1 陰関数定理

弧状連結: \mathbb{R}^2 の部分集合 S が弧状連結とは、任意の $a,b\in S$ について、連続関数 $\gamma:[0,1]\to S$ であって、 $\gamma(0)=a,\gamma(1)=b$ なるものが存在することをいう.

領域: \mathbb{R}^2 の弧状連結な開集合は領域とよばれる.

(注)2 変数関数の解析学を展開する場合、領域で定義された関数を考えるのが普通だが、開集合で も成り立つ定理(例えば陰関数定理)と、領域で成り立つ定理(例えば平均値の定理)がある.

陰関数 : \mathbb{R}^2 の部分集合 S で定義された関数 $f:S\to\mathbb{R}$ を考える. $x=x_0$ のまわり I で定義された関数 $\varphi:I\to\mathbb{R}$ であって

$$\forall x \in I, (x, \varphi(x)) \in S \text{ tight } f(x, \varphi(x)) = 0$$

なるものを、 $(x_0, \varphi(x_0))$ を通る f(x,y)=0 で定まる陰関数(の一つ)という(普通は「 φ は連続」などの「良い条件」が課される).

陰関数定理:

 \mathbb{R}^2 の開集合 U で定義された C^1 級関数 $f:U\to\mathbb{R}$ を考える. $(a,b)\in U$ が、条件

- f(a,b) = 0
- $\partial_2 f(a,b) \neq 0$

を満たすとき, (a,b) を通る f(x,y)=0 で定まる陰関数が存在する. より正確に言うと, ある $\delta>0$ が存在して, 次が成り立つ:

- 1. 以下を満たす連続関数 $\varphi: (a-\delta,a+\delta) \to \mathbb{R}$ がただ一つ存在する:
 - $\forall x \in (a \delta, a + \delta), (x, \varphi(x)) \in U$,
 - $\forall x \in (a \delta, a + \delta), f(x, \varphi(x)) = 0,$
 - $\varphi(a) = b$.
- 2. さらに φ は C^1 級で、微分係数について以下が成り立つ

$$\forall x \in (a - \delta, a + \delta), \varphi'(x) = -\partial_1 f(x, \varphi(x)) / \partial_2 f(x, \varphi(x)).$$

2 ラグランジュ未定乗数法

極大: \mathbb{R}^2 の開集合 U で定義された関数 $f:U\to\mathbb{R}$ を考える. $\pmb{a}\in U$ で f が極大(点) であるとは $\exists r>0, \forall \pmb{x}\in U(\pmb{a};r), f(\pmb{a})\geq f(\pmb{x}).$

(注) $U(a;r) = \{x \in \mathbb{R}^2 \mid |x-a| < r\}$ は、中心 a で半径 r の開円盤である。極小も同様に定義される。極大・極小になる点を極値(点)とよぶ。

極値の候補: \mathbb{R}^2 の開集合 U で定義された関数 $f:U\to\mathbb{R}$ について, $a\in U$ が f の極値点になっ ているとする. grad f(a) が存在するならば, grad f(a) = 0 が成り立つ.

条件付き極大: \mathbb{R}^2 の開集合 U で定義された関数 $f:U\to\mathbb{R}$ を考え、さらに束縛条件を与える $g: U \to \mathbb{R}$ も考える. $a \in U$ が束縛条件 g = 0 での極大(点)であるとは(g(a) = 0 かつ)

$$\exists r > 0, \forall x \in U(a; r), (g(x) = 0 \Rightarrow f(a) \ge f(x)).$$

ラグランジュ未定乗数法: \mathbb{R}^2 の開集合 U で定義された関数 $f, q: U \to \mathbb{R}$ について,

- f は全微分可能
- q は C^1 級

と仮定する (面倒なので、両方とも C^1 級とされることが多い). さらに

- $a \in U$ が束縛条件 q = 0 での極値
- grad $g(\boldsymbol{a}) \neq \boldsymbol{0}$

ならば、 $\exists \lambda \in \mathbb{R}$, grad $f(a) = \lambda$ grad g(a). (λ は Lagrange 未定乗数 (multiplier) とよばれる)

(注) 束縛条件下で極値を求めようとするならば、g(x,y)=0 から x または y を消去して、問題を 「小さく」しようとするのが自然な考えである.しかしラグランジュ未定乗数法では、いったん変 数 λ を足して, 問題を難しくしているようで興味深い (「量子力学的な」正当化もあるそうです).

