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Abstract.

An action of L on a homogeneous space G/H is investigated where
L, H ⊂ G are reductive Lie groups.

A criterion of the properness of this action is obtained in terms of
the little Weyl group of G. In particular, R-rankG = R-rankH iff
Calabi-Markus phenomenon occurs, i.e. only finite subgroups of G can
act properly discontinuously on G/H. Then by using cohomological
dimension theory of a discrete group, L\G/H is proved compact iff
d(G) = d(L)+d(H), where d(G) denotes the dimension of a Riemannian
symmetric space associated with G, etc.

These results apply to the existence problem of lattice in G/H. Sev-
eral series of classical pseudo-Riemannian homogeneous spaces are found
to admit non-uniform lattice as well as uniform lattice, while some nec-
essary condition for the existence of uniform lattice is obtained when
rankG = rankH.
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1. Introduction

Let H be a reductive subgroup in a real reductive linear group G. The purpose
of this paper is to study a properly discontinuous action on a homogeneous space
G/H of reductive type.

If H is compact, it is a famous result due to Borel and Harish-Chandra that G/H
admits a uniform lattice (resp. nonuniform lattice), i.e. there is a discrete subgroup
Γ in G acting properly discontinuously and freely on G/H so that Γ\G/H is com-
pact (resp. noncompact but of finite volume) ([Bo], [B-H]). Now these theorems
have been a foundation of abundant theory such as Eisenstein series in harmonic
analysis on L2(Γ\G/H).

However, unless H is compact, the action of a discrete group on G/H is not
automatically properly discontinuous. In fact it sometimes occurs that only finite
subgroup in G can act properly discontinuously on G/H. Calabi and Markus first
found SO(n+1, 1)/SO(n, 1) is such a case. Now some sufficient conditions on these
‘Calabi-Markus phenomena’ have been obtained in a general case with a necessary
condition in a very special case (see [C-M], [Wo], [Ku], [Wal]).

To study a properly discontinuous action on a reductive homogeneous space
G/H, we will take the following approach (cf. Lemma(2.3)): Find a reductive
subgroup G′ acting properly on G/H so that any discrete subgroup Γ of G′ acts
automatically properly discontinuously on G/H. This approach was first partially
carried out by R.S.Kulkarni ([Ku]), where he found that properties of the groups
which can act properly on
SO(p + 1, q)/SO(p, q) dramatically depend on the conditions of p, q by making a
detailed study of a quadratic form of type (p + 1, q).

The main results of this paper will be stated in §4. We introduce it briefly:
Let G/H be a homogeneous space of reductive type (Definition(2.6)). First, we
give a simple criterion to tell whether the action of a reductive subgroup G′ on
G/H is proper or not (Theorem(4.1)). As a corollary we show that Calabi-Markus
phenomenon occurs in G/H if and only if R-rank G = R-rank H (Corollary(4.4)).
Secondly, we obtain the necessary and sufficient condition that G′\G/H is compact
under the assumption that the G′-action on G/H is proper (Theorem(4.7)). As
a corollary of its proof, a certain necessary condition for the existence of uniform
lattice is obtained when H has maximal rank in G (Proposition(4.10)). Finally,
using these criteria in Theorem(4.1),(4.7), we find six series of non-Riemannian
reductive homogeneous spaces which admit uniform lattices as well as non-uniform
lattices (Proposition(4.9)).
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2. Notation and Preliminary Results

Let G be a topological group acting continuously on a topological space X; i.e.
there is a continuous map f : G×X → X which gives a homomorphisms of G into
the group of homeomorphism of X. G is said to act freely iff f(g, x) = x implies
g = e for every x ∈ X; properly iff {g ∈ G : f(g, S) ∩ S 6= ∅} is compact for every
compact subset S in X; properly discontinuously iff G is discrete and acts properly
on X. We shall often write g · x instead of f(g, x).

When a discrete group Γ acts smoothly on a manifold X, Γ\X is a V -manifold
in the sense of [Sa] if the action is properly discontinuously; Γ\X is a manifold if
it is properly discontinuously and freely. The following lemma is well-known and
elementary:

Lemma(2.1). Let Γ be a group acting properly discontinuously on a locally com-
pact Hausdorff space X. Then
1) Γ\X is also a locally compact Hausdorff space.
2) If Γ\X is compact, then Γ is finitely generated.

In fact, {γ ∈ Γ : γ · U ∩ U 6= ∅} (U is a relatively compact open set in X such
that X = Γ · U) gives a finite generator of Γ in (2).

When X is a homogeneous space G/H where H is a closed subgroup of G, our
concern will be mainly restricted to the action of a subgroup of G on X = G/H
via the natural left action.

