Étale theta functions and mono-theta environments II

Arata Minamide

RIMS, Kyoto University

July 19, 2016

Arata Minamide (RIMS, Kyoto University)

Introduction

In IUT, we consider the following setting [k is an MLF; $q \in \mathcal{O}_k \setminus \mathcal{O}_k^{\times}$]:

$$\dagger$$
 (a mathematical setting arising from sch-theory/k) $\xrightarrow{\text{link}} \ddagger$ (a mathematical setting arising from sch-theory/k)

where the link is not arising from sch-/ring- theory like a "frobenius" $q \mapsto q^N \ (q \neq 0, N > 1)$. To relate "†-tools" to "‡-tools", we use

 \bullet a coric object "=" an object arising from a "math. setting/k" which we can "share" via the link

Introduction

In IUT, we consider the following setting [k is an MLF; $q \in \mathcal{O}_k \setminus \mathcal{O}_k^{\times}$]:

where the link is not arising from sch-/ring- theory like a "frobenius" $q \mapsto q^N$ ($q \neq 0$, N > 1). To relate "†-tools" to "‡-tools", we use

 \bullet a coric object "=" an object arising from a "math. setting/k" which we can "share" via the link

For instance, since the action $\ G_k \curvearrowright \mathcal{O}_k
i q$, q^N is trivial,

 G_k

may be regarded as a coric object. Then, for instance, can the pair

 $(G_k \curvearrowright \mathcal{O}_{\overline{k}}^{\rhd} \stackrel{\text{def}}{=} \mathcal{O}_{\overline{k}} \setminus \{0\}) \quad [\mathcal{O}_{\overline{k}}^{\rhd}: \texttt{a multiplicative monoid}]$

be regarded as a coric object? The answer is "no". In fact,

hence, we can not consider a link such as $q \mapsto q^N$. In IUT, we often use

$$(G_k \curvearrowright \mathcal{O}_{\overline{k}}^{\times \mu} \stackrel{\text{def}}{=} \mathcal{O}_{\overline{k}}^{\times} / (\mathcal{O}_{\overline{k}}^{\times})_{\text{tor}})$$

as a coric object.

• an example of "tools" · · · a cyclotomic rigidity isomorphism

Let $(G \cap M) \cong (G_k \cap \mathcal{O}_{\overline{k}}^{\triangleright})$. Write $\Lambda(M) \stackrel{\text{def}}{=} \varprojlim_n(M_{\text{tor}}[n])$. Note: We can reconstruct a monoid $\mathcal{O}_{\overline{k}}^{\triangleright}(G) \cong \mathcal{O}_{\overline{k}}^{\triangleright}$ from G. Write $\Lambda(G) \stackrel{\text{def}}{=} \varprojlim_n(\mathcal{O}_{\overline{k}}^{\triangleright}(G)_{\text{tor}}[n])$.

Theorem (Cyc. Rig. Isom. via Local Class Field Theory) ³functorial algorithm • an example of "tools" · · · a cyclotomic rigidity isomorphism

Let $(G \cap M) \cong (G_k \cap \mathcal{O}_{\overline{k}}^{\triangleright})$. Write $\Lambda(M) \stackrel{\text{def}}{=} \varprojlim_n(M_{\text{tor}}[n])$. Note: We can reconstruct a monoid $\mathcal{O}_{\overline{k}}^{\triangleright}(G) \cong \mathcal{O}_{\overline{k}}^{\triangleright}$ from G. Write $\Lambda(G) \stackrel{\text{def}}{=} \varprojlim_n(\mathcal{O}_{\overline{k}}^{\triangleright}(G)_{\text{tor}}[n])$.

Theorem (Cyc. Rig. Isom. via Local Class Field Theory) ³functorial algorithm

 $(G \frown M)$

• an example of "tools" · · · a cyclotomic rigidity isomorphism

Let $(G \cap M) \cong (G_k \cap \mathcal{O}_{\overline{k}}^{\triangleright})$. Write $\Lambda(M) \stackrel{\text{def}}{=} \varprojlim_n(M_{\text{tor}}[n])$. Note: We can reconstruct a monoid $\mathcal{O}_{\overline{k}}^{\triangleright}(G) \cong \mathcal{O}_{\overline{k}}^{\triangleright}$ from G. Write $\Lambda(G) \stackrel{\text{def}}{=} \varprojlim_n(\mathcal{O}_{\overline{k}}^{\triangleright}(G)_{\text{tor}}[n])$.

Theorem (Cyc. Rig. Isom. via Local Class Field Theory) ³functorial algorithm

$$(G \frown M) \longrightarrow$$
 a natural isom. $\Lambda(M) \stackrel{\sim}{\rightarrow} \Lambda(G)$

But, at the moment, since $G_k \curvearrowright \mathcal{O}_k^{\triangleright}$ may not be a coric object, this cyclotomic rigidity isomorphism [via LCT] is not "good".

