
.

.

. ..

.

.

Mono-anabelian geometry II: Mono-anabelian geometry
over mixed characteristic local fields

Arata Minamide

RIMS, Kyoto University

July 18, 2016

Arata Minamide (RIMS, Kyoto University) Mono-anabelian geometry II July 18, 2016 1 / 24



§1 Reconstruction Algorithms (1) – Reconstructions from Gk –

k: an MLF ↪→ k: an algebraic closure of k

k: the residue field of k whose char. = p

Ok: the ring of integers of k

O◃
k

def
= Ok \ {0} ⊆ k×

def
= k \ {0} [a multiplicative submonoid]

O×
k : the group of invertible elements in O◃

k

Gk
def
= Gal(k/k)

Pk : the wild inertia subgp ⊆ Ik: the inertia subgp ⊆ Gk

Frobk ∈ Gk/Ik: the frobenius
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By local class field theory, we have the local reciprocity map

ρk : k× ↪→ Gab
k

which induces an isom.
k̂×

∼→ Gab
k

[“∧” denotes the prof. compl’n]. This isom. fits into the comm. diag.

1 −−−−→ Im(Ik → Gab
k ) −−−−→ Gab

k −−−−→ Gk/Ik −−−−→ 1x≀
x≀

x≀

1 −−−−→ O×
k −−−−→ k̂× −−−−→ Ẑ −−−−→ 1∥∥∥ x∪

x∪

1 −−−−→ O×
k −−−−→ k×

valk−−−−→ Z −−−−→ 1

where the isom. Ẑ ∼→ Gk/Ik maps 1 to Frobk.
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In particular, we have

Gab
k

∼← k̂× ∼= O×
k × Ẑ ∼= Z/(pfk − 1)Z× Z/paZ× Zdk

p × Ẑ

where fk
def
= [k : Fp], dk

def
= [k : Qp], a ≥ 0.

Thus:

{p} = { l : prime | dimQl
(Gab

k ⊗Ẑ Ql) ≥ 2 }

dk = [k : Qp] = dimQp(G
ab
k ⊗Ẑ Qp)− 1

fk = [k : Fp] = logp(♯(G
ab
k )

(p′)
tor + 1)

Ik =
∩

K/k: fin s.t. dK/fK=dk/fk
GK [⊆ Gk]

Pk: the unique pro-p Sylow subgroup of Ik

{ Frobk ∈ Gk/Ik } = { γ ∈ Gk/Ik | γ acts on Ik/Pk by pfk }
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.
Theorem (cf. [AbsAnab], Prop 1.2.1)
..

.

. ..

.

.

Let G be a topological gp ∼= Gk. Then
∃group-theoretic algorithm

G 7−→ O×(G) ⊆ O◃(G) ⊆ k×(G) (⊆ Gab)

for constructing the subgroups and the submonoid of Gab corresp’g to

ρk(O×
k ) ⊆ ρk(O◃

k ) ⊆ ρk(k
×) (⊆ Gab

k )

Indeed, by using the above facts, we can reconstruct:

(1) p(G): the [unique] prime l s.t. dimQl
(Gab ⊗Ẑ Ql) ≥ 2

(2) d(G)
def
= dimQp(G)

(Gab ⊗Ẑ Qp(G))− 1

(3) f(G)
def
= logp(G)(♯(G

ab)
(p(G)′)
tor + 1)

(4) I(G)
def
=

∩
H⊆G: open s.t. d(G)/f(G)=d(H)/f(H)H [⊆ G]
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(5) P (G): the unique pro-p(G) Sylow subgroup of I(G)

(6) Frob(G) ∈ G/I(G): the [unique] element G/I(G) which acts on

I(G)/P (G) by p(G)f(G)

(7) k×(G)
def
= Gab ×G/I(G) Frob(G)Z [⊆ Gab]

(8) O◃(G)
def
= Gab ×G/I(G) Frob(G)N [⊆ k×(G)]

(9) O×(G)
def
= Im(I(G)→ Gab) [⊆ O◃(G)]