Definition(2.2). Let Γ be a discrete subgroup of G. Γ is called a uniform lattice
in G/H iff Γ acts on G/H freely and properly discontinuously so that Γ\G/H is
compact. When G/H carries a G-invariant measure, Γ is called a lattice in G/H
iff Γ acts on G/H freely and properly discontinuously so that Γ\G/H is of finite
volume; a non-uniform lattice in G/H iff Γ is a lattice but not a uniform lattice.
Obviously these terminologies are consistent with the usual ones when H = {e}.

Our approach of a properly discontinuous action is based on the following simple
observation:

Lemma(2.3). Let a real Lie group G act on a locally compact space X and Γ be
a uniform lattice in G. Then
1) The G-action on X is proper iff the Γ-action is properly discontinuous.
2) G\X is compact iff Γ\X is compact.

Proof. 1) Suppose Γ acts properly discontinuously. Take a compact subset C = C−1

in G so that G = C · Γ. Then for any compact subset S in X, {g ∈ G : g · S ∩ S 6=
∅} ⊂ C · ΓCS , where ΓCS := {γ ∈ Γ : γ(C · S) ∩ (C · S) 6= ∅} is a finite set. Thus



4 TOSHIYUKI KOBAYASHI∗

the G-action is proper. The ‘only if’ part is nothing but the definition.
2) Suppose G\X is compact. We can choose finite relatively open sets Uj in X
so that X =

⋃
j

G · Uj =
⋃
j

Γ · (C · Uj), showing Γ\X is compact. The converse

statement is clear. ¤

Suppose G is a real Lie group. We denote by Go the identity component of G,
by g the Lie algebra of G, by Ad : G → GL(g) the adjoint representation of G,
by ad : g → gl(g) the adjoint representation of g. This notation will be applied
to groups denoted by other Roman letters in the same way without comment.
For S ⊂ G and t ⊂ g, NS(t), ZS(t) denote the normalizer, centralizer of t in S
respectively. Similar notations will be used when S is a subset in g.

Definition(2.4). By a real reductive linear group, we will mean a real Lie group G
(not necessarily connected), contained in a connected complex reductive Lie group
GC whose Lie algebra gC ' g⊗

R
C.

If G is a real reductive linear group, there is a Cartan involution θ of G such
that the mapping

K × p → G, (k, X) 7→ k · exp(X)

gives a surjective diffeomorphism. Here K
def= {g ∈ G : θg = g} is a maximal

compact subgroup of G and g = k + p is the +1 and −1 eigenspace decomposition
for θ (we denote by the same letter the differential of θ as usual). The ambiguity
of the choice of a Cartan involution θ|[G,G] is just by inner automorphisms of G (cf.
[He] Ch.VI Theorem 2.1). We set

(2.5) d(G) := dim(G/K) = dimR p

Clearly this definition is independent of the choice of a Cartan involution.

We will use standard results concerning real reductive linear groups as needed
when these are trivial consequences of the corresponding ones for connected cases,
although the references may treat only connected semisimple Lie groups.

Definition-Lemma(2.6). Let H be a closed subgroup in a real reductive linear
group G (Definition(2.4)). We call H reductive in G and G/H a homogeneous space
of reductive type when the following equivalent conditions are satisfied:
(2.6.1) There is a Cartan involution θ of G such that H has a polar decomposition
H = (H ∩K) · exp(h ∩ p).
(2.6.2) H is of finitely many connected components and the adjoint representation
ad |h : h → gl(g) is completely reducible.

It is easy to see that H is a real reductive linear group in the sense of Defini-
tion(2.4) if H is reductive in G. Our definition of reductive subgroups are slightly
stronger than the usual one by excluding the case H has infinitely many connected
components.

Let H be reductive in G. Retain notations as in (2.6.1). Fix a nondegenerate
invariant symmetric bilinear form on g, which we denote by 〈 , 〉. We can and do
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choose this form so that the Cartan decomposition g = k+ p is orthogonal for 〈 , 〉,
and 〈 , 〉 is positive definite on p and negative definite on k. This form will be
restricted to p without change of notation. Let q be the orthogonal complement of
h in g. Then we have

Lemma(2.7). Suppose G/H is a homogeneous space of reductive type. Then we
have

G = K exp(q ∩ p)H.

Furthermore, G/H is diffeomorphic to the fiber bundle

(K/H ∩K) ×
Ad|H∩K

(q ∩ p),

with the base K/H ∩K and fibers q ∩ p, by the map

f : K × (q ∩ p) 3 (k, Z) 7→ k exp(Z)H ∈ G/H.

The above lemma is well-known at least when G/H is a semisimple symmetric
space. But we shall give a proof in Appendix for the sake of completeness.

