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Introduction

In IUT, we consider the following setting [k is an MLF; ¢ € O, \ O/ ]:

+ (@ mathematical setting link _+ ( a mathematical setting
arising from sch-theory/k arising from sch-theory/k

where the link is not arising from sch-/ring- theory like a “frobenius”
q — ¢V (¢#0, N >1). To relate “f-tools” to “-tools”, we use

@ a coric object “=" an object arising from a “math. setting/k"

which we can “share” via the link
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For instance, since the action G ~ Oy > ¢, ¢~ s trivial,
G

may be regarded as a coric object. Then, for instance, can the pair
(Gr ~ OF o Oz \{0}) [OF : a multiplicative monoid]
be regarded as a coric object? The answer is “no”. In fact,
(fGr ~TO2) 5 (FG ~ 02
— Tor S ior
= INSTOF/Tox S10F for SN 1 - 1
hence, we can not consider a link such as ¢ — qN. In IUT, we often use
def
(Gr ~ OFH = O /(OF )tor)

as a coric object.
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@ an example of “tools” --- a cyclotomic rigidity isomorphism

Let (G ~ M) = (G ~ OF). Write A(M) < Jim (Mo [n)).

Note: We can reconstruct a monoid O7(G) = O from G.
: def .
Write A(G) = lim (OZ(G)ior[n]).

Theorem (Cyc. Rig. Isom. via Local Class Field Theory)

Ffunctorial algorithm
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@ an example of “tools” --- a cyclotomic rigidity isomorphism

Let (G ~ M) = (G ~ OF). Write A(M) < Jim (Mo [n)).

Note: We can reconstruct a monoid O7(G) = O from G.
. def .

Write A(G) = l&nn(Og(G)tor[n]).

Theorem (Cyc. Rig. Isom. via Local Class Field Theory)

Ffunctorial algorithm

(G~ M) +— anatural isom. A(M) 5 A(G)

But, at the moment, since G ~ OED may not be a coric object, this

cyclotomic rigidity isomorphism [via LCT] is not “good”.
=—> We want another version of cyclotomic rigidity isomorphism.
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|
Cyclotomic Rigidity of a Mono-theta Env.

M®: a mod N mono-theta environment, i.e., a triple

(HMea DHM@7 Sl@[M@) = (HtXp[NNL Déa {7 : Im(s@) : 7_1}7€ﬂN)

i<

def - def
[ where puy = py(k), Hy[uy] = Hg Xa, (uy ¥ Gi) ]

=g

Proposition

Ffunctorial algorithm
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|
Cyclotomic Rigidity of a Mono-theta Env.

M®: a mod N mono-theta environment, i.e., a triple

(HMea DHM@7 Sl@[M@) = (HtXp[NNL Déa {7 : Im(s@) : 7_1}7€ﬂN)

i<

def

def -
[ where py = py(k), Hg[lﬁN] Hg Xay, (My » Gi) ]

Proposition

Ffunctorial algorithm
M7 e T,(M7) C Mye

for constructing the subgp corresp. to the subgp py C Hg[uN].

Definition

We refer to I1,,(M®) as the exterior cyclotome assoc. to M.

v
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Recall: 3functorial algorithms
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Recall: 3functorial algorithms

V©
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Recall: 3functorial algorithms

MY e Hx (M) [2IY]
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Recall: 3functorial algorithms

MY s Tx(MY) (=T

— (- 06)(M®) ¥ (1- Ag)(Lx (M) [21-Ag]
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Recall: 3functorial algorithms

MY s Tx(MY) (=T

— (- Ae)(M®) E (1- Ae)Ix (M17) [21-Ag]

Definition
We refer to (1- Ag)(M®) as the interior cyclotome assoc. to M®.

Theorem (Cyclotomic Rigidity — cf. [EtTh], Cor 2.19, (i))

Ffunctorial algorithm

v
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Recall: 3functorial algorithms

MY s Tx(MY) (=T

— (- 06)(M®) ¥ (1- Ag)(Lx (M) [21-Ag]

Definition

We refer to (1- Ag)(M®) as the interior cyclotome assoc. to M®.

