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Abstract. Let l be a prime number. In the present paper, we discuss
a pro-l version of the congruence subgroup problem for mapping class
groups of genus one. Our main result is that the pro-2 version has
an affirmative answer, but the pro-l version for l ≥ 11 has a negative
answer. In order to give a negative answer to the problem in the case
where l ≥ 11, we also consider the issue of whether or not the image of
the natural outer action of the absolute Galois group of a certain number
field on the geometric pro-l fundamental group of a modular curve is a
pro-l group.
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Introduction

Let l be a prime number. In the present paper, we discuss a pro-l version
of the congruence subgroup problem for mapping class groups of genus one.

Let us first recall the congruence subgroup problem for mapping class
groups as follows (cf., e.g., [3], [16]): Let (g, r) be a pair of nonnegative
integers such that 2g−2+r > 0 and Σg,r a topological surface of type (g, r),
i.e., a topological space obtained by removing r distinct points from a con-
nected orientable compact topological surface of genus g. Write πtop

1 (Σg,r)
for the topological fundamental group of Σg,r (which is well-defined up to
conjugation) and MCGg,r for the (pure) mapping class group of Σg,r, i.e.,
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the group of isotopy classes of orientation-preserving automorphisms of Σg,r

that fix each removed point. Then a classical result due to Dehn and Nielsen
asserts that the natural homomorphism

ρtopg,r : MCGg,r −→ Out(πtop
1 (Σg,r))

is injective. Now we shall say that a subgroup J ⊆ MCGg,r of MCGg,r is a
congruence subgroup if there exists a characteristic subgroup H ⊆ πtop

1 (Σg,r)

of πtop
1 (Σg,r) of finite index such that the inclusion

ker
(
MCGg,r

ρtopg,r→ Out(πtop
1 (Σg,r))→ Out(πtop

1 (Σg,r)/H)
)
⊆ J

holds. Then the congruence subgroup problem for the mapping class group
of type (g, r) may be stated as follows:

(CSP)g,r: Is every subgroup of MCGg,r of finite index a
congruence subgroup?

If g ≤ 1, then the problem (CSP)g,r was answered affirmatively in [2, The-
orems 2, 3A, 5]. If g = 2, then it follows immediately from [4, Theorem
3.5], together with [13, Theorem B] (cf. also Proposition 1.3 of the present
paper), that the problem (CSP)g,r has an affirmative answer. However, the
problem (CSP)g,r in the case where g ≥ 3 remains unsolved.

Now let us observe that since (as is well-known) πtop
1 (Σg,r) is finitely gen-

erated, if we write π∧
1 (Σg,r) for the profinite completion of the discrete group

πtop
1 (Σg,r), then the outer automorphism group Out(π∧

1 (Σg,r)) of π∧
1 (Σg,r)

admits a natural structure of profinite group. In particular, if we write
MCG∧

g,r for the profinite completion of the discrete group MCGg,r, then
the homomorphism ρtopg,r induces a continuous homomorphism

ρ∧g,r : MCG∧
g,r −→ Out(π∧

1 (Σg,r)).

Here, one verifies easily that the problem (CSP)g,r has an affirmative answer
if and only if this continuous homomorphism ρ∧g,r is injective.

Next, let us consider a pro-l version of the congruence subgroup prob-
lem for mapping class groups. Let us first recall that, for a characteristic
subgroup H ⊆ πtop

1 (Σg,r) of πtop
1 (Σg,r) of index a power of l, the group

Out(πtop
1 (Σg,r)/H) is not an l-group in general; on the other hand, it is

well-known that if we write Σcpt
g,r for the compactification of Σg,r (so Σcpt

g,r is
homeomorphic to “Σg,0”) and

MCGg,r[l] := ker
(
MCGg,r → Aut(H1(Σ

cpt
g,r ,Fl))

)
,

then the image of the composite

MCGg,r[l] ↪→ MCGg,r
ρtopg,r→ Out(πtop

1 (Σg,r)) → Out(πtop
1 (Σg,r)/H)

is always an l-group. From this observation, we shall say that a subgroup
J ⊆ MCGg,r[l] of MCGg,r[l] is an l-congruence subgroup if there exists a
characteristic subgroup H ⊆ πtop

1 (Σg,r) of πtop
1 (Σg,r) of index a power of l

such that the inclusion

ker
(
MCGg,r

ρtopg,r→ Out(πtop
1 (Σg,r))→ Out(πtop

1 (Σg,r)/H)
)
⊆ J
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holds. Then the following problem may be regarded as a pro-l version of the
congruence subgroup problem for mapping class groups:

(CSP)pro-lg,r : Is every normal subgroup of MCGg,r[l] of index
a power of l an l-congruence subgroup?

If g = 0, then the problem (CSP)pro-lg,r was answered affirmatively in [2,
Remark following the proof of Theorem 1].

Here, let us observe that, as in the profinite case, if we write πpro-l
1 (Σg,r),

MCGg,r[l]
(l) for the pro-l completions of the discrete groups πtop

1 (Σg,r),
MCGg,r[l], respectively, then the homomorphism ρtopg,r induces a continuous
homomorphism

ρpro-lg,r : MCGg,r[l]
(l) −→ Out(πpro-l

1 (Σg,r)),

and, moreover, it holds that the problem (CSP)pro-lg,r has an affirmative answer
if and only if this continuous homomorphism ρpro-lg,r is injective. We note that,
in [8, Theorem 1, the discussion following Theorem 1], it was proved that if
g ≥ 2, then the natural continuous homomorphism from the pro-l completion
of the Torelli subgroup of MCGg,r (i.e., the subgroup of MCGg,r obtained by
forming the kernel of the natural homomorphism

MCGg,r −→ Aut(H1(Σ
cpt
g,r ,Z)))

to MCGg,r[l]
(l) is not injective. In particular, the continuous homomorphism

induced by ρtopg,r from the pro-l completion of (not MCGg,r[l] but) the Torelli
subgroup of MCGg,r to Out(πpro-l

1 (Σg,r)) is not injective.
In the present paper, we discuss the problem (CSP)pro-lg,r in the case where

g = 1, i.e., a pro-l version of the congruence subgroup problem for mapping
class groups of genus one. The main result of the present paper is as follows
(cf. Corollaries 2.3, 4.7):

Theorem A. Let r be a positive integer. Then the following hold.
(i) The problem (CSP)pro-21,r has an affirmative answer.
(ii) If l ≥ 11, then the problem (CSP)pro-l1,r has a negative answer.

Theorem A, (i), is proved by a similar argument to the argument applied
in [2, Theorem 5], which gives rise to an affirmative answer to the problem
(CSP)g,r in the case where g = 1. Here, we note that there is an alternative
proof that is purely group-theoretic of [2, Theorem 5] (cf., e.g., [7]). It seems
possible that a similar purely group-theoretic proof to the proof given in [7]
works in (unlike the situation of Theorem A, (ii)) the situation of Theorem A,
(i).

In order to prove Theorem A, (ii), we also prove the following result con-
cerning the images of the pro-l outer Galois actions associated to modular
curves (cf. Theorem 3.14):

Theorem B. Let Q be an algebraic closure of the field of rational numbers
Q. For a positive integer N , let ζN ∈ Q be a primitive N -th root of unity.
Then, for a prime number l, the following conditions are equivalent:

(P) l ≤ 7.
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(Y) The pro-l outer Galois action of Gal(Q/Q(ζl)) associated to the
modular curve Y(l) (cf. “Fundamental groups” in “Notations and
Conventions”) parametrizing elliptic curves with Γ (l)-structures over
Q(ζl) (cf., e.g., [18]) factors through a pro-l quotient of the Galois
group Gal(Q/Q(ζl)).

The proof of Theorem A, (ii), in the case where r = 1 may be summarized
as follows: Let us fix a prime number l ≥ 11 and assume that the problem
(CSP)pro-l1,1 has an affirmative answer. Then it follows from the discussion
following the statement of the problem (CSP)pro-lg,r that the homomorphism
ρpro-l1,1 is injective. On the other hand, it follows immediately from the various
definitions involved that we have a natural isomorphism of MCG1,1[l]

(l) with
the geometric pro-l fundamental group of the modular curve Y(l) of The-
orem B. Moreover, as an immediate consequence of a fact concerning the
pro-l outer Galois action associated to a tripod (i.e., projective line minus
three points) and the fact that Oda’s problem has an affirmative answer (cf.
[28, Theorem 0.5, (2)]), the injectivity of ρpro-l1,1 implies that the image of the
pro-l outer Galois action associated to Y(l) factors through a pro-l quotient.
But since l ≥ 11, this contradicts Theorem B. This completes the outline of
the proof. Here, it is of interest to observe that:

The problem (CSP)pro-lg,r (as well as the problem (CSP)g,r) is
stated and formulated by a purely topological and combina-
torial group-theoretic setting. Nevertheless, our approach
to the problem (CSP)pro-lg,r is based on a highly arithmetic
phenomenon concerning the outer Galois actions associated
to modular curves.

Finally, we remark that one may think of the problem (CSP)pro-lg,r as a sort
of geometric analogue of Ihara’s problem concerning the pro-l outer Galois
action associated to a tripod (cf., e.g., [14, Lecture I, §2], [25, Introduction]).
The conjecture due to Rasmussen and Tamagawa given in [25, Conjecture 1]
was motivated by this problem of Ihara and asserts the finiteness of abelian
varieties that satisfy certain conditions, one of which is a similar condition
to the condition imposed on “Y(l)” in condition (Y) of Theorem B. On the
other hand, to the knowledge of the authors, at least at the time of writing,
it does not appear that any argument has been obtained for deriving an
answer of Ihara’s problem from the conjecture of Rasmussen-Tamagawa. In
this context, it is of interest to observe that the problem (CSP)pro-lg,r — which
may be thought of as a sort of geometric analogue of Ihara’s problem —
directly relates, as discussed in the above outline of the proof of Theorem A,
(ii), to the consideration of the issue of whether or not a modular curve
satisfies a similar condition to the condition studied in the conjecture of
Rasmussen-Tamagawa.

The present paper is organized as follows: In §1, we recall generalities on
the relative pro-l completions of mapping class groups. In §2, we consider
the pro-2 outer geometric monodromy action to prove Theorem A, (i). In §3,
we discuss the issue of whether or not the pro-l outer Galois action associ-
ated to a modular curve factors through a pro-l quotient and, in particular,
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prove Theorem B. In §4, we prove Theorem A, (ii), by means of the results
obtained in the previous sections. In Appendix A, we prove a generalization
of Theorem B.
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Notations and Conventions

Numbers: The notation Z will be used to denote the ring of rational inte-
gers. The notation Q will be used to denote the field of rational numbers.
For a prime number l, the notation Fl will be used to denote the quotient
Z/l, and the notation Zl (respectively, Ql) will be used to denote the l-adic
completion of Z (respectively, Q). For a ring A, the notation A× will be
used to denote the multiplicative group of A.

Profinite groups: For a profinite group G and a closed subgroup H ⊆ G
of G, we shall write Gab for the abelianization of G (i.e., the quotient of G
by the closure of the commutator subgroup of G), |G : H| for the index of H
in G, and ZG(H) for the centralizer of H in G. We shall say that a profinite
group G is torsion-free if G has no nontrivial element of finite order. We
shall say that a profinite group G is center-free if ZG(G) = {1}. We shall
say that a profinite group G is slim if for every open subgroup H ⊆ G, it
holds that ZG(H) = {1}.