 \implies We want another version of cyclotomic rigidity isomorphism.

Étale Theta Functions II

 \mathbb{M}^{Θ} : a mod N mono-theta environment, i.e., a triple

[∃]functorial algorithm

 $\mathbb{M}^{\Theta}:$ a mod N mono-theta environment, i.e., a triple

$$(\Pi_{\mathbb{M}^{\Theta}}, \mathcal{D}_{\Pi_{\mathbb{M}^{\Theta}}}, s_{\Pi_{\mathbb{M}^{\Theta}}}^{\Theta}) \cong (\Pi_{\underline{Y}}^{\mathrm{tp}}[\boldsymbol{\mu}_{N}], \mathcal{D}_{\underline{Y}}, \{\gamma \cdot \mathrm{Im}(s_{\underline{Y}}^{\Theta}) \cdot \gamma^{-1}\}_{\gamma \in \boldsymbol{\mu}_{N}})$$

$$[\text{ where } \boldsymbol{\mu}_{N} \stackrel{\mathrm{def}}{=} \boldsymbol{\mu}_{N}(\overline{k}), \ \Pi_{\underline{Y}}^{\mathrm{tp}}[\boldsymbol{\mu}_{N}] \stackrel{\mathrm{def}}{=} \Pi_{\underline{Y}}^{\mathrm{tp}} \times_{G_{k}} (\boldsymbol{\mu}_{N} \rtimes G_{k})]$$

$$Proposition$$

$$\exists \text{functorial algorithm}$$

 \mathbb{M}^Θ

 $\mathbb{M}^{\Theta}\!\!:$ a mod N mono-theta environment, i.e., a triple

$$(\Pi_{\mathbb{M}^{\Theta}}, \mathcal{D}_{\Pi_{\mathbb{M}^{\Theta}}}, s_{\Pi_{\mathbb{M}^{\Theta}}}^{\Theta}) \cong (\Pi_{\underline{Y}}^{\mathrm{tp}}[\boldsymbol{\mu}_{N}], \mathcal{D}_{\underline{Y}}, \{\gamma \cdot \mathrm{Im}(s_{\underline{Y}}^{\Theta}) \cdot \gamma^{-1}\}_{\gamma \in \boldsymbol{\mu}_{N}})$$

$$[\text{ where } \boldsymbol{\mu}_{N} \stackrel{\mathrm{def}}{=} \boldsymbol{\mu}_{N}(\overline{k}), \ \Pi_{\underline{Y}}^{\mathrm{tp}}[\boldsymbol{\mu}_{N}] \stackrel{\mathrm{def}}{=} \Pi_{\underline{Y}}^{\mathrm{tp}} \times_{G_{k}} (\boldsymbol{\mu}_{N} \rtimes G_{k})]$$

$$Proposition$$

$$\exists \text{functorial algorithm}$$

$$\mathbb{M}^{\Theta} \quad \longmapsto \quad \Pi_{\mu}(\mathbb{M}^{\Theta}) \subseteq \Pi_{\mathbb{M}^{\Theta}}$$

 \mathbb{M}^{Θ} : a mod N mono-theta environment, i.e., a triple

$$\mathbb{M}^{\Theta} \quad \longmapsto \quad \Pi_{\mu}(\mathbb{M}^{\Theta}) \subseteq \Pi_{\mathbb{M}^{\Theta}}$$

for constructing the subgp corresp. to the subgp $\mu_N \subseteq \Pi_Y^{\mathrm{tp}}[\mu_N]$.

Definition

We refer to $\Pi_{\mu}(\mathbb{M}^{\Theta})$ as the exterior cyclotome assoc. to \mathbb{M}^{Θ} .

$$\mathbb{M}^{\Theta} \longmapsto \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) \quad [\cong \Pi_{\underline{X}}^{\mathrm{tp}}]$$

$$\begin{array}{lll}
\mathbb{M}^{\Theta} & \longmapsto & \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) & [\cong \Pi_{\underline{X}}^{\mathrm{tp}}] \\
& \longmapsto & (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}) \stackrel{\mathrm{def}}{=} (l \cdot \Delta_{\Theta})(\Pi_{\underline{X}}(\mathbb{M}^{\Theta})) & [\cong l \cdot \Delta_{\Theta}]
\end{array}$$

$$\begin{split} \mathbb{M}^{\Theta} & \longmapsto & \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) \quad [\cong \Pi_{\underline{X}}^{\mathrm{tp}}] \\ & \longmapsto & (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}) \stackrel{\mathrm{def}}{=} (l \cdot \Delta_{\Theta})(\Pi_{\underline{X}}(\mathbb{M}^{\Theta})) \quad [\cong l \cdot \Delta_{\Theta}] \end{split}$$

Definition

We refer to $(l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta})$ as the interior cyclotome assoc. to \mathbb{M}^{Θ} .

