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Abstract. — In the present paper, we prove the finiteness of the set of moderate rational
points of a once-punctured elliptic curve over a number field. This finitenessmay be regarded
as an analogue for a once-punctured elliptic curve of the well-known finiteness of the set
of torsion rational points of an abelian variety over a number field. In order to obtain the
finiteness, we discuss the center of the image of the pro-l outer Galois action associated to
a hyperbolic curve. In particular, we give, under the assumption that l is odd, a necessary
and sufficient condition for a certain hyperbolic curve over a generalized sub-l-adic field to
have trivial center.
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Introduction

In the present paper, we discuss the finiteness of the set of moderate rational points
of a hyperbolic curve over a number field. First, let us review the notion of a moderate
point of a hyperbolic curve. Let l be a prime number, k a field of characteristic zero,

k an algebraic closure of k, and X a hyperbolic curve over k. Write Gk
def
= Gal(k/k),

∆
(l)
X for the pro-l geometric fundamental group of X [i.e., the maximal pro-l quotient of

π1(X ⊗k k)], and

ρ
(l)
X : Gk −→ Out(∆

(l)
X )

for the pro-l outer Galois action associated to X. In [6], M. Matsumoto studied a k-
rational point x ∈ X(k) of X that satisfies the following condition E(X, x, l) [cf. [6],
Introduction]:

2010 Mathematics Subject Classification. — 14H30.
Key words and phrases. — moderate point, once-punctured elliptic curve, hyperbolic curve, Galois-
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E(X, x, l): If we write sx : Gk → π1(X) for the outer homomorphism in-
duced by the k-rational point x ∈ X(k), then the kernel of the composite

Gk
sx−→ π1(X) −→ Aut(∆

(l)
X )

— where the second arrow is the action obtained by conjugation —

coincides with the kernel Ker(ρ
(l)
X ) of the outer action

ρ
(l)
X : Gk −→ Out(∆

(l)
X ).

For instance, Matsumoto proved that, roughly speaking, there are many hyperbolic
curves over number fields which have no rational point that satisfies the above condi-
tion “E(X, x, l)” [cf. [6], Theorem 1].

As in [5], in the case where k is a number field, we shall say that a k-rational point
x ∈ X(k) of X is l-moderate if the above condition E(X, x, l) is satisfied [cf. [5], Definition
2.4, (i); the equivalence (1) ⇔ (3) of [5], Proposition 2.5]; moreover, we shall say that
a k-rational point of X is moderate if it is p-moderate for some prime number p [cf.
Definition 2.1]. Typical examples of moderate points of hyperbolic curves are as follows:

(a) A closed point of a split tripod [i.e., “P1
k \ {0, 1,∞}”] corresponding to a tripod

p-unit [cf. [5], Definition 1.6] [that is a certain higher circular p-unit — cf. [5], Remark
1.6.1] for some prime number p [cf. [5], Proposition 2.8].

(b) A torsion point of [the underlying elliptic curve of] a once-punctured elliptic curve
whose order is a [positive] power of a prime number [cf. [5], Proposition 2.7].

(c) Every Qun-l-rational [cf. [5], Definition 1.8] point of the [compactified] Fermat
curve over Q of degree l [i.e., “Proj(Q[s, t, u]/(sl + tl + ul))”] if l is ≥ 5 and regular [cf.
[5], Remark 3.5.1].

Let us recall from [5], Remark 2.6.1, (i), that

the notion of a moderate point of a hyperbolic curve may be regarded as
an analogue of the notion of a torsion point of an abelian variety.

On the other hand, it is well-known that the set of torsion rational points of an abelian
variety over a number field is finite. Thus, we have the following natural question:

Is the set of moderate rational points of a hyperbolic curve over a number
field finite?

Observe that it follows from Faltings’ work on theMordell conjecture that if the hyperbolic
curve under consideration is of genus ≥ 2, then the set of rational points, hence also
moderate rational points, is finite.

The main result of the present paper is as follows [cf. Corollaries 2.6, 2.7]:

THEOREM A. — Let k be a number field and (G, o ∈ G(k)) an elliptic curve

(respectively, a nonsplit torus of dimension one) over k. Write X
def
= G \ {o}. [Thus,

X is a hyperbolic curve over k of type (1, 1) (respectively, (0, 3)).] Then the set of
moderate k-rational points of X is finite.
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In order to prove Theorem A, we discuss the center of the image of the pro-l outer

Galois action ρ
(l)
X : Gk → Out(∆

(l)
X ) associated to X. In particular, we prove the following

result [cf. Theorem 1.13]:

THEOREM B. — Let (g, r) be a pair of nonnegative integers such that 2g − 2 + r > 0, l
an odd prime number, k a generalized sub-l-adic field [cf. [7], Definition 4.11], k an
algebraic closure of k, and X a split [cf. Definition 1.3, (i); Remark 1.3.1, (i)] hyperbolic
curve of type (g, r) over k which has no special symmetry [cf. Definition 1.3, (ii);