2変数のテイラー展開(おまけ) 3

高階偏微分: \mathbb{R}^2 の開集合 U で定義された f について、高階偏微分が $\partial_1\partial_2 f = \partial_1(\partial_2 f)$ といった 具合に定義される (存在するならば). ∂_* の個数を,この高階偏微分の階数とよぶ ($\partial_1\partial_2$ は 2 階). $\partial_1\partial_2$ などを「関数についてその高階偏微分を返す対応」とみなし、微分作用素とよぶことがある.

 C^n 級: \mathbb{R}^2 の開集合 U で定義された f について、すべての n 階の偏微分が存在し、かつ連続のと き, f はU で C^n 級という.

偏微分の交換可能性: \mathbb{R}^2 の開集合 U で定義された f について, f が C^2 級ならば $\partial_1\partial_2 f = \partial_2\partial_1 f$.

(注) これから例えば C^3 級の f について, $\partial_1\partial_2\partial_1f = \partial_1\partial_1\partial_2f = \partial_2\partial_1\partial_1f$ といったことも従う.

2 変数のテイラーの定理: \mathbb{R}^2 の開集合 U で定義された C^n 級関数 f を考える. $\boldsymbol{a}=(a_1,a_2), \boldsymbol{h}=$ (s,t) について,a と a+h を結ぶ線分が U に含まれるとき

$$0 < \exists \theta < 1, f(\boldsymbol{a} + \boldsymbol{h}) = f(\boldsymbol{a}) + (s\partial_1 + t\partial_2)f(\boldsymbol{a}) + (s\partial_1 + t\partial_2)^2 f(\boldsymbol{a})/2!$$
$$+ \dots + (s\partial_1 + t\partial_2)^{n-1} f(\boldsymbol{a})/(n-1)! + (s\partial_1 + t\partial_2)^n f(\boldsymbol{a} + \theta \boldsymbol{h})/n!$$

が成り立つ. ここで $(s\partial_1 + t\partial_2)^m f(\boldsymbol{a})$ は $\sum_{k=0}^m \binom{m}{k} (\partial_1^k \partial_2^{m-k} f(\boldsymbol{a})) s^k t^{m-k}$ の意味である. 微分作

用素として
$$(s\partial_1 + t\partial_2)^m = \sum_{k=0}^m \binom{m}{k} s^k t^{m-k} \partial_1^k \partial_2^{m-k}$$
 と思うとよいだろう.

- (A1) 次の関数 $f: \mathbb{R}^2 \to \mathbb{R}$ について,f(x,y) = 0 は与えられた (a,b) を通り f(x,y) = 0 で定まる陰関数 $y = \varphi(x)$ をもつことを示し, $\varphi'(a)$ を求めよ.
 - 1. $f(x,y) = x^2 + xy y^2 + x$, (a,b) = (1,2)
 - 2. $f(x,y) = y + \cos(xy), (a,b) = (\pi, 1)$
 - 3. $f(x,y) = xe^{xy} x^2$, (a,b) = (1,0)
- (A2) $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto y^5 + 16y 32x^3 + 32x$ について,
 - 1. $\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R}, f(x,y) = 0$ を示せ、これで陰関数 $\varphi : \mathbb{R} \to \mathbb{R}, x \mapsto y$ が定まる、
 - 2. φ は C^1 級であることを示し、 $\varphi'(x) = 0$ となる x を求めよ.
- (A3) \mathbb{R}^2 の点 (x,y) が円 $x^2 + y^2 = 1$ の周上を動くとき,
 - 1. xy の極値を求めよ.
 - 2. x + yの極値を求めよ.
- (A4) 束縛条件 ax + by = k のもとで, $x^2 + y^2$ の最小値を求めたい (ここで $(a, b) \neq (0, 0), k \neq 0$).
 - 1. とりあえずラグランジュの未定乗数法を適用してみよ.
 - 2. それが本当に最小値であるかどうか考察せよ.
- (A5) 1. 以下の証明の誤りを指摘せよ:

1 は最大の自然数である.実際,最大の自然数を M とすると, $M \ge 1$ だが(∵1 は自然数), M^2 も自然数なので $M \ge M^2$ が従う.よって $1 \ge M$ である.■

- 2. 周長が一定の三角形のうち、面積が最大になるものは正三角形であることを示したい (注:このような三角形が存在することは自明ではない). とりあえずラグランジュの未 定乗数法を試みよ.
- (A6) t に依存する x の 5 次多項式

$$h_t(x) = x^5 - (\sin t)x^4 + (1 - \cos t)x^3 + (\log(1+t))x^2 + (\tan t)x - 1$$

を考える. 思考実験

t=0 のとき $h_0(x)=x^5-1$ は x=1 を解にもつ(当たり前).t が 0 のまわりを動くとき,5 次多項式 $h_t(x)$ の係数はなめらかに変化するので,t=0 での解 $x_1(0)=1$ も近くの解 $x_1(t)$ になめらかに変化するはずである.

によって,以下が期待される.

- (*) $\exists \delta > 0, \exists ! x_1 : (-\delta, \delta) \to \mathbb{R} : C^1$ 級関数 such that
- 1. 空欄を埋めよ.
- 2. (*) を認めて $x'_1(0)$ を求めよ.
- 3. (*)を示せ.
- (A7) $g(x,y) = (y^4 y^6) 3(x^2 + x^4)$ とおく. 以下の問に答えよ(東大数理の院試より).
 - 1. $S = \{(x,y) \in \mathbb{R}^2 \mid g(x,y) = g_x(x,y) = g_y(x,y) = 0\}$ を求めよ.
 - 2. 曲線 $C = \{(x,y) \in \mathbb{R}^2 \setminus S \mid g(x,y) = 0, y > 0\}$ 上で $f(x,y) = x^2 + y^2$ が極値をとる点をすべて求め、その値が極大であるか極小であるかを判定せよ.

- (B1) 以下の f について $\partial_1 f, \partial_2 f, \partial_1 \partial_1 f, \partial_1 \partial_2 f, \partial_2 \partial_1 f, \partial_2 \partial_2 f$ を求めよ.
 - 1. $f(x,y) = xe^{xy}$
 - 2. $f(x,y) = \log(1 + 2x + 3y)$
- (B2) 以下の $f: \mathbb{R}^2 \to \mathbb{R}$ について:

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

- 1. f は C^1 級であることを示せ.
- 2. $\partial_1 \partial_2 f(0,0) \neq \partial_2 \partial_1 f(0,0)$ を示せ.
- (B3) $f(\mathbf{a}) + (x\partial_1 + y\partial_2)f(\mathbf{a}) + (x\partial_1 + y\partial_2)^2 f(\mathbf{a})/2! + \cdots + (x\partial_1 + y\partial_2)^n f(\mathbf{a})/n!$ を \mathbf{a} における f の n 次テイラー多項式とよぶ. 以下の f の $\mathbf{0}$ における 3 次テイラー多項式を求めよ.
 - 1. $f(x,y) = \sin(xy)$
 - 2. $f(x,y) = 1/\sqrt{(1+x)(1+y)}$
- (B4) 6月19日の演習問題 (A5) は以下のようなものであった:

x=a のまわり $U(\subseteq \mathbb{R})$ で定義された n 回微分可能な関数 f について、以下の関数を考える(これは $U\setminus \{a\}$ で定義されている).

$$H(x) = \left(f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}\right) / (x-a)^{n}.$$

