|1| 写像 $f: X \to Y$ が

- 集合論的単射であるとは、 $\forall x_1 \in X, \forall x_2 \in X, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ となること
- モニックであるとは、任意の集合 Z と任意の写像 $g_1,g_2:Z\to X$ について、 $f\circ g_1=f\circ g_2\Rightarrow g_1=g_2$ となること

と定義される.

- (a) 写像 $f: X \to Y$ が、モニックであれば集合論的単射であることを示せ.
- (b) (a) の逆も正しく,容易である(認めてよい).これと (a) を用いて「2 つの集合論的単射 $f:X\to Y,g:Y\to Z$ の合成 $g\circ f:X\to Z$ はふたたび集合論的単射である」の別証明をあたえよ.

(解答) (a) f がモニックのときに「 $\forall x_1 \in X, \forall x_2 \in X, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ 」を示す、 $f(x_1) = f(x_2)$ なる $x_1, x_2 \in X$ を任意にとり,Z を 1 点集合 $Z = \{*\}$ として,写像 $g_i : Z \to X$ を $g_i(*) = x_i$ によって定める(i = 1, 2).このとき($f \circ g_i$)(*) $= f(x_i)$ なので(i = 1, 2), $f \circ g_1 = f \circ g_2$ だが,f はモニックなので $g_1 = g_2$ をえる.これは $g_1(*) = g_2(*)$ ということなので,のぞみどおり $x_1 = x_2$ がえられた.

(b) 写像 $f: X \to Y, g: Y \to Z$ がともにモニックのときに、合成 $g \circ f: X \to Z$ もモニックであることを示す。そのために集合 W と写像 $h_1, h_2: W \to X$ が $(g \circ f) \circ h_1 = (g \circ f) \circ h_2$ のとき、 $h_1 = h_2$ をいえばよい。写像の合成は結合法則をみたすので、 $(g \circ f) \circ h_1 = (g \circ f) \circ h_2$ は $g \circ (f \circ h_1) = g \circ (f \circ h_2)$ と同値である。g はモニックだったから、 $f \circ h_1 = f \circ h_2$ がえられる。f はモニックだったから、 $h_1 = h_2$ がえられた。

(コメント) おおざっぱにいうと、元を用いずに単射が定義できる、ということです。このような他の写像との関係を用いた定義は「圏論的な定義」ともよばれます。

|2| 写像 $f: X \to Y$ と,部分集合 $A, B \subseteq X$ について

- (a) $f(A \cap B) = f(A) \cap f(B)$ が成り立つかどうか調べよ.
- (b) f が単射であるとき、 $f(A \cap B) = f(A) \cap f(B)$ が成り立つかどうか調べよ.

(解答) (a) 成り立たない. 実際, $X = Y = \{0,1\}$ ととり, 写像 $f: X \to Y$ を f(0) = f(1) = 0 によって定義すると, $A = \{0\}, B = \{1\} (\subseteq X)$ について, $A \cap B = \emptyset$ なので $f(A \cap B) = \emptyset$ だが, $f(A) = f(B) = \{0\} (\subseteq Y)$ なので $f(A) \cap f(B) = \{0\} \supsetneq f(A \cap B)$ となっている.

(b) 成り立つ. 一般に、写像 $f: X \to Y$ と、部分集合 $A, B \subseteq X$ について $f(A \cap B) \subseteq f(A) \cap f(B)$ が成り立つことを注意する(これは $A \cap B \subseteq A$ かつ $A \cap B \subseteq B$ なので、 $f(A \cap B) \subseteq f(A)$ かつ

 $f(A\cap B)\subseteq f(B)$ だからである). そこで「さらに f が単射のとき, $f(A)\cap f(B)\subseteq f(A\cap B)$ が成り立つ」を示せばよい. 定義より, $x\in f(A)\cap f(B)$ は, $x\in f(A\cap B)$ であることを示せばよい. $x\in f(A)\cap f(B)$ とは, $\exists a\in A, \exists b\in B, x=f(a)=f(b)$ ということである. いま f は単射なので,a=b であり, $a=b\in A\cap B$ がえられる. よって $x=f(a)=f(b)\in f(A\cap B)$ である.

(コメント) 部分集合 $S,T\subseteq\Omega$ について,S=T とは「 $S\subseteq T$ かつ $T\supseteq S$ 」のことです.だから 両向きの包含関係を示せばよいですが,実際には片側の包含関係は容易であることが多いです.

③ 連続関数 $f: \mathbb{R} \to \mathbb{R}$ が、 $\forall x \in \mathbb{R} \setminus \{0\}, \frac{f(x)}{x} > 0$ をみたすとき f(0) = 0 を示せ.

(解答) $f(0) \neq 0$ と仮定して矛盾を導く.f はとくに x=0 で連続だから, $\forall \varepsilon>0, \exists \delta=\delta(\varepsilon)>0, \forall x\in\mathbb{R}, |x|<\delta\Rightarrow |f(x)-f(0)|<\varepsilon$ である. $0< x_0<\delta\left(\frac{|f(0)|}{2}\right)$ なる $x_0\in\mathbb{R}$ を 1 つとると, $f(\pm x_0)$ は f(0) と同じ符号であるが,これは $\forall x\in\mathbb{R}\setminus\{0\}, \frac{f(x)}{x}>0$ に反する.