For a profinite group G, we shall denote by Aut(G) the group of (continu-
ous) automorphisms of the topological group G, by Inn(G) the group of inner
automorphisms of G, and by Out(G) the quotient of Aut(G) with respect
to the normal subgroup Inn(G) ⊆ Aut(G). If, moreover, G is topologically
finitely generated, then one verifies that the topology of G admits a basis of
characteristic open subgroups, which thus induces a profinite topology on the
group Aut(G), hence also a profinite topology on the group Out(G).

Let G be a profinite group, N ⊆ G a normal open subgroup of G, l a prime
number, and N l the maximal pro-l quotient of N . Observe that the kernel
K of the natural surjection N ↠ N l is characteristic in N and therefore
normal in G. We shall define the maximal almost pro-l quotient of G with
respect to N to be the quotient G/K. It is an extension

1 // N l // G/K // G/N // 1

of G/N by N l.

Fundamental groups: Let l be a prime number, k a perfect field, k an
algebraic closure of k, and Gk the absolute Galois group Gal(k/k) of k. For
a scheme X which is a geometrically connected and of finite type over k,
we shall write ∆l

X for the pro-l geometric fundamental group of X, i.e., the
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maximal pro-l quotient of the algebraic fundamental group π1(X ⊗k k) of
X⊗k k, and Π

l
X for the geometrically pro-l fundamental group of X, i.e., the

quotient of the algebraic fundamental group π1(X) of X by the kernel of the
natural surjection π1(X ⊗k k)→ ∆l

X . We shall write

ρlX : Gk −→ Out(∆l
X)

for the outer action determined by the natural exact sequence

1 // ∆l
X

// Π
l
X

prk // Gk
// 1 .

We shall refer to ρlX as the pro-l outer Galois action associated to X.

Curves: Let k be a field and (g, r) a pair of nonnegative integers. Then
we shall say that a scheme X over k is a curve of type (g, r) over k if there
exist a scheme Xcpt which is of dimension 1, smooth, proper, geometrically
connected over k of genus g and a closed subscheme D ⊆ Xcpt which is finite
and étale over k of degree r such that X is isomorphic to the complement of
D in Xcpt over k. In this case, it follows from elementary algebraic geometry
that these Xcpt and D are uniquely determined by X up to unique canonical
isomorphism. We shall refer to Xcpt as the smooth compactification of X
and D as the divisor at infinity of X. We shall say that a scheme X over k is
a hyperbolic curve over k if there exists a pair (g, r) of nonnegative integers
such that 2g−2+r > 0, and, moreover, X is a curve of type (g, r) over k. As
is well-known, for a curve X of type (g, r) over an algebraically closed field
of characteristic zero, the isomorphism class of the algebraic fundamental
group π1(X) of X (respectively, the pro-l geometric fundamental group of
X) depends only on (g, r) (respectively, (g, r, l)). We shall write ∆g,r (re-
spectively, ∆l

g,r) for the algebraic fundamental group (respectively, the pro-l
geometric fundamental group) of a curve of type (g, r) over an algebraically
closed field of characteristic zero. For a pair (g, r) of nonnegative integers
such that 2g − 2 + r > 0, the notation (Mg,r)k will be used to denote the
moduli stack of r-pointed smooth proper curves of genus g over k whose r
marked points are equipped with an ordering.

Let n be a positive integer, (g, r) a pair of nonnegative integers such that
2g− 2+ r > 0, and X a curve of type (g, r) over k. Suppose that the divisor
at infinity D of X consists of r distinct k-rational points. Then we shall refer
to the scheme obtained by pulling back the morphism (Mg,r+n)k → (Mg,r)k
given by forgetting the last n marked points via the classifying morphism
Spec(k) → (Mg,r)k of the r-pointed smooth proper curve of genus g over
k obtained by equipping the r marked points of X with an ordering as the
n-th configuration space of X. Note that one verifies immediately that the
isomorphism class of this pull-back does not depend on the choice of the
ordering of the r marked points of X.

1. The relative pro-l completions of mapping class groups

Throughout the present paper, let l be a prime number, k a field of char-
acteristic zero, and k an algebraic closure of k. Write Gk := Gal(k/k). In the
present §1, we recall generalities on the relative pro-l completions of mapping
class groups. Much of the content of the present §1 is contained in [8].
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Definition 1.1 ([8, §3]). Let (g, r) be a pair of nonnegative integers such
that 2g − 2 + r > 0.

(i) We shall write
Π(Mg,r)k

for the algebraic fundamental group of (Mg,r)k. Since the isomor-
phism class of the kernel of the homomorphism Π(Mg,r)k ↠ Gk that
arises from the structure morphism (Mg,r)k → Spec(k) does not
depend on the choice of the field k of characteristic zero, we shall
write

Γg,r

for the kernel of Π(Mg,r)k ↠ Gk. Note that Γg,r is isomorphic to
the algebraic fundamental group of (Mg,r)k. Thus, we have natural
exact sequences of profinite groups

1 // Γg,r
// Π(Mg,r)k

// Gk
// 1

1 // ∆g,r
// Π(Mg,r+1)k

// Π(Mg,r)k
// 1

,

(cf. [23]).

(ii) We shall write

(ρpuni-lg,r )k : Π(Mg,r)k −→ OutC(∆l
g,r)

for the outer action determined by the exact sequence of the final
display of (i) and the natural surjection ∆g,r ↠ ∆l

g,r, where we refer
to [21, Definition 1.1 (ii)] for the definition of OutC. By regarding
∆l

g,r as the pro-l geometric fundamental group of a curve X of type
(g, r) over k (i.e., the geometric fiber of the morphism (Mg,r+1)k →
(Mg,r)k at a k-valued geometric point of (Mg,r)k) and ∆l

g,0 as the
pro-l geometric fundamental group of the smooth compactification
of X, for a positive integer n, one obtains a natural homomorphism

φln

g,r : OutC(∆l
g,r) −→ Aut((∆l

g,0)
ab ⊗Zl

(Z/ln)).

Note that φln
g,r (respectively, ker(φln

g,r ◦ (ρ
puni-l
g,r )k) ∩ Γg,r) does not

depend on the choice of X (respectively, k). Let (Γg,r[l])
l be the

maximal pro-l quotient of Γg,r[l] := ker(φl
g,r ◦ (ρ

puni-l
g,r )k) ∩ Γg,r. We

shall write
Γ rel-l
g,r

for the maximal almost pro-l quotient of Γg,r with respect to Γg,r[l],
i.e., the quotient of Γg,r with respect to the kernel of Γg,r[l] ↠
(Γg,r[l])

l, and refer to Γ rel-l
g,r as the relative pro-l completion of the

mapping class group of type (g, r). Note that since Γg,r[l] is normal
in Π(Mg,r)k , and the kernel of Γg,r[l] ↠ (Γg,r[l])

l is characteristic in
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Γg,r[l], it holds that ker(Γg,r[l] ↠ (Γg,r[l])
l) is normal in Π(Mg,r)k .

We shall write
Π

rel-l
(Mg,r)k

for the quotient of Π(Mg,r)k with respect to the kernel of Γg,r[l] ↠
(Γg,r[l])

l and

(ρrel-lg,r )k : Gk −→ Out(Γ rel-l
g,r )

for the outer Galois action determined by the exact sequence

1 // Γ rel-l
g,r

// Π
rel-l
(Mg,r)k

prk // Gk
// 1

that arises from the exact sequence of the third display of (i).

(iii) We shall write

Γ geo-l
g,r (≃ (ρpuni-lg,r )k(Γg,r))

for the quotient of Γg,r with respect to the kernel of the surjection
Γg,r ↠ (ρpuni-lg,r )k(Γg,r). Note that the kernel of Γg,r ↠ (ρpuni-lg,r )k(Γg,r)
is normal in Π(Mg,r)k . We shall write

Π
geo-l
(Mg,r)k

for the quotient of Π(Mg,r)k with respect to the kernel of Γg,r ↠
(ρpuni-lg,r )k(Γg,r) and

(ρgeo-lg,r )k : Gk −→ Out(Γ geo-l
g,r )

for the outer Galois action determined by the exact sequence

1 // Γ geo-l
g,r

// Π
geo-l
(Mg,r)k

// Gk
// 1

that arises from the exact sequence of the third display of (i).

Proposition 1.2 (cf. [8, Proposition 3.1, (2)]). Let n be a positive integer,
(g, r) a pair of nonnegative integers such that 2g − 2 + r > 0, X a curve of
type (g, r) over k, and Xn the n-th configuration space of the curve X. Then
the morphism (Mg,r+n)k → (Mg,r)k given by forgetting the last n point and
the classifying morphism Spec(k) → (Mg,r)k of X determine the following
commutative diagram

1 // ∆l
Xn

// Π
rel-l
(Mg,r+n)k

// Π
rel-l
(Mg,r)k

// 1

1 // ∆l
Xn

// Γ rel-l
g,r+n

//
?�

OO

Γ rel-l
g,r

//
?�

OO

1

where the horizontal sequences are exact, the vertical arrows are injective,
and the left-hand vertical arrow is the identity morphism of ∆l

Xn
.
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In particular, by considering the case where n = 1, we conclude that the
homomorphism (ρpuni-lg,r )k factors through Π

rel-l
(Mg,r)k

. We shall write

(ρuniv-lg,r )k : Π
rel-l
(Mg,r)k

−→ Out(∆l
g,r)

for the resulting homomorphism, whose restriction to Γ rel-l
g,r ⊆ Π

rel-l
(Mg,r)k

we
denote by

ρuniv-lg,r : Γ rel-l
g,r −→ Out(∆l

g,r).

Proof. Let us first observe that it follows immediately from the exact se-
quence of the final display of Definition 1.1, (ii), that, to verify Proposition
1.2, it suffices to verify the exactness of the lower sequence of the commu-
tative diagram in the statement of Proposition 1.2. Thus, we may assume
without loss of generality, by replacing k by k, that k is an algebraically
closed field. Let Y be the curve of type (g, r+1) over k obtained by remov-
ing a k-rational point from X and Yn−1 the (n− 1)-st configuration space of
Y . Then it follows from the (easily verified) right exactness of the functor
of taking maximal pro-l quotient and [12, Lemma 15, (iv)] that we have the
following commutative diagram of profinite groups

1 // ∆l
Yn−1

// ∆l
Xn

��

// ∆l
X

//

��

1

∆l
Yn−1

// Γ rel-l
g,r+n

//

��

Γ rel-l
g,r+1

//

��

1

Γ rel-l
g,r

��

Γ rel-l
g,r

��
1 1

where the vertical and horizontal sequences are exact, the lower horizontal
arrow is the identity morphism of Γ rel-l

g,r , and the left-hand vertical arrow is
the identity morphism of ∆l

Yn−1
. Thus, to verify Proposition 1.2, by induc-

tion on n, we may assume without loss of generality that n = 1. On the
other hand, if n = 1, then the desired exactness follows from the proof of [8,
Proposition 3.1, (2)]. □
Proposition 1.3. Let (g, r) be a pair of nonnegative integers such that 2g−
2 + r > 0. Then the homomorphism

ρuniv-lg,r : Γ rel-l
g,r −→ Out(∆l

g,r)

is injective if and only if the homomorphism

ρuniv-lg,r+1 : Γ
rel-l
g,r+1 −→ Out(∆l

g,r+1)

is injective.