- 1. $f^{(n)}$ が連続であれば $\lim_{x\to a} H(x) = 0$ を示せ.
- 2. 「 $f^{(n)}$ が連続」という仮定を外し、単に「n 回微分可能」のとき、どうだろうか? これを思い出しつつ、f を $a=(a_1,a_2)$ のまわりで定義された C^n 級関数とするとき

$$\lim_{\boldsymbol{h}=(s,t)\to(0,0)} \frac{f(\boldsymbol{a}+\boldsymbol{h}) - \sum_{k=0}^{n} (s\partial_1 + t\partial_2)^k f(\boldsymbol{a})/k!}{\sqrt{s^2 + t^2}^n} = 0.$$

(B5) 偏微分の交換可能性について、実際は以下のことが成り立つ:

 $f: U \to \mathbb{R}$ を \mathbb{R}^2 の開集合 U で定義された関数で,U において $\partial_1 f, \partial_2 f, \partial_2 \partial_1 f$ が存在し, $\mathbf{a} = (a_1, a_2)$ において $\partial_2 \partial_1 f$ は連続とする.このとき $\partial_1 \partial_2 f(\mathbf{a})$ も存在し, $\partial_1 \partial_2 f(\mathbf{a}) = \partial_2 \partial_1 f(\mathbf{a})$ である.

よくある証明は以下のとおりである:

1. $\mathbf{h} = (h_1, h_2) \in \mathbb{R}^2$ を(小さく)とり、 (a_1, a_2) 、 $(a_1 + h_1, a_2)$ 、 $(a_1, a_2 + h_2)$ 、 $(a_1 + h_1, a_2 + h_2)$ を頂点とする長方形 Q が U に含まれるとする(U が開集合という仮定より \mathbf{h} を小さくとれば可能である).

$$\Delta := f(a_1 + h_1, a_2 + h_2) - f(a_1 + h_1, a_2) - f(a_1, a_2 + h_2) + f(a_1, a_2)$$

について、Q の内部(つまり Q の境界以外)に $\Delta=h_1h_2\partial_2\partial_1f(s)$ を満たす点 $s=(s_1,s_2)$ が存在することを示せ.

2. 冒頭に挙げた命題を証明せよ.

