large).
However, we do not have to consider the condition (5.3.3) if V → D is a line
bundle. Hence, by taking B to be maximal, that is, by setting B := P σ, we
get:

Corollary 5.4. Suppose we are in the setting of Subsection 5.1. Suppose
furthermore that K is connected and dimµ = 1. Assume that there exists
an automorphism σ of the H-equivariant principal K-bundle $ : P → D
satisfying (5.2.1) and the following two conditions:

dσ = − id on the center c(k) of the Lie algebra k of K.(5.4.1)

HP σK contains a non-empty open subset of P .(5.4.2)

Then, any unitary representation which can be realized in O(D,V) is multiplicity-
free.
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Proof of Corollary. As we mentioned, we apply Theorem 5.3 with B := P σ.
The condition (5.3.3) is trivially satisfied because dimµ = 1.

Let us show µ ◦ σ = µ∨. We write K = [K,K] · C, where [K,K] is the
commutator subgroup and C = exp(c(k)). Since [K,K] is semisimple, it acts
trivially on the one dimensional representations µ ◦ σ and µ∨. By (5.4.1),
µ ◦ σ(eX) = µ(e−X) = µ∨(eX) for any X ∈ c(k). Hence µ ◦ σ = µ∨ both on
[K,K] and C. Therefore, the condition (5.3.4) (a) holds. Then, (5.3.4) (b)
also holds. Therefore, Corollary follows from Theorem 5.3.

5.5 Multiplicity-free branching laws

So far, we have not assumed that P has a group structure. Now, we consider
the case that P is a Lie group which we denote by G, and that H and K are
closed subgroups of G. This framework enables us to apply Theorem 5.3 to
the restriction of representations of G (constructed on G/K) to its subgroup
H. Applications of Corollary 5.5 include multiplicity-free branching theorems
of highest weight representations for both finite and infinite dimensional cases
(see [7, 8, 9]).

We denote the centralizer of B in H ∩K by

ZH∩K(B) := {l ∈ H ∩K : lbl−1 = b for any b ∈ B}.

Corollary 5.5. Suppose D = G/K carries a G-invariant complex structure,
and V = G ×K V is a G-equivariant holomorphic vector bundle over D
associated to a unitary representation µ : K → GL(V ). We assume there
exist an automorphism σ of the Lie group G stabilizing H and K such that
the induced action on D = G/K is anti-holomorphic, and a subset B of Gσ

satisfying the conditions (5.3.2), (5.3.3), and (5.3.4) (a) and (b) for P := G
and M := ZH∩K(B). Then, any unitary representation of H which can be
realized in the G-module O(D,V) is multiplicity-free.

Proof. Since ZH∩K(B) is contained inMH(B) by the definition (5.3.1), Corol-
lary 5.5 is a direct consequence of Theorem 5.3 and Remark 5.3.1.

6 Proof of Proposition 5.2

This section gives a proof of Proposition 5.2 by showing that all the conditions
of Theorem 4.3 are fulfilled. Then, the proof of our third form (Theorem 5.3)
will be completed.
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6.1 Verification of the condition (4.3.1)

Suppose we are in the setting of Proposition 5.2. Then, HBK contains a
non-empty open subset of P , and consequently $(HBK) contains a non-
empty open subset, say W , of D. By taking the union of H-translates of W ,
we get an H-invariant open subset D′ := H ·W of D. We set

S := D′ ∩$(B).

Then, D′ = H · S. Besides, σ|S = id because B ⊂ P σ. Thus, the H-action
on D is S-visible with a compatible automorphism σ of H by (5.1.3) in the
sense of Definition 4.2. Thus, the condition (4.3.1) holds for D′.

6.2 Verification of the condition (4.3.2)

Next, let us prove that Vx is multiplicity-free as an Hx-module for all x in S.
Let V ' P×KV be the associated bundle, and P×V → V , (p, v) 7→ [p, v]

by the natural quotient map. For p ∈ P we set x := $(p) ∈ D. Then, we
can identify the fiber Vx with V by the bijection

(6.2.1) ιp : V ∼−→Vx, v 7→ [p, v].

