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ABSTRACT. In the present paper, we study fields generated by Jacobi sums. In particular, we com-
pletely determine the field obtained by adjoining, to the field of rational numbers, all of the Jacobi
sums “of two variables” with respect to a fixed maximal ideal of the ring of integers of a fixed
prime-power cyclotomic field.

INTRODUCTION

Throughout the present paper, let us fix
• a prime number l,
• a positive integer N, and
• a maximal ideal p of the ring o of integers of the finite Galois extension K of Q obtained

by adjoining to Q a primitive lN-th root of unity.

Write G def
= Gal(K/Q) for the Galois group of the finite Galois extension K/Q, D ⊆ G for the

decomposition subgroup associated to p, κ(p) def
= o/p for the residue field at p, and p for the

characteristic of κ(p). Suppose that p 6= l. Write, moreover, χ : κ(p)× → µ lN (K) ⊆ K× for the
homomorphism determined by the lN-th power residue symbol at p. Following [6], for each pos-
itive integer n and each element a = (a1, . . . ,an) of Zn, let us define the Jacobi sum associated to
a ∈ Zn as follows [cf. [6], (I)]:

ja
def
= (−1)n+1 ∑

(x1,...,xn)∈(κ(p)×)n

∑ j x j=−1

n

∏
i=1

χ(xi)
ai ∈ o.

In the present paper, we discuss intermediate extensions of the finite Galois extension K/Q ob-
tained by adjoining to Q Jacobi sums. Let us recall that T. Ono, M. Kida, and A. Gyoja [cf. [2], [3],
[5]] and N. Aoki [cf. [1]] have studied these intermediate extensions. Note that we have an equality
Q(jb; b ∈ Z2) =Q(jc; c ∈ Zm,m ≥ 1) [cf. Proposition 2.1, (ii)].

The main result of the present paper is as follows:

Theorem A. The following assertions hold:
(i) If KD is totally real, then Q(ja; a ∈ Z2) =Q.
(ii) If KD is not totally real, then Q(ja; a ∈ Z2) = KD.

Note that one verifies easily that Theorem A in the case where l is odd, and N = 1 [i.e., in
the “odd prime cyclotomic field case”] may also be derived from [2], Theorem 2, together with a
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similar argument to the argument applied in the proof of Theorem A. The author of the present
paper will apply Theorem A to the study of geometrically pro-l anabelian geometry for tripods
over finite fields. Then this “known” result [i.e., Theorem A in the “odd prime cyclotomic field
case”] is not sufficient for this application. Moreover, Theorem A could not be found in literature.
This is one main motivation of the study of the “prime-power cyclotomic field case” in the present
paper.
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1. SOME LEMMAS

We shall write Λ def
= Z/lNZ. Moreover, for each t ∈ Λ×, we shall write σt ∈ G for the unique

element which induces the t-th power map on the subgroup µ lN (K)⊆ K×. Then one verifies easily
that the assignment “t 7→ σt” determines an isomorphism Λ× ∼→ G of groups. Moreover, one also
verifies easily that the subgroup D ⊆ G coincides with the subgroup 〈σp〉 ⊆ G generated by σp,
i.e., corresponds, via the isomorphism Λ× ∼→ G, to the subgroup of Λ× generated by the image of
p in Λ×.

Definition 1.1. Let m be a positive integer. Then we shall write L [m]⊆ Z for the set of integers t̃
such that the inequalities 0 < t̃ < m hold, and, moreover, the integer t̃ is prime to m.

Remark. Observe that one verifies easily that, in the situation of Definition 1.1, the natural sur-
jective map Z↠ Z/mZ restricts to a bijective map L [m]

∼→ (Z/mZ)×.

Lemma 1.2. The following assertions hold:
(i) Let m be a positive integer, t̃ an element of L [m], r a positive integer, and d an element of

{0,1}. For a rational number s ∈ Q, write [s] for the “integral part” of s [i.e., the largest

integer which is less than or equal to s] and 〈s〉 def
= s− [s] for the “fractional part” of s.

Then [
(rm+d)

〈 t̃
m

〉]
= rt̃.

(ii) Let N0 be a positive integer such that N0 ≤ N. For each positive integer r, write r +
L [lN0]⊆ Z for the set of integers t̃ such that t̃ − r ∈ L [lN0]. Then

L [lN ] =
lN−N0−1⊔

i=0

(ilN0 +L [lN0]).

Proof. These assertions are immediate. □
Lemma 1.3. Let ρ : Λ× → C× be an odd Dirichlet character. Then

∑
t̃∈L [lN ]

t̃ ·ρ(t) 6= 0
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— where, for each t̃ ∈ L [lN ], we write t ∈ Λ× for the image of t̃ in Λ [cf. Remark following
Definition 1.1].