- (A1) 1. f は C^{∞} 級で $f(1,2)=0, \partial_2 f(1,2)=-3$ なので陰関数定理が使える. $\varphi'(a)=-\partial_1 f(a,b)/\partial_2 f(a,b)=5/3$
 - 2. 上と同様である. $\varphi'(a) = -\partial_1 f(a,b)/\partial_2 f(a,b) = 0$.
 - 3. 上と同様である. $\varphi'(a) = -\partial_1 f(a,b)/\partial_2 f(a,b) = 1$.
- (A2) 1. 固定された x について,g(y) = f(x,y) とすると, $\lim_{y \to \pm \infty} g(y) = \pm \infty$ で(g(y) の主要項が y^5 だから.厳密な証明はお任せします).よって中間値の定理より $\exists y \in \mathbb{R}, g(y) = 0 (= f(x,y)$ だが, $g'(y) = 5y^4 + 16 > 0$ より g は狭義単調増加関数なので,この g はただ g(y) = f(x,y) である.
 - 2. $\partial_2 f(x,y) = 5y^4 + 16 \neq 0$ より、任意の $x \in \mathbb{R}$ について $(x,\varphi(x))$ を通り f = 0 で定まる C^1 級の陰関数 ϕ が存在する.1 より、 ϕ は φ の制限である.よって φ は C^1 級で、 $\varphi'(x) = \varphi'(x) = -\partial_1 f(x,y)/\partial_2(x,y) = (96x^2 32)/(5y^4 + 16)$ (ここで $y = \varphi(x)$).よって $x = \pm 1/\sqrt{3}$ で $\varphi'(x) = 0$ となる.
- (A3) $g(x,y) = x^2 + y^2 1$ とすると, g = 0 では $\operatorname{grad} g = (2x,2y) \neq \mathbf{0}$ であることに注意する.
 - 1. f(x,y)=xy とする. 連立方程式 g(x,y)=0, $\operatorname{grad} f=\lambda\operatorname{grad} g$ を解く. すなわち $x^2+y^2-1=0, y=2\lambda x, x=2\lambda y$. これより $\lambda=\pm 1/2$ で $(x,y)=(\varepsilon_1/\sqrt{2},\varepsilon_2/\sqrt{2})$ と求まる $(\varepsilon_1,\varepsilon_2\in\{1,-1\})$. これらが本当に極値であることの考察はお任せします.
 - 2. f(x,y)=x+y とする. 連立方程式 g(x,y)=0, $\operatorname{grad} f=\lambda \operatorname{grad} g$ を解く. すなわち $x^2+y^2-1=0$, $1=2\lambda x$, $1=2\lambda y$. これより $\lambda=\pm 1/\sqrt{2}$ で $(x,y)=\pm (1/\sqrt{2},1/\sqrt{2})$ と求まる. これらが本当に極値であることの考察はお任せします.
- (A4) 1. $f(x,y) = x^2 + y^2$, g(x,y) = ax + by k とし、連立方程式 g(x,y) = 0, $\operatorname{grad} f = \lambda \operatorname{grad} g$ を解く、すなわち ax + by = k, $2x = a\lambda$, $2y = b\lambda$. よって $x = a\lambda/2$, $y = b\lambda/2$. ゆえに $\lambda = 2k/(a^2 + b^2)$ なので $x = ak/(a^2 + b^2)$, $y = bk/(a^2 + b^2)$. これから $x^2 + y^2 = k^2/(a^2 + b^2)$ が最小値の候補としてもとまった.
 - 2. 「求めるものは直線 ax + by = k へ原点 (0,0) から下した垂線の長さの 2 乗である」と解釈すれば、厳密ではないかもしれませんが図形的に考察可能です(他の方法もあるでしょう).
- (A5) 1. 「最大の自然数 M」の存在を仮定して証明しているが、この仮定は正しくない.
 - 2. 周長を 2s とする. 三角形の 3 辺の長さを x,y,z とすると, x+y+z=2s という束縛条件のもと(本当はさらに 0< x,y,z<2s), $S^2/s=(s-x)(s-y)(s-z)$ (S は三角形の面積でヘロンの公式を用いた)を最大化する問題と翻訳される. 連立方程式

$$x + y + z = 2s$$
, $-(s - y)(s - z) = \lambda$, $-(s - x)(s - z) = \lambda$, $-(s - x)(s - y) = \lambda$

を解く、0 < x, y, z < 2s を仮定すると x = y = z = 2s/3(正三角形)が得られる。これが答えであることを示すには「有界閉集合上の連続関数には最大値が存在する」などのおまじないが必要になるでしょう(現段階ではおそらく不可能です)。

(A6) 1. $x_1(0) = 1 \text{ big} \forall t \in (-\delta, \delta), h_t(x_1(t)) = 0$ 2. $x_1(t)^5 - (\sin t)x_1(t)^4 + (1 - \cos t)x_1(t)^3 + (\log(1+t))x_1(t)^2 + (\tan t)x_1(t) - 1 = 0$ を t で微分して

 $5x_1'(t)x_1(t)^4 - 4(\sin t)x_1'(t)x_1(t)^3 - (\cos t)x_1(t)^4 + 3(1-\cos t)x_1'(t)x_1(t)^2 + (\sin t)x_1(t)^3 + 2(\log(1+t))x_1'(t)x_1(t) + x_1(t)^2/(1+t) + (\tan t)x_1'(t) + (1/\cos^2 t)x_1(t) = 0.$

t=0 を代入すると $5x'_1(0)-1+1+1=0$. よって $x'_1(0)=-1/5$ である.

3. 陰関数定理とは次のような主張であった:

開集合 $U \subseteq \mathbb{R}^2$ 上の C^1 級関数と $(a,b) \in U$ について, $f(a,b) = 0, \partial_2 f(a,b) \neq 0$ ならば $\exists \delta > 0, \exists ! \varphi : (a - \delta, a + \delta) \to \mathbb{R} : C^1$ 級関数 such that $\varphi(a) = b$ かつ $\forall t \in (a - \delta, a + \delta), f(t, \varphi(t)) = 0$ (このときさらに $\forall t \in (a - \delta, a + \delta), \varphi'(t) = -\partial_1 f(t, \varphi(t))/\partial_2 f(t, \varphi(t))$).