(コメント) 「数列 $(a_n)_{n\geq 0}$ が $\forall n\geq 0, a_n>0$ で, $\alpha=\lim_{n\to\infty}a_n$ が存在するとき, $\alpha\geq 0$ 」の類題でした.

[4] 実数列 $(a_n)_{n\geq 1}$ について, $\lim_{n\to\infty}(a_{n+1}-a_n)=\infty$ ならば $\lim_{n\to\infty}\frac{a_n}{n}=\infty$ が成り立つかどうか 調べよ.

(解答) $\lim_{n\to\infty} (a_{n+1} - a_n) = \infty$ とは

$$\forall K > 0, \exists N = N(K) > 0, \forall n > N, a_{n+1} - a_n > K$$

の略記法なのだった. 望遠鏡の和 (telescoping method) より, M = N(3K) とすると

$$\forall n > M+1, \frac{a_n - a_{M+1}}{n - (M+1)} > 3K$$

をえるが、 $\frac{a_n-a_m}{n-m}=\frac{n}{n-m}\left(\frac{a_n}{n}-\frac{a_m}{n}\right)$ に注目すると

$$\forall n > M+1, \frac{a_n}{n} - \frac{a_{M+1}}{n} > \left(1 - \frac{M+1}{n}\right) 3K$$

となる。 n>M+1 を $1-\frac{M+1}{n}>\frac{1}{2}$ かつ $\left|\frac{a_{M+1}}{n}\right|<\frac{K}{2}$ となるように選んで M' とする(これは $\lim_{n\to\infty}\frac{1}{n}=0$ より可能である)。このとき $\forall n>M', \frac{a_n}{n}=\left(\frac{a_n}{n}-\frac{a_{M+1}}{n}\right)+\frac{a_{M+1}}{n}>\frac{3K}{2}-\frac{K}{2}=K.$

(コメント) 「中根美知代著, ε - δ 論法とその形成(共立出版)」によると, ε - δ 論法の発祥といわれているコーシーの解析教程で,このことが論じられているそうです.「数列 $(a_n)_{n\geq 0}$ について, $\lim_{n\to\infty}a_n=\alpha\Rightarrow\lim_{n\to\infty}rac{a_1+\dots+a_n}{n}=\alpha$ 」の類題といえます.

- [5] $(a_n)_{n>0}$ は各項が実数である数列とする.
 - 1. 数列 $(a_n)_{n\geq 0}$ が上に有界でないことの定義、および $\lim_{n\to\infty}a_n=\infty$ の定義を述べよ.
 - 2. 次の命題の真偽を理由を付けて判定せよ.

 $\forall n \geq 0, a_n \geq 0$ であり、かつ $(a_n)_{n \geq 0}$ が上に有界でないならば、 $\lim_{n \to \infty} a_n = \infty$ である.

(解答)(a) 数列 $(a_n)_{n\geq 0}$ が上に有界であることの定義は「 $\exists K\in\mathbb{R}, \forall n\geq 0, a_n\leq K$ 」なので,その否定は「 $\forall K\in\mathbb{R}, \exists n\geq 0, a_n>K$ 」となる. $\lim_{n\to\infty}a_n=\infty$ の定義は「 $\forall K\in\mathbb{R}, \exists N>0, \forall n>N, a_n>K$ 」である.

(b) 偽である.実際, $a_{2m}=2m, a_{2m+1}=0$ (ここで $m\geq 0$)によって数列 $(a_n)_{n\geq 0}$ を定めると,これは上に有界でなく, $\lim_{n\to\infty}a_n=\infty$ でもない.

(コメント) 述語論理で書かれた命題の否定は機械的にえられる,というのがポイントの1つです. (a) で問われている定義は,> を \geq に変えた定義や, \in \mathbb{R} を > 0 に変えた定義など(見た目の異なるものが)複数ありえます.

6 $n \ge 1$ とする. 多項式

$$f_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

は、n が偶数のとき実数解をもたず、n が奇数のとき実数解をちょうど 1 つもつことを示せ、ただし n が奇数のとき、 $\lim_{x\to\pm\infty}f_n(x)=\pm\infty$ は認めてよい.