Theorem (Cyclotomic Rigidity — cf. [EtTh], Cor 2.19, (i))
Ffunctorial algorithm
M7 — (- Ae)(M?) @z Z/NZ = T0,(M°)
for constructing a natural isom. corresp. to a natural isom.
(I- Do) @2 Z/NZ S py(R)

arising from scheme theory.

v
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|
Constant Multiple Rigidity of a Mono-theta Env.

Recall: Ffunctorial algorithms
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Constant Multiple Rigidity of a Mono-theta Env.

Recall: Ffunctorial algorithms

MY Ty (M) [ H;:P]
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Constant Multiple Rigidity of a Mono-theta Env.
Recall: Ffunctorial algorithms
MY Ty (M) [ H;:P]

— Ty () = Ty (1Y) [=11

lI=:g
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Constant Multiple Rigidity of a Mono-theta Env.

Recall: Ffunctorial algorithms

]

— Ty () = Ty (7)) |

lI><5

MY = Tx(MY) =1

R
=
%

as well as *functorial algorithm
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|
Constant Multiple Rigidity of a Mono-theta Env.

Recall: Ffunctorial algorithms

MY Ty (M7) [=0O

lI><5

]
©y def Ve
— I (I/L ) = Hg(Hé(M ) |

I

lI=:g

II

as well as *functorial algorithm

MI(_> — (OX @lZX“2)(T./JI(_)) C HI(H (/T()) (l A )(T/EH))
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|
Constant Multiple Rigidity of a Mono-theta Env.
Recall: Ffunctorial algorithms
MO e Tx (M) [ Hg]

@y def e ~
— Ty(M7) = Iy Iy (V7)) [=10

lI=:g

as well as *functorial algorithm
VT (O B (1) © HN (I (M), (- Ae) (7))

for constructing a subset of H' corresp. to oy @lZX“2, ie.,

(1-Z x po)—-orbit of O - O1.
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|
Constant Multiple Rigidity of a Mono-theta Env.
Recall: Ffunctorial algorithms
— Tx(M7) [=1IY ]
— I (v°) % Iy (Ix (1)) [gHg]
as well as *functorial algorithm
— (O P E R () C© HY I (7), (1- Ae) (17))
for constructing a subset of H' corresp. to o - @lZX“2, ie.,
(1-Z x po)—-orbit of O - O1.

Now we want to reduce the indeterminacy from O to ;.
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To reduce the indet., we use a theta function of standard type Og.

(Review of Og)

For an evaluation pt & € Y (k) labeled by 0 € Z, write
.. d f . _ ..
O = O(&)7-6.

In particular, we have

.1
(&0) € py.

More precisely, by substituting £y, we can see, up to pq,-multiple,

. .1
whether or not an € O} - O1 coincides with O4k.
[Note: puy = puy X p; = Gal(YV108/y18) x Gal(glog/}"flog)]
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Note: gp-theoretic interpretation of “substituting &"

res.

= considering the image via H'(Ily,1- Ae) =% H'(D,1- Ao)

D C H%f: the decomposition group of &y [well-defined up to conj.]

Thus, by applying
Proposition (Application of the Elliptic Cuspidalizations)

Ffunctorial algorithm
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Note: gp-theoretic interpretation of “substituting &"
= considering the image via H!(Il;,,1 - Ag) =3 HY(D,1- Ag)

D C H%f: the decomposition group of &y [well-defined up to conj.]

Thus, by applying
Proposition (Application of the Elliptic Cuspidalizations)
Ffunctorial algorithm

MY DY) C Hi(l,xﬂ“)

for constructing the subgp of Il (IV[”) corr. to the decomp. gp of &.

we have:
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Theorem (Constant Multiple Rigidity — cf. [EtTh], Cor 2.19, (iii))

Ffunctorial algorithm
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Theorem (Constant Multiple Rigidity — cf. [EtTh], Cor 2.19, (iii))
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Theorem (Constant Multiple Rigidity — cf. [EtTh], Cor 2.19, (iii))

Ffunctorial algorithm

M7 = (=1)- (7)€ H'(Iy (M), (- Ae)(M7))
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Theorem (Constant Multiple Rigidity — cf. [EtTh], Cor 2.19, (iii))

Ffunctorial algorithm
MY (=1)-8(M7) C Hl(Hi(M(')), (1-Ag)(M7))
for constructing a subset of H'! corresp. to

!
(l-Z x py)—orbit of p;-OL.
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Discrete Rigidity of a Mono-theta Env.