Remark 1.3.1, (ii)]. Write Gk
def
= Gal(k/k), ∆

(l)
X for the pro-l geometric fundamental

group of X [i.e., the maximal pro-l quotient of π1(X ⊗k k)], ρ
(l)
X : Gk → Out(∆

(l)
X ) for

the pro-l outer Galois action associated to X, Γ
(l)
X

def
= Im(ρ

(l)
X ) ⊆ Out(∆

(l)
X ), and M

(l)
X

def
=

(∆
(l)
X )ab ⊗Zl

Fl. Then the following three conditions are equivalent:

(1) It holds that (g, r) ∈ {(1, 1), (2, 0)}, and that −1 ∈ Aut(M
(l)
X ) is contained in the

image of the action Gk → Aut(M
(l)
X ) induced by ρ

(l)
X .

(2) The center Z(Γ
(l)
X ) is isomorphic to Z/2Z.

(3) The center Z(Γ
(l)
X ) is nontrivial.
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0. Notations and Conventions

Numbers. — The notation Z will be used to denote the ring of rational integers. If l is

a prime number, then we shall write Fl
def
= Z/lZ and Zl for the l-adic completion of Z.

We shall refer to a finite extension of the field of rational numbers as a number field.

Profinite Groups. — Let G be a profinite group, H ⊆ G a closed subgroup of G, and
G ↠ Q a quotient of G. We shall say that H (respectively, Q) is characteristic if every
[continuous] automorphism of G preserves H (respectively, Ker(G↠ Q)). We shall write
Gab for the abelianization of G [i.e., the quotient of G by the closure of the commutator
subgroup of G], NG(H) for the normalizer of H in G, ZG(H) for the centralizer of H in

G, and Z(G)
def
= ZG(G) for the center of G. We shall say that G is slim if ZG(J) = {1}

for every open subgroup J ⊆ G of G.
Let G be a profinite group. Then we shall write Aut(G) for the group of [continuous]

automorphisms of G, Inn(G) ⊆ Aut(G) for the group of inner automorphisms of G,

and Out(G)
def
= Aut(G)/Inn(G) for the group of outer automorphisms of G. If G is

topologically finitely generated, then one verifies easily that the topology of G admits
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a basis of characteristic open subgroups, which thus induces a profinite topology on the
group Aut(G), hence also a profinite topology on the group Out(G).

Curves. — Let S be a scheme and X a scheme over S. Then we shall say that X is a
smooth curve over S if there exist a scheme Xcpt which is smooth, proper, geometrically
connected, and of relative dimension one over S and a closed subscheme D ⊆ Xcpt of
Xcpt which is finite and étale over S such that the complement Xcpt \D of D in Xcpt is
isomorphic to X over S. Note that, as is well-known, if X is a smooth curve over [the
spectrum of] a field k, then the pair “(Xcpt, D)” is uniquely determined up to canonical
isomorphism over k; we shall refer to Xcpt as the smooth compactification of X and to D
as the divisor at infinity of X.

Let S be a scheme. Then we shall say that a smooth curve X over S is a hyperbolic
curve [of type (g, r)] over S if there exist a pair (Xcpt, D) satisfying the condition in the
above definition of the term “smooth curve” and a pair (g, r) of nonnegative integers such
that 2g − 2 + r > 0, each geometric fiber of Xcpt → S is [a necessarily smooth proper
connected curve] of genus g, and the degree of D ⊆ Xcpt over S is equal to r. We shall
refer to a hyperbolic curve of type (0, 3) as a tripod.

1. Center of the Outer Galois Image Associated to a Hyperbolic Curve

In the present §1, we discuss the center [which is necessarily a finite group — cf., e.g.,
[3], Proposition 1.7, (ii); [3], Lemma 1.8] of the image of the pro-l outer Galois action
associated to a hyperbolic curve over a generalized sub-l-adic field [cf. [7], Definition
4.11]. In particular, we give, under the assumption that l is odd, a necessary and sufficient
condition [cf. Theorem 1.13] for a split [cf. Definition 1.3, (i); Remark 1.3.1, (i)] hyperbolic
curve over a generalized sub-l-adic field which has no special symmetry [cf. Definition 1.3,
(ii); Remark 1.3.1, (ii)] to have trivial center.

In the present §1, let (g, r) be a pair of nonnegative integers such that 2g− 2+ r > 0, l
a prime number, k a field of characteristic zero, k an algebraic closure of k, X a hyperbolic
curve of type (g, r) over k, and V a smooth variety over k [i.e., a scheme which is smooth,

of finite type, separated, and geometrically connected over k]. WriteGk
def
= Gal(k/k), Xcpt

for the smooth compactification of X, ∆V
def
= π1(V ⊗k k) for the geometric fundamental

group of V ,
ρV : Gk −→ Out(∆V )

for the outer Galois action associated to V , ∆
(l)
V for the pro-l geometric fundamental

group of V [i.e., the maximal pro-l quotient of ∆V ], and M
(l)
V

def
= (∆

(l)
V )ab ⊗Zl

Fl. [Thus,

M
(l)
V is equipped with a natural structure of vector space over Fl of finite dimension.] If

∆V ↠ Q is a characteristic quotient of ∆V , then we shall write

ρQV : Gk −→ Out(Q)

for the outer Galois action determined by ρV and

ΓV [Q]
def
= Im(ρQV ) ⊆ Out(Q).