(解答) $n \ge 1$ について $f_n' = f_{n-1}$ に注意する(ただし $f_0 = 1$ とした).よって $g_n := (e^{-x}f_n)' = e^{-x}(f_n' - f_n) = -\frac{x^n}{n!}e^{-x}$ がなりたつ.まず,偶数 $n \ge 2$ について,以下の命題

$$P_n := \lceil \forall x \in \mathbb{R}, f_n(x) > 0 \rfloor$$

が成り立つことを示そう.実際, $n\geq 2$ が偶数であれば $\forall x\in\mathbb{R}, g_n(x)=-\frac{x^n}{n!}e^{-x}\leq 0$ なので, $e^{-x}f_n$ は単調減少関数である.また $\forall m\geq 0, \lim_{x\to\infty}\frac{x^m}{e^x}=0$ より(ただし $x^0=1$), $\lim_{x\to\infty}e^{-x}f_n(x)=0$ である.以上から, P_n は真でなければならない.実際,もしも

- $\exists x_0 \in \mathbb{R}, f_n(x_0) < 0$ とすると, $e^{-x}f_n$ が単調減少関数であることから, $\forall x \geq x_0, e^{-x}f_n(x) \leq e^{-x_0}f_n(x_0) < 0$ となり, $\lim_{x \to \infty} e^{-x}f_n(x) = 0$ に反する.
- $\exists x_0 \in \mathbb{R}, f_n(x_0) = 0$ とすると、 $e^{-x} f_n$ が単調減少関数であることと $\lim_{x \to \infty} e^{-x} f_n(x) = 0$ より、 $\forall x \geq x_0, e^{-x} f_n(x) = 0$ でなければならないが、これは $\forall x \geq x_0, f_n(x) = 0$ ということであり、n 次多項式が高々 n 個の複素数解をもつことに反する.

さて, P_n は n=0 でも真であることを注意する. $n\geq 1$ が奇数であれば, $f_n'=f_{n-1}$ と P_{n-1} より, f_n は狭義単調増加関数である.よって実零点は高々 1 つしか存在しない.そして $\lim_{x\to \pm\infty} f_n(x)=\pm\infty$ なので,中間値の定理より少なくとも 1 つの実零点をもつ.

(コメント)出典は「ラマヌジャンが遺した関数(岩波書店)」です. $f_n(z)=0$ の複素数解 z の挙動が面白い,ということがふれられています.

7 a,b を実数の定数とする,実未知変数 x_1, \cdots, x_4 に関する連立方程式

$$\begin{cases} x_1 + 2x_2 + x_3 + 4x_4 = 0 \\ x_1 + 3x_2 + 4x_4 = 0 \\ x_1 + x_2 + ax_3 + 4x_4 = 0 \\ x_1 + 3x_2 - x_3 + 4x_4 = 0 \\ 2x_1 + (b+5)x_2 - 2x_3 + (2b+6)x_4 = 0 \end{cases}$$

を考える. a,b がどのような条件を満たせば、これの解 x_1,\cdots,x_4 がパラメータを1 つだけ含むのか、a,b に関する必要十分条件を求めよ.

(解答) 拡大係数行列に掃出し法を施すと

$$\begin{pmatrix} 1 & 2 & 1 & 4 & 0 \\ 1 & 3 & 0 & 4 & 0 \\ 1 & 1 & a & 4 & 0 \\ 1 & 3 & -1 & 4 & 0 \\ 2 & b + 5 & -2 & 2b + 6 & 0 \end{pmatrix}$$

$$\begin{array}{c} 2 \stackrel{\uparrow}{\pi} - 1 \stackrel{\uparrow}{\pi} \\ 3 \stackrel{\uparrow}{\pi} - 1 \stackrel{\uparrow}{\pi} \\ 4 \stackrel{\uparrow}{\pi} - 1 \stackrel{\uparrow}{\pi} \\ 5 \stackrel{\uparrow}{\pi} - 1 \stackrel{\uparrow}{\pi} \times 2 \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \frac{4 \stackrel{\uparrow}{\pi} - 2 \stackrel{\uparrow}{\pi}}{7} \\ \frac{4 \stackrel{\uparrow}{\pi} - 2 \stackrel{\uparrow}{\pi}}{7} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \frac{4 \stackrel{\uparrow}{\pi} - 2 \stackrel{\uparrow}{\pi}}{7} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \frac{4 \stackrel{\uparrow}{\pi} - 2 \stackrel{\uparrow}{\pi}}{7} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \frac{4 \stackrel{\uparrow}{\pi} - 2 \stackrel{\uparrow}{\pi}}{7} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \frac{4 \stackrel{\uparrow}{\pi} - 2 \stackrel{\uparrow}{\pi}}{7} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \frac{4 \stackrel{\uparrow}{\pi} - 2 \stackrel{\uparrow}{\pi}}{7} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{\pi} + 2 \stackrel{\uparrow}{\pi} \\ \hline \end{array}$$

$$\begin{array}{c} 3 \stackrel{\uparrow}{$$

となるので、与えられた連立方程式に解が存在する必要十分条件は b=1 で、このとき解は非 pivot 変数の x_4 をパラメータにもつ、よって答えは a は任意の実数で b=1 となる、

(コメント) 掃出し法では、はやめに0や1をたくさん作るとよいでしょう。S2 でも練習します。

8 出典は「数学を語ろう! 2代数・数論・数学史篇(丸善出版)」です(シュトゥディやデュドネによる定義も紹介されています). 非可換な数体系の行列式はいまでも研究されています(quasideterminant などで検索). 四元数の重要性について「志村五郎著,数学をいかに使うか(筑摩書房)」の4章にある説明が興味深いと思いました.