By means of the natural surjections pu; — iy, [where M|M'], we can

define a natural proj. system
o= My — My — -
of model mono-theta env.

Theorem (Discrete Rigidity — cf. [EtTh], Cor 2.19, (ii))

Yproj. system
o= MYy, — MYy — -

of mono-theta env. is isomorphic to the above natural one.
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Consequences of the Three Rigidities

MO = {M$1}n: a proj. system of mono-theta environments

By discrete rigidity, such a proj. system is uniquely determined,

up to isom.

My (M?) = lim (- 5 HOy(Mf,) = Hx(MF) = )

Also, we have:

o II;(M®) C IIx(M®): an open subgp corresp. to Hgf

o (I-Ag)(MP): a subquot. of Hé(M?) corresp. to |- Aep.

Mu(MP) < i (o = (MG) — Tu(M§) — )
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By cyclotomic rigidity, we have a natural isom. between 2(1)
(1 Ae)(MT) — Iu(MY).
In particular, by constant multiple rigidity, we conclude:

Theorem (Exterior Cyclotome Ver. of §(M®) — cf. [IUTchlI], Prop 1.5)

Ffunctorial algorithm
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By cyclotomic rigidity, we have a natural isom. between 2(1)
(1 Ae)(M?) — T1u(MY).
In particular, by constant multiple rigidity, we conclude:
Theorem (Exterior Cyclotome Ver. of §(M®) — cf. [IUTchlI], Prop 1.5)

Ffunctorial algorithm

MY 9 (MD) C Hl(Hi(Mff)),HH(M?))
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By cyclotomic rigidity, we have a natural isom. between 2(1)
(1 Ae)(MT) — Iu(MY).
In particular, by constant multiple rigidity, we conclude:

O(M®) — cf. [IlUTchlI], Prop 1.5)

Theorem (Exterior Cyclotome Ver. of

Ffunctorial algorithm

MY 8 (Y) C Hl(Hi(Mﬁ?),H,L(MF;’))

—env

for constructing an exterior cyclotome version of §(M®).
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By cyclotomic rigidity, we have a natural isom. between 2(1)
(1 Ae)(MT) — Iu(MY).
In particular, by constant multiple rigidity, we conclude:

O(M®) — cf. [IlUTchlI], Prop 1.5)

Theorem (Exterior Cyclotome Ver. of

Ffunctorial algorithm

MY = g (MT) © HY (T (M), I, (M)

for constructing an exterior cyclotome version of §(M®).

Write

o, (1) C ling H (I (117)], T (1))
J C Ty (MP): fin index, open o

for the subset { n e @Jﬂl |n-n €@ (M) forIn>1}.
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-
Rough Sketch of the Multiradiality

Consider the following situation:

+ (@ mathematical setting link 4 ( @ mathematical setting
arising from sch-theory/k arising from sch-theory/k
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-
Rough Sketch of the Multiradiality

Consider the following situation:

t “tools” which we need to i “tools” which we need to
compute “deg(L)" compute “deg(L)"

t=:functorial algorithm t=:functorial algorithm

+ (@ mathematical setting link 4 ( @ mathematical setting
arising from sch-theory/k arising from sch-theory/k

@ If the link is “isom.” arising from sch-/ring- theory, then by the
functoriality of the algorithms, we have:

t “tools” which we need to ~ % “tools” which we need to
compute “deg(L)" compute “deg(L)"
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o In IUT, consider the link [e.g., a “frobenius” q — ¢V] not arising

from sch-/ring- theory, so, a priori:

t “tools” which we need to relation? 4 “tools” which we need to
compute “deg(L)" compute “deg(L)"

Now suppose that:

For O € {t, 1}, Ffunctorial algorithm

0 ( a mathematical setting a O-coric obiect 2C'
.. — )
arising from sch-theory/k [e.g., a top. gp UG = Gy]
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]
Then the multiradiality of the functorial algorithms fz, iz implies:

+ “tools” which we need to i “tools” which we need to
compute “deg(L)" compute “deg(L)"

TZ:multiradial functorial algorithm fZ:multiradial functorial algorithm

+ [ a mathematical setting in + [ @ mathematical setting
arising from sch-theory/k /] —— \ arising from sch-theory/k
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Then the multiradiality of the functorial algorithms fz, iz implies:

+ ( “tools” which we need to + ( “tools” which we need to
compute “deg(L)" compute “deg(L)"
TZ:multiradial functorial algorithm

fZ:multiradial functorial algorithm

+ [ a mathematical setting in + [ @ mathematical setting
arising from sch-theory/k | —

arising from sch-theory/k

functorial algorithm

functorial algorithm

fo to

Arata Minamide (RIMS, Kyoto University) Etale Theta Functions |1

July 19, 2016 16 / 22



Then the multiradiality of the functorial algorithms fz, iz implies:

+ ( “tools” which we need to + ( “tools” which we need to
compute “deg(L)" compute “deg(L)"
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Then the multiradiality of the functorial algorithms fz, iz implies:

+ ( “tools” which we need to\ 5 4 ( "tools” which we need to
compute “deg(L)" — compute “deg(L)"
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Radial Environment

Definition
We refer to a triple (R, C, ®: R — C) consisting of

@ a category R — whose objects is a specific collection of radial data,
and each of whose morphism is an isomorphism

@ a category C — whose objects is a specific collection of coric data,
and each of whose morphism is an isomorphism

@ a functor ® — an essentially surj. functor, which is a “functorial
algorithm” whose “input data” is € R and whose
“output data” is € C

as a radial environment. If @ is full, then we say that the radial env. is

multiradial. We refer to a radial env. which is not multiradial as uniradial. )
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Example (a multiradial environment)
@ R — Obj: a triple (II, G, «) consist. of
o II: a topological gp = Hg;
e G: a topological gp = Gy;

o a:II/A 5 G: the full poly-isomorphism, i.e., the collection of all
isomorphisms, where we write A C II for the gp-theoretic subgroup
corresp. to Ag.

Hom: a pair of isom. of top. gps II = II*, G = G*.

e C — Obj: atop. gp =2 G, Hom: an isom. of top. gps G = G*

o & — the functor R — C defined to be (II, G, o) — G
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Multiradial Algorithm

Definition
(R, C, ®): a radial environment
Suppose: we have a commutative diagram

1

where F is a category, and all arrows are functors. We say that the

f

functor [i.e., "functorial algorithm”] = is multiradial if (R, C, ®)

is multiradial. |
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Note: If we have a multiradial env. (R, C, ®) and a diagram

R—>F

(Di
C
then we can always get a multiradial functor as follows:

Let R* be the category whose object is a pair (R, Z(R)) and whose
morphism is a pair (f : R = R*, Z(f) : 2(R) = Z(R*)). Then the
functor U : R — R¥; R+ (R, Z(R)) satisfies the comm. diag.

I

R—FRe > (R

=(R))
L]
R

C?R =

so Uy is a multiradial functor.
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-
Multiadial Algorithm Related to Etale Theta Functions

Define a multiradial environment (R, C, ®) as follows:

o R — Obj: (Il ~I,MO(I1) ® Q/Z, G ~ O*H(G), apxu )
o II = MY,
0 G = Gy (= (G OH(G) = (Gr~ OZH)),
® . xp is the pair of the full-poly isomorphism II/A = G and

IL,(M2(ID) ® Q/Z = O**(G)

Hom: (IT A~ T, (MO (I1)) @ Q/Z) 5 (I ~ I1,,(MO(I1)) @ Q/2Z):
the isom. induced by IT = II*; (G ~ O*H#(GQ)) = (G* ~ OXF(G*)):
an “Ism"-multiple of the isom. induced by G = G*.

e C — Obj: (G O*¥(G)) Hom: the same asin R

@ & — the functor R — C defined by “forgetting”.

Arata Minamide (RIMS, Kyoto University) Etale Theta Functions |1 July 19, 2016 21 /22



Theorem (A Multiradial Algorithm Related to Etale Theta Functions
— cf. [IUTchll], Cor 1.12)
(R, C, ®): the multiradial env. defined at the previous page

Then the functorial algorithm

I of, (MP(I) [ C lim B (I (M (11)) ], I, (M (11))) |
- 4

—=env

determines a functor
=:R—F

where F is the category whose objects are {OOQeHV(M?(H))}.

In particular, the functor
Ur:R — R*

[where R* denotes the “graph of ="] is multiradial.
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