Theorem (Cyclotomic Rigidity — cf. [EtTh], Cor 2.19, (i)) ³functorial algorithm

$$\begin{split} \mathbb{M}^{\Theta} & \longmapsto & \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) \quad [\cong \Pi_{\underline{X}}^{\mathrm{tp}}] \\ & \longmapsto & (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}) \stackrel{\mathrm{def}}{=} (l \cdot \Delta_{\Theta})(\Pi_{\underline{X}}(\mathbb{M}^{\Theta})) \quad [\cong l \cdot \Delta_{\Theta}] \end{split}$$

Definition

We refer to $(l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta})$ as the interior cyclotome assoc. to \mathbb{M}^{Θ} .

Theorem (Cyclotomic Rigidity — cf. [EtTh], Cor 2.19, (i)) ³functorial algorithm

$$\mathbb{M}^{\Theta}$$

$$\begin{array}{lcl}
\mathbb{M}^{\Theta} & \longmapsto & \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) & [\cong \Pi_{\underline{X}}^{\mathrm{tp}}] \\
& \longmapsto & (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}) \stackrel{\mathrm{def}}{=} (l \cdot \Delta_{\Theta})(\Pi_{\underline{X}}(\mathbb{M}^{\Theta})) & [\cong l \cdot \Delta_{\Theta}]
\end{array}$$

Definition

We refer to $(l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta})$ as the interior cyclotome assoc. to \mathbb{M}^{Θ} .

Theorem (Cyclotomic Rigidity — cf. [EtTh], Cor 2.19, (i)) ³functorial algorithm

$$\mathbb{M}^{\Theta} \longmapsto (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}) \otimes_{\mathbb{Z}} \mathbb{Z}/N\mathbb{Z} \xrightarrow{\sim} \Pi_{\mu}(\mathbb{M}^{\Theta})$$

$$\begin{array}{lll}
\mathbb{M}^{\Theta} & \longmapsto & \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) & [\cong \Pi_{\underline{X}}^{\mathrm{tp}}] \\
& \longmapsto & (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}) \stackrel{\mathrm{def}}{=} (l \cdot \Delta_{\Theta})(\Pi_{\underline{X}}(\mathbb{M}^{\Theta})) & [\cong l \cdot \Delta_{\Theta}]
\end{array}$$

Definition

We refer to $(l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta})$ as the interior cyclotome assoc. to \mathbb{M}^{Θ} .

Theorem (Cyclotomic Rigidity — cf. [EtTh], Cor 2.19, (i)) ³functorial algorithm

$$\mathbb{M}^{\Theta} \longmapsto (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}) \otimes_{\mathbb{Z}} \mathbb{Z}/N\mathbb{Z} \xrightarrow{\sim} \Pi_{\mu}(\mathbb{M}^{\Theta})$$

for constructing a natural isom. corresp. to a natural isom.

$$(l \cdot \Delta_{\Theta}) \otimes_{\mathbb{Z}} \mathbb{Z}/N\mathbb{Z} \xrightarrow{\sim} \boldsymbol{\mu}_N(\overline{k})$$

arising from scheme theory.

Recall: [∃]functorial algorithms

 \mathbb{M}^Θ

$$\mathbb{M}^{\Theta} \longmapsto \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) \ [\cong \Pi_{\underline{X}}^{\mathrm{tp}}]$$

$$\begin{split} \mathbb{M}^{\Theta} &\longmapsto & \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) \ [\cong \Pi_{\underline{X}}^{\mathrm{tp}}] \\ &\longmapsto & \Pi_{\underline{\check{Y}}}(\mathbb{M}^{\Theta}) \ \stackrel{\mathrm{def}}{=} & \Pi_{\underline{\check{Y}}}(\Pi_{\underline{X}}(\mathbb{M}^{\Theta})) \ [\cong \Pi_{\underline{\check{Y}}}^{\mathrm{tp}}] \end{split}$$

Recall: [∃]functorial algorithms

$$\begin{split} \mathbb{M}^{\Theta} &\longmapsto \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) \ [\cong \Pi_{\underline{X}}^{\mathrm{tp}}] \\ &\longmapsto \Pi_{\underline{\underline{Y}}}(\mathbb{M}^{\Theta}) \ \stackrel{\mathrm{def}}{=} \ \Pi_{\underline{\underline{Y}}}(\Pi_{\underline{X}}(\mathbb{M}^{\Theta})) \ [\cong \Pi_{\underline{\underline{Y}}}^{\mathrm{tp}}] \end{split}$$