Let a be any maximal abelian subspace in p. All such subspaces are mutually
conjugate by an element of Ko. The dimension dim a is called the real rank of G,
denoted by R-rank G. A subspace in g conjugate to a in G is called a maximally
split abelian subspace. Let A be the connected group with Lie algebra a, M ′ (resp.
M) the normalizer (resp. centralizer) of a in K. Let

g(a; α) def= {X ∈ g; [H, X] = α(H)X for any H ∈ a}

for α ∈ a∗, and
Σ ≡ Σ(g, a) def= {α ∈ a∗; g(a; α) 6= 0} \ {0}

be the restricted root system for (g, a). Let W ≡ W (g; a) ' M ′/M be the corre-
sponding Weyl group of Σ (often called the little Weyl group). The simultaneous
diagonalization of ad(a)|g gives the decomposition

g = g(a; 0) +
∑

α∈Σ

g(a; α),

g(a; 0) = m + a.

Let pα : g → g(a; α) be the corresponding projection for each element α ∈ Σ ∪ {0}.
The subset a′ = {H ∈ a : α(H) 6= 0 for any α ∈ Σ} of regular elements consists of
the complement of finitely many hyperplanes, and (the closures of) its components
are called (closed) Weyl chambers.

For Y ∈ a, t ∈ R, put

Ξ(Y ; t) def= {α ∈ Σ ∪ {0} : α(Y ) ≥ t}.
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It easy to see that Ξ(Y ; t) = Ξ(Z; t) for all t ∈ R if and only if Y = Z (∈ a) when
the center of G is compact. Set

p(Y ) def=
∑

α∈Ξ(Y ;0)

g(a;α),

l(Y ) def= Zg(Y ) =
∑

α(Y )=0

g(a;α),

n(Y ) def=
∑

α(Y )>0

g(a; α),

P (Y ) def= NG(p(Y )),

L(Y ) def= NP (Y )(l(Y )) = P (Y ) ∩ θP (Y ),

N(Y ) def= exp(n(Y )).

Then p(Y ) (resp. P (Y )) is a parabolic subalgebra (resp. parabolic subgroup) with
Levi decomposition
(2.8) p(Y ) = n(Y ) + l(Y ) (resp. P (Y ) = N(Y ) · L(Y ) ).
Since G is contained in a connected complexification GC,
(2.9) L(Y ) ' ZG(Y ).
Then the following lemma is well-known (cf. [War] Ch.1):

Lemma(2.10). Let Y, Z ∈ a be contained in the same closed Weyl chamber for
Σ(g, a). If a ∈ G satisfies Ad(a) p(Y ) = p(Z), then

p(Y ) = p(Z) and a ∈ P (Y ) = P (Z).

Lemma(2.11). Let Y ∈ a and a ∈ P (Y ). Then
 ⊕

β(Y )=t

pβ





Ad(a)

∑

α(Y )=t

g(a;α)


 =

∑

α(Y )=t

g(a;α),


 ⊕

β(Y )=t

pβ





Ad(a)

∑

α(Y )>t

g(a;α)


 = 0.

Proof of Lemma(2.11). Let a = n · l (n ∈ N(Y ), l ∈ L(Y )) be a Levi decomposition
corresponding to (2.8). Since l centralizes Y by (2.9), we have

Ad(l)
∑

α(Y )=t

g(a; α) =
∑

α(Y )=t

g(a; α)

for any t ∈ R. So we may and do assume a = n ∈ N(Y ) to prove the lemma. If
Xα ∈ g(a;α) (α ∈ Σ ∪ {0}) and n ∈ N(Y ), we have

Ad(n) Xα −Xα ∈
∑

β

g(a; α + β),

where the sum is taken over the roots of n(Y ) for a, namely {β ∈ Σ : β(Y ) > 0}.
Now the lemma follows. ¤
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3. A Lemma (Abelian Case)

Throughout this section G is a real reductive linear group and we retain notations
as in §2. We shall show a key lemma(3.1) to the criterion of the properness of
the action of a reductive subgroup on a homogeneous space of reductive type (see
Theorem(4.1)).

Lemma(3.1). Let a1, a2 be two subspaces in a, and denote by A1, A2 the analytic
subgroups corresponding to a1, a2 respectively. Then the following two conditions
are equivalent:
(3.1.1) For any compact subset S in G, SA1S

−1 ∩A2 is compact.
(3.1.2) For any w ∈ W (g, a), w · a1 ∩ a2 = {0}.

Proof. We may and do assume that the center of G is compact. Since the Weyl
group W (g, a) ' NK(a)/ZK(a) = M ′/M , it is easy to see that (3.1.2) follows from
(3.1.1).