In the following, we write

O×
(G)

def
= lim−→ O

×(H) ⊆ O◃
(G)

def
= lim−→ O

◃(H)

⊆ k
×
(G)

def
= lim−→ k×(H)

where lim−→ is taken over the direct. set {H ⊆ G : open}; the transition

morphism �(H2)→ �(H1) [H1 ⊆ H2] is defined to be the morphism

induced by the transfer Hab
2 → Hab

1 .
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§2 Reconstruction Algorithms (2) – Cyclotomic Rigidity via LCFT –

Ok: the ring of integers of k

O◃
k

def
= Ok \ {0} ⊆ k

× def
= k \ {0} [a multiplicative submonoid]

O×
k
: the group of invertible elements in O◃

k
⊇ µk

def
= (O×

k
)tor

Λ(k)
def
= lim←−n

(µk[n])

In the notation of §1, the reciprocity map ρk induces

µk
∼→ µk(Gk)

def
= (O×

(Gk))tor

hence, this isom. induces the cyclotomic rigidity isomorphism

Λ(k)
∼→ Λ(Gk)

def
= lim←−

n

(µk(Gk)[n])
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.
Theorem (cf. [AbsTopIII], Rem 3.2.1; Prop 3.3, (i); [Alien], Ex 2.12.1)
..

.

. ..

.

.

Let (G y M) ∼= (Gk y O◃
k
) (resp. (Gk y O×

k
); (Gk y k

×
))

Γ
def
= {1} (resp. Ẑ×; {±1})

Λ(M)
def
= lim←−n

(Mtor[n])

Λ(G)
def
= lim←−n

(O×
(G)tor[n])

Then ∃functorial algorithm

(G y M) 7−→ the Γ-orbit of Λ(M)
∼→ Λ(G)

where Λ(M)
∼→ Λ(G) corresp’s to the cyc. rig. isom. Λ(k)

∼→ Λ(Gk).

In the following, we give a proof of this thm in the case where

(G y M) ∼= (Gk y O◃
k
).
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To verify this thm, it suffices to show:

.
Proposition (2.1)
..

.

. ..

.

.

Let (G y M) ∼= (Gk y O◃
k
). Then ∃functorial algorithm

(G y M) 7−→ a natural isom. H2(G,Λ(M))
∼→ Ẑ

Indeed, by applying this prop. to (G y O◃
(G)) [cf. §1], we have

H2(G,Λ(G))
∼→ Ẑ.

Then the cyc. rig. isom. Λ(M)
∼→ Λ(G) may be characterized as the

unique isom. Λ(M)
∼→ Λ(G) which is compatible with

H2(G,Λ(M))
∼→ Ẑ and H2(G,Λ(G))

∼→ Ẑ.
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Then the cyc. rig. isom. Λ(M)
∼→ Λ(G) may be characterized as the

unique isom. Λ(M)
∼→ Λ(G) which is compatible with

H2(G,Λ(M))
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.
Proof of Proposition (2.1)
..

.

. ..

.

.

First, we note that G y (M tor ↪→Mgp) induces

H2(G,M tor)
∼→ H2(G,Mgp) (1)

[cf. the fact that H i(G,Mgp/M tor) ∼= H i(Gk, k
×
/µk) = 0 for i > 0].

Recall: One can reconstruct I(G) ⊆ G corresp’g to Ik ⊆ Gk [cf. §1].

Write

Gunr def
= G/I(G)

Munr def
= {m ∈M | g ·m = m for all g ∈ I(G)} ⊆ M

Then, by considering the Leray-Serre spectral sequence assoc. to

1→ I(G)→ G→ Gunr → 1
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.

.

. ..

.

.

we obtain

H2(Gunr, (Munr)gp)
∼→ H2(G,Mgp) (2)

[cf. the fact that H i(I(G),Mgp) ∼= H i(Ik, k
×
) = 0 for i = 1, 2].

