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Introduction

In IUT, we consider the following setting [k is an MLF; q ∈ Ok \ O×
k ]:

†
(
“tools” which we need to

compute “deg(L)”

)
‡
(
“tools” which we need to

compute “deg(L)”

)

†
(

a mathematical setting
arising from sch-theory/k

)
link // ‡

(
a mathematical setting

arising from sch-theory/k

)
where the link is not arising from sch-/ring- theory like a “frobenius”

q 7→ qN (q ̸= 0, N > 1). To relate “†-tools” to “‡-tools”, we use

a coric object “=” an object arising from a “math. setting/k”

which we can “share” via the link
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For instance, since the action Gk y Ok ∋ q, qN is trivial,

Gk

may be regarded as a coric object. Then, for instance, can the pair

(Gk y O◃
k

def
= Ok \ {0}) [O◃

k
: a multiplicative monoid]

be regarded as a coric object? The answer is “no”. In fact,

(†Gk y †O◃
k
)

∼→ (‡Gk y ‡O◃
k
)

=⇒ †O◃
k

∼→ ‡O◃
k

=⇒ †N ∼→ †O◃
k /

†O×
k

∼→ ‡O◃
k /

‡O×
k

∼→ ‡N ; 1 7→ 1

hence, we can not consider a link such as q 7→ qN . In IUT, we often use

(Gk y O×µ

k

def
= O×

k
/(O×

k
)tor)

as a coric object.
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an example of “tools” · · · a cyclotomic rigidity isomorphism

Let (G y M) ∼= (Gk y O◃
k
). Write Λ(M)

def
= lim←−n

(Mtor[n]).

Note: We can reconstruct a monoid O◃
k
(G) ∼= O◃

k
from G.

Write Λ(G)
def
= lim←−n

(O◃
k
(G)tor[n]).

.
Theorem (Cyc. Rig. Isom. via Local Class Field Theory)
..

.

. ..

.

.

∃functorial algorithm

(G y M) 7−→ a natural isom. Λ(M)
∼→ Λ(G)

But, at the moment, since Gk y O◃
k

may not be a coric object, this

cyclotomic rigidity isomorphism [via LCT] is not “good”.

=⇒ We want another version of cyclotomic rigidity isomorphism.
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Cyclotomic Rigidity of a Mono-theta Env.

MΘ: a mod N mono-theta environment, i.e., a triple

(ΠMΘ , DΠMΘ
, sΘΠMΘ

) ∼= (Πtp
Y [µN ], DY , {γ · Im(sΘ

Ÿ
) · γ−1}γ∈µN

)

[ where µN
def
= µN (k), Πtp

Y [µN ]
def
= Πtp

Y ×Gk
(µN oGk) ]

.
Proposition
..

.

. ..

.

.

∃functorial algorithm

MΘ 7−→ Πµ(MΘ) ⊆ ΠMΘ

for constructing the subgp corresp. to the subgp µN ⊆ Πtp
Y [µN ].

.
Definition
..

.

. ..

.

.

We refer to Πµ(MΘ) as the exterior cyclotome assoc. to MΘ.
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Ÿ
) · γ−1}γ∈µN

)

[ where µN
def
= µN (k), Πtp

Y [µN ]
def
= Πtp

Y ×Gk
(µN oGk) ]

.
Proposition
..

.

. ..

.

.

∃functorial algorithm

MΘ 7−→ Πµ(MΘ) ⊆ ΠMΘ

for constructing the subgp corresp. to the subgp µN ⊆ Πtp
Y [µN ].

.
Definition
..

.

. ..

.

.

We refer to Πµ(MΘ) as the exterior cyclotome assoc. to MΘ.

Arata Minamide (RIMS, Kyoto University) Étale Theta Functions II July 19, 2016 5 / 22



Recall: ∃functorial algorithms

MΘ 7−→ ΠX(MΘ) [ ∼= Πtp
X ]

7−→ (l ·∆Θ)(MΘ)
def
= (l ·∆Θ)(ΠX(MΘ)) [ ∼= l ·∆Θ ]

.
Definition
..

.

. ..

.

.

We refer to (l ·∆Θ)(MΘ) as the interior cyclotome assoc. to MΘ.

.
Theorem (Cyclotomic Rigidity — cf. [EtTh], Cor 2.19, (i))
..

.

. ..

.