Proof. Let us first observe that it follows immediately from the definition
of the homomorphisms under consideration that, to verify Proposition 1.3,
we may assume without loss of generality, by replacing k by k, that k is an
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algebraically closed field. Let X be a curve of type (g, r) over k, X2 the 2-nd
configuration space of X, and Y the curve of type (g, r+1) over k obtained
by removing a k-rational point from X. Then it follows from Proposition 1.2
and [12, Lemma 15, (iv)] that we have the following commutative diagram
of profinite groups

1

��

1

��
∆l

Y

��

∆l
Y

��
1 // ∆l

X2
//

��

Γ rel-l
g,r+2

//

��

Γ rel-l
g,r

// 1

1 // ∆l
X

//

��

Γ rel-l
g,r+1

//

��

Γ rel-l
g,r

// 1

1 1

where the horizontal and vertical sequences are exact, the upper horizontal
arrow is the identity morphism of ∆l

Y , and the right-hand vertical arrow is
the identity morphism of Γ rel-l

g,r . Now let us observe that one verifies easily
that the outer action Γ rel-l

g,r → Out(∆l
X2

) determined by the middle horizontal
sequence of the above diagram factors through the closed subgroup

OutFC(∆l
X2

) ⊆ Out(∆l
X2

)

where we refer to [21, Definition 1.1, (ii)] for the definition of OutFC. There-
fore, it follows from [12, Lemma 17, (ii)] and [2, Remark following the proof
of Theorem 1] that we obtain the following commutative diagram of profinite
groups

1 // ∆l
X

// Γ rel-l
g,r+1

//

��

Γ rel-l
g,r

//

��

1

1 // ∆l
X

// Γ geo-l
g,r+1

// Γ geo-l
g,r

// 1

where the horizontal sequences are exact, and the left-hand vertical arrow
is the identity morphism of ∆l

X . In particular, ρuniv-l
g,r is injective (i.e., the

right-hand vertical arrow of this diagram is injective) if and only if ρuniv-l
g,r+1 is

injective (i.e., the middle vertical arrow of this diagram is injective). This
completes the proof of Proposition 1.3. □
Remark 1.4. A similar result to Proposition 1.3 for the profinite case can be
found in [4, Lemma 3.6].

2. A pro-2 version of the congruence subgroup problem for
mapping class groups of genus one

In the present §2, we maintain the notation of the preceding §1. In the
present §2, we consider the congruence subgroup problem for the relative
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pro-2 completions of mapping class groups. In particular, we prove that the
quotient of the profinite completion of the mapping class group of genus one
determined by the pro-2 outer geometric monodromy representation coin-
cides with the relative pro-2 completion of the mapping class group of genus
one.

Definition 2.1.

(i) Let (MLgd)k be the affine algebraic surface over k defined by the
equation

y2 = x(x− 1)(x− λ)

in Spec(k[x, y, λ]), where x, y, and λ are indeterminates. Then one
verifies easily that the projection

(MLgd)k → P1
k \ {0, 1,∞} ≃ (M0,4)k, (x, y, λ) 7→ λ

gives rise to a family of curves of type (1, 1), which we shall refer to
as the Legendre family of elliptic curves. We shall write Π

l
Lgdk

for
the geometrically pro-l fundamental group of (MLgd)k and ∆l

Lgd for
the pro-l geometric fundamental group of (MLgd)k. It is well-known
that the classifying morphism (M0,4)k → (M1,1)k determined by
(MLgd)k → (M0,4)k is a finite étale covering of (M1,1)k. In partic-
ular, Π(M0,4)k may be regarded as an open subgroup of Π(M1,1)k .
Moreover, let us observe that one verifies easily that Π(M0,4)k is
contained in ker(φ2

1,1 ◦ (ρ
puni-2
1,1 )k). Thus, it follows from a similar

argument to the argument applied in the proof of [10, Proposition
1.2] that we obtain a natural exact sequence

1 // ∆2
1,1

// Π
2
Lgdk

// Π
rel-2
(M0,4)k

// 1 .

We shall write

(ρ2Lgd)k : Π
rel-2
(M0,4)k

−→ Out(∆2
1,1)

for the outer action determined by this exact sequence and

ρ2Lgd : Γ rel-2
0,4 −→ Out(∆2

1,1)

for the restriction of (ρ2Lgd)k to Γ rel-2
0,4 ⊆ Π

rel-2
(M0,4)k

.

(ii) We shall write

[2] : (MLgd\Lgd[2])k −→ (MLgd)k

for the finite étale covering over (M0,4)k given by multiplication
by 2 (i.e., relative to the operation on the family of elliptic curves
given by the canonical relative compactification of (MLgd)k over
(M0,4)k), Π

l
Lgd\Lgd[2]k

for the geometrically pro-l fundamental group
of the covering (MLgd\Lgd[2])k, ∆l

Lgd\Lgd[2] for the pro-l geometric
fundamental group of the covering (MLgd\Lgd[2])k, and

π1([2]) : Π
2
Lgd\Lgd[2]k

−→ Π
2
Lgdk
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for the outer injection induced by the above finite étale covering

(MLgd\Lgd[2])k
[2]→ (MLgd)k. Thus, one verifies easily that the com-

posite (MLgd\Lgd[2])k → (MLgd)k → (M0,4)k is a family of curves
of type (1, 4), and, moreover, the exact sequence of the third display
of (i) determines a natural exact sequence

1 // ∆2
1,4

// Π
2
Lgd\Lgd[2]k

// Π
rel-2
(M0,4)k

// 1 .

We shall write

(ρ2Lgd\Lgd[2])k : Π
rel-2
(M0,4)k

−→ Out(∆2
1,4)

for the outer action determined by this exact sequence and

ρ2Lgd\Lgd[2] : Γ
rel-2
0,4 −→ Out(∆2

1,4)

for the restriction of (ρ2Lgd\Lgd[2])k to Γ rel-2
0,4 ⊆ Π

rel-2
(M0,4)k

. Note that,
as is well-known, the quotient of (MLgd\Lgd[2])k by the natural ac-
tion of Aut(M1,1)k((M1,2)k) ≃ {±1} is isomorphic to (M0,5)k over
(M0,4)k, and the resulting morphism q : (MLgd\Lgd[2])k → (M0,5)k
is a finite étale covering over (M0,4)k. We shall write

π1(q) : Π
2
Lgd\Lgd[2]k

−→ Π
rel-2
(M0,5)k

for the outer injection determined by the morphism q.

Theorem 2.2. The homomorphism

ρ2Lgd : Γ
rel-2
0,4 −→ Out(∆2

1,1)

is injective.

Proof. Let us first observe that we have the following commutative diagram
of profinite groups

1 // ∆2
1,1

// ∆2
Lgd

// Γ rel-2
0,4

// 1

1 // ∆2
1,4

//
?�

π1([2])

OO

� _

π1(q)

��

∆2
Lgd\Lgd[2]

//
?�

π1([2])

OO

� _

π1(q)

��

Γ rel-2
0,4

// 1

1 // ∆2
0,4

// Γ rel-2
0,5

// Γ rel-2
0,4

// 1

where the horizontal sequences are exact, the vertical arrows are injective,
and the right-hand vertical arrows are the identity morphisms of Γ rel-2

0,4 . By
[12, Lemma 23, (i), (iii)], ker(ρ2Lgd\Lgd[2]) is an open subgroup of ker(ρ2Lgd)
and a subgroup of ker(ρuniv-2

0,4 ). Thus, since ker(ρuniv-2
0,4 ) is trivial (cf. [2,

Remark following the proof of Theorem 1]), ker(ρ2Lgd\Lgd[2]) is trivial. In
particular, ker(ρ2Lgd) is a finite group. On the other hand, since Γ rel-2

0,4 ≃
∆2

0,3 is torsion-free (cf., e.g., [22, Remark 1.2.2]), ker(ρ2Lgd) is trivial. This
completes the proof of Theorem 2.2. □
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Corollary 2.3. Let r be a positive integer. Then the homomorphism

ρuniv-21,r : Γ rel-2
1,r −→ Out(∆2

1,r)

is injective.
In particular, the problem (CSP)pro-21,r in the Introduction has an affirma-

tive answer.

Proof. Let us first observe that it follows from Proposition 1.3 that, to verify
the first portion of Corollary 2.3, we may assume that r = 1. It is well-known
that Γ rel-2

0,4 → Γ rel-2
1,1 determined by the classifying morphism (M0,4)k →

(M1,1)k of the family (MLgd)k → (M0,4)k of curves of type (1, 1) is an open
injective, and the kernel of the homomorphism

φ4
1,1 ◦ ρuniv-2

1,1 : Γ rel-2
1,1 −→ Aut(∆2

1,0 ⊗Z2 (Z/4))

is torsion-free (cf., e.g., [17, §1.4], [22, Remark 1.2.2]). Therefore, it follows
immediately from Theorem 2.2 that ker(ρuniv-2

1,1 ) is trivial. This completes
the proof of the first portion of Corollary 2.3. Thus, the final portion of
Corollary 2.3 follows immediately from the discussion following the statement
of the problem (CSP)pro-lg,r in the Introduction. This completes the proof of
Corollary 2.3. □

Remark 2.4. The argument given in the proof of Corollary 2.3 is essentially
the same as the argument applied in [2] to prove [2, Theorem 5].

Corollary 2.5. The equality

ker((ρ2Lgd)k) = ker((ρuniv-20,4 )k)

holds.

Proof. Let us first observe that it follows from Theorem 2.2 and [2, Remark
following the proof of Theorem 1] that, to verify Corollary 2.5, it suffices to
prove that

im(ker((ρ2Lgd)k)
prk→ Gk) = im(ker((ρuniv-2

0,4 )k)
prk→ Gk).

Since (M1,2)k → (M1,1)k is isomorphic to the universal curve of type (1, 1)
over k, we obtain the following commutative diagram of profinite groups

1 // ∆2
1,1

// Π
2
Lgdk

//
� _

��

Π
rel-2
(M0,4)k

//
� _

��

1

1 // ∆2
1,1

// Π
rel-2
(M1,2)k

// Π
rel-2
(M1,1)k

// 1

where the horizontal sequences are exact, the vertical arrows are injective,
and the left-hand vertical arrow is the identity morphism of ∆2

1,1. Now let
us observe that one verifies easily from the above commutative diagram that

ker((ρ2Lgd)k) ⊆ ker((ρuniv-2
1,1 )k).

Moreover, it is well-known that

ker(φ4
1,1 ◦ (ρuniv-2

1,1 )k) ⊆ Π
rel-2
(M0,4)k

⊆ Π
rel-2
(M1,1)k

,
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which thus implies that

ker((ρuniv-2
1,1 )k) = ker((ρuniv-2

1,1 )k) ∩Π
rel-2
(M0,4)k

= ker((ρ2Lgd)k).

Thus, we conclude that

im(ker((ρ2Lgd)k)
prk→ Gk) = im(ker((ρuniv-2

1,1 )k)
prk→ Gk).

On the other hand, since Oda’s problem is answered in the affirmative (cf.
[28, Theorem 0.5]), the equalities

im(ker((ρuniv-2
1,1 )k)

prk→ Gk) = ker(ρ2P1
k\{0,1,∞}) = im(ker((ρuniv-2

0,4 )k)
prk→ Gk)

hold. Therefore, we obtain that

im(ker((ρ2Lgd)k)
prk→ Gk) = im(ker((ρuniv-2

0,4 )k)
prk→ Gk).