Next, note that Gunr y ( (Munr)gp � (Munr)gp/(Munr)× ) induces

H2(Gunr, (Munr)gp)
∼→ H2(Gunr, (Munr)gp/(Munr)×) (3)

[cf. the fact that H i(Gunr, (Munr)×) ∼= H i(Gunr
k ,O×

kunr) = 0 for i > 0].

On the other hand, by applying the following isom’s

Gunr ∼→ Ẑ which maps Frob(G) to 1 [cf. §1]

(Munr)gp/(Munr)×
∼→ Z which is obtained by considering

the generator ∈ (Munr)/(Munr)× ∼= O◃
kunr/O

×
kunr
∼= N
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.

.

. ..

.

.

we obtain

H2(Gunr, (Munr)gp/(Munr)×)
∼→ H2(Ẑ,Z) (4)

Finally, we note that Ẑ y (1→ Z→ Q→ Q/Z→ 1) induces

H2(Ẑ,Z) ∼→ H1(Ẑ,Q/Z) = Hom(Ẑ,Q/Z) ∼→ Q/Z (5)

where the last isom. maps ϕ to ϕ(1). Then, by (1), (2), (3), (4), (5),

we obtain a natural isom.

H2(G,M tor)
∼→ Q/Z

Thus, by applying the functor Hom(Q/Z,−) to this isom., we obtain

H2(G,Λ(M))
∼→ Ẑ
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.
Corollary (cf. [AbsTopIII], Prop’s 3.2, (iv); 3.3, (ii))
..

.

. ..

.

.

Let (G y M) ∼= (Gk y O◃
k
) (resp. (Gk y O×

k
); (Gk y k

×
))

Γ
def
= {1} (resp. Ẑ×; {±1})

Then we have an isom.

Aut(G y M)
∼→ Γ×Aut(G)

In the following, we give a proof of this cor. in the case where

(G y M) ∼= (Gk y O◃
k
).

Let us verify that the hom. induced by “forgetting”

Aut(G y M) → Aut(G)

is bijective.
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The surjectivity follows from the existence of a func’l algorithm

G 7−→ (G y O◃
(G))

for constructing a pair (G y O◃
(G)) ∼= (Gk y O◃

k
) [cf. §1].

To verify the injectivity, let us recall Kummer theory.

G y (1→Mtor[n]→Mgp ×n→ Mgp → 1)

H∗(G,−)
=⇒ MG ↪→ (Mgp)G = H0(G,Mgp)→ H1(G,Mtor[n])

lim←−n=⇒ MG ↪→ H1(M,Λ(M))

=⇒ M ↪→ ∞H1(G,Λ(M))
def
= lim−→

J⊆G: open

H1(J,Λ(M))
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In particular, by the previous thm., we obtain a natural embedding

M ↪→ ∞H1(G,Λ(M))
CRI
∼→ ∞H1(G,Λ(G)).

Now we verify the injectivity. Let α ∈ Aut(G y M) s.t. α|G = idG.

Then by the comm. diag.

M
⊆−−−−→ ∞H1(G,Λ(G))

α|M
y≀

yid [induced by α|G]

M
⊆−−−−→ ∞H1(G,Λ(G))

we conclude that α|M = id|M .

[This argument is a typical example of a “mono-anabelian transport”.]
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§3 Reconstruction Algorithms (3) – Reconstructions from ΠX –

k: an MLF ↪→ k: an alg. clos. of k ←↩ kNF: the alg. clos. of Q in k

X: a hyperbolic curve of strictly Belyi type over k [i.e., that is defined

over an NF and isogenous to a hyperbolic curve of genus 0]

Then (X ×k k → X → Spec(k)) induces an exact seq. of prof. gps

1 −→ ∆X −→ ΠX −→ Gk −→ 1

where ∆X
def
= ΠX×kk

. Now let us recall the following well-known fact:
.
Fact
..

.

. ..

.

.

In general, we can not reconstruct the field k from Gk. Indeed, there

exists a pair of MLF’s (k1, k2) s.t. Gk1
∼= Gk2 but k1 � k2.