Conversely, assume SA1S
−1 ∩ A2 is not compact with some compact subset S

in G. Then the following claim holds:

Claim(3.2). With the notation in Lemma(3.1), if there is a compact subset S in
G such that SA1S

−1 ∩A2 is not compact, then there are sequences

an, bn ∈ G, Yn ∈ a1, Zn ∈ a2, tn ∈ R+, (n ∈ N)

and there are
a, b ∈ G, Y ∈ a1, Z ∈ a2, w ∈ W (g.a)

such that
lim

n→∞
tn = ∞

lim
n→∞

an = a, lim
n→∞

bn = b,

lim
n→∞

Yn = Y, lim
n→∞

Zn = Z,

an = exp(tnZn) bn exp(−tnw · Yn),

where w · Y and Z are contained in the same closed Weyl chamber for Σ(g, a).

The proof of this claim will be given soon. Let us continue the proof of the
lemma. Using the above claim and its notations, we have

Ad(an)Xα = Ad(exp(tnZ))Ad(bn)Ad(exp(−tn w · Yn))Xα

=
∑

β

exp tn(β(Z)− α(w · Yn)) pβ(Ad(bn)Xα).

for any root vector Xα ∈ g(a; α) with α ∈ Σ∪{0}. Since the set {Ad(bn)Xα; n ∈ N}
is bounded, we have

Ad(a)Xα ∈
∑

β∈Ξ(Z;α(w·Y ))

g(a; β).
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Therefore for any t ∈ R,

Ad(a)
∑

α∈Ξ(w·Y ;t)

g(a; α) ⊂
∑

β∈Ξ(Z;t)

g(a; β).

Similarly the equation

a−1
n = exp(tnw · Yn)b−1

n exp(−tnZn)

leads to
Ad(a−1)

∑

β∈Ξ(Z;t)

g(a; β) ⊂
∑

α∈Ξ(w·Y ;t)

g(a; α).

Thus for any t ∈ R,

(3.3) Ad(a)
∑

α∈Ξ(w·Y ;t)

g(a; α) =
∑

β∈Ξ(Z;t)

g(a; β).

In particular putting t = 0 in (3.3), we have

Ad(a) p(w · Y ) = p(Z).

As w · Y and Z are contained in the same closed Weyl chamber, we have

a ∈ P (w · Y ) = P (Z),

from Lemma(2.10). Now operating the projection

⊕

β(w·Y )=t

pβ : g −→
∑

β(w·Y )=t

g(a; β)

to the both sides of (3.3) for fixed t ∈ R, we get

∑

α(w·Y )=t

g(a; α) =
∑

β(Z)≥t=β(w·Y )

g(a; β).

from Lemma(2.11). This equation implies

{α ∈ Σ ∪ {0} : α(w · Y ) = t} ⊂ Ξ(Z; t).

In particular we have Ξ(w · Y ; t) ⊂ Ξ(Z; t) for all t ∈ R. The converse inclusion is
obtained in the same way by operating

⊕
β(Z)=t pβ to the equation

∑
α∈Ξ(w·Y ;t) g(a; α) =

Ad(a)−1
∑

β∈Ξ(Z;t) g(a;β). Hence we have proved

Ξ(w · Y ; t) = Ξ(Z; t) for all t ∈ R.

This relation implies Z = w · Y and so the condition (3.1.2) holds. The proof of
Lemma(3.1) is now completed except for showing Claim(3.2). ¤
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Proof of Claim(3.2). Replacing S by KSK if necessary, we may assume S is bi-K-
invariant. From the assumption and the compactness of S, we can choose sequences

an, bn ∈ S, Yn ∈ a1, Zn ∈ a2, tn ∈ R+, un ∈ R+, (n ∈ N)

such that
lim

n→∞
un = ∞

lim
n→∞

an = a, lim
n→∞

bn = b,

lim
n→∞

Yn = Y, lim
n→∞

Zn = Z,

an = exp(tnZn) bn exp(−unYn),

with some a, b ∈ G, Y ∈ a1 \ {0}, Z ∈ a2 \ {0}. Choose a positive system Σ+

of Σ making Z a dominant element. Take mw ∈ NK(a) representing an element
w ∈ W (g; a) such that w·Y is dominant for Σ+. Replacing an, bn by anm−1

w , bnm−1
w

(with the same notations), we have

an = exp(tnZn)bn exp(−un w · Yn).

Therefore for each root vector Xα ∈ g(a; α),

(3.4) Ad(an)Xα =
∑

β∈Σ∪{0}
exp(tnβ(Zn)− unα(Yn)) pβ(Ad(bn)Xα).