.

∃functorial algorithm

MΘ 7−→ (l ·∆Θ)(MΘ)⊗Z Z/NZ ∼→ Πµ(MΘ)

for constructing a natural isom. corresp. to a natural isom.

(l ·∆Θ)⊗Z Z/NZ ∼→ µN (k)

arising from scheme theory.
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Constant Multiple Rigidity of a Mono-theta Env.

Recall: ∃functorial algorithms

MΘ 7−→ ΠX(MΘ) [ ∼= Πtp
X ]

7−→ ΠŸ (M
Θ)

def
= ΠŸ (ΠX(MΘ)) [ ∼= Πtp

Ÿ
]

as well as ∃functorial algorithm

MΘ 7−→ (O×
k · η̈

Θ,l·Z×µ2)(MΘ) ⊆ H1(ΠŸ (M
Θ), (l ·∆Θ)(MΘ))

for constructing a subset of H1 corresp. to O×
k · η̈

Θ,l·Z×µ2 , i.e.,

(l · Z× µ2)–orbit of O×
k · Θ̈

1
l .

Now we want to reduce the indeterminacy from O×
k to µl.
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Θ)

def
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To reduce the indet., we use a theta function of standard type Θ̈st.

.
(Review of Θ̈st)
..

.

. ..

.

.

For an evaluation pt ξ0 ∈ Ÿ (k) labeled by 0 ∈ Z, write

Θ̈st
def
= Θ̈(ξ0)

−1 · Θ̈.

In particular, we have

Θ̈
1
l
st(ξ0) ∈ µ2l.

More precisely, by substituting ξ0, we can see, up to µ2l-multiple,

whether or not an ∈ O×
k · Θ̈

1
l coincides with Θ̈

1
l
st.

[Note: µ2l
∼= µ2 × µl

∼= Gal(Ÿ log/Y log)×Gal(Ÿ
log

/Ÿ log)]
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Note: gp-theoretic interpretation of “substituting ξ0”

= considering the image via H1(ΠŸ , l ·∆Θ)
res.→ H1(D, l ·∆Θ)

D ⊆ Πtp

Ÿ
: the decomposition group of ξ0 [well-defined up to conj.]

Thus, by applying
.
Proposition (Application of the Elliptic Cuspidalizations)
..

.

. ..

.

.

∃functorial algorithm

MΘ 7−→ D(MΘ) ⊆ ΠŸ (M
Θ)

for constructing the subgp of ΠŸ (M
Θ) corr. to the decomp. gp of ξ0.

we have:
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.
Theorem (Constant Multiple Rigidity — cf. [EtTh], Cor 2.19, (iii))
..

.

. ..

.

.

∃functorial algorithm

MΘ 7−→ (−1) · θ(MΘ) ⊆ H1(ΠŸ (M
Θ), (l ·∆Θ)(MΘ))

for constructing a subset of H1 corresp. to

(l · Z× µ2)–orbit of µl · Θ̈
1
l
st.
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Discrete Rigidity of a Mono-theta Env.

By means of the natural surjections µM ′ � µM [where M |M ′], we can

define a natural proj. system

· · · → MM ′ → MM → · · ·

of model mono-theta env.

.
Theorem (Discrete Rigidity — cf. [EtTh], Cor 2.19, (ii))
..

.

. ..

.

.

∀proj. system

· · · → M•
M ′ → M•

M → · · ·

of mono-theta env. is isomorphic to the above natural one.
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Consequences of the Three Rigidities

MΘ
∗ = {MΘ

N}N : a proj. system of mono-theta environments

By discrete rigidity, such a proj. system is uniquely determined,

up to isom.

ΠX(MΘ
∗ )

def
= lim←− ( · · · ∼→ ΠX(MΘ

M ′)
∼→ ΠX(MΘ

M )
∼→ · · · )

Also, we have:

ΠŸ (M
Θ
∗ ) ⊆ ΠX(MΘ

∗ ): an open subgp corresp. to Πtp

Ÿ

(l ·∆Θ)(MΘ
∗ ): a subquot. of ΠX(MΘ

∗ ) corresp. to l ·∆Θ.

Πµ(MΘ
∗ )

def
= lim←− ( · · · � Πµ(MΘ

M ′) � Πµ(MΘ
M ) � · · · )
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By cyclotomic rigidity, we have a natural isom. between “Ẑ(1)”

(l ·∆Θ)(MΘ
∗ )

∼−→ Πµ(MΘ
∗ ).