On the other hand, we can prove the following:
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.
Theorem (cf. [AbsTopIII], Cor 1.10)
..

.

. ..

.

.

Let Π be a top. gp ∼= ΠX . Then ∃functorial group-theoretic algorithms

Π 7−→ k(Π), KX(Π)

for constructing fields corresp’g to k and the function field KX .

In the following, we give a sketch of a pf of this thm. First, note that:

.
Proposition (3.1)
..

.

. ..

.

.

Let Π be a top. gp ∼= ΠX . Then ∃functorial group-theoretic algorithm

Π 7−→ ∆(Π)

for constructing the subgroup ∆(Π) ⊆ Π corresp’g to ∆X ⊆ ΠX .

Write G(Π)
def
= Π/∆(Π). ( =⇒ 1 → ∆(Π) → Π → G(Π) → 1)
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In the following, we give a sketch of a pf of this thm. First, note that:

.
Proposition (3.1)
..

.

. ..

.

.

Let Π be a top. gp ∼= ΠX . Then ∃functorial group-theoretic algorithm

Π 7−→ ∆(Π)

for constructing the subgroup ∆(Π) ⊆ Π corresp’g to ∆X ⊆ ΠX .

Write G(Π)
def
= Π/∆(Π). ( =⇒ 1 → ∆(Π) → Π → G(Π) → 1)
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In the following, for simplicity, we assume that

the genus of the compactification Xcpt of X is > 1.

Write ∆cpt
X

def
= ΠXcpt×kk

, ΛX
def
= Hom(H2(∆cpt

X , Ẑ), Ẑ).

• Reconstruction of k First, reconstruct k×. By Kum. theory, we have

α : k× ↪→ H1(Gk,Λ(k))
∼→ H1(Gk,ΛX)

where
∼→ is ind. by a nat. isom. Λ(k)

∼→ ΛX arising from sch. theory.

.
Proposition (3.2)
..

.

. ..

.

.

Let Π be a top. gp ∼= ΠX . Then ∃functorial group-theoretic algorithm

Π 7−→ ( ∆(Π) � ∆cpt(Π) )

for constructing a quotient corresp’g to the natural surj. ∆X � ∆cpt
X .
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Write Λ(Π)
def
= Hom(H2(∆cpt(Π), Ẑ), Ẑ). Thus, we can reconstruct

a “container” H1(G(Π),Λ(Π)) [ ∼= H1(Gk,ΛX) ].

We want to reconstruct the subgp ⊆ H1(G(Π),Λ(Π)) corresp’g to

[ k×
∼→ ] α(k×) ⊆ H1(Gk,ΛX).

Now, by applying a result in the prev. talk [cf. [AbsTopIII], Thm 1.9],

we can reconstruct a field kNF(Π) corresp’g to kNF, and the diag.

H1(G(Π),Λ(Π))

⊂−−−−→ (a [larger] “container” recon. from Π)x∪

k
×
NF(Π)

where k
×
NF(Π)

def
= kNF(Π) \ {0}.
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= Hom(H2(∆cpt(Π), Ẑ), Ẑ). Thus, we can reconstruct

a “container” H1(G(Π),Λ(Π)) [ ∼= H1(Gk,ΛX) ].

We want to reconstruct the subgp ⊆ H1(G(Π),Λ(Π)) corresp’g to

[ k×
∼→ ] α(k×) ⊆ H1(Gk,ΛX).

Now, by applying a result in the prev. talk [cf. [AbsTopIII], Thm 1.9],

we can reconstruct a field kNF(Π) corresp’g to kNF, and the diag.

H1(G(Π),Λ(Π))
⊂−−−−→ (a [larger] “container” recon. from Π)x∪

k
×
NF(Π)

where k
×
NF(Π)

def
= kNF(Π) \ {0}.