Let us show that { tn(k)

un(k)
: n ∈ N} is bounded from 0 and ∞. In fact, suppose

there were subsequences n(k) (k ∈ N) such that lim
k→∞

tn(k)

un(k)
= ∞. Choose β ∈ Σ

such that β(Z) > 0 which exists because Z 6= 0. Then the existence of the limit
of (3.4) as n(k) → ∞ requires that pβ(Ad(b)Xα) = 0 for any α ∈ Σ ∪ {0}, which
leads to a contradiction because Ad(b) is invertible. Similarly, suppose there were

subsequences n(k) (k ∈ N) such that lim
k→∞

tn(k)

un(k)
= 0. Choose α ∈ Σ such that

α(Y ) > 0 which exists because Y 6= 0. Then the existence of the limit of (3.4)
as n(k) → ∞ requires that Ad(a)Xα = lim

k→∞
Ad(an(k))Xα = 0, which leads to a

contradiction because Ad(a) is invertible. Thus we have shown that { tn
un

: n ∈ N}
is bounded from 0 and ∞. Therefore by taking subsequences we may assume

lim
n→∞

tn
un

= C with some positive constant C. Replacing un, Yn and Y by tn,
un

tn
Yn

and
1
C

Y respectively, we get the claim. ¤
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4. Main Results

We consider the situation that a reductive subgroup H1 in G acts on a homogeneous
space G/H2 of reductive type. First we give a criterion of the properness of this
action.

Theorem(4.1). Let H1, H2 be reductive subgroups in a real reductive linear group
G (Definition (2.6)). Let a(H1), a(H2) and a be maximally split abelian subspaces

in h1, h2 and g respectively. Fix gi ∈ G such that ai
def= Ad(gi)a(Hi) ⊂ a (i = 1, 2).

Then the following three conditions on {H1,H2} are equivalent:
(4.1.1) H1 acts on G/H2 properly.
(4.1.2) H2 acts on G/H1 properly.
(4.1.3) For any w ∈ W (g; a), w · a1 ∩ a2 = {0}.

Proof. First note that any of the condition (4.1.1)-(4.1.3) is independent of the
choice of gi and does not change by replacing Hi by giHig

−1
i . Therefore we can

and do assume that gi = e (i = 1, 2) and that there is a Cartan involution θ such
that θHi = Hi (i = 1, 2).

Since the role of Hi (i = 1, 2) are the same in (4.1.3), we only have to prove that
(4.1.2) is equivalent to (4.1.3). From the definition of a proper action, (4.1.2) is
equivalent to the compactness of the set

{h ∈ H2 : hSH1 ∩ SH1 6= ∅} = SH1S
−1 ∩H2

for every compact set S in G. In this condition we only have to treat the case S is bi-
K-invariant. Put Ai := exp(ai). If S is bi-K-invariant, the Cartan decomposition
of Hi ([He] Ch.IX Thm.1.1) gives

SH1S
−1 ∩H2 = S(K ∩H1)A1(K ∩H1)S−1 ∩ (K ∩H2)A2(K ∩H2)

= (K ∩H2)(SA1S
−1 ∩A2)(K ∩H2).

Using the Cartan decomposition again, SH1S
−1 ∩H2 is compact iff SA1S

−1 ∩A2

is compact. Hence the proof of Theorem reduces to the preceding Lemma(3.2) in
an abelian case. ¤

As an immediate corollary to Theorem(4.1), we have

Corollary(4.2). Let G′ be a reductive subgroup in G acting properly on a homo-
geneous space G/H of reductive type. Then

R-rankG′ + R-rankH ≤ R-rankG.

This estimate is best possible. That is

Corollary(4.3). Let G/H be a homogeneous space of reductive type. Then there
exists a subgroup G′ reductive in G such that G′ acts properly on G/H and that
R-rankG′ + R-rankH = R-rankG.
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In fact Theorem(4.1) guarantees a trivial choice of G′: we can take G′ := exp b,
where b is any (R-rank G − R-rank H)-dimensional subspace complementary to
W (g; a) · a(H) in a.

It does depend on H and G whether a larger subgroup (with the same real rank)
than the above G′ can act properly on G/H or not . Although it is interesting
to classify the maximal ones among such subgroups based on Theorem(4.1), we
shall not go into here. Anyway, now we can tell explicitly when Calabi-Markus
phenomenon occurs in a homogeneous space of reductive type:

Corollary(4.4). Let G/H be a homogeneous space of reductive type. Then the
following three conditions are equivalent:
(4.4.1) A subgroup which can act properly discontinuously and freely on G/H must
be finite.
(4.4.1)′ Only finite subgroup can act properly discontinuously on G/H.
(4.4.2) R-rank G = R-rank H.

Proof. If k := R-rank G−R-rank H > 0, then there is a subgroup Γ isomorphic to
Zk consisting of semisimple elements in G such that Γ acts properly discontinuously
and freely on G/H by Corollary(4.3). Thus (4.4.1) → (4.4.2) is proved. (4.4.1)′

→ (4.4.1) is trivial. Although (4.4.2) → (4.4.1)′ is immediately deduced from a
known sufficient condition for Calabi-Markus phenomena ([Ku] Theorem A.1.2,
see also [Wo]), we review it because it is elementary but instructive: Suppose R-
rankG = R-rankH. Then a maximally split abelian subspace a(H) in h is also
a maximal one in g, and thus G = K exp a(H)K = KHK, which implies that
{g ∈ G; g(K/H ∩K)∩ (K/H ∩K) 6= φ in G/H} = G. Since K/H ∩K is compact,
this implies (4.4.1)′. ¤

Example(4.5). Only finite subgroup in GL(n,C) can act properly discontinuously
on GL(n,C)/GL(n,R).