今 $U=\mathbb{R}\times (-1,1)=\{(x,y)\mid x\in\mathbb{R},-1< y<1\}\subseteq\mathbb{R}^2$ 上で $f(u,v)=h_u(v)$ とすると f は C^1 級(実際は C^∞ 級), $f(0,1)=0,\partial_2 f(0,1)=5\cdot 1^4=5\neq 0$ となっているので陰関数定理が適用でき

 $\exists \delta > 0, \exists ! \varphi : (-\delta, \delta) \to \mathbb{R} : C^1$ 級関数 such that $\varphi(0) = 1$ かつ $\forall t \in (-\delta, \delta), f(t, \varphi(t)) = 0.$ $f(t, \varphi(t)) = h_t(\varphi(t))$ なので、 $x_1 = \varphi$ とすれば証明したい主張をえる.

- (A7) 1. $g_x = -6x(1+2x^2), g_y = 2y(2y^2-3y^4)$ である. $g = g_x = g_y = 0$ とすると, $g_x = 0$ より x = 0 なので, $g = y^4(1-y^2) = 0$. これと $g_y = 0$ より y = 0 がえられる. よって $S = \{(0,0)\}$.
 - 2. $U(\boldsymbol{x};r):=\{\boldsymbol{y}\in\mathbb{R}^2\mid |\boldsymbol{y}-\boldsymbol{x}|< r\}$ とする. $\boldsymbol{a}\in A\subseteq\mathbb{R}^2$ が A で $f:\mathbb{R}^2\to\mathbb{R}$ の極大 (resp. 極小) 点とは, $\exists \delta>0, \forall \boldsymbol{x}\in A\cap U(\boldsymbol{a};\delta), f(\boldsymbol{a})\geq f(\boldsymbol{x})$ (resp. $f(\boldsymbol{a})\leq f(\boldsymbol{x})$) であった.

まず $D:=\{(x,y)\in\mathbb{R}^2\mid g(x,y)=0\}$ で f(x,y) が極大・極小となる点の候補を求める. ラグランジュ未定乗数法より $\operatorname{grad} f=\lambda\operatorname{grad} g,g=0$ を解けばよい. すなわち

$$y^4 - y^6 = 3(x^2 + x^4), \quad (2x, 2y) = \lambda(-6x(1+2x^2), 2y(2y^2 - 3y^4))$$

である. 以下 xy=0 であることを示す. $xy\neq0$ とすると $1+3\lambda(1+2x^2)=0,1-\lambda(2y^2-3y^4)=0$ なので, $\lambda=1/(2y^2-3y^4)$ から $2y^2-3y^4+3(1+2x^2)=0$ がえられる. よって $6x^2=3y^4-2y^2-3$. ゆえに $y^4-y^6=\left(\frac{3y^4-2y^2-3}{2}\right)\left(1+\frac{3y^4-2y^2-3}{6}\right)$ となって $9y^8-8y^4-9=0$ をえるが、この解は明らかに |y|>1 なので $3(x^2+x^4)=y^4-y^6<0$ となって矛盾が生じる. $\therefore xy=0$.

x=0 とすると $y=\pm 1$ が, y=0 とすると x=0 がえられる.D で $f(0,\pm 1)$ は極大になることを示す.いま $g_y\neq 0$ より,陰関数定理から「 $\exists \delta>0,\exists \varphi:(-\delta,\delta)\to\mathbb{R}$ s.t. $\varphi(0)=\pm 1, \forall x\in (-\delta,\delta), g(x,\varphi(x))=0, \varphi'(x)=-g_x/g_y=3x(1+2x^2)/y(2y^2-3y^4)$ 」となる.これより

$$f'(x, \varphi(x)) = 2(x + \varphi(x)\varphi'(x)) = 2\left(x + \frac{3x(1+2x^2)}{2\varphi(x)^2 - 3\varphi(x)^4}\right).$$

だが、 $\frac{3x(1+2x^2)}{2\varphi(x)^2-3\varphi(x)^4}$ は原点の近傍では-3x のようにふるまうので、 $f'(x,\varphi(x))$ は とを示している.

