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§1 Reconstruction Algorithms (1) — Reconstructions from G}, —

k: an MLF — k: an algebraic closure of k

k: the residue field of k whose char. = p

Oy the ring of integers of k

or © 0, \{0} <€ &k~ g \ {0} [a multiplicative submonoid]
O/ the group of invertible elements in OF

G, % Gal(%/k)

Py : the wild inertia subgp C Ii: the inertia subgp C Gy

Froby, € Gi/I}: the frobenius
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By local class field theory, we have the loca

| reciprocity map

Pk - B sz

which induces an isom.
X~ ab
k* = G}

[“A" denotes the prof. compl'n]. This isom

. fits into the comm. diag.

y G/, —— 1

[

~

1 —— Im([, — G2P) Gab
[ i
1 — o) I~
H £
1 — of pxo

7Z —— 1

Ju

Zz —— 1

where the isom. Z Gi/I; maps 1 to Froby.
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In particular, we have

~

sz;/?gc’);xz

1

Z)(p"* —1)Z x Z/p"T x L% x T

where fi €k F,), di € [k:Q,), a>0.

Thus:
o {p} = {1:prime | dimg, (G} @3 Q) > 2}
o di = [k:Qy] = dimg, (G}’ ®z Q) 1
o fi = [k:Fy] = log, (2G5 +1)
® Ii = Nk/k: fin st. dic/frc—di/fn O[S Gl
@ Py: the unique pro-p Sylow subgroup of I

o { Froby € Gy/I; } = { v € Gi/I) | v acts on I,/ Py by p/* }
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Theorem (cf. [AbsAnab], Prop 1.2.1)
Let G be a topological gp = G. Then Jgroup-theoretic algorithm
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Theorem (cf. [AbsAnab], Prop 1.2.1)
Let G be a topological gp = G. Then Jgroup-theoretic algorithm

G
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|
Theorem (cf. [AbsAnab], Prop 1.2.1)

Let G be a topological gp = G. Then Jgroup-theoretic algorithm

G s OX(G) C OP(GQ) C k(G (C G
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|
Theorem (cf. [AbsAnab], Prop 1.2.1)

Let G be a topological gp = G. Then Jgroup-theoretic algorithm
G o OX(G) C OF(G) C EXNG) (€GP
for constructing the subgroups and the submonoid of (2P corresp’g to

p(OF) C pe(0F) C pe(k*) (€ G3)

Indeed, by using the above facts, we can reconstruct:

(1) p(C): the [unique] prime I s.t. dimg, (G* ®5 Q) >
(2) d(G) = dimg,, (G @3 Qpye) — 1

(3) F(C) Eogycy (H(G™)1HD) 1 1)

(4) I(&) defﬂHC( open s.t. d(C)/ F()=a(m)/ fny H (€ Gl
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P(G): the unique pro-p(() Sylow subgroup of I((¥)
Frob(() € G/I((): the [unique| element -/I((') which acts on
1(G)/P(G) by p(GY©

R¥(C) € G ) Frob(G)E [C GaY]

O™ (C) & G x ey Frob(G)N [ k(0]

0X(G) ¥ Im(1(¢) — G2*)  [C 0% (O)]

In the following, we write

0%(G) € lig 0X(H) € 07(G) = lim O (H)
C EY(G) € lim K(H)

where lim is taken over the direct. set {H/ C G : open}; the transition
morphism [(Hs2) — O(H;) [Hy C Hs] is defined to be the morphism
induced by the transfer H&> — H3P.
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§2 Reconstruction Algorithms (2) — Cyclotomic Rigidity via LCFT —

O+ the ring of integers of k

=

—X def

oz = o O\ {0} <€ &% k\ {0} [a multiplicative submonoid]

X the group of invertible elements in O% D py def ((’)Ex)tor

£ lim (pln))