Proof. Write

N0
def
= min

{
i ∈ {1,2, . . . ,N}|1+ liΛ ⊆ Ker(ρ)

}
and Λ0

def
= Z/lN0Z. Then one verifies easily that the odd, hence also nontrivial, Dirichlet character

ρ : Λ× → C× factors as the composite of the natural surjective homomorphism Λ× ↠ Λ×
0 and a

primitive odd Dirichlet character ρ0 : Λ×
0 → C×. Now let us observe that since ρ0 is odd, hence

also nontrivial, it follows that, for each integer i such that 0 ≤ i ≤ lN−N0 −1,

∑
t̃∈L [lN0 ]

(ilN0 + t̃) ·ρ(t) = ilN0 · ∑
t∈Λ×

0

ρ0(t)+ ∑
t̃∈L [lN0 ]

t̃ ·ρ0(t) = ∑
t̃∈L [lN0 ]

t̃ ·ρ0(t)

— where, for each t̃ ∈ L [lN0], we write t ∈ Λ×
0 for the image of t̃ in Λ0 [cf. Remark following

Definition 1.1]. Thus, it follows immediately from Lemma 1.2, (ii), that

∑
t̃∈L [lN ]

t̃ ·ρ(t) = lN−N0 · ∑
t̃∈L [lN0 ]

t̃ ·ρ0(t).

In particular, to verify Lemma 1.3, we may assume without loss of generality, by replacing “(N,ρ)”
by (N0,ρ0), that ρ0 is primitive. On the other hand, if ρ0 is primitive, then Lemma 1.3 is well-
known [cf., e.g., [4], Chapter VII, §2, Exercise 4]. This completes the proof of Lemma 1.3. □
Lemma 1.4. The following assertions hold:

(i) Let T be a group of order 2, C a cyclic 2-group, and H a subgroup of T ×C that does not
contain the subgroup T ×{1}. Then there exist not necessarily distinct two subgroups H1,
H2 of T ×C such that
• T ×{1} 6⊆ H1, T ×{1} 6⊆ H2
• both (T ×C)/H1 and (T ×C)/H2 are cyclic, and, moreover,
• H = H1 ∩H2.

(ii) Suppose that KD is not totally real. Then there exist not necessarily distinct two odd
Dirichlet characters ρ1, ρ2 : Λ× → C× such that the intersection Ker(ρ1)∩Ker(ρ2) coin-
cides with the subgroup of Λ× generated by the image of p in Λ×.

Proof. First, we verify assertion (i). If the quotient of T ×C by H is cyclic, then the subgroups
H1

def
= H, H2

def
= H satisfy the desired condition in the statement of assertion (i). Thus, to verify

assertion (i), we may assume without loss of generality that the quotient of T ×C by H is not
cyclic, which implies that there exists an element c0 of the group C of order 2. In particular, to
verify assertion (i), we may assume without loss of generality — by replacing “T ”, “C” by the
respective images of T , C in (T ×C)/H — that H = {1}. Then if one writes t0 ∈ T for the unique
nontrivial element of T and H1 ⊆ T ×C for the subgroup of T ×C generated by (t0,c0), then one

verifies easily that the subgroups H1, H2
def
= {1}×C satisfy the desired condition in the statement

of assertion (i). This completes the proof of assertion (i).
Next, we verify assertion (ii). If l is odd, then since Λ× is cyclic, assertion (ii) is immediate.

If l = 2, then assertion (ii) follows immediately from assertion (i). This completes the proof of
assertion (ii), hence also of Lemma 1.4. □
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2. PROOF

It seems to the author that the three assertions discussed in Proposition 2.1 below are likely to
be well-known. However, the author decided to give proofs of these assertions here for the sake of
the reader and the sake of completeness.

Proposition 2.1. Let n be a positive integer and a = (a1, . . . ,an) an element of Zn. Then the
following assertions hold:

(i) The inclusion ja ∈ KD holds.
(ii) The inclusion ja ∈Q(jb; b ∈ Z2) holds.
(iii) Suppose that KD is totally real. Then the inclusion ja ∈Q holds.

Proof. First, we verify assertion (i). Let us first observe that it is immediate that the homomorphism
χ : κ(p)× → µ lN (K)⊆ K× is D-equivariant, i.e., relative to the respective natural actions of D on
κ(p)× and K×. Thus, assertion (i) follows immediately from the definition of the Jacobi sum ja.
This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us recall from the first and second displays of [6], p.492, that
if n ≥ 3, and a1 +a2 ∈ lNZ (respectively, a1 +a2 6∈ lNZ), then

ja = j(a2) · j(a3,...,an) ·#κ(p) (respectively, ja = j(a1+a2) · j(a1,a2) · j(a1+a2,a3,...,an)).