This completes the proof of Corollary 2.5. □
Definition 2.6. Let (E,O) be an elliptic curve over k (i.e., a pair of a proper
smooth curve E of genus one over k and a k-rational point O of E), E[2] the
2-torsion subgroup of E ⊗k k, and k(E[2]) ⊆ k the field generated by E[2]
over k. Then, by a standard argument in algebraic geometry (cf., e.g., [9,
Chapter IV, §4]), there exists λ ∈ k(E[2]) \ {0, 1} such that, after possibly
applying a suitable automorphism of P1

k(E[2]) over k(E[2]), the set of branch
points of the finite morphism f : E ⊗k k(E[2])→ P1

k(E[2]) determined by the
linear system |2O| coincides with {0, 1, λ,∞}. Moreover, one verifies easily
that the set

mE := {λ, 1/λ, 1− λ, 1/(1− λ), λ/(λ− 1), (λ− 1)/λ} ⊆ k(E[2])

is uniquely determined by the isomorphism class of E⊗kk(E[2]) over k(E[2]).
We shall refer to mE as the Legendre invariant set of E.

Remark 2.7. Let (E,O) be an elliptic curve over k. Then it follows from
the definition of mE that the isomorphism class of E ⊗k k(E[2]) \ {O} over
k(E[2]) may be recovered from mE by considering the scheme obtained by
pulling back the Legendre family of elliptic curves (MLgd)k(E[2]) → P1

k(E[2]) \
{0, 1,∞} via the k(E[2])-rational point [λ] : Spec(k(E[2]))→ P1

k(E[2])\{0, 1,∞}
determined by λ ∈ mE .

Definition 2.8. Let (g, r) be a pair of nonnegative integers such that 2g −
2+r > 0, and X a curve of type (g, r) over k whose divisor of infinity consists
of r distinct k-rational points. Write

π1([X]) : Gk −→ Π(Mg,r)k

for the outer homomorphism obtained by the classifying morphism Spec(k)→
(Mg,r)k determined by equipping the r marked points of X with an ordering.
Then we shall say that X is {l}-monodromically full (respectively, quasi-{l}-
monodromically full) (cf. [11, Definition 2.2]) if im((ρpuni-lg,r )k ◦ π1([X])) is
equal to im((ρpuni-lg,r )k) (respectively, is an open subgroup of im((ρpuni-lg,r )k)).

Corollary 2.9. Let (E,O) be an elliptic curve over k and λ ∈ mE. Then it
holds that

ker(ρ2P1
k(E[2])

\{0,1,λ,∞}) = ker(ρ2E⊗kk(E[2])\{O}),
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| im((ρuniv-20,4 )k(E[2])) : im(ρ2P1
k(E[2])

\{0,1,λ,∞})|

= | im((ρ2Lgd)k(E[2])) : im(ρ2E⊗kk(E[2])\{O})|.
In particular, the following conditions are equivalent:

(i) E \ {O} is quasi-{2}-monodromically full (respectively, the equality
im((ρ2Lgd)k(E[2])) = im(ρ2E⊗kk(E[2])\{O}) holds);

(ii) P1
k(E[2]) \ {0, 1, λ,∞} is quasi-{2}-monodromically full (respectively,
{2}-monodromically full).

Proof. Let us first observe that, to verify Corollary 2.9, we may assume
without loss of generality, by replacing k by k(E[2]), that every 2-torsion
point of E is k-rational. Thus, λ ∈ mE determines a k-rational point
[λ] : Spec(k) → P1

k \ {0, 1,∞}. Write π1([λ]) : Gk → Π
rel-2
(M0,4)k

for the outer
homomorphism determined by [λ]. Now it follows from the various defini-
tions involved that the homomorphism (ρuniv-2

0,4 )k ◦ π1([λ]) : Gk → Out(∆2
0,4)

(respectively, (ρ2Lgd)k ◦π1([λ]) : Gk → Out(∆2
1,1)) coincides with ρ2P1

k\{0,1,λ,∞}
(respectively, ρ2E\{O}). Therefore, it follows from Corollary 2.5 that the two
equalities in the statement of Corollary 2.9 hold. Finally, the equivalence
at the final portion of the statement of Corollary 2.9 follows immediately
from the various definitions involved. This completes the proof of Corollary
2.9. □

Corollary 2.10. Let (E1, O1) and (E2, O2) be elliptic curves over k. Suppose
that k is a finitely generated extension of Q, that every 2-torsion point of Ei

is k-rational, and that ρ2Ei\{Oi}(Gk) = (ρ2Lgd)k(Π
rel-2
(M0,4)k

) for i = 1, 2. Then
the following conditions are equivalent;

(i) E1 \ {O1} is isomorphic to E2 \ {O2} over k;
(ii) the kernel of ρ2E1\{O1} coincides with the kernel of ρ2E2\{O2}.

Proof. The implication
(i) =⇒ (ii)

is immediate; thus, to verify Corollary 2.10, it suffices to show the implication

(ii) =⇒ (i).

Suppose that condition (ii) is satisfied. Let mEi ⊆ k be the Legendre in-
variant set of Ei and λi an element of mEi for i = 1, 2. Then it follows
from Corollary 2.9 that P1

k \ {0, 1, λ1,∞} and P1
k \ {0, 1, λ2,∞} are {2}-

monodromically full, and

ker(ρ2Pk\{0,1,λ1,∞}) = ker(ρ2Pk\{0,1,λ2,∞}).

Thus, it follows from [11, Theorem A] that P1
k \ {0, 1, λ1,∞} is isomorphic

to P1
k \ {0, 1, λ2,∞} over k, which thus implies that

mE1 = mE2 .

Therefore, by Remark 2.7, E1 \{O1} is isomorphic to E2 \{O2} over k. This
completes the proof of Corollary 2.10. □
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3. The pro-l outer Galois actions associated to modular
curves

In the present §3, we discuss the issue of whether or not the pro-l outer
Galois action associated to a modular curve (cf. “Fundamental groups” in
“Notations and Conventions”) factor through a pro-l quotient of the absolute
Galois group of a certain number field.

In the present §3, let Q be an algebraic closure of the field of rational
numbers Q. For a positive integer N , let ζN ∈ Q be a primitive N -th root of
unity. For a subfield F of Q, write GF := Gal(Q/F ). For a ring A, we shall
denote by SL2(A) the special linear group of degree 2 over A.

Definition 3.1. Let N be a positive integer. Then we shall write

Γ (N) :=

{ (
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a ≡ d ≡ 1, c ≡ b ≡ 0 (mod N)

}
;

Γ1(N) :=

{ (
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a ≡ d ≡ 1, c ≡ 0 (mod N)

}
;

Γ0(N) :=

{ (
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}
.

Definition 3.2. Let N be a positive integer.
(i) We shall write

Y1(N), Y0(N)

for the respective modular curves parametrizing elliptic curves with
Γ1(N)-, Γ0(N)-structures over Q (cf., e.g., [18]);

X1(N), X0(N)

for the respective smooth compactifications of Y1(N), Y0(N) over Q;

J1(N), J0(N)

for the respective Jacobian varieties of X1(N), X0(N).
(ii) We shall write

Y(N)

for the modular curve parametrizing elliptic curves with Γ (N)-structures
over Q(ζN ) (cf., e.g., [18]);

X(N)

for the smooth compactification of Y(N) over Q(ζN );

J(N)

for the Jacobian variety of X(N).

Lemma 3.3. Let

1 // ∆1
//

α

��

Π1

��

// G // 1

1 // ∆2
// Π2

// G // 1
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be a commutative diagram of profinite groups, where the horizontal sequences
are exact and the right-hand vertical arrow is the identity morphism of G.
Write

ρ1 : G −→ Out(∆1), ρ2 : G −→ Out(∆2)

for the outer actions of G on ∆1, ∆2 determined by the upper, lower hori-
zontal sequences of the above diagram, respectively. Suppose that one of the
following conditions is satisfied:

(a) The homomorphism α is surjective.
(b) The profinite group ∆2 is slim, and the homomorphism α is open.
(c) The profinite group ∆1 is center-free, the homomorphism α is in-

jective, and the image of the middle vertical arrow Π1 → Π2 of the
above diagram is normal.

Then it holds that ker(ρ1) ⊆ ker(ρ2).

Proof. First, if condition (a) is satisfied, then Lemma 3.3 follows immediately
from the various definitions involved. Next, we verify Lemma 3.3 in the
case where condition (b) is satisfied. Now let us observe that it follows
immediately from Lemma 3.3 in the case where condition (a) is satisfied
that we may assume without loss of generality — by replacing ∆1 by the
image of α — that α is an open injection. Thus, Lemma 3.3 in the case where
condition (b) is satisfied follows from a similar argument to the argument
applied in the proof of [12, Lemma 23, (iii)].

Next, we verify Lemma 3.3 in the case where condition (c) is satisfied.
Let us observe that, to verify Lemma 3.3 in the case where condition (c) is
satisfied, it follows immediately from the various definitions involved that it
suffices to verify the inclusion

ZΠ1(∆1) ⊆ ZΠ2(∆2).

Now since ∆1 = Π1 ∩∆2 is normal in Π2 (cf. condition (c)), hence also in
∆2, and center-free, it follows immediately from a similar argument to the
argument applied in the proof of [10, Lemma 4.10] that, to verify the above
inclusion ZΠ1(∆1) ⊆ ZΠ2(∆2), it suffices to verify the following assertion:

If α ∈ ZΠ1(∆1), then the automorphism of ∆2/∆1 obtained
by conjugation by α ∈ Π1 ⊆ Π2 is the identity automor-
phism.

On the other hand, the commutative diagram of the statement of Lemma 3.3
determines an isomorphism ∆2/∆1

∼→ Π2/Π1. Thus, since α ∈ ZΠ1(∆1) ⊆
Π1, it follows that the automorphism of ∆2/∆1 obtained by conjugation by
α is the identity automorphism. This completes the proof of Lemma 3.3. □

Lemma 3.4. In the notation and the assumption of Lemma 3.3, suppose,
moreover, that ∆2 is pro-l, and that the homomorphism α is an open injec-
tion. Then it holds that ρ1 factors through a pro-l quotient of G if and only
if ρ2 factors through a pro-l quotient of G.

Proof. Lemma 3.4 follows immediately from Lemma 3.3, together with a
similar argument to the argument applied in the proof of [12, Lemma 23,
(i)]. □
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Lemma 3.5. Let F be a field of characteristic zero that contains a primitive
l-th root of unity, F an algebraic closure of F , and Y a hyperbolic curve over
F . Write GF := Gal(F/F ), X for the smooth compactification of Y over F ,
and J for the Jacobian variety of X. Then the following hold:

(i) It holds that

ker(ρlY ) ⊆ ker(ρlX) ⊆ ker(ρlJ).

Moreover, the quotient ker(ρlJ)/ ker(ρ
l
X) is pro-l.

(ii) Suppose, moreover, that the natural action of GF on the set of cusps
of Y factors through a pro-l quotient of GF . Then the quotient
ker(ρlX)/ ker(ρlY ) (cf. (i)), hence also ker(ρlJ)/ ker(ρ

l
Y ) (cf. (i)), is

pro-l.
(iii) In the situation of (ii), if, moreover, X is of genus zero, then the

outer Galois action ρlY of GF on ∆l
Y factors through a pro-l quotient

of GF .