In the notation of §1, the reciprocity map pr induces

|

~ def —
e = pp(Gr) = (07(Gr))tor

hence, this isom. induces the cycIotomic rigidity isomorphism

A) 5 MGl (gl Gl
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|
Theorem (cf. [AbsToplll], Rem 3.2.1; Prop 3.3, (i); [Alien], Ex 2.12.1)

Let (G~ M) = (G~ OZ) (resp. (G, ~ OF); (G ~E)
T Y01 (resp. 27 {£1})

AM) E lim, (Mior 1))

A(G) € lim (07 (G)rarln])

Then 3functorial algorithm
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|
Theorem (cf. [AbsToplll], Rem 3.2.1; Prop 3.3, (i); [Alien], Ex 2.12.1)

Let (G~ M) = (G~ OZ) (resp. (G, ~ OF); (G ~E)
T Y01 (resp. 27 {£1})

AM) E lim, (Mior 1))

A(G) € lim (07 (G)rarln])
Then 3functorial algorithm

(G~ M)
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|
Theorem (cf. [AbsToplll], Rem 3.2.1; Prop 3.3, (i); [Alien], Ex 2.12.1)

Let (G~ M) = (G~ OZ) (resp. (G, ~ OF); (G ~E)
T Y01 (resp. 27 {£1})

AM) E lim, (Mior 1))

A(G) € lim (07 (G)rarln])
Then 3functorial algorithm

(G~ M) +— the T-orbit of A(M) = A(G)
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|
Theorem (cf. [AbsToplll], Rem 3.2.1; Prop 3.3, (i); [Alien], Ex 2.12.1)

Let (G~ M) = (Gp~ OF) (resp. (Gx ~OX); (Gr k)
D E {1} (resp. Z7%; {£1})

A(M) € i (Mior[n])

A(G) € lim (07 (G)rarln])

Then 3functorial algorithm

(G~ M) +— the T-orbit of A(M) = A(G)

where A(M) 5 A(C) corresp’s to the cyc. rig. isom. A(k) = A(Gy).

v

In the following, we give a proof of this thm in the case where

(G~ M) = (Gy~OF).
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|
To verify this thm, it suffices to show:
Proposition (2.1)
Let (G M) = (G O‘%). Then 3functorial algorithm
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|
To verify this thm, it suffices to show:
Proposition (2.1)
Let (G M) = (G O‘%). Then 3functorial algorithm

(G~ M)
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|
To verify this thm, it suffices to show:
Proposition (2.1)
Let (G M) = (G O‘%). Then 3functorial algorithm

(G~ M) +—— anatural isom. H*(G,A(M)) 5 Z
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|
To verify this thm, it suffices to show:
Proposition (2.1)
Let (G M) = (G O‘%). Then 3functorial algorithm

(G~ M) +—> anaturalisom. H2(G,A(M)) 5 Z

Indeed, by applying this prop. to (G ~ @D(G)) [cf. §1], we have
H2(G,AG) 5 Z.

Then |the cyc. rig. isom. A(A/) = A(G')| may be characterized as the

unique isom. A(A7) = A(() which is compatible with

HXG,AM) S Z  and  H2(G,AG) S Z.
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|
Proof of Proposition (2.1)

First, we note that ¢ ~ (Mo < M8P) induces

H2(G, M) = H2(G, MEP) (1)

[cf. the fact that H(C/, M® /M) = H (G, k™ uz) =0 for i > 0].

Recall: One can reconstruct I(() C ¢ corresp'g to I, C Gy [cf. §1].
Write

o G ¥ cur)

o M X e gom=m forall geI(G)} < M

Then, by considering the Leray-Serre spectral sequence assoc. to

1-I1(G) > G—-G" =1

v
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we obtain

HA(C, (M) S HAGM®) | ()

[cf. the fact that H'(I((Y), M2P) = Hi(I;;,k ) =0 fori=1, 2].