 $\forall a \in C, \exists r > 0, C \cap U(a;r) = D \cap U(a;r)$ が成り立つので、C での極値点は D の極 値点である. これから求める極値点は $(0,1) \in C$ で、ここで f は極大になる.

(B1) 1.
$$\partial_1 f = e^{xy} + xye^{xy}$$
, $\partial_2 f = x^2e^{xy}$, $\partial_1 \partial_1 f = 2ye^{xy} + xy^2e^{xy}$, $\partial_2 \partial_2 f = x^3e^{xy}$, $\partial_1 \partial_2 f = 2xe^{xy} + x^2ye^{xy} = \partial_2 \partial_1 f$.

2.
$$\partial_1 f = 2/(1+2x+3y)$$
, $\partial_2 f = 3/(1+2x+3y)$, $\partial_1 \partial_1 f = -4/(1+2x+3y)^2$, $\partial_2 \partial_2 f = -9/(1+2x+3y)^2$, $\partial_1 \partial_2 f = -6/(1+2x+3y)^2 = \partial_2 \partial_1 f$.

(B2)1. $(x,y) \neq (0,0)$ のとき,

$$\partial_1 f(x,y) = \frac{(y(x^2 - y^2) + 2x^2y)(x^2 + y^2) - 2x^2y(x^2 - y^2)}{(x^2 + y^2)^2} = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}$$
$$\partial_2 f(x,y) = \frac{(x(x^2 - y^2) - 2x^2y)(x^2 + y^2) - 2xy^2(x^2 - y^2)}{(x^2 + y^2)^2} = \frac{x^5 - 4x^3y^2 - xy^4}{(x^2 + y^2)^2}$$

また

$$|\partial_1 f(x,y)| \le 6r, \quad |\partial_2 f(x,y)| \le 6r$$

となるので、 $r \to 0$ のとき $\partial_1 f(x,y) \to 0$ かつ $\partial_2 f(x,y) \to 0$ となる.

2.
$$\partial_1 \partial_2 f(0,0) = \lim_{h \to 0} \frac{\partial_2 f(h,0)}{h} = 1$$
, $\partial_2 \partial_1 f(0,0) = \lim_{h \to 0} \frac{\partial_1 f(0,h)}{h} = -1$ となっている. (B3) 明示的に書くと、以下が求める多項式である.

$$f(\mathbf{0}) + \partial_1 f(\mathbf{0}) x + \partial_2 f(\mathbf{0}) y + \frac{\partial_1^2 f(\mathbf{0})}{2} x^2 + \partial_1 \partial_2 f(\mathbf{0}) xy + \frac{\partial_2^2 f(\mathbf{0})}{2} y^2 + \frac{\partial_1^3 f(\mathbf{0})}{6} x^3 + \frac{\partial_1^2 \partial_2 f(\mathbf{0})}{2} x^2 y + \frac{\partial_1 \partial_2^2 f(\mathbf{0})}{2} xy^2 + \frac{\partial_2^3 f(\mathbf{0})}{6} y^3$$

1. xy

2.
$$1 - (x + y)/2 + (3x^2 + 2xy + 3y^2)/8 - (5x^3 + 3x^2y + 3xy^2 + 5y^3)/16$$

(B4) 2変数のテイラーの定理より

$$0 < \exists \theta < 1, f(\boldsymbol{a} + \boldsymbol{h}) = f(\boldsymbol{a}) + (s\partial_1 + t\partial_2)f(\boldsymbol{a}) + (s\partial_1 + t\partial_2)^2 f(\boldsymbol{a})/2!$$
$$+ \dots + (s\partial_1 + t\partial_2)^{n-1} f(\boldsymbol{a})/(n-1)! + (s\partial_1 + t\partial_2)^n f(\boldsymbol{a} + \theta \boldsymbol{h})/n!.$$