Via the bijection (6.2.1) and a group homomorphism ip : Hx → H(p),
the isotropy representation of Hx on Vx factors through the representation
µ : H(p) → GL(V ), namely, the following diagram commutes for any l ∈ Hx:

(6.2.2)

V
∼−−−→
ιp

Vx

µ(ip(l))

y yLl

V
∼−−−→
ιp

Vx

Now, suppose x ∈ S. We take b ∈ B such that x = $(b).
According to (5.2.3), we decompose V as a multiplicity-free sum of irre-

ducible representations of H(b), for which we write

(6.2.3) µ =
n⊕

i=1

ν
(i)
b , V =

n⊕
i=1

V
(i)
b .
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Then, it follows from (6.2.2) that if we set V(i)
x := ιb(V

(i)
b ), then

(6.2.4) Vx =
n⊕

i=1

V(i)
x

is an irreducible decomposition as an Hx-module. Hence, (4.3.2) is verified.

6.3 Verification of the condition (4.3.3)

Third, let us construct an isomorphism Ψ : V → σ∗V . According to the
assumption (5.2.4) (a), there exists a K-intertwining isomorphism, denoted
by ψ : V → V , between the two representations µ and µ ◦ σ. As the vector
bundle V → D is associated to the data (P,K, µ, V ), so is the vector bundle
σ∗V → D to the data (P,K, µ ◦ σ, V ). Hence the map

P × V → P × V , (p, v) 7→ (p, ψ(v))

induces the bundle isomorphism

(6.3.1) Ψ : V ∼−→σ∗V .

In other words, the conjugate linear map defined by

(6.3.2) ϕ : V → V, v 7→ ψ(v)

satisfies
µ(σ(k)) ◦ ϕ = ϕ ◦ µ(k) for k ∈ K.

Hence, we can define an anti-holomorphic endomorphism of V by

V → V , [p, v] 7→ [σ(p), ϕ(v)].

This endomorphism, denoted by the same letter σ, is a lift of the anti-
holomorphic map σ : D → D, and satisfies (4.2.2) because of (5.1.3).

Besides, for x = $(p), we have

(6.3.3) ισ(p) ◦ ϕ = σx ◦ ιp .

Finally, let us verify the condition (4.3.3)(a).
Step 1. First, let us show

(6.3.4) ϕ(V
(i)
b ) = V

(i)
b for 1 ≤ i ≤ n.
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Bearing the inclusion H(b) ⊂ K in mind, we consider the representation

µ ◦ σ : K → GL(V ) and its subrepresentation realized on ψ(V
(i)
b ) (⊂ V )

as an H(b)-module. Then, this is isomorphic to (ν
(i)
b , V

(i)
b ) as H(b)-modules

because ψ : V → V intertwines the two representations µ and µ ◦ σ of K.
On the other hand, it follows from the irreducible decomposition (6.2.3) that

the representation µ ◦ σ when restricted to the subspace V
(i)
b is isomorphic

to ν
(i)
b ◦ σ as H(b)-modules. By our assumption (5.2.4) (b), ν

(i)
b is isomorphic

to ν
(i)
b ◦ σ, which occurs in V exactly once. Therefore, the two subspaces

ψ(V
(i)
b ) and V

(i)
b must coincide. Hence, we have (6.3.4) by (6.3.2).

Step 2. Next we show that (4.3.3)(a) holds for x = $(b) if b ∈ B. We note
that σ(b) = b and σ(x) = x. Then, it follows from (6.3.3) and (6.3.4) that

σx ◦ ιb(V (i)
b ) = ισ(b) ◦ ϕ(V

(i)
b ) = ισ(b)(V

(i)
b ) = ιb(V

(i)
b ).

Since V(i)
x = ιb(V

(i)
b ), we have proved σx(V(i)

b ) = V(i)
b .

Hence, (4.3.3)(a) holds.
Thus, all the conditions of Theorem 4.3 hold for D′. Therefore, Propo-

sition 5.2 follows from Theorem 4.3 and Remark 2.2.1 (2). Hence, the proof
of Theorem 5.3 is completed.
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