Remark(4.6).

1) Kulkarni proved the necessity of (4.4.2) in a special case: that is, when G/H =
SO(p + 1, q)/SO(p, q), (4.4.1) holds if p < q. One should note that p < q is
equivalent to R-rankG > R-rankH in this case. But our proof is different from
his method ([Ku]).

2) The above corollary does not exclude the existence of an infinite abstract group
acting properly discontinuously on G/H. For instance G/H = SL(2,R)/A, (A
is the diagonal matrix group) is diffeomorphic to S1 × R, and so admitting a
properly discontinuous and free action of Z.

3) When G/H is a semisimple symmetric space, the real rank condition in Corol-
lary(4.4) is equivalent to the condition that the ‘dual symmetric space’ Gd/Hd

has a nonempty discrete series (ref. [FJ]).

Following the approach stated in Introduction, we want a reductive subgroup G′

as large as possible acting on G/H. The extreme case − where G′\G/H is compact
− is characterized by a simple condition:
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Theorem(4.7). Let Hi (i = 1, 2) be reductive subgroups in a real reductive lin-
ear group G (Definition(2.6)). Under the equivalent conditions (4.1.1)-(4.1.3), the
following four conditions are equivalent:
(4.7.1) H1\G/H2 is compact.
(4.7.2) There exists a discrete group Γ1 in H1 so that Γ1\G/H2 is a compact smooth
manifold.
(4.7.2)′ There exists a discrete group Γ2 in H2 so that H1\G/Γ2 is a compact
smooth manifold.
(4.7.3) d(G) = d(H1) + d(H2).

The proof of Theorem(4.7) together with Proposition(4.10) below will be given
at the end of §5. Theorem(4.1) and Theorem(4.7) give a method to get examples
of a (not necessarily Riemannian) homogeneous space admitting a uniform lattice:
namely, find the triplet {G,H1,H2} which satisfies the criteria (4.1.3) and (4.7.3),
and then there exists a uniform lattice in G/Hi for i = 1, 2. Notice that if H2 is
compact, we can always choose H1 = G. The next one is also rather stupid.

Example(4.8). Let G′ be a real reductive linear group. Then G/H2 := G′ ×G′ × · · · ×G′︸ ︷︷ ︸
n−times

/∆G′,

where ∆G′ := {(g, . . . , g) ∈ G : g ∈ G′},
admits a uniform lattice because we can choose
H1 := G′ ×G′ × · · · ×G′ × {e}.

The following examples are remarkable:

Proposition(4.9). Either of the following triplets {G, H1,H2} satisfies both (4.1.1)-
(4.1.3) and (4.7.1)-(4.7.3). Therefore G/Hi (i = 1, 2) admits a uniform lattice as
well as a non-uniform lattice.

1) G = U(2, 2n), H1 = Sp(1, n), H2 = U(1)× U(1, n),

2) G = SO(2, 2n), H1 = U(1, n), H2 = SO(1, 2n),

3) G = SO(4, 4n), H1 = Sp(1, n), H2 = SO(3, 4n).

This Proposition can be easily checked by the criteria (4.1.3) and (4.7.3). Among
these examples, G/H2 in 2) and 3) were previously obtained in Theorem 6.1 in [Ku].

Finally we give another evidence (cf. Corollary(4.4)) that not so many homoge-
neous spaces of reductive type have uniform lattices:

Proposition(4.10). Let H be a maximal rank reductive subgroup in a real re-
ductive linear group G. Then G/H admits a uniform lattice only if

rankK = rankH ∩K.

Recall that the rank of a reductive group G, denoted by rank G, is the dimension
of a Cartan subalgebra of g ⊗ C over C. The above result is somewhat stronger
than the one which K.Ono and the author have recently obtained (see Corollary 5
in [K-O]).
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Example(4.11). Sp(2n,R)/Sp(n,C) has no uniform lattice but admits a properly
discontinuous and free action of a subgroup isomorphic to Zn.

5. Application of Cohomological Dimension Theory

First we review some notations concerning the cohomology of an abstract group.
General references are [Bi], [C-E] and [Ser].