as well as [∃]functorial algorithm

Recall: [∃]functorial algorithms

$$\begin{split} \mathbb{M}^{\Theta} &\longmapsto \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) \ [\cong \Pi_{\underline{X}}^{\mathrm{tp}}] \\ &\longmapsto \Pi_{\underline{\underline{Y}}}(\mathbb{M}^{\Theta}) \ \stackrel{\mathrm{def}}{=} \ \Pi_{\underline{\underline{Y}}}(\Pi_{\underline{X}}(\mathbb{M}^{\Theta})) \ [\cong \Pi_{\underline{\underline{Y}}}^{\mathrm{tp}}] \end{split}$$

as well as [∃]functorial algorithm

 \mathbb{M}^Θ

Recall: [∃]functorial algorithms

$$\begin{split} \mathbb{M}^{\Theta} &\longmapsto \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) \ [\cong \Pi_{\underline{X}}^{\mathrm{tp}}] \\ &\longmapsto \Pi_{\underline{\check{Y}}}(\mathbb{M}^{\Theta}) \ \stackrel{\mathrm{def}}{=} \ \Pi_{\underline{\check{Y}}}(\Pi_{\underline{X}}(\mathbb{M}^{\Theta})) \ [\cong \Pi_{\underline{\check{Y}}}^{\mathrm{tp}}] \end{split}$$

as well as [∃]functorial algorithm

$$\mathbb{M}^{\Theta} \longmapsto (\mathcal{O}_{k}^{\times} : \underline{\underline{\eta}}^{\Theta, l \cdot \underline{\mathbb{Z}} \times \mu_{2}})(\mathbb{M}^{\Theta}) \subseteq H^{1}(\Pi_{\underline{\underline{\mathbb{Y}}}}(\mathbb{M}^{\Theta}), (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}))$$

Recall: [∃]functorial algorithms

$$\begin{split} \mathbb{M}^{\Theta} &\longmapsto \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) \ [\cong \Pi_{\underline{X}}^{\mathrm{tp}}] \\ &\longmapsto \Pi_{\underline{\check{Y}}}(\mathbb{M}^{\Theta}) \ \stackrel{\mathrm{def}}{=} \ \Pi_{\underline{\check{Y}}}(\Pi_{\underline{X}}(\mathbb{M}^{\Theta})) \ [\cong \Pi_{\underline{\check{Y}}}^{\mathrm{tp}}] \end{split}$$

as well as [∃]functorial algorithm

$$\mathbb{M}^{\Theta} \longmapsto (\mathcal{O}_{k}^{\times} \cdot \underline{\ddot{\eta}}^{\Theta, l \cdot \underline{\mathbb{Z}} \times \mu_{2}})(\mathbb{M}^{\Theta}) \subseteq H^{1}(\Pi_{\underline{\ddot{Y}}}(\mathbb{M}^{\Theta}), (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}))$$

for constructing a subset of H^1 corresp. to $\mathcal{O}_k^{\times} \cdot \underline{\ddot{\eta}}^{\Theta,l\cdot\underline{\mathbb{Z}}\times\mu_2}$, i.e.,

 $(l \cdot \underline{\mathbb{Z}} \times \boldsymbol{\mu}_2)$ -orbit of $\mathcal{O}_k^{\times} \cdot \ddot{\Theta}^{\frac{1}{l}}$.

Recall: [∃]functorial algorithms

$$\begin{split} \mathbb{M}^{\Theta} &\longmapsto \Pi_{\underline{X}}(\mathbb{M}^{\Theta}) \ [\cong \Pi_{\underline{X}}^{\mathrm{tp}}] \\ &\longmapsto \Pi_{\underline{\check{Y}}}(\mathbb{M}^{\Theta}) \ \stackrel{\mathrm{def}}{=} \ \Pi_{\underline{\check{Y}}}(\Pi_{\underline{X}}(\mathbb{M}^{\Theta})) \ [\cong \Pi_{\underline{\check{Y}}}^{\mathrm{tp}}] \end{split}$$

as well as [∃]functorial algorithm

$$\mathbb{M}^{\Theta} \longmapsto (\mathcal{O}_{k}^{\times} \cdot \underline{\ddot{\eta}}^{\Theta, l \cdot \underline{\mathbb{Z}} \times \mu_{2}})(\mathbb{M}^{\Theta}) \subseteq H^{1}(\Pi_{\underline{\ddot{Y}}}(\mathbb{M}^{\Theta}), (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}))$$

for constructing a subset of H^1 corresp. to $\mathcal{O}_k^{\times} \cdot \underline{\ddot{\eta}}^{\Theta,l\cdot\underline{\mathbb{Z}}\times\mu_2}$, i.e.,

 $(l \cdot \underline{\mathbb{Z}} \times \boldsymbol{\mu}_2)$ -orbit of $\mathcal{O}_k^{\times} \cdot \ddot{\Theta}^{\frac{1}{l}}$.

Now we want to reduce the indeterminacy from \mathcal{O}_k^{\times} to $\boldsymbol{\mu}_l$.