よって求める極限は

$$\lim_{h=(s,t)\to(0,0)} \frac{(s\partial_1 + t\partial_2)^n f(\boldsymbol{a} + \theta \boldsymbol{h}) - (s\partial_1 + t\partial_2)^n f(\boldsymbol{a})}{n! \sqrt{s^2 + t^2}^n}$$

$$= \lim_{h=(s,t)\to(0,0)} \sum_{k=0}^n \frac{1}{k!(n-k)!} \frac{s^k}{\sqrt{s^2 + t^2}^k} \frac{t^{n-k}}{\sqrt{s^2 + t^2}^{n-k}} (\partial_1^k \partial_2^{n-k} f(\boldsymbol{a} + \boldsymbol{h}) - \partial_1^k \partial_2^{n-k} f(\boldsymbol{a}))$$

$$f$$
 は C^n 級なので $\partial_1^k \partial_2^{n-k} f$ は連続だから $\lim_{oldsymbol{h}=(s,t) o (0,0)} \partial_1^k \partial_2^{n-k} f(oldsymbol{a}+oldsymbol{h}) - \partial_1^k \partial_2^{n-k} f(oldsymbol{a}) = 0$ であり,
$$\left| \frac{1}{k!(n-k)!} \frac{s^k}{\sqrt{s^2+t^2}^k} \frac{t^{n-k}}{\sqrt{s^2+t^2}^{n-k}} \right| \leq 1 \text{ より,求める極限は } 0 \text{ である.}$$

(B5) 1. $g(x) = f(x, a_2 + h_2) - f(x, a_2)$ とすると $\Delta = g(a_1 + h_1) - g(a_1)$ だが、g は微分可能 なので($g'(x) = \partial_1 f(x, a_2 + h_2) - \partial_1 f(x, a_2)$. ここに $\partial_1 f$ の存在を用いた)平均値 の定理より

$$\exists \theta \in (0,1), \Delta = h_1(\partial_1 f(a_1 + \theta h_1, a_2 + h_2) - \partial_1 f(a_1 + \theta h_1, a_2)).$$

$$h(y) = \partial_1 f(a_1 + \theta h_1, y)$$
 に同じ考えを適用して(ここに $\partial_2 \partial_1 f$ の存在を用いている)

$$\exists \theta' \in (0,1), \partial_1 f(a_1 + \theta h_1, a_2 + h_2) - \partial_1 f(a_1 + \theta h_1, a_2) = h_2 \partial_2 \partial_1 (a_1 + \theta h_1, a_2 + \theta' h_2).$$

2. $A = \partial_2 \partial_1 f(\mathbf{a})$ とする. $\partial_2 \partial_1 f$ は \mathbf{a} で連続なので

$$\forall \varepsilon > 0, \exists \delta > 0, \forall h_1, \forall h_2, (0 < |h_1|, |h_2| < \delta \Rightarrow |\partial_2 \partial_1 f(a_1 + h_1, a_2 + h_2) - A| < \varepsilon).$$

$$1$$
 より $\left| \frac{\Delta}{h_1 h_2} - A \right| < \varepsilon$ だが

$$\frac{\Delta}{h_1 h_2} = \frac{1}{h_1} \left(\frac{f(a_1 + h_1, a_2 + h_2) - f(a_1 + h_1, a_2)}{h_2} - \frac{f(a_1, a_2 + h_2) - f(a_1, a_2)}{h_2} \right)$$

に注意する. h_1 を固定して $h_2 \rightarrow 0$ とすると

$$\left| \frac{\partial_2 f(a_1 + h_1, a_2) - \partial_2 f(a_1, a_2)}{h_1} - A \right| \le \varepsilon$$

をえる(ここに $\partial_2 f$ の存在を用いた). これが任意の $0 < |h_1| < \delta$ について成り立つのだがら,定義より $\partial_1 \partial_2 f(a_1,a_2) = A$ ということである.