Let Γ be an abstract group, R a commutative ring with 1 6= 0, R[Γ] the cor-
responding group ring. For each left R[Γ]-module A, the cohomology groups of Γ
with coefficients in A are defined by

(5.1) Hq(Γ, A) def= ExtqZ[Γ](Z, A) ' ExtqR[Γ](R, A),

where R (resp. Z) is regarded as a left R[Γ] (resp. Z[Γ]) module with trivial action
of Γ. For the second isomorphism in (5.1), see [C-E] Ch.X §3.4. The cohomological
dimension of Γ over R denoted by cdR(Γ) is the projective dimension of R as a left
R[Γ]-module. Equivalently,

cdR(Γ) = sup{n ∈ N : Hn(Γ;A) 6= 0 for some left R[Γ]−module A}.
Following Serre (see [Ser]), we call Γ virtually torsionless iff Γ has a torsionless
subgroup of finite index. Then the following result is due to Selberg ([Sel] Lemma
8):

Lemma(5.2). A finitely generated matrix group is virtually torsionless.

From now on, we shall restrict ourselves to the case when R = R, the field of
real numbers. This suffices for our application in this paper.

In this case, cdRΓ′ = cdRΓ for any subgroup Γ′ of finite index in Γ (see [Ser]
Thm.1, [Bi] §5.4).

Lemma(5.3). Let G/H be a homogeneous space of reductive type (Definition(2.6)).
Let Γ be a virtually torsionless discrete subgroup of G. Set

S := dim(K/H ∩K), N := cdRΓ.

1) (Serre) N < ∞
2) If Γ acts properly discontinuously on G/H, then there is a subgroup Γ′ of finite

index in Γ such that Γ′ acts properly discontinuously and freely on G/H and
that there is a natural isomorphism

(5.3.1) HN (Γ′;A) ' HN+S(Γ′\Go/Ho;A)

for any left R[Γ′]-module A. Here A is regarded as a local coefficient system on
Γ′\Go/Ho in the right hand.

Proof. 1) is proved in [Ser]. In fact the spectral sequence (5.4) below collapses when
H = K.
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Suppose Γ act properly discontinuously on G/H. Take any torsion free subgroup
Γ′ of finite index in Γ∩Go. Then Γ′ also acts freely on G/H (and Go/Ho) because
the action is properly discontinuous. There is a well-known first quadrant spectral
sequence corresponding to the covering Go/Ho → Γ′\Go/Ho ([C-E] Ch.XVI §9)

(5.4) Ep,q
n =⇒ Hp+q(Γ′\Go/Ho; A),

with E2 term
Ep,q

2 ' Hp(Γ′; Hq(Go/Ho; A))

The differential dn has bidegree (n, 1− n). Here the action of Γ′ on Hq(Go/Ho;A)
is the diagonal one induced from the action of Γ × Γ on Hq(Go/Ho; A). Since Γ′

is contained in Go, this action agrees the action on the second factor A alone. As
Lemma(2.7) assures that Go/Ho has the same homotopy type with Ko/Ho ∩Ko,
we have the following Γ′-module isomorphism:

Hq(Go/Ho;A) ' Hq(Ko/Ho ∩Ko;A) '
{

0, if q > S

A, if q = S.

Then the spectral sequence (5.4) and the definition of cdRΓ′(= cdRΓ = N) yield
(5.3.1). ¤

Now the same argument in [Ser] Prop.18 (cf. [Ku] Thm.2.1) leads to a coho-
mological restriction on Γ from the topology of a smooth manifold Γ′\Go/Ho by
(5.3.1). Recall that we have defined d(G) by the dimension of the Riemannian
symmetric space associated to G ((2.5)).

Corollary(5.5). Let Γ be a discrete subgroup in G acting properly discontinuously
on a homogeneous space G/H of reductive type.

1) If Γ\G/H is compact, then

a) Γ is virtually torsionless,

b) cdRΓ = d(G)− d(H).
Fix a torsion free subgroup Γ′ of finite index in Γ ∩Go.

c) dimRHj(Γ′;R) < ∞ for all j ∈ Z,

d) χ(Γ′)χ(Ko/Ho ∩Ko) = χ(Γ′\G/H).
Here χ(Γ′) def=

∑N
j=0(−1)j dimRHj(Γ′;R), χ(M) denotes the Euler number of

a compact orientable manifold M .

2) If Γ\G/H is noncompact and if Γ is virtually torsionless, then
cdRΓ ≤ d(G)− d(H)− 1.

Proof. a) is a direct consequence of Lemma(2.1) and Lemma(5.2). b) and 2) is
deduced from (5.3.1) and from the following well-known Lemma(5.6) (This is proved
by the Poincaré duality). Notice that S = dim(G/H)−(d(G)−d(H)) in the notation
of Lemma(5.3). c) is shown by induction from N to 0 by using the spectral sequence
(5.4), and d) is the Euler-Poincaré principle. ¤
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Lemma(5.6). For any local system S on a noncompact manifold M , Hj(M,S) = 0
if j ≥ dim M .