Next, note that G ~ ( (M/"F)8P — (A/URT)EP /(A7) X ) induces

~

H (Cvunr ( [unr)gp) — H2((Vunr ( [unr)gp/( [111’11‘))()

[cf. the fact that Hi(G/r, (1/9nr)X) & Hi(GY™ 0%,.) =0 fori > 0],

On the other hand, by applying the following isom's

o ' 5 7 which maps Frob((}) to 1 [cf. §1]

~

o (Nywmryep /(pyunryx — 7 which is obtained by considering
the generator € (M™) /(M")* = OF e /Ofune = N

(3)

v
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we obtain

H2(Guor (\fuwnr)ep /(\unn)x) X H2(7, 7) (4)

Finally, we note that Z ~ (1 —Z — Q — Q/Z — 1) induces

H%(Z,7Z) = HYZ,Q/Z) = Hom(Z,Q/Z) = Q/Z| (5)

where the last isom. maps ¢ to ¢(1). Then, by (1), (2), (3), (4), (5),

we obtain a natural isom.

H2(G, M) = Q/Z

Thus, by applying the functor Hom(Q/Z, —) to this isom., we obtain

H2(G,A(M) 3 Z

v
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-
Corollary (cf. [AbsToplll], Prop’s 3.2, (iv); 3.3, (ii))
Let (G~ M) = (Gp~ OF) (resp. (Gx ~OF); (GrE))
Y01} (resp. Z2%; {&1})
Then we have an isom.

Aut(G ~ M) = T x Aut(G)

In the following, we give a proof of this cor. in the case where
(G~ M) = (Gy~OF).
Let us verify that the hom. induced by “forgetting”

Aut(G ~ M) — Aut(G)
is bijective.
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@ The surjectivity follows from the existence of a func'l algorithm
G — (GO (Q)
for constructing a pair (G ~ O (G)) = (Gr ~ (9%) [cf. §1].
@ To verify the injectivity, let us recall Kummer theory.
G ~ (1 = Mg[n] — M Z5 AP 5 1)
HALG) MG oy ()G = HO(G, MBP) = HY(G, Miox[n))
Ee MG HY(M,A(M))

M < o H'(G,AM)) €l H'(J,A(M))

JCG: open

I
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In particular, by the previous thm., we obtain a natural embedding

M < HYG,A(M)) C—B>I oHY (G, A(Q)).

Now we verify the injectivity. Let a € Aut(G ~ M) s.t. alg = idg.
Then by the comm. diag.
M —— HY G, AQ))
o¢|Ml2 lid [induced by alg]
M —=— HY(G,AG))

we conclude that «|y = id|p.

[This argument is a typical example of a “mono-anabelian transport” ]
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§3 Reconstruction Algorithms (3) — Reconstructions from IIx —

k: an MLF — k: an alg. clos. of k < knp: the alg. clos. of Q in k
X: a hyperbolic curve of strictly Belyi type over k [i.e., that is defined

over an NF and isogenous to a hyperbolic curve of genus 0]
Then (X xxk — X — Spec(k)) induces an exact seq. of prof. gps

1 — Ax — IlIx — G — 1

def .
where Ay = HXxkE' Now let us recall the following well-known fact:

Fact
In general, we can not reconstruct the field k& from Gy,. Indeed, there
exists a pair of MLF's (k1,k2) s.t. Gg, = Gk, but ki 2 ko.

On the other hand, we can prove the following:
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Theorem (cf. [AbsToplll], Cor 1.10)

Let II be a top. gp = IIx. Then Ffunctorial group-theoretic algorithms
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Theorem (cf. [AbsToplll], Cor 1.10)

Let II be a top. gp = IIx. Then Ffunctorial group-theoretic algorithms

II
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Theorem (cf. [AbsToplll], Cor 1.10)

Let II be a top. gp = IIx. Then Ffunctorial group-theoretic algorithms

I — k(ID), Kx(I1)

Arata Minamide (RIMS, Kyoto University) Mono-anabelian geometry |l July 18, 2016 17 / 24



Theorem (cf. [AbsToplll], Cor 1.10)

Let II be a top. gp = IIx. Then Ffunctorial group-theoretic algorithms

I — k(ID), Kx(I1)

for constructing fields corresp’g to k£ and the function field Kx.