In particular, by constant multiple rigidity, we conclude:
.
Theorem (Exterior Cyclotome Ver. of θ(MΘ) — cf. [IUTchII], Prop 1.5)
..

.

. ..

.

.

∃functorial algorithm

MΘ
∗ 7−→ θ

env
(MΘ

∗ ) ⊆ H1(ΠŸ (M
Θ
∗ ),Πµ(MΘ

∗ ))

for constructing an exterior cyclotome version of θ(MΘ).

Write

∞θ
env

(MΘ
∗ ) ⊆ lim−→

J ⊆ ΠŸ (MΘ
∗ ): fin index, open

H1(ΠŸ (M
Θ
∗ )|J ,Πµ(MΘ

∗ ))

for the subset { η ∈ lim−→J
H1 | n · η ∈ θ

env
(MΘ

∗ ) for
∃n ≥ 1 }.
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Θ
∗ ),Πµ(MΘ

∗ ))

for constructing an exterior cyclotome version of θ(MΘ).

Write

∞θ
env

(MΘ
∗ ) ⊆ lim−→

J ⊆ ΠŸ (MΘ
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Rough Sketch of the Multiradiality

Consider the following situation:

†
(
“tools” which we need to

compute “deg(L)”

)
‡
(
“tools” which we need to

compute “deg(L)”

)

†
(

a mathematical setting
arising from sch-theory/k

)
link // ‡

(
a mathematical setting

arising from sch-theory/k

)

If the link is “isom.” arising from sch-/ring- theory, then by the
functoriality of the algorithms, we have:

†
(
“tools” which we need to

compute “deg(L)”

)
∼ // ‡

(
“tools” which we need to

compute “deg(L)”

)

Arata Minamide (RIMS, Kyoto University) Étale Theta Functions II July 19, 2016 14 / 22



Rough Sketch of the Multiradiality

Consider the following situation:

†
(
“tools” which we need to

compute “deg(L)”

)
‡
(
“tools” which we need to

compute “deg(L)”

)

†
(

a mathematical setting
arising from sch-theory/k

)
link //

_
†Ξ:functorial algorithm

OO

‡
(

a mathematical setting
arising from sch-theory/k

)_
‡Ξ:functorial algorithm

OO

If the link is “isom.” arising from sch-/ring- theory, then by the
functoriality of the algorithms, we have:

†
(
“tools” which we need to

compute “deg(L)”

)
∼ // ‡

(
“tools” which we need to

compute “deg(L)”

)

Arata Minamide (RIMS, Kyoto University) Étale Theta Functions II July 19, 2016 14 / 22



Rough Sketch of the Multiradiality

Consider the following situation:

†
(
“tools” which we need to

compute “deg(L)”

)
‡
(
“tools” which we need to

compute “deg(L)”

)

†
(

a mathematical setting
arising from sch-theory/k

)
link //

_
†Ξ:functorial algorithm

OO

‡
(

a mathematical setting
arising from sch-theory/k

)_
‡Ξ:functorial algorithm

OO

If the link is “isom.” arising from sch-/ring- theory, then by the
functoriality of the algorithms, we have:

†
(
“tools” which we need to

compute “deg(L)”

)
∼ // ‡

(
“tools” which we need to

compute “deg(L)”

)

Arata Minamide (RIMS, Kyoto University) Étale Theta Functions II July 19, 2016 14 / 22



In IUT, consider the link [e.g., a “frobenius” q 7→ qN ] not arising

from sch-/ring- theory, so, a priori:

†
(
“tools” which we need to

compute “deg(L)”

)
oorelation?// ‡

(
“tools” which we need to

compute “deg(L)”

)

Now suppose that:

For � ∈ {†, ‡}, ∃functorial algorithm

�
(

a mathematical setting
arising from sch-theory/k

)
7−→ a �-coric object �C

[e.g., a top. gp �G ∼= Gk]
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Then the multiradiality of the functorial algorithms †Ξ, ‡Ξ implies:

†
(
“tools” which we need to

compute “deg(L)”

)
‡
(
“tools” which we need to

compute “deg(L)”

)

†
(

a mathematical setting
arising from sch-theory/k

)
link−−−→

_

†Ξ:multiradial functorial algorithm

OO

‡
(

a mathematical setting
arising from sch-theory/k

)_

‡Ξ:multiradial functorial algorithm

OO

†C ‡C
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Radial Environment

.
Definition
..