Arata Minamide (RIMS, Kyoto University) Mono-anabelian geometry II July 18, 2016 19 / 24



Write k×NF(Π)
def
= H1(G(Π),Λ(Π)) ∩ k

×
NF(Π). In particular,

kNF(Π)
def
= k×NF(Π) ∪ {0} [ ⊆ k

×
NF(Π) ∪ {0} = kNF(Π) ]

admits a str. of field [relative to the additive str. of kNF(Π)].

Now let us reconstruct a valuation on the field kNF(Π) as follows:
.

.

. ..

.

.

First, note that, in the notations of §1, §2, we can reconstruct a surj.

H1(G(Π),Λ(G(Π)))
∼→ G(Π)ab � G(Π)unr

∼→ Ẑ

where

1st
∼→ is det. by the nat. isom. H2(G(Π),Λ(G(Π)))

∼→ Ẑ
[cf. Prop (2.1)] and the cup-product [in group cohomology]

G(Π)ab � G(Π)unr
∼→ Ẑ corresp’g to Gab

k � Gunr
k

∼→ Ẑ [cf. §1]
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.

.

. ..

.

.

Thus, by choosing a non-canonical ism Λ(Π)
∼→ Λ(G(Π)), we obtain

v̂al(Π) : H1(G(Π),Λ(Π)) � Ẑ

well-def’d up to multiplication by Ẑ×. [Here, let us recall the exact seq.

1 −→ O×
k −→ k̂×

v̂alk−→ Ẑ −→ 1

[cf. §1].] Hence, the subring ⊆ kNF(Π) generated by

Ker(v̂al(Π)) ∩ k
×
NF(Π) [ ⊆ kNF(Π) ]

determines a valuation on kNF(Π).

Therefore, one may construct a subgroup

k×(Π) ⊆ H1(G(Π),Λ(Π)) [ corresp’g to α(k×) ⊆ H1(Gk,ΛX) ]

as the completion of k×NF(Π) w.r.t. the valuation on kNF(Π).
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Moreover, one may construct the additive str. on

k(Π)
def
= k×(Π) ∪ {0}

as the unique cont. ext. of the add. str. on (k×(Π) ∩ k
×
NF(Π)) ∪ {0}.

• Reconstruction of KX (Rough Sketch)

Let S be a fin. set of closed pts of X; US
def
= X \ S.

Then we have the following injection

Γ(US ,O×
US

) ↪→ H1(ΠUS
,Λ(k))

∼→ H1(ΠUS
,ΛX)

∼→ H1(Πc-ab
US

,ΛX)

↪→ is induced by considering the Kum. ext seq. on the ét site of US .

1st
∼→ is ind. by the nat. ism Λ(k)

∼→ ΛX arising from sch. theory.

2nd
∼→ is ind. by the “max’l abelian cuspidalization” ΠUS

� Πc-ab
US

.
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To reconstruct KX , we first reconstruct

a “container” H1(Πc-ab
US

,ΛX)

and then reconstruct the image in the container of Γ(US ,O×
US

).

[Note: By applying the Belyi cuspidalizations and the fact “k: an MLF”,

one can recon. the decomposition groups in ΠX of arbitrary closed pts.]

Finally, by taking lim−→S
, we can reconstruct the image of an injection

K×
X ↪→ lim−→

S

H1(Πc-ab
US

,ΛX)

Moreover, by applying Uchida’s Lemma [cf. [AbsTopIII], Prop 1.3],

we can reconstruct the additive structure on KX .
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§4 Appendix – Terminology –

.
Definition
..

.

. ..

.

.

a(n) (arithmetic) holomorphic structure
def⇔ a (structure which determines a) ring structure

a(n) (arithmetic) mono-analytic structure
def⇔ an “underlying” (“non-holomorphic”) structure of a hol. str.

.
Example
..

.

. ..

.

.

an arith. holomorphic str. — Qp (resp. πét
1 (P1

Qp
\ {0, 1,∞}) )

an arith. mono-analytic str. — (Qp)+, Q×
p (resp. GQp)

[cf. a [classical] hol. str. on C v.s. a [classical] real-an. str. on R⊕2]
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