In the following, we give a sketch of a pf of this thm. First, note that:

Proposition (3.1)

Let IT be a top. gp = ITx. Then “functorial group-theoretic algorithm
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Theorem (cf. [AbsToplll], Cor 1.10)

Let II be a top. gp = IIx. Then Ffunctorial group-theoretic algorithms

I — k(ID), Kx(I1)

for constructing fields corresp’g to k£ and the function field Kx.

In the following, we give a sketch of a pf of this thm. First, note that:
Proposition (3.1)
Let IT be a top. gp = ITx. Then “functorial group-theoretic algorithm

I —  A(LL)
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Theorem (cf. [AbsToplll], Cor 1.10)

Let II be a top. gp = IIx. Then Ffunctorial group-theoretic algorithms

I — k(ID), Kx(I1)

for constructing fields corresp’g to k£ and the function field Kx.

In the following, we give a sketch of a pf of this thm. First, note that:
Proposition (3.1)
Let IT be a top. gp = ITx. Then “functorial group-theoretic algorithm

I —  A(LL)

for constructing the subgroup A(II) C 1l corresp’'g to Ax C Ilx.

Write G(IT) & 11/A®IT). (= 1 — A(I) — 11 - G(II) — 1)
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In the following, for simplicity, we assume that

the genus of the compactification X°Pt of X is > 1.

Write AP < Tye, 7 Ax & Hom(H*(AP',Z), Z).

e Reconstruction of k  First, reconstruct £*. By Kum. theory, we have

a: kX — HYGL AKk) = HY(Gp Ax)
where = is ind. by a nat. isom. A(k) = Ay arising from sch. theory.

Proposition (3.2)

Let IT be a top. gp = ITx. Then “functorial group-theoretic algorithm

v
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In the following, for simplicity, we assume that

the genus of the compactification X°Pt of X is > 1.

Write AP < Tye, 7 Ax & Hom(H*(AP',Z), Z).

e Reconstruction of k  First, reconstruct £*. By Kum. theory, we have

a: kX — HYGL AKk) = HY(Gp Ax)
where = is ind. by a nat. isom. A(k) = Ay arising from sch. theory.

Proposition (3.2)

Let IT be a top. gp = ITx. Then “functorial group-theoretic algorithm

IT

v
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In the following, for simplicity, we assume that

the genus of the compactification X°Pt of X is > 1.

t, dcf dcf

Write A ooy, Ax = Hom(H2(AY',Z), Z).

e Reconstruction of k  First, reconstruct £*. By Kum. theory, we have

a: kX — HYGL AKk) = HY(Gp Ax)
where = is ind. by a nat. isom. A(k) = Ay arising from sch. theory.

Proposition (3.2)

Let IT be a top. gp = ITx. Then “functorial group-theoretic algorithm

T (AT » AP(ID) )

v
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In the following, for simplicity, we assume that

the genus of the compactification X°Pt of X is > 1.

t, dcf dcf

Write A ooy, Ax = Hom(H2(AY',Z), Z).

e Reconstruction of k  First, reconstruct £*. By Kum. theory, we have

a: kX — HYGL AKk) = HY(Gp Ax)
where = is ind. by a nat. isom. A(k) = Ay arising from sch. theory.

Proposition (3.2)

Let IT be a top. gp = ITx. Then “functorial group-theoretic algorithm

T (AT » AP(ID) )

for constructing a quotient corresp’'g to the natural surj. Ax — Ag?t.

v
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-
Write A(II) e Hom(H2(A(I1),Z), Z). Thus, we can reconstruct
a “container” HY(G(I1),A(I1)) [ = HY(Gy, Ax) ].
We want to reconstruct the subgp C H'(G(I1), A(I1)) corresp'g to
[k* 5] a(k*) € H'Y(G, Ax).
Now, by applying a result in the prev. talk [cf. [AbsToplll], Thm 1.9],

we can reconstruct a field ENF(T[) corresp'g to knr, and the diag.