Proof. Assertion (i) follows immediately from Lemma 3.3 (in the case where
condition (a) is satisfied), and [1, Corollary 7], together with the fact that
the natural morphism X⊗F F → J⊗F F determined by an F -rational point
of X induces an isomorphism (∆l

X)ab
∼→ ∆l

J .
Next, we verify assertion (ii). First, let us observe that since the natural

action of GF on the set of cusps of Y factors through a pro-l quotient of GF ,
we may assume without loss of generality, by replacing F by a suitable finite
extension of F , that Y is split, i.e., every cusp of Y is defined over F . Write
VY/X for the kernel of the natural surjection of free Zl-modules of finite rank
(∆l

Y )
ab ↠ (∆l

X)ab (cf., e.g., [22, Remark 1.2.2]). Then one verifies immedi-
ately from [1, Corollary 7] that (since the module HomZl

((∆l
X)ab, VY/X) of

Zl-linear homomorphisms from (∆l
X)ab to VY/X is a pro-l group), to com-

plete the verification of assertion (ii), it suffices to verify that the natural
action of ker(ρlX) on VY/X factors through a pro-l quotient of ker(ρlX). On
the other hand, this follows immediately from the (easily verified) fact that
VY/X is isomorphic, as a Zl-module equipped with an action of GF , to the
direct sum of finitely many copies of the l-adic cyclotomic character of GF

(cf. our assumption that Y is split). This completes the proof of assertion
(ii). Assertion (iii) follows immediately from assertion (ii), together with the
(easily verified) fact that ∆l

X = {1} (cf. our assumption that X is of genus
zero). This completes the proof of Lemma 3.5. □

Lemma 3.6. Suppose that l ̸∈ {2, 3, 5, 7, 13}. Then the restriction of the
action of GQ on the l-adic Tate module Tl(J0(l)) of J0(l) to GQ(ζl) ⊆ GQ
does not factor through any pro-l quotient of GQ(ζl).

Proof. Write χ : GQ → F×
l for the character of GQ determined by

σ(ζl) = ζ
χ(σ)
l (for σ ∈ GQ),

End(J0(l)) for the ring of endomorphisms of the abelian variety J0(l), T ⊆
End(J0(l)) for the Hecke algebra (where we refer to [19, p.90, Definition]),
and

V := ∆l
J0(l)
⊗Zl

Fl.
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Then the action of GQ on Tl(J0(l)) (respectively, the definition of the Hecke
algebra) induces a homomorphism of groups (respectively, rings)

GQ −→ AutFl
(V ), (respectively, T −→ EndFl

(V )).

Note that since the action of T ⊆ End(J0(l)) on J0(l) is defined over Spec(Q),
the action of GQ on V commutes with the action of T on V . Write T[GQ] ⊆
EndFl

(V ) for the subring of EndFl
(V ) generated by the images of GQ →

AutFl
(V ) and T→ EndFl

(V ). Here, let us recall that since l is not contained
in {2, 3, 5, 7, 13}, the dimension of V over Fl is > 0.

Assume that the restriction of the action of GQ on the l-adic Tate module
Tl(J0(l)) of J0(l) to GQ(ζl) ⊆ GQ does factor through some pro-l quotient
of GQ(ζl). Then it follows from [25, Lemma 3] that there exists an integer i
such that

V χi
:= {v ∈ V | g · v = χi(g) · v (for all g ∈ GQ)} ⊆ V

is a nontrivial subspace of V . Since the action of GQ on V commutes with
the action of T on V , for any g ∈ GQ, t ∈ T, and v ∈ V χi , it holds that

g · (t · v) = t · (g · v) = t · (χi(g) · v) = χi(g) · (t · v).

Thus, V χi is a T[GQ]-submodule of V . Let W be a constituent of a T-Jordan-
Hölder filtration of V χi . Then it follows from the definition of V χi that the
T-module W is a T[GQ]-subquotient of V χi and, moreover, a constituent of
a T[GQ]-Jordan-Hölder filtration of V , i.e., W is a constituent of V in the
sense of [19, p.112]. Thus, the annihilator M in T concerning the action on
W is a maximal ideal of T, and the action of T on W induces an injection

T/M ↪→ EndFl
(W ).

Since W is a simple T-module by the definition of W , the dimension of W
over T/M is equal to 1, i.e., the dimension of W is equal to 1 in the sense of
[19, p.112]. Hence, it follows from [19, Chapter II, Proposition 14.1] that M
is an Eisenstein prime of T, where we refer to [19, p.96, Definition]. Thus,
by [19, Chapter II, Proposition 9.7], the characteristic of the field T/M is
prime to l. On the other hand, one verifies easily that EndFl

(W ) is of order
a power of l. Thus, we obtain a contradiction. This completes the proof of
Lemma 3.6. □

Remark 3.7. The observation given in the proof of Lemma 3.6 was related
to the authors by Akio Tamagawa.

Lemma 3.8. Let m be a positive integer. Write J ⊆ Γ1(l) (respectively,
⊆ Γ (l)) (cf. Definition 3.1) for the normal subgroup obtained by forming
the intersection of all Γ1(l)- (respectively, Γ (l)-) conjugates of Γ1(l

m) ⊆
Γ1(l) (respectively, Γ (lm) ⊆ Γ (l)). Then the index |Γ1(l) : J | (respectively,
|Γ (l) : J |) is a power of l. In particular, the natural finite étale covering
Y1(l

m)→ Y1(l) (respectively, Y(lm)→ Y(l)) induces an outer open injection
Π

l
Y1(lm) ↪→ Π

l
Y1(l)

(respectively, Π l
Y(lm) ↪→ Π

l
Y(l)).

Proof. Let us first observe that, to verify Lemma 3.8, it suffices to verify that
the finite groups Γ1(l)/Γ (lm) and Γ (l)/Γ (lm) are l-groups. On the other
hand, one verifies easily that Γ (l)/Γ (lm) ≃ ker(SL2(Z /lm)→ SL2(Z /l)) is
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an l-group. Thus, Lemma 3.8 follows from the easily verified fact that the
index |Γ1(l) : Γ (l)| is equal to l. This completes the proof of Lemma 3.8. □

Remark 3.9. In the notation of Lemma 3.8, let p be a prime factor of l − 1,
pν the largest power of p that divides l − 1, and a ∈ (Z /lm)× an element of
order pν . Then one verifies easily that the subgroup generated by the matrix(

a 0
0 a−1

)
∈ SL2(Z /lm)

∼← SL2(Z)/Γ (lm)

is a p-Sylow subgroup of Γ0(l
m)/Γ (lm) ⊆ SL2(Z)/Γ (lm). Thus, by consider-

ing the conjugate of the above matrix by the matrix(
1 0
l 1

)
∈ Γ0(l)/Γ (lm) ⊆ SL2(Z)/Γ (lm),

one verifies immediately that
if l ≥ 5 and m ≥ 2, then the assertion obtained by replacing
“Γ1” or “Γ ” in Lemma 3.8 by “Γ0” does not hold.

Lemma 3.10. The following hold:
(i) The restriction of the action of GQ on the 13-adic Tate module

T13(J0(169)) of J0(169) to GQ(ζ13) ⊆ GQ does not factor through
any pro-13 quotient of GQ(ζ13).

(ii) The restriction of the action of GQ on the 13-adic Tate module
T13(J1(13)) of J1(13) to GQ(ζ13) ⊆ GQ does not factor through any
pro-13 quotient of GQ(ζ13).

Proof. First, we verify assertion (i). Let us observe that it follows immedi-
ately from the Eichler-Shimura relation (cf., e.g., [19, p.89]) that the trace
of the action of the arithmetic Frobenius element Frob3 at 3 (respectively,
Frob29 at 29) on T13(J0(169)) coincides with the trace of the action of the
Hecke operator T3 (respectively, T29) (cf., e.g., [19, p.87]). Now we claim
that

the characteristic polynomial of the action of the Hecke op-
erator T3 (respectively, T29) on T13(J0(169)) is

(t− 2)2(t3 + 2t2 − t− 1)2

(respectively, (t− 3)2(t3 + t2 − 44t+ 83)2).
In particular, the trace of the action of Frob3 (respectively,
Frob29) on T13(J0(169)) is 0 (respectively, 4).

Indeed, the above claim follows immediately from [27, http://modular.

math.washington.edu/Tables/charpoly.html].
On the other hand, it follows, by considering the semi-simplification of the

action of GQ on T13(J0(169)) ⊗Z13 F13, from [25, Lemma 3], together with
Class field theory, that if the restriction of the action of GQ on T13(J0(169)) to
GQ(ζ13) ⊆ GQ factors through a pro-13 quotient of GQ(ζ13), then the traces of
the actions of Frob3, Frob29 on T13(J0(169)) ⊗Z13 F13 coincide. Thus, since
0 ̸≡ 4 (mod 13), we conclude that the restriction of the action of GQ on
T13(J0(169)) to GQ(ζ13) ⊆ GQ does not factor through any pro-13 quotient
of GQ(ζ13). This completes the proof of assertion (i).

http://modular.math.washington.edu/Tables/charpoly.html
http://modular.math.washington.edu/Tables/charpoly.html
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Next, we verify assertion (ii). Now one verifies immediately from assertion
(i), Lemma 3.5, (i), and Lemma 3.3 (in the case where condition (b) is
satisfied — cf., e.g., [22, Proposition 1.4]), that the restriction of the outer
action of GQ on ∆13

Y1(169)
to GQ(ζ13) ⊆ GQ does not factor through a pro-

13 quotient of GQ(ζ13). Thus, it follows immediately from Lemma 3.4 (in
the case where condition (b) is satisfied — cf., e.g., [22, Proposition 1.4]),
together with Lemma 3.8, that the restriction of the outer action of GQ on
∆13

Y1(13)
to GQ(ζ13) ⊆ GQ does not factor through a pro-13 quotient of GQ(ζ13).

In particular, since the complement of Y1(13) in X1(13) consists of six Q-
rational points and a Q(ζ13 + ζ−1

13 )-rational point (cf., e.g., the discussion
given in [20, §3]), one verifies from Lemma 3.5, (ii), that the restriction of
the action of GQ on T13(J1(13)) to GQ(ζ13) ⊆ GQ does not factor through
any pro-13 quotient of GQ(ζ13). This completes the proof of assertion (ii),
hence also of Lemma 3.10. □

Remark 3.11. The observation given in the proof of Lemma 3.10, (i), was
related to the authors by Akio Tamagawa. The content of Lemma 3.10, (ii),
was pointed out to the authors by Seidai Yasuda.

Lemma 3.12. The following hold:
(i) The restriction to GQ(ζ7) ⊆ GQ of the action of GQ on the 7-adic

Tate module T7(J0(49)) of J0(49) factors through a pro-7 quotient
of GQ(ζ7).

(ii) The action of GQ(ζ7) on the 7-adic Tate module T7(J(7)) of J(7)
factors through a pro-7 quotient of GQ(ζ7).

Proof. Assertion (i) follows immediately from [25, Table 1], together with
the well-known fact that X0(49) admits a structure of elliptic curve over Q
and is listed as “49a”. Next, we verify assertion (ii). Let us first observe that
the (easily verified) inclusion(

7 0
0 1

)−1

· Γ (7) ·
(
7 0
0 1

)
⊆ Γ0(49)

(cf. Definition 3.1) implies the existence of a dominant morphism X(7) →
X0(49) ⊗Q Q(ζ7) over Q(ζ7), hence also a surjection J(7) ↠ J0(49) ⊗Q
Q(ζ7) = X0(49)⊗QQ(ζ7) (cf. the proof of assertion (i)) over Q(ζ7). Thus, it
follows immediately from [24, Theorem 2] that we have a GQ(ζ7)-equivariant
isomorphism

T7(J(7))⊗Z7 Q7
∼→

(
T7(J0(49))

⊕3
)
⊗Z7 Q7 .