.

. ..

.

.

We refer to a triple (R, C, Φ : R→ C) consisting of

a category R — whose objects is a specific collection of radial data,
and each of whose morphism is an isomorphism

a category C — whose objects is a specific collection of coric data,
and each of whose morphism is an isomorphism

a functor Φ — an essentially surj. functor, which is a “functorial
algorithm” whose “input data” is ∈ R and whose
“output data” is ∈ C

as a radial environment. If Φ is full, then we say that the radial env. is

multiradial. We refer to a radial env. which is not multiradial as uniradial.
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.
Example (a multiradial environment)
..

.

. ..

.

.

R — Obj: a triple (Π, G, α) consist. of

Π: a topological gp ∼= Πtp
X ;

G: a topological gp ∼= Gk;

α : Π/∆
∼→ G: the full poly-isomorphism, i.e., the collection of all

isomorphisms, where we write ∆ ⊆ Π for the gp-theoretic subgroup

corresp. to ∆tp
X .

Hom: a pair of isom. of top. gps Π
∼→ Π∗, G

∼→ G∗.

C — Obj: a top. gp ∼= Gk Hom: an isom. of top. gps G
∼→ G∗

Φ — the functor R→ C defined to be (Π, G, α) 7→ G
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Multiradial Algorithm
.
Definition
..

.

. ..

.

.

(R, C, Φ): a radial environment

Suppose: we have a commutative diagram

R Ξ //

Φ
��

F

~~~~
~~

~~
~~

C

where F is a category, and all arrows are functors. We say that the

functor [i.e., “functorial algorithm”] Ξ is multiradial if (R, C, Φ)

is multiradial.
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Note: If we have a multiradial env. (R, C, Φ) and a diagram

R Ξ //

Φ
��

F

C
then we can always get a multiradial functor as follows:

Let R� be the category whose object is a pair (R, Ξ(R)) and whose

morphism is a pair (f : R
∼→ R∗, Ξ(f) : Ξ(R)

∼→ Ξ(R∗)). Then the

functor ΨR : R→ R�;R 7→ (R, Ξ(R)) satisfies the comm. diag.

R
ΨR //

Φ

��

R�

��

∋ (R, Ξ(R))
_

��
C R

Φ
oo ∋ R

so ΨR is a multiradial functor.
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Multiadial Algorithm Related to Étale Theta Functions

Define a multiradial environment (R, C, Φ) as follows:

R — Obj: ( Π y Πµ(MΘ
∗ (Π))⊗Q/Z, G y O×µ(G), αµ,×µ )

Π ∼= Πtp
X ,

G ∼= Gk ( ⇒ (G y O×µ(G)) ∼= (Gk y O×µ

k
) ),

αµ,×µ is the pair of the full-poly isomorphism Π/∆
∼→ G and

Πµ(MΘ
∗ (Π))⊗Q/Z zero→ O×µ(G)

Hom: (Π y Πµ(MΘ
∗ (Π))⊗Q/Z) ∼→ (Π∗ y Πµ(MΘ

∗ (Π
∗))⊗Q/Z):

the isom. induced by Π
∼→ Π∗; (G y O×µ(G))

∼→ (G∗ y O×µ(G∗)):

an “Ism”-multiple of the isom. induced by G
∼→ G∗.

C — Obj: (G y O×µ(G)) Hom: the same as in R

Φ — the functor R→ C defined by “forgetting”.
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.
Theorem (A Multiradial Algorithm Related to Étale Theta Functions

— cf. [IUTchII], Cor 1.12)
..

.

. ..

.

.

(R, C, Φ): the multiradial env. defined at the previous page

Then the functorial algorithm

Π 7−→ ∞θ
env

(MΘ
∗ (Π)) [ ⊆ lim−→

J

H1(ΠŸ (M
Θ
∗ (Π))|J ,Πµ(MΘ

∗ (Π))) ]

determines a functor
Ξ : R −→ F

where F is the category whose objects are {∞θ
env

(MΘ
∗ (Π))}.

In particular, the functor
ΨR : R −→ R�

[where R� denotes the “graph of Ξ”] is multiradial.
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