H(G(11), A(1T))
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|
Write A(II) e Hom(H2(A(I1),Z), Z). Thus, we can reconstruct
a “container” HY(G(I1),A(I1)) [ = HY(Gy, Ax) ].
We want to reconstruct the subgp C H'(G(I1), A(I1)) corresp'g to

[k 5] a(k”®) € HYG, Ax).

Now, by applying a result in the prev. talk [cf. [AbsToplll], Thm 1.9],

we can reconstruct a field ENF(T[) corresp'g to knr, and the diag.

HY(G(1),A(11)) —S— (a [larger] “container” recon. from I1)

E
k(1)

def

where knp(11) < Exe(11) )\ {0}
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Write kX, (1) € HY(G(IT), A(I)) N Exp(ID). In particular,

knp(1) € kSp(1) U {0} [C kGp(D) U {0} = Fnp(D) ]

admits a str. of field [relative to the additive str. of knp(I1)].

Now let us reconstruct a valuation on the field kxp(lI) as follows:

First, note that, in the notations of §1, §2, we can reconstruct a surj.

~ ~

HYG(I),AG(1])) 3 GNP - G 5 7

where
o Ist 5 is det. by the nat. isom. H2(G(I1), A(G(I1))) = Z
[cf. Prop (2.1)] and the cup-product [in group cohomology]

o G(I1)2> — G(II)"™ 3 7 corresp'g to G2P — Gy 3 7, [cf. §1]
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~

Thus, by choosing a non-canonical ism A(Il) — A(G(Ll)), we obtain

val(I) : HY(G(11),A(1])) — Z

well-def'd up to multiplication by Zx. [Here, let us recall the exact seq.

1 — 0 — kX ™7 — 1
[cf. §1].] Hence, the subring C knp(ll) generated by
Ker(val(I1)) 0 Fxe(1) [€ Fxe(1D) ]

determines a valuation on knp(11).

Therefore, one may construct a subgroup
EX(I1) € HYG(I1),A(I1)) [corresp'g to a(k*) € HY(Gh,Ax) |

as the completion of k{p(II) w.r.t. the valuation on kxp(II).
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Moreover, one may construct the additive str. on
k(D) g u {0}
as the unique cont. ext. of the add. str. on (kX (I1) N kxp(11)) U {0}.

o Reconstruction of Kx (Rough Sketch)

Let S be a fin. set of closed pts of X; Ug o x \ S.

Then we have the following injection
I'(Us,05,) < H'(lyg,A(k)) = H'(llyg,Ax) = H'(IIF2, Ax)

@ — is induced by considering the Kum. ext seq. on the ét site of Ug.

~

e Ist = isind. by the nat. ism A(k) = Ax arising from sch. theory.

e 2nd 5 isind. by the “max’l abelian cuspidalization” My — Hfj;b.
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To reconstruct K x, we first reconstruct
a “container” HY( %jgb,AX)
and then reconstruct the image in the container of I'(Us, O, ).

[Note: By applying the Belyi cuspidalizations and the fact “k: an MLF",

one can recon. the decomposition groups in IIx of arbitrary closed pts.]

Finally, by taking ligs, we can reconstruct the image of an injection
K} < lig H'(TI52, Ay)
s

Moreover, by applying Uchida’'s Lemma [cf. [AbsToplll], Prop 1.3],

we can reconstruct the additive structure on Kx.
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84 Appendix — Terminology —

Definition
@ a(n) (arithmetic) holomorphic structure

def . , .
& a (structure which determines a) ring structure

@ a(n) (arithmetic) mono-analytic structure

d f 1 - " “ - n
& an "underlying (“non-holomorphic™) structure of a hol. str.

Example
@ an arith. holomorphic str. — @, (resp. ﬂft(]}”(bp \ {0,1,00}) )
e an arith. mono-analytic str. — (Qp)+, Q) (resp. Gg,)

[cf. a [classical] hol. str. on C v.s. a [classical] real-an. str. on R%?]
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