Étale Theta Functions II

To reduce the indet., we use a theta function of standard type $\ddot{\Theta}_{st}.$

(Review of $\ddot{\Theta}_{\rm st}$)

For an evaluation pt $\xi_0 \in \ddot{Y}(k)$ labeled by $0 \in \underline{\mathbb{Z}}$, write

$$\ddot{\Theta}_{\rm st} \stackrel{\rm def}{=} \ddot{\Theta}(\xi_0)^{-1} \cdot \ddot{\Theta}.$$

In particular, we have

$$\ddot{\Theta}^{rac{1}{l}}_{\mathrm{st}}(\xi_0) \in \boldsymbol{\mu}_{2l}.$$

More precisely, by substituting ξ_0 , we can see, up to μ_{2l} -multiple, whether or not an $\in \mathcal{O}_k^{\times} \cdot \ddot{\Theta}^{\frac{1}{l}}$ coincides with $\ddot{\Theta}_{st}^{\frac{1}{l}}$.

$$[\text{Note:} \ \boldsymbol{\mu}_{2l} \cong \ \boldsymbol{\mu}_2 \times \boldsymbol{\mu}_l \cong \ \text{Gal}(\ddot{Y}^{\log}/Y^{\log}) \times \text{Gal}(\underline{\ddot{Y}}^{\log}/\ddot{Y}^{\log})]$$

= considering the image via $H^1(\Pi_{\ddot{Y}}, l \cdot \Delta_{\Theta}) \stackrel{\text{res.}}{\to} H^1(D, l \cdot \Delta_{\Theta})$

 $D \subseteq \Pi_{\underline{Y}}^{\mathrm{tp}}$: the decomposition group of ξ_0 [well-defined up to conj.]

Thus, by applying

Proposition (Application of the Elliptic Cuspidalizations)

[∃]functorial algorithm

 $= \text{ considering the image via } H^1(\Pi_{\underline{\ddot{Y}}}, l \cdot \Delta_{\Theta}) \xrightarrow{\text{res.}} H^1(D, l \cdot \Delta_{\Theta})$

 $D \subseteq \Pi_{\underline{\ddot{Y}}}^{\mathrm{tp}}$: the decomposition group of ξ_0 [well-defined up to conj.]

Thus, by applying

Proposition (Application of the Elliptic Cuspidalizations)

[∃]functorial algorithm

 \mathbb{M}^{Θ}

= considering the image via $H^1(\Pi_{\ddot{Y}}, l \cdot \Delta_{\Theta}) \stackrel{\text{res.}}{\to} H^1(D, l \cdot \Delta_{\Theta})$

 $D \subseteq \Pi_{\underline{Y}}^{\mathrm{tp}}$: the decomposition group of ξ_0 [well-defined up to conj.]

Thus, by applying

Proposition (Application of the Elliptic Cuspidalizations) ³functorial algorithm

$$\mathbb{M}^{\Theta} \longmapsto D(\mathbb{M}^{\Theta}) \subseteq \Pi_{\underline{\underline{Y}}}(\mathbb{M}^{\Theta})$$

= considering the image via $H^1(\Pi_{\ddot{Y}}, l \cdot \Delta_{\Theta}) \stackrel{\text{res.}}{\to} H^1(D, l \cdot \Delta_{\Theta})$

 $D \subseteq \Pi_{\underline{\ddot{Y}}}^{\mathrm{tp}}$: the decomposition group of ξ_0 [well-defined up to conj.]

Thus, by applying

Proposition (Application of the Elliptic Cuspidalizations)

[∃]functorial algorithm

$$\mathbb{M}^{\Theta} \longmapsto D(\mathbb{M}^{\Theta}) \subseteq \Pi_{\underline{\check{Y}}}(\mathbb{M}^{\Theta})$$

for constructing the subgp of $\Pi_{\underline{\check{Y}}}(\mathbb{M}^{\Theta})$ corr. to the decomp. gp of ξ_0 .

we have:

 \mathbb{M}^{Θ}

$$\mathbb{M}^{\Theta} \longmapsto (-1) \cdot \underline{\underline{\theta}}(\mathbb{M}^{\Theta}) \subseteq H^{1}(\Pi_{\underline{\underline{Y}}}(\mathbb{M}^{\Theta}), (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}))$$

$$\mathbb{M}^{\Theta} \longmapsto (-1) \cdot \underline{\underline{\theta}}(\mathbb{M}^{\Theta}) \subseteq H^{1}(\Pi_{\underline{\underline{Y}}}(\mathbb{M}^{\Theta}), (l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}))$$

for constructing a subset of H^1 corresp. to

 $(l \cdot \underline{\mathbb{Z}} \times \boldsymbol{\mu}_2)$ -orbit of $\boldsymbol{\mu}_l \cdot \ddot{\Theta}_{\mathrm{st}}^{\frac{1}{l}}$.

Discrete Rigidity of a Mono-theta Env.