Thus, it follows immediately from assertion (i) that the restriction of the
action of GQ on T7(J(7)) to GQ(ζ7) ⊆ GQ factors through a pro-7 quotient
of GQ(ζ7). This completes the proof of Lemma 3.12. □

Remark 3.13. The content of Lemma 3.12 was pointed out to the authors by
Seidai Yasuda.

Theorem 3.14. Let l be a prime number. Then the following conditions are
equivalent:

(P) l ≤ 7.
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(Y) The outer action of GQ(ζl) on ∆l
Y(l) factors through a pro-l quotient

of GQ(ζl).

Proof. First, we verify the implication

(Y) =⇒ (P).

Suppose that condition (Y) is satisfied. If l /∈ {2, 3, 5, 7, 13}, then it follows
from Lemma 3.5, (i), and Lemma 3.6 that the outer action of GQ(ζl) on ∆l

Y0(l)

does not factor through a pro-l quotient of GQ(ζl). Therefore, by means of
Lemma 3.3 (in the case where condition (b)), to complete the verification of
condition (P), it suffices to verify that l ̸= 13. On the other hand, if l = 13,
then it follows immediately from Lemma 3.5, (i), and Lemma 3.10, (ii) that
the outer action of GQ(ζl) on ∆l

Y1(l)
does not factor through a pro-l quotient

of GQ(ζl). Thus, by means of Lemma 3.3 (in the case where condition (b)),
we may verify that condition (Y) is not satisfied. This completes the proof
of the implication (Y)⇒ (P).

Next, we verify the implication

(P) =⇒ (Y).

Suppose that condition (P) is satisfied. If l ̸= 7, then since (as is well-known)
X(l) is of genus zero, and every cusp of Y(l) is defined over Q(ζl) (cf. the
discussion given in [17, §1.4]), condition (Y) follows from Lemma 3.5, (iii).
If l = 7, then it follows from Lemma 3.12, (ii) that the outer action of
GQ(ζl) on ∆l

J(l) factors through a pro-l quotient of GQ(ζl). Thus, by means
of Lemma 3.5, (ii) with the fact that every cusp of Y(l) is defined over Q(ζl)
(cf. the discussion given in [17, §1.4]), we may verify that condition (Y) is
satisfied. This completes the proof of the implication (P) ⇒ (Y), hence also
of Theorem 3.14. □

Remark 3.15. In Appendix A, we will discuss a generalization of Theo-
rem 3.14 for modular curves of level a power of l.

4. A pro-l version of the congruence subgroup problem for
mapping class groups of genus one: The general case

In the present §4, we maintain the notation of §1 and the preceding §3. In
the present §4, we continue our sturdy of the congruence subgroup problem
for the relative pro-l completions of mapping class groups. In particular, we
prove that, if l ̸= 2, 3, 5, 7, then the quotient of the profinite completion of
the mapping class group of genus one determined by the pro-l outer geo-
metric monodromy representation does not coincide with the relative pro-l
completion of the mapping class group of genus one.

In the present §4, by means of an injection Q ↪→ k, let us regard Q as a
subfield of k. Write GQ := Gal(Q/Q). For a subfield F of k which contains
ζl, write (Y (l))F := Y (l)⊗Q(ζl) F and (X(l))F := X(l)⊗Q(ζl) F . For a ring
A, we shall denote by PSL2(A) the projective special linear group of degree
2 over A.
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Lemma 4.1. Let

1

��

1

��
1 // ∆

iΠ2

��

iΠ1 // Π1

iΠ1

��

// G1
// 1

1 // Π2
iΠ2

//

��

Π3
//

��

G1
// 1

G2

��

G2

��
1 1

be a commutative diagram of profinite groups, where the horizontal and verti-
cal sequences are exact, the right-hand vertical arrow is the identity morphism
of G1, and the lower horizontal arrow is the identity morphism of G2. Write

ρ1 : G1 −→ Out(∆) and ρ2 : G2 −→ Out(∆)

for the outer actions associated to the top horizontal and left-hand vertical
exact sequences, respectively. Then any element of im(ρ2) commutes with
any element of im(ρ1).

Proof. One verifies easily that the left-hand upper square in the diagram in
the statement of Lemma 4.1 is cartesian, i.e., the equality iΠ1 ◦ iΠ1(∆) =
iΠ1(Π1) ∩ iΠ2(Π2) holds. Thus, it follows that the commutator subgroup
[iΠ1(Π1), iΠ2(Π2)] ⊆ Π3 is contained in iΠ1 ◦ iΠ1(∆). In particular, one
verifies immediately from the various definitions involved that any element
of im(ρ2) commutes with any element of im(ρ1). This completes the proof
of Lemma 4.1. □

Proposition 4.2. Suppose that k contains ζl, and that l > 2. Then the
equality

ker(ρl(Y (l))k
) = ker((ρrel-l1,1 )k)

holds.

Proof. Let us first observe that, by the various definitions involved, we have
the following commutative diagram of profinite groups
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1

��

1

��
1 // ∆l

(Y (l))k

��

// Γ rel-l
1,1

��

// SL2(Fl) // 1

1 // Π
l
(Y (l))k

//

��

Π
rel-l
(M1,1)k

//

��

SL2(Fl) // 1

Gk

��

Gk

��
1 1

where the vertical and horizontal sequences are exact, the lower horizontal
arrow is the identity morphism of Gk, and the right-hand vertical arrow is
the identity morphism of SL2(Fl). In particular, since ∆l

(Y (l))k
is center-free

(cf., e.g., [17, §1.4], [22, Proposition 1.4]), it follows from Lemma 3.3 (in
the case where condition (c) is satisfied), that, to verify Proposition 4.2, it
suffices to verify that

ker(ρl(Y (l))k
) ⊇ ker((ρrel-l1,1 )k).

Write φl
SL : SL2(Fl)→ Out(∆l

(Y (l))k
) for the homomorphism determined by

the upper horizontal sequence of the above commutative diagram. Let σ be
an element of ker((ρrel-l1,1 )k). Note that, by [15, Lemma 2.2], ρl(Y (l))k

(σ) is
contained in im(φl

SL).
First, suppose that l > 3. Since (one verifies easily that)(

−1 0
0 −1

)
∈ SL2(Fl)

is contained in the image of the restriction to ZΓ rel-l
1,1

(Γ rel-l
1,1 ) ⊆ Γ rel-l

1,1 of Γ rel-l
1,1 →

SL2(Fl), it follows immediately that the homomorphism φl
SL : SL2(Fl) →

Out(∆l
(Y (l))k

) factors through PSL2(Fl). Hence, it follows from the simplic-
ity of the group PSL2(Fl) (cf., e.g., [5, Chapter II, §10, Exercise 14]) that
the image of φl

SL is isomorphic to either {1} or PSL2(Fl), which thus implies
that im(φl

SL) is center-free. In particular, by Lemma 4.1, together with the
fact that ρl(Y (l))k

(σ) ∈ im(φl
SL) (already verified above), we conclude that

σ is contained in ker(ρl(Y (l))k
). This completes the proof of the case where

l > 3.
Next, suppose that l = 3. Let us first recall that (Y (3))k is a curve

of type (0, 4) over k, and every cusp of (Y (3))k is k-rational (cf. [17,
(A1.5.1)], [17, §1.4]). Note that φ3

SL : SL2(F3) → Out(∆3
(Y (3))k

) factors
through the natural homomorphism Autk((Y (3))k) → Out(∆3

(Y (3)k)
) by

the various definitions involved. Thus, by comparing the natural actions
of Autk((Y (3))k) ⊆ Autk((X(3))k) ≃ Autk(P1

k) and im(ρ3(Y (3))k
) on the set
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of conjugacy classes of cuspidal inertia subgroups of ∆3
(Y (3))k

(cf. the fact
that every cusp of (Y (3))k is defined over k), we conclude that σ is contained
in ker(ρ3(Y (3))k

). This completes the proof of the case where l = 3, hence also
of Proposition 4.2. □

Theorem 4.3 (cf. [15, Corollary 3.8]). Let (g, r) be a pair of nonnegative
integers such that 3g − 3 + r > 0. Then the kernel of the homomorphism
(ρrel-lg,r )k is contained in the kernel of the homomorphism

ρlP1
k\{0,1,∞} : Gk −→ Out(∆l

P1
k\{0,1,∞}).

Proof. If either (g, r) ̸= (1, 1) or l = 2, then Theorem 4.3 follows from [15,
Corollary 3.8]. Thus, to verify Theorem 4.3, we may assume that (g, r) =
(1, 1) and l > 2. Next, let us observe that one verifies immediately that, to
complete the verification of Theorem 4.3, it suffices to verify Theorem 4.3 in
the case where we take “k” to be Q. Moreover, we claim that

Theorem 4.3 in the case where we take “k” to be Q(ζl)
implies Theorem 4.3 (i.e., Theorem 4.3 in the case where
we take “k” to be Q).

Indeed, suppose that ker((ρrel-l1,1 )Q(ζl)) is contained in ker(ρlP1
Q(ζl)

\{0,1,∞}). Then

we have that

ker((ρrel-l1,1 )Q(ζl)) = ker((ρrel-l1,1 )Q)∩GQ(ζl) ⊆ ker(ρlP1
Q(ζl)

\{0,1,∞}) ⊆ ker(ρlP1
Q\{0,1,∞}).

In particular, the image of ker((ρrel-l1,1 )Q) by the natural homomorphism GQ ↠
GQ/ ker(ρ

l
P1
Q\{0,1,∞}) is a finite normal subgroup of GQ/ ker(ρ

l
P1
Q\{0,1,∞}). On

the other hand, it follows from [11, Lemma 4.3, (ii)] that GQ/ ker(ρ
l
P1
Q\{0,1,∞})

is slim. Thus, the above claim follows from the well-known fact that any finite
normal closed subgroup of a slim profinite group is trivial (cf., e.g., [22, §0]).
This completes the proof of the claim. It follows from the above claim that,
to complete the verification of Theorem 4.3, we may assume without loss of
generality that k = Q(ζl).

Since (Y (l))k is a hyperbolic curve over k, it follows from [13, Theorem
C] that

ker(ρl(Y (l))k
) ⊆ ker(ρlP1

k\{0,1,∞}).

Thus, since (we have assumed that) l > 2, Theorem 4.3 follows immediately
from Proposition 4.2. This completes the proof of Theorem 4.3. □

Remark 4.4. Let (g, r) be a pair of nonnegative integers such that 3g−3+r >
0. In the summer of 2011, Makoto Matsumoto gave the second author the
following problem:

(Mg,r,l): Does the kernel of the homomorphism (ρrel-lg,r )k co-
incide with the kernel of the homomorphism

ρlP1
k\{0,1,∞} : Gk −→ Out(∆l

P1
k\{0,1,∞})?

The second author proved, in response to this problem, the following Theo-
rem (cf. [15, Theorem 3.4]):
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Suppose that either (g, r) ̸= (1, 1) or l = 2. Then the kernel
of the homomorphism (ρgeo-lg,r )k coincides with the kernel of
the homomorphism

ρlP1
k\{0,1,∞} : Gk −→ Out(∆l

P1
k\{0,1,∞}).

However, (Mg,r,l) is answered in the negative if g = 1 and l ̸= 2, 3, 5, 7 (cf.
Theorem 4.5, Remark 4.6, below).

Theorem 4.5. The equality

ker((ρrel-l1,1 )Q) = ker(ρlP1
Q\{0,1,∞})

holds if and only if
l ∈ {2, 3, 5, 7}.