Now we are ready to prove Proposition(4.10).

Proof of Proposition(4.10). The proof is essentially the same as in Corollary 5 in
[K-O]. What we must show is only the fact that G/H is a θ-stable homogeneous
space in the sense of [K-O], Definition(3.3). This follows from the fact that an
analytic subgroup HC in GC with Lie algebra h ⊗ C is closed because of the rank
condition rankH = rankG. ¤

Finally let us prove Theorem(4.7) as an application of Corollary(5.5).

Proof of Theorem(4.7). Since a real reductive linear group has a uniform lattice
([Bo]), (4.7.1), (4.7.2) and (4.7.2)′ are equivalent from Lemma(2.3). Fix any torsion
free discrete subgroup Γ1 in H1. Apply Corollary(5.5) with G = H1 and H =
{e}, we have cdRΓ1 ≤ d(H1) and the equality holds iff Γ1\H1 is compact. Apply
Corollary(5.5) again with H = H2, we have cdRΓ1 ≤ d(G)−d(H2) and the equality
holds iff Γ1\G/H2 is compact. If (4.7.2) holds, then d(G) = cdRΓ1 + d(H2) ≤
d(H1) + d(H2). On the other hand, the assumption (4.1.3) implies that d(G) ≥
d(H1) + d(H2), showing (4.7.3). Conversely if (4.7.3) holds, any uniform lattice Γ1

in H1 is cocompact in G/H2 because cdRΓ1 = d(H1) = d(G) − d(H2). Now the
Theorem follows. ¤

6. Appendix

Let H be a closed subgroup reductive in a real reductive linear group G (Definition
(2.6)). Fix a Cartan involution θ of G such that H = (H ∩K) exp(h ∩ p).

Lemma(6.1). Retain notations as above. Then the mapping

π : (h ∩ p) + (q ∩ p) 3 (X,Y ) 7→ exp X exp Y · o ∈ G/K

gives a surjective diffeomorphism.

Proof. The identity mapping of H into G induces an inclusion
H/H ∩K ↪→ G/K. Since H is a closed subgroup in G, H/H ∩K is also a closed
submanifold in G/K. Identifying as usual the tangent space T (G/K)o with p, we
have T (H/H∩K)o ' h∩p. As the geodesics through o have the form exp(tX)·o (t ∈
R) where X is a general vector in p, this is tangent to H/H ∩K at o if and only if
X ∈ h∩p. Since H acts on G/K isometrically, it follows that H/H∩K = exp(h∩p)·o
is totally geodesic in G/K. Fix an element X of h∩p, and put p = exp(X)·o ∈ G/K

and S⊥(p) def= exp(X) exp(q ∩ p) · o ⊂ G/K. Pull back the tangent space at p by
L−1

exp(X)∗ : T (G/K)p → p, and we have

L−1
exp(X)∗(T (H/H ∩K)p) = AX(h ∩ p),
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L−1
exp(X)∗(T (S⊥(p))p) = q ∩ p,

where AX
def=

∞∑
n=0

(adX)2n

(2n + 1)! |p
∈ GL(p) ([He] Ch.1 Theorem 13.3 and Ch.4 Theorem

4.1). Since X ∈ h ∩ p, ad(X)2 preserves h ∩ p and therefore AX(h ∩ p) = h ∩ p.
As h ∩ p and q ∩ p are orthogonal to each other with respect to 〈 , 〉, S⊥(p) is a
submanifold made of the geodesics in G/K which are perpendicular to H/H ∩K
at p. Thus we have (see [He] Ch.1 Theorem 14.6)

G/K =
∐

X∈h∩p

S⊥(p)

=
∐

X∈h∩p

exp(X) exp(q ∩ p) · o.

Hence π is bijective. ¤

Now let us prove Lemma(2.7).

Proof of Lemma(2.7). From Lemma(6.1), we have

G = K exp(q ∩ p) exp(h ∩ p)

= K exp(q ∩ p) exp(h ∩ p) (H ∩K)

= K exp(q ∩ p)H.

Let f(k1, Z1) = f(k2, Z2) for k1, k2 ∈ K and Z1, Z2 ∈ q ∩ p. Then there are
X ∈ h ∩ p and h ∈ H ∩K such that k1 exp(Z1) exp(X)h = k2 exp(Z2). Therefore
k1h exp(Ad(h)−1(Z1)) exp(Ad(h)−1(X)) = k2 exp(Z2). Since
Ad(h)−1(Z1) ∈ q ∩ p and Ad(h)−1(X) ∈ h ∩ p, we have k1h = k2,
Ad(h)−1(Z1) = Z2 and X = 0, from the uniqueness of the decomposition G =
K exp(q ∩ p) exp(h ∩ p). ¤
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