By means of the natural surjections $\mu_{M'} \twoheadrightarrow \mu_M$ [where M|M'], we can define a natural proj. system

$$\cdots \to \mathbb{M}_{M'} \to \mathbb{M}_M \to \cdots$$

of model mono-theta env.

Theorem (Discrete Rigidity — cf. [EtTh], Cor 2.19, (ii)) $^{\forall}$ proj. system

$$\cdots \to \mathbb{M}^{\bullet}_{M'} \to \mathbb{M}^{\bullet}_{M} \to \cdots$$

of mono-theta env. is isomorphic to the above natural one.

Consequences of the Three Rigidities

 $\mathbb{M}^{\Theta}_{*} = \{\mathbb{M}^{\Theta}_{N}\}_{N}$: a proj. system of mono-theta environments By discrete rigidity, such a proj. system is uniquely determined, up to isom.

$$\Pi_{\underline{X}}(\mathbb{M}^{\Theta}_{*}) \stackrel{\text{def}}{=} \varprojlim (\cdots \stackrel{\sim}{\to} \Pi_{\underline{X}}(\mathbb{M}^{\Theta}_{M'}) \stackrel{\sim}{\to} \Pi_{\underline{X}}(\mathbb{M}^{\Theta}_{M}) \stackrel{\sim}{\to} \cdots)$$

Also, we have:

•
$$\Pi_{\underline{\check{Y}}}(\mathbb{M}^{\Theta}_{*}) \subseteq \Pi_{\underline{\check{X}}}(\mathbb{M}^{\Theta}_{*})$$
: an open subgp corresp. to $\Pi_{\underline{\check{Y}}}^{\mathrm{tp}}$

• $(l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}_{*})$: a subquot. of $\prod_{\underline{X}}(\mathbb{M}^{\Theta}_{*})$ corresp. to $l \cdot \Delta_{\Theta}$.

$$\Pi_{\boldsymbol{\mu}}(\mathbb{M}^{\Theta}_{*}) \stackrel{\text{def}}{=} \varprojlim (\cdots \twoheadrightarrow \Pi_{\boldsymbol{\mu}}(\mathbb{M}^{\Theta}_{M'}) \twoheadrightarrow \Pi_{\boldsymbol{\mu}}(\mathbb{M}^{\Theta}_{M}) \twoheadrightarrow \cdots)$$

$$(l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}_{*}) \xrightarrow{\sim} \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}).$$

In particular, by constant multiple rigidity, we conclude:

Theorem (Exterior Cyclotome Ver. of $\underline{\underline{\theta}}(\mathbb{M}^{\Theta})$ — cf. [IUTchII], Prop 1.5) ³functorial algorithm

$$(l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}_{*}) \xrightarrow{\sim} \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}).$$

In particular, by constant multiple rigidity, we conclude:

Theorem (Exterior Cyclotome Ver. of $\underline{\underline{\theta}}(\mathbb{M}^{\Theta})$ — cf. [IUTchII], Prop 1.5) ³functorial algorithm

 \mathbb{M}^{Θ}_*

$$(l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}_{*}) \xrightarrow{\sim} \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}).$$

In particular, by constant multiple rigidity, we conclude:

Theorem (Exterior Cyclotome Ver. of $\underline{\underline{\theta}}(\mathbb{M}^{\Theta})$ — cf. [IUTchII], Prop 1.5) ³functorial algorithm

$$\mathbb{M}^{\Theta}_{*} \longmapsto \underline{\theta}_{\mathrm{env}}(\mathbb{M}^{\Theta}_{*}) \subseteq H^{1}(\Pi_{\underline{\ddot{Y}}}(\mathbb{M}^{\Theta}_{*}), \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}))$$

$$(l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}_{*}) \xrightarrow{\sim} \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}).$$

In particular, by constant multiple rigidity, we conclude:

Theorem (Exterior Cyclotome Ver. of $\underline{\underline{\theta}}(\mathbb{M}^{\Theta})$ — cf. [IUTchII], Prop 1.5) ³functorial algorithm

$$\mathbb{M}^{\Theta}_{*} \longmapsto \underline{\theta}_{=\mathrm{env}}(\mathbb{M}^{\Theta}_{*}) \subseteq H^{1}(\Pi_{\underline{\check{Y}}}(\mathbb{M}^{\Theta}_{*}), \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}))$$

for constructing an exterior cyclotome version of $\underline{\theta}(\mathbb{M}^{\Theta})$.

$$(l \cdot \Delta_{\Theta})(\mathbb{M}^{\Theta}_{*}) \xrightarrow{\sim} \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}).$$

In particular, by constant multiple rigidity, we conclude:

Theorem (Exterior Cyclotome Ver. of $\underline{\underline{\theta}}(\mathbb{M}^{\Theta})$ — cf. [IUTchII], Prop 1.5) ³functorial algorithm

$$\mathbb{M}^{\Theta}_{*} \longmapsto \underline{\theta}_{=\mathrm{env}}(\mathbb{M}^{\Theta}_{*}) \subseteq H^{1}(\Pi_{\underline{\breve{Y}}}(\mathbb{M}^{\Theta}_{*}), \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}))$$

for constructing an exterior cyclotome version of $\underline{\theta}(\mathbb{M}^{\Theta})$.