In particular, if r is a positive integer, and

l /∈ {2, 3, 5, 7},

then
ker((ρrel-l1,r )Q) ⊊ ker(ρlP1

Q\{0,1,∞}).

Proof. Let us first observe that, for any positive integer r, we have the fol-
lowing commutative diagram of profinite groups

1 // Γ rel-l
1,r+1

����

// Π
rel-l
(M1,r+1)Q

����

// GQ // 1

1 // Γ rel-l
1,r

// Π
rel-l
(M1,r)Q

// GQ // 1

where the horizontal sequences are exact, the vertical arrows are surjective,
and the right-hand vertical arrow is the identity morphism of GQ. Thus,
it follows immediately from Theorem 4.3, together with Lemma 3.3 (in the
case where condition (a) is satisfied), that, to verify Theorem 4.5, it suffices
to verify the first equivalence of the statement of Theorem 4.5.

First, suppose that l = 2. Then it follows from Corollary 2.3 and [15,
Theorem 3.4] that the equalities

ker((ρrel-21,1 )Q) = ker((ρgeo-21,1 )Q) = ker(ρ2P1
Q\{0,1,∞})

hold. This completes the proof of the case where l = 2.
Next, suppose that l ∈ {3, 5, 7}. Then let us recall that since l is regular

and odd, Ihara’s problem concerning the pro-l outer Galois action associated
to a tripod (cf., e.g., [14, Lecture I, §2], [25, Introduction]) is answered in
the affirmative (cf. the main result of [6], together with [26, Theorem 1.1]).
Thus, since (ρrel-l1,1 )Q(GQ(ζl)) is pro-l (cf. Theorem 3.14, Proposition 4.2), it
follows immediately from [8, Theorem 3] that the equality

ker((ρrel-l1,1 )Q) = ker(ρlP1
Q\{0,1,∞})

holds. This completes the proof of the case where l ∈ {3, 5, 7}.
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Finally, suppose that l /∈ {2, 3, 5, 7}. Then it follows from Proposition 4.2
that, to complete the verification of the case where l /∈ {2, 3, 5, 7}, it suffices
to prove that

ker(ρlY (l)) ̸= ker(ρlP1
Q(ζl)

\{0,1,∞}).

On the other hand, if

ker(ρlY (l)) = ker(ρlP1
Q(ζl)

\{0,1,∞}),

then it follows from [11, Lemma 4.3, (ii)] that the image of ρlY (l) is pro-l,
which contradicts Theorem 3.14. This completes the proof of the case where
l /∈ {2, 3, 5, 7}, hence also of Theorem 4.5. □

Remark 4.6. Let (g, r) be a pair of nonnegative integers such that 3g−3+r >
0.

(i) Let us recall that, as is well-known, there exists an isomorphism of
(M0,4)k with P1

k \ {0, 1,∞} over k. Thus, it follows immediately
from Definition 1.1 that we have an equality

ker(ρlP1
k\{0,1,∞}) = ker((ρrel-l0,4 )k).

In particular, the problem (Mg,r,l) of Remark 4.4 is equivalent to
the following problem:

Does the equality ker((ρrel-lg,r )k) = ker((ρrel-l0,4 )k) hold?
That is to say, roughly speaking, the problem (Mg,r,l) of Remark
4.4 concerns the issue of whether or not the kernel ker((ρrel-lg,r )k) is
independent of the pair (g, r).

(ii) We prove, in Theorem 4.5, that the problem (Mg,r,l) of Remark 4.4
has a negative answer for some triple (g, r, l).

(iii) From the point of view of the discussion of (i), one can pose the
following problem, which may be regarded as a weaker version of
the problem (Mg,r,l) of Remark 4.4:

(Mw
g,r,l): Does the kernel of the homomorphism (ρrel-lg,r )k

coincide with the kernel of the homomorphism (ρrel-lg,r+1)k?
That is to say, roughly speaking, this problem (Mw

g,r,l) concerns the
issue of whether or not the kernel ker((ρrel-lg,r )k) is independent of r.

Now let us observe that we have the following commutative dia-
gram of profinite groups

1 // Γ rel-l
g,r+1

����

// Π
rel-l
(Mg,r+1)k

����

// Gk
// 1

1 // Γ rel-l
g,r

// Π
rel-l
(Mg,r)k

// Gk
// 1

where the horizontal sequences are exact, the vertical arrows are sur-
jective, and the right-hand vertical arrow is the identity morphism
of Gk. In particular, it follows from Lemma 3.3 (in the case where
condition (a) is satisfied), that

ker((ρrel-lg,r+1)k) ⊆ ker((ρrel-lg,r )k).
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Thus, we conclude that
the problem (Mw

g,r,l) has an affirmative answer if and only
if the inclusion

ker((ρrel-lg,r )k) ⊆ ker((ρrel-lg,r+1)k).

holds.
(iv) By [21, Corollary 4.2, (ii)], (M0,r,l) is answered in the affirmative

for any integer r > 3, which thus implies that (Mw
0,r,l) is answered

in the affirmative for any integer r > 3. Also, by Corollary 2.3 and
[15, Theorem 3.4], (M1,r,2) is answered in the affirmative for any
positive integer r, which thus implies that (Mw

1,r,2) is answered in
the affirmative for any positive integer r.

(v) Moreover, we can prove the following assertion:
Suppose that

r >


3 if g = 0,

1 if g = 1,

0 if g > 1.

Then (Mw
g,r,l) is answered in the affirmative.

Indeed, let γ be an element of ker((ρrel-lg,r )k), X a curve of type (g, r−
1) over k, X2 the 2-nd configuration space of X, and Y the curve
of type (g, r) over k obtained by removing a k-rational point from
X. Let us first observe that it follows from Proposition 1.2 that we
have the following commutative diagram of profinite groups

1

��

1

��
∆l

Y

��

∆l
Y

��

1 // Γ rel-l
g,r+1

//

��

Π
rel-l
(Mg,r+1)k

//

p′g,r+1

��

Gk
// 1

1 // Γ rel-l
g,r

//

��

Π
rel-l
(Mg,r)k

pg,r //

��

Gk
// 1

1 1

where the vertical and horizontal sequences are exact, the top hor-
izontal arrow is the identity morphism of ∆l

Y , and the right-hand
vertical arrow is the identity morphism of Gk. Since γ is an el-
ement of ker((ρrel-lg,r )k), there exists an element γ′ of p−1

g,r({γ}) ∩
Z
Π

rel-l
(Mg,r)k

(Γ rel-l
g,r ). Let γ̃ be an element of (p′g,r+1)

−1({γ′}). Then

since ∆l
Y is center-free and topologically finitely generated (cf., e.g.,

[22, Remark 1.2.2], [22, Proposition 1.4]), it follows from [10, Lemma
4.10] that, to verify the inclusion ker((ρrel-lg,r )k) ⊆ ker((ρrel-lg,r+1)k), it
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suffices to prove that, after possibly multiplying γ̃ by a suitable
element of ∆l

Y , γ̃ is contained in Z
Π

rel-l
(Mg,r+1)k

(∆l
Y ).

Now, by Proposition 1.2 and [22, Proposition 2.2, (i)], we have
the following commutative diagram of profinite groups

1 // ∆l
Y

// ∆l
X2

//
� _

��

∆l
X

//
� _

��

1

1 // ∆l
Y

// Γ rel-l
g,r+1

//
� _

��

Γ rel-l
g,r

//
� _

��

1

1 // ∆l
Y

// Π
rel-l
(Mg,r+1)k

p′g,r+1 // Π
rel-l
(Mg,r)k

// 1

where the horizontal sequences are exact, the vertical arrows are
injective, and the left-hand vertical arrows are the identity mor-
phisms of ∆l

Y . Thus, since the image of ∆l
X2

in Π
rel-l
(Mg,r+1)k

is

normal in Π
rel-l
(Mg,r+1)k

, γ′ ∈ Z
Π

rel-l
(Mg,r)k

(Γ rel-l
g,r ), and ∆l

X is center-

free, it follows from [28, Theorem 0.1] or [13, Theorem B] that,
after possibly multiplying γ̃ by a suitable element of ∆l

Y , γ̃ is con-
tained in Z

Π
rel-l
(Mg,r+1)k

(∆l
Y ). This completes the proof of the inclusion

ker((ρrel-lg,r )k) ⊆ ker((ρrel-lg,r+1)k), hence also (cf. the final portion of the
discussion of (iii)) of the above assertion.

Corollary 4.7. Let r be a positive integer. Suppose that

l /∈ {2, 3, 5, 7}.
Then the homomorphism

ρuniv-l1,r : Γ rel-l
1,r −→ Out(∆l

1,r)

is not injective.
In particular, the problem (CSP)pro-l1,r in the Introduction has a negative

answer.

Proof. Let us first observe that it follows from Theorem 4.5 that

ker((ρrel-l1,r )Q) ⊊ ker(ρlP1
Q\{0,1,∞}).

On the other hand, since Oda’s problem is answered in the affirmative (cf.
[28, Theorem 0.5, (2)]), we have that

ker(ρlP1
Q\{0,1,∞}) ⊆ ker((ρgeo-l1,r )Q).

Thus, since the injectivity of ρuniv-l
1,r implies, by definition, the equality

ker(ρrel-l1,r )Q = ker(ρgeo-l1,r )Q,

we conclude that ρuniv-l
1,r is not injective. This completes the proof of the

first portion of Corollary 4.7. Thus, the final portion of Corollary 4.7 fol-
lows immediately from the discussion following the statement of the problem
(CSP)pro-lg,r in the Introduction. This completes the proof of Corollary 4.7. □
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Lemma 4.8. Let f : G → H be a homomorphism of profinite groups. For
i = 1, 2, let Ni ⊆ G be a normal open subgroup of G, N l

i the maximal
pro-l quotient of Ni, and Gl

Ni
the maximal almost pro-l quotient of G with

respect to Ni (cf. “Profinite groups” in “Notations and Conventions”). Sup-
pose that N l

1 is torsion-free, and that f : G → H factors through Gl
N1

and
Gl

N2
. Write fNi : G

l
Ni
→ H for the resulting homomorphism for i = 1, 2.

Suppose, moreover, that the kernel of f : G → H is contained in N1, and
that fN2 : G

l
N2
→ H is injective. Then fN1 : G

l
N1
→ H is injective.

Proof. Write N3 := N1∩N2 and Gl
N3

for the maximal almost pro-l quotient of
G with respect to N3. Let us observe that since fN2 : G

l
N2
→ H is injective,

one verifies easily that ker(f) = ker(N2 ↠ N l
2), which thus implies that

N2/ ker(f) is pro-l. Thus, it follows that N3 is a normal open subgroup of G
which contains the kernel of f : G→ H. In particular, the quotient N2/N3,
hence also N2/ ker(N3 ↠ N l

3), is pro-l. Therefore, by considering the natural
exact sequence of profinite groups

1 // ker(N3 ↠ N l
3)

// ker(N2 ↠ N l
2)

// N2/ ker(N3 ↠ N l
3) ,

we conclude that ker(N3 → N l
3) = ker(N2 → N l

2), i.e., f : G→ H determines
an injection Gl

N3
→ H. In particular, by replacing N2 by N3, we may

assume that N2 ⊆ N1. Then since fN2 : G
l
N2
→ H factors through Gl

N1
, and

fN2 : G
l
N2
→ H is injective, we have the following commutative diagram of

profinite groups

N l
2

//

fN2
|
Nl
2

  B
BB

BB
BB

N l
1

fN1
|
Nl
1

��
H.