Thus, assertion (ii) follows immediately from the easily verified fact that the Jacobi sum in the case
where n = 1 is contained in {±1}. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). Let us first observe that one verifies easily that either lN = 2
or #D ∈ 2Z. If lN = 2, which implies that Q = K, then assertion (iii) is immediate. Suppose that
#D ∈ 2Z, which implies that #κ(p) is the square of a rational number. If {a1, . . . ,an} ⊆ lNZ, then
it follows from the equality

ja = #κ(p)−1 ·
(

1−
(
1−#κ(p)

)n
)

of [6], (2), that assertion (iii) holds. Suppose that {a1, . . . ,an} 6⊆ lNZ. Then since #κ(p) is the
square of a rational number as mentioned above, and ja ∈ KD [cf. assertion (i)], which implies that
ja is a real number, it follows from the equality

|ja|2 = #κ(p)s−2

— where we write an+1
def
= ∑n

i=1 ai and s def
= #{ i ∈ {1, . . . ,n+ 1}|ai ∈ lNZ} — of [6], (10), that

assertion (iii) holds. This completes the proof of assertion (iii), hence also of Proposition 2.1. □

Definition 2.2. Let n be a positive integer and a an element of Zn. Then we shall write Q(ja) for
the intermediate extension of the finite Galois extension K/Q that corresponds to the subgroup
of G consisting of the elements whose actions on o preserve the principal ideal of o generated by
ja ∈ o.

Remark. Observe that it follows immediately from Proposition 2.1, (i), (ii), together with the
various definitions involved, that, in the situation of Definition 2.2, we have inclusions

Q⊆Q(ja)⊆Q(ja)⊆Q(jb; b ∈ Z2)⊆ KD ⊆ K.
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Definition 2.3. Let n be a positive integer. Then we shall write (1[n]) ∈ Zn for the element of Zn

each of whose n components is given by 1 ∈ Z.

Lemma 2.4. Suppose that KD is not totally real. Let r be a positive integer and d an element of
{0,1}. Then Q(j

(1[rlN+d])
) =Q(j

(1[rlN+d])
) = KD.

Proof. Let us first observe that it follows from the displayed inclusions of Remark following Def-
inition 2.2 that, to verify Lemma 2.4, it suffices to verify the inclusion KD ⊆ Q(j

(1[rlN+d])
). Next,

let us also observe that it follows immediately from [6], (8), that the assignment “p 7→ j
(1[rlN+d])

” is
a function of type (S) in the sense of [5], §1, i.e., in the case where we take the “(k,K)” of [5], §1,
to be (Q,K); moreover, it follows from [6], (9), together with Lemma 1.2, (i), that the “ω” of [5],
§1, for this function of type (S) is given by

∑
t̃∈L [lN ]

rt̃ ·σ−1
−t

— where, for each t̃ ∈ L [lN ], we write t ∈ Λ× for the image of t̃ in Λ [cf. Remark following
Definition 1.1]. In particular, it follows from [5], (2.4), that, for each σ ∈ G, this element σ is
contained in the subgroup Gal(K/Q(j

(1[rlN+d])
)) ⊆ G if and only if this element σ ∈ G ∼→ Λ× is

contained in the kernel of every Dirichlet character ρ : Λ× →C× such that ρ maps the image of p
in Λ× to 1 ∈ C×, and, moreover,

∑
t̃∈L [lN ]

t̃ ·ρ(t) 6= 0.

Thus, the desired inclusion KD ⊆Q(j
(1[rlN+d])

) follows immediately from Lemma 1.3 and Lemma 1.4,

(ii). This completes the proof of Lemma 2.4. □
Remark. Note that [2], Theorem 2, may be regarded as Lemma 2.4 in the case where l is odd, and
the equality (N,r,d) = (1,1,1) holds. Moreover, Lemma 2.4 in the case where l is odd, and the
equality (N,r,d) = (1,1,1) holds may also be derived from [1], Lemma 6.2 [cf. also [1], Remark
6.6]. On the other hand, no result that claims explicitly the two equalities in the statement of
Lemma 2.4 in the case where N > 1 [i.e., the “prime-power cyclotomic field case”] could be found
in literature. Here, let us recall that one may find [1], Theorem 0.4, that establishes a concrete
description of the field Q(ja) in the “prime-power cyclotomic field case” [cf. also some results
proved in [1], §7].

Proof of Theorem A. Assertion (i) follows from Proposition 2.1, (iii). Next, we verify assertion
(ii). Let us first observe that it follows from Lemma 2.4 that Q(j

(1[lN ])
) = KD. Thus, assertion

(ii) follows from the displayed inclusions of Remark following Definition 2.2. This completes the
proof of Theorem A. □
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