Write

$$\sum_{\substack{\Theta \in \operatorname{env}}} (\mathbb{M}^{\Theta}_{*}) \subseteq \lim_{\substack{J \subseteq \Pi_{\underline{\check{\Sigma}}}(\mathbb{M}^{\Theta}_{*}): \text{ fin index, open}}} H^{1}(\Pi_{\underline{\check{\Sigma}}}(\mathbb{M}^{\Theta}_{*})|_{J}, \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}))$$
for the subset $\{\eta \in \varinjlim_{J} H^{1} \mid n \cdot \eta \in \underline{\theta}_{\operatorname{env}}(\mathbb{M}^{\Theta}_{*}) \text{ for } \exists n \ge 1 \}.$

Rough Sketch of the Multiradiality

Consider the following situation:

$†$
 (a mathematical setting arising from sch-theory/k) \xrightarrow{link} \ddagger (a mathematical setting arising from sch-theory/k)

Rough Sketch of the Multiradiality

Consider the following situation:

Rough Sketch of the Multiradiality

Consider the following situation:

• If the link is "isom." arising from sch-/ring- theory, then by the functoriality of the algorithms, we have:

$$\begin{pmatrix} \text{``tools'' which we need to} \\ \text{compute ``deg}(\mathcal{L})'' \end{pmatrix} \xrightarrow{\sim} \ddagger \begin{pmatrix} \text{``tools'' which we need to} \\ \text{compute ``deg}(\mathcal{L})'' \end{pmatrix}$$

 In IUT, consider the link [e.g., a "frobenius" q → q^N] not arising from sch-/ring- theory, so, a priori:

$$^{\dagger}\left(\begin{array}{c}\text{``tools'' which we need to}\\ \text{compute ``deg}(\mathcal{L})^{''}\end{array}\right) \xrightarrow{\text{relation?}} ^{\ddagger}\left(\begin{array}{c}\text{``tools'' which we need to}\\ \text{compute ``deg}(\mathcal{L})^{''}\end{array}\right)$$

Now suppose that:

For $\Box \in \{\dagger, \ \ddagger\}$, [∃]functorial algorithm

 $\Box \left(\begin{array}{c} \text{a mathematical setting} \\ \text{arising from sch-theory}/k \end{array} \right) \longmapsto \begin{array}{c} \text{a} \Box \text{-coric object } \Box C \\ \text{[e.g., a top. gp } \Box G \cong G_k \end{array} \right)$

Radial Environment

Definition

We refer to a triple $(\mathcal{R}, \mathcal{C}, \Phi : \mathcal{R} \to \mathcal{C})$ consisting of

- \bullet a category ${\cal R}$ whose objects is a specific collection of radial data, and each of whose morphism is an isomorphism
- \bullet a category ${\cal C}$ whose objects is a specific collection of coric data, and each of whose morphism is an isomorphism
- a functor Φ an essentially surj. functor, which is a "functorial algorithm" whose "input data" is $\in \mathcal{R}$ and whose "output data" is $\in \mathcal{C}$

as a radial environment. If Φ is full, then we say that the radial env. is multiradial. We refer to a radial env. which is not multiradial as uniradial.

Example (a multiradial environment)

- \mathcal{R} Obj: a triple (Π, G, α) consist. of
 - Π : a topological gp $\cong \Pi_X^{\mathrm{tp}}$;
 - G: a topological gp $\cong G_k$;
 - $\alpha: \Pi/\Delta \xrightarrow{\sim} G$: the full poly-isomorphism, i.e., the collection of all isomorphisms, where we write $\Delta \subseteq \Pi$ for the gp-theoretic subgroup corresp. to $\Delta_{\underline{X}}^{\mathrm{tp}}$.

Hom: a pair of isom. of top. gps $\Pi \xrightarrow{\sim} \Pi^*$, $G \xrightarrow{\sim} G^*$.

• \mathcal{C} — Obj: a top. gp $\cong G_k$ Hom: an isom. of top. gps $G \xrightarrow{\sim} G^*$

• Φ — the functor $\mathcal{R} \to \mathcal{C}$ defined to be $(\Pi, G, \alpha) \mapsto G$

Multiradial Algorithm

Definition

 $(\mathcal{R}, \mathcal{C}, \Phi)$: a radial environment

Suppose: we have a commutative diagram

where \mathcal{F} is a category, and all arrows are functors. We say that the functor [i.e., "functorial algorithm"] Ξ is multiradial if $(\mathcal{R}, \mathcal{C}, \Phi)$ is multiradial.