Thus, since the top arrow N l
2 → N l

1 is an open injection, and N l
1 is torsion-

free, it holds that fN1 |N l
1
, hence also fN1 , is injective. This completes the

proof of Lemma 4.8. □

Lemma 4.9. Let r be a positive integer. Suppose that l > 2. Then (Γ1,r[l])
l

(cf. Definition 1.1, (ii)) is slim and torsion-free.

Proof. Let us first observe that it follows from Proposition 1.2 and the defi-
nition of Γ rel-l

1,r that we have the following exact sequence

1 // ∆l
1,r

// (Γ1,r+1[l])
l // (Γ1,r[l])

l // 1 .

Thus, since ∆l
1,r is slim and torsion-free (cf., e.g., [22, Proposition 1.4],

[22, Remark 1.2.2]), it follows from induction on r that, to verify Lemma
4.9, we may assume without loss of generality that r = 1. Then it follows
from the various definitions involved that (Γ1,1[l])

l is isomorphic to ∆l
Y (l).

In particular, by [17, §1.4], [22, Remark 1.2.2], and [22, Proposition 1.4],
(Γ1,1[l])

l is slim and torsion-free. This completes the proof of Lemma 4.9. □

Corollary 4.10. Let r be a positive integer, N ⊆ Γ1,r a normal open sub-
group of Γ1,r, and (Γ1,r)

l
N the maximal almost pro-l quotient of Γ1,r with



PRO-l CONGRUENCE SUBGROUP PROBLEM OF GENUS ONE 31

respect to N (cf. “Profinite groups” in “Notations and Conventions”). Sup-
pose that

l /∈ {2, 3, 5, 7},

and that the homomorphism (ρpuni-l1,r )k|Γ1,r factors through (Γ1,r)
l
N . Then the

resulting homomorphism

(ρuniv-l1,r )N : (Γ1,r)
l
N −→ Out(∆l

1,r)

is not injective.

Proof. Corollary 4.10 follows immediately (in light of Lemma 4.9) from
Corollary 4.7, together with Lemma 4.8 in the case where we take “(G, H,
N1, N2)” in the statement of Lemma 4.8 to (Γ1,r, Out(∆l

1,r), Γ1,r[l], N). □

Appendix A. The pro-l outer Galois actions associated to
modular curves of prime power level

In the present Appendix A, we discuss a generalization of Theorem B for
modular curves of prime power level.

In the present Appendix A, we maintain the notation of §3.

Theorem A.1. Let l be a prime number. Consider the following conditions:
(P) l ∈ {2, 3, 5, 7}.
(Q) l ∈ {2, 3, 5, 7, 13}.

(Y1) The restriction of the outer action of GQ on ∆l
Y1(l)

to GQ(ζl) ⊆ GQ
factors through a pro-l quotient of GQ(ζl).

(X1) The restriction of the outer action of GQ on ∆l
X1(l)

to GQ(ζl) ⊆ GQ
factors through a pro-l quotient of GQ(ζl).

(J1) The restriction of the action of GQ on the l-adic Tate module Tl(J1(l))
of J1(l) to GQ(ζl) ⊆ GQ factors through a pro-l quotient of GQ(ζl).

(Y0) The restriction of the outer action of GQ on ∆l
Y0(l)

to GQ(ζl) ⊆ GQ
factors through a pro-l quotient of GQ(ζl).

(X0) The restriction of the outer action of GQ on ∆l
X0(l)

to GQ(ζl) ⊆ GQ
factors through a pro-l quotient of GQ(ζl).

(J0) The restriction of the action of GQ on the l-adic Tate module Tl(J0(l))
of J0(l) to GQ(ζl) ⊆ GQ factors through a pro-l quotient of GQ(ζl).

(Y) The outer action of GQ(ζl) on ∆l
Y(l) factors through a pro-l quotient

of GQ(ζl).
(X) The outer action of GQ(ζl) on ∆l

X(l) factors through a pro-l quotient
of GQ(ζl).

(J) The action of GQ(ζl) on the l-adic Tate module Tl(J(l)) of J(l) fac-
tors through a pro-l quotient of GQ(ζl).

Then the implications

(P)⇐⇒ (Y1)⇐⇒ (X1)⇐⇒ (J1)⇐⇒ (Y)⇐⇒ (X)⇐⇒ (J)

=⇒ (Q)⇐⇒ (Y0)⇐⇒ (X0)⇐⇒ (J0)

hold.
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Proof. Let us first observe that we have an immediate implication

(P) =⇒ (Q).

Next, let us observe that the implications

(Y) +3

��

(X) +3 (J)

(Y1) +3

��

(X1) +3 (J1)

(Y0) +3 (X0) +3 (J0)

follow immediately from Lemma 3.3 (in the case where condition (b) is sat-
isfied — cf., e.g., [22, Proposition 1.4]) and Lemma 3.5, (i). Next, let us
observe that the implications

(J1) =⇒ (Y1), (J0) =⇒ (Y0), (J) =⇒ (Y)

follow immediately from Lemma 3.5, (ii), together with the fact that every
cusp of Y(l), hence also of Y0(l) and Y1(l), is defined over Q(ζl) (cf. the
discussion given in [17, §1.4]).

Next, we verify the implication

(Y0) =⇒ (Q).

Suppose that condition (Y0) is satisfied. Then it follows from the implication
(Y0)⇒ (J0) already verified that condition (J0) is satisfied. Thus, it follows
from Lemma 3.6 that condition (Q) is satisfied. This completes the proof of
the implication (Y0)⇒ (Q).

Next, we verify the implication

(Y1) =⇒ (P).

Suppose that condition (Y1) is satisfied. Then it follows from the impli-
cations (Y1) ⇒ (Y0), (Y0) ⇒ (Q) already verified that, to complete the
verification of condition (P), it suffices to verify that l ̸= 13. On the other
hand, if l = 13, then it follows immediately from Lemma 3.10, (ii) that
condition (J1), hence also (cf. the implication (Y1)⇒ (J1) already verified)
condition (Y1), is not satisfied. This completes the proof of the implication
(Y1)⇒ (P).

Next, we verify the implication

(P) =⇒ (Y).

Suppose that condition (P) is satisfied. If l ̸= 7, then since (as is well-known)
X(l) is of genus zero, and every cusp of Y(l) is defined over Q(ζl) (cf. the
discussion given in [17, §1.4]), condition (Y) follows from Lemma 3.5, (iii).
If l = 7, then it follows from Lemma 3.12, (ii), that condition (J), hence also
(cf. the implication (J) ⇒ (Y) already verified) condition (Y), is satisfied.
This completes the proof of the implication (P) ⇒ (Y).

Next, we verify the implication

(Q) =⇒ (Y0).
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Suppose that condition (Q) is satisfied. If l ̸= 13 (i.e., condition (P) is
satisfied), then condition (Y0) follows immediately from the implications
(P) ⇒ (Y), (Y) ⇒ (Y0) already verified. Thus, to complete the verifi-
cation of condition (Y0), we may assume without loss of generality that
l = 13. Now let us recall that X0(13) is of genus zero. Thus, it follows
from Lemma 3.5, (iii), that condition (X0), hence also (cf. the implications
(X0)⇒ (J0), (J0)⇒ (Y0) already verified) condition (Y0), is satisfied. This
completes the proof of the implication (Q) ⇒ (Y0), hence also of Theo-
rem A.1. □
Corollary A.2. Let l be a prime number and m a positive integer. Then
the following conditions are equivalent:

(P) l ∈ {2, 3, 5, 7}.
(Y1) The restriction of the outer action of GQ on ∆l

Y1(lm) to GQ(ζl) ⊆ GQ
factors through a pro-l quotient of GQ(ζl).

(X1) The restriction of the outer action of GQ on ∆l
X1(lm) to GQ(ζl) ⊆ GQ

factors through a pro-l quotient of GQ(ζl).
(J1) The restriction of the action of GQ on the l-adic Tate module Tl(J1(l

m))
of J1(lm) to GQ(ζl) ⊆ GQ factors through a pro-l quotient of GQ(ζl).

(Y) The outer action of GQ(ζlm ) on ∆l
Y(lm) factors through a pro-l quo-

tient of GQ(ζlm ).
(X) The outer action of GQ(ζlm ) on ∆l

X(lm) factors through a pro-l quo-
tient of GQ(ζlm ).

(J) The action of GQ(ζlm ) on the l-adic Tate module Tl(J(l
m)) of J(lm)

factors through a pro-l quotient of GQ(ζlm ).

Proof. Let us first observe that the implications

(Y) ks +3

��

(X) ks +3 (J)

(Y1) ks +3 (X1) ks +3 (J1)

follow immediately from similar arguments to the arguments applied in the
first paragraph of the proof of Theorem A.1. Thus, it follows immediately
from Theorem A.1 that, to complete the verification of Corollary A.2, it
suffices to verify the following assertion:

It holds that condition (Y1) (respectively, (Y)) is satisfied
if and only if condition (Y1) (respectively, (Y)) in the case
where we take “m” to be 1 is satisfied.

Now if condition (Y1) (respectively, (Y)) is satisfied, then it follows from
Lemma 3.3 (in the case where condition (b) is satisfied — cf., e.g., [22,
Proposition 1.4]), that condition (Y1) (respectively, (Y)) in the case where
we take “m” to be 1 is satisfied. On the other hand, if condition (Y1)
(respectively, (Y)) in the case where we take “m” to be 1 is satisfied, then
it follows immediately from Lemma 3.4 (in the case where condition (b) is
satisfied — cf., e.g., [22, Proposition 1.4]), together with Lemma 3.8, that
condition (Y1) (respectively, (Y)) is satisfied. This completes the proof of
Corollary A.2. □
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Corollary A.3. Let l be a prime number and m a positive integer. Then
the following conditions are equivalent:

(Q′) l ∈ {2, 3, 5, 7, 13}, and m = 1 if l = 13.
(Y0) The restriction of the outer action of GQ on ∆l

Y0(lm) to GQ(ζl) ⊆ GQ
factors through a pro-l quotient of GQ(ζl).

(X0) The restriction of the outer action of GQ on ∆l
X0(lm) to GQ(ζl) ⊆ GQ

factors through a pro-l quotient of GQ(ζl).
(J0) The restriction of the action of GQ on the l-adic Tate module Tl(J0(l

m))
of J0(lm) to GQ(ζl) ⊆ GQ factors through a pro-l quotient of GQ(ζl).

Proof. Let us first observe that if m = 1, then Corollary A.3 follows from
Theorem A.1. Thus, it suffices to verify Corollary A.3 in the case where
m > 1. Note that the implications

(Y0) ks +3 (X0) ks +3 (J0)

follow immediately from similar arguments to the arguments applied in the
first paragraph of the proof of Theorem A.1. If l /∈ {2, 3, 5, 7, 13} (respec-
tively, l ∈ {2, 3, 5, 7}; l = 13), then it follows immediately, in light of the
equivalences in the above display, from Lemma 3.3 (in the case where con-
dition (b) is satisfied — cf., e.g., [22, Proposition 1.4]), together with the
implication (Y0) ⇒ (Q) of Theorem A.1 (respectively, the implication (P)
⇒ (Y1) of Corollary A.2; Lemma 3.10, (i)), that the three conditions (Y0),
(X0), and (J0) are not satisfied (respectively, are satisfied ; are not satisfied).
This completes the proof of Corollary A.3. □
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