Note: If we have a multiradial env. $(\mathcal{R}, \mathcal{C}, \Phi)$ and a diagram

$$\begin{array}{c} \mathcal{R} \xrightarrow{\Xi} \mathcal{F} \\ \downarrow \\ \mathcal{C} \\ \mathcal{C} \end{array}$$

then we can always get a multiradial functor as follows:

Let $\mathcal{R}^{\blacklozenge}$ be the category whose object is a pair $(R, \Xi(R))$ and whose morphism is a pair $(f : R \xrightarrow{\sim} R^*, \Xi(f) : \Xi(R) \xrightarrow{\sim} \Xi(R^*))$. Then the functor $\Psi_{\mathcal{R}} : \mathcal{R} \to \mathcal{R}^{\blacklozenge}; R \mapsto (R, \Xi(R))$ satisfies the comm. diag.

$$\begin{array}{cccc} \mathcal{R} & \stackrel{\Psi_{\mathcal{R}}}{\longrightarrow} \mathcal{R}^{\blacklozenge} & \ni & (R, \ \Xi(R)) \\ & & & & & \\ \Phi & & & & & \\ \downarrow & & & & & \\ \mathcal{C} & \stackrel{\Psi_{\mathcal{R}}}{\longleftarrow} \mathcal{R} & \ni & & R \end{array}$$

so $\Psi_{\mathcal{R}}$ is a multiradial functor.

Multiadial Algorithm Related to Étale Theta Functions

Define a multiradial environment $(\mathcal{R}, \mathcal{C}, \Phi)$ as follows:

- \mathcal{R} Obj: $(\Pi \curvearrowright \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}(\Pi)) \otimes \mathbb{Q}/\mathbb{Z}, \ G \curvearrowright \mathcal{O}^{\times \mu}(G), \ \alpha_{\mu, \times \mu})$
 - $\Pi \cong \Pi_{\underline{X}}^{\mathrm{tp}}$,
 - $G \cong G_k \ (\Rightarrow (G \curvearrowright \mathcal{O}^{\times \mu}(G)) \cong (G_k \curvearrowright \mathcal{O}_{\overline{k}}^{\times \mu})),$
 - $\alpha_{\mu,\times\mu}$ is the pair of the full-poly isomorphism $\Pi/\Delta \xrightarrow{\sim} G$ and $\Pi_{\mu}(\mathbb{M}^{\Theta}_{*}(\Pi)) \otimes \mathbb{Q}/\mathbb{Z} \xrightarrow{\text{zero}} \mathcal{O}^{\times\mu}(G)$

Hom: $(\Pi \curvearrowright \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}(\Pi)) \otimes \mathbb{Q}/\mathbb{Z}) \xrightarrow{\sim} (\Pi^{*} \curvearrowright \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}(\Pi^{*})) \otimes \mathbb{Q}/\mathbb{Z})$: the isom. induced by $\Pi \xrightarrow{\sim} \Pi^{*}$; $(G \curvearrowright \mathcal{O}^{\times \mu}(G)) \xrightarrow{\sim} (G^{*} \curvearrowright \mathcal{O}^{\times \mu}(G^{*}))$: an "Ism"-multiple of the isom. induced by $G \xrightarrow{\sim} G^{*}$.

•
$$\mathcal{C}$$
 — Obj: $(G \curvearrowright \mathcal{O}^{\times \mu}(G))$ Hom: the same as in \mathcal{R}

• Φ — the functor $\mathcal{R} \to \mathcal{C}$ defined by "forgetting".

Theorem (A Multiradial Algorithm Related to Étale Theta Functions — cf. [IUTchII], Cor 1.12)

 $(\mathcal{R},\ \mathcal{C},\ \Phi):$ the multiradial env. defined at the previous page Then the functorial algorithm

$$\Pi \longmapsto {}_{\infty} \underbrace{\underline{\theta}}_{\underline{=} env}(\mathbb{M}^{\Theta}_{*}(\Pi)) \ [\subseteq \underbrace{\lim}_{J} H^{1}(\Pi_{\underline{\underline{Y}}}(\mathbb{M}^{\Theta}_{*}(\Pi))|_{J}, \Pi_{\mu}(\mathbb{M}^{\Theta}_{*}(\Pi)))]$$

determines a functor

$$\Xi:\mathcal{R}\longrightarrow\mathcal{F}$$

where \mathcal{F} is the category whose objects are $\{ \underset{m}{\infty \in \mathbb{P}} (\mathbb{M}^{\Theta}_{*}(\Pi)) \}$. In particular, the functor

$$\Psi_{\mathcal{R}}:\mathcal{R}\longrightarrow\mathcal{R}^{\blacklozenge}$$

[where $\mathcal{R}^{\blacklozenge}$ denotes the "graph of Ξ "] is multiradial.