Write, moreover,

ρ
(l)
V

def
= ρ

∆
(l)
V

V : Gk −→ Out(∆
(l)
V )
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[i.e., the pro-l outer Galois action associated to V ] and

ΓV
def
= ΓV [∆V ] = Im(ρV ) ⊆ Out(∆V ), Γ

(l)
V

def
= ΓV [∆

(l)
V ] = Im(ρ

(l)
V ) ⊆ Out(∆

(l)
V ),

Γ
(mod l)
V

def
= ΓV [M

(l)
V ] ⊆ Out(M

(l)
V ) = Aut(M

(l)
V ).

THEOREM 1.1 (Mochizuki). — Suppose that k is generalized sub-l-adic [cf. [7], Defi-
nition 4.11]. Then the natural homomorphisms

Autk(X) −→ Out(∆X) −→ Out(∆
(l)
X )

determine isomorphisms of finite groups

Autk(X)
∼−→ ZOut(∆X)(ΓX)

∼−→ Z
Out(∆

(l)
X )

(Γ
(l)
X ).

Proof. — This follows immediately from [7], Theorem 4.12 [cf. also [8], Corollary 1.5.7].
□

DEFINITION 1.2. — Let ∆V ↠ Q be a characteristic quotient of ∆V and α ∈ Autk(V )
an automorphism of V over k. Then we shall say that α is Q-Galois-like if the image
of α ∈ Autk(V ) via the composite of natural homomorphisms Autk(V ) → Out(∆V ) →
Out(Q) is contained in ΓV [Q] ⊆ Out(Q). We shall say that α is l-Galois-like (respectively,

(mod l)-Galois-like) if α is ∆
(l)
V -Galois-like (respectively, M

(l)
V -Galois-like).

REMARK 1.2.1. — One verifies immediately from the various definitions involved that

the natural injection Autk(X) ↪→ Out(∆
(l)
X ) determines an injection

{ l-Galois-like automorphisms of X over k } ↪→ Z(Γ
(l)
X ).

If, moreover, k is generalized sub-l-adic, then it follows from Theorem 1.1 that this injec-
tion is, in fact, an isomorphism:

{ l-Galois-like automorphisms of X over k } ∼−→ Z(Γ
(l)
X ).

DEFINITION 1.3.

(i) We shall say that the hyperbolic curve X is split [cf. [3], Definition 1.5, (i)] if
the divisor at infinity of X determines a trivial covering of Spec(k), or, equivalently, the
natural action of Gk on the set of cusps of X is trivial.

(ii) We shall say that the hyperbolic curveX has no special symmetry [cf. [3], Definition
3.3] if the following condition is satisfied: WriteMg,r for the moduli stack of r-pointed
proper smooth curves of genus g over k whose r marked points are equipped with an
ordering, (Ccptg,r →Mg,r; s1, . . . , sr :Mg,r → Ccptg,r ) for the universal family overMg,r, and

Cg,r
def
= Ccptg,r \

∪r
i=1 Im(si). [Thus, Cg,r →Mg,r is a split hyperbolic curve of type (g, r) over

Mg,r.] Then the specialization homomorphism AutMg,r(Cg,r)→ Autk(X⊗kk) [obtained

by equipping the cusps of X ⊗k k with some ordering] is an isomorphism.
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REMARK 1.3.1.

(i) It follows from the definition of a hyperbolic curve that there exists a finite extension
K of k such that X ⊗k K is split.

(ii) In the notation of Definition 1.3, (ii), since [it is well-known — cf., e.g., [2],
Theorem 1.11 — that] the functor

S ⇝ AutS(Cg,r ×Mg,r S)

is represented by a finite unramified [relative] scheme overMg,r, there exists a dense open
substack U ⊆ Mg,r ofMg,r such that each hyperbolic curve parametrized by a point of
U has no special symmetry.

(iii) It follows immediately that the hyperbolic curve X has no special symmetry if
and only if Autk(X ⊗k k) is isomorphic to the finite group

S3 (if (g, r) = (0, 3))

Z/2Z× Z/2Z (if (g, r) = (0, 4))

Z/2Z (if (g, r) ∈ {(1, 1), (1, 2), (2, 0)})
{1} (if 2g − 2 + r ≥ 3).

In this situation, if, moreover, X is split, then one verifies immediately that Autk(X) is
isomorphic to the above finite group.

LEMMA 1.4. — Suppose that X is split. Then the following hold:

(i) Let α be an l-Galois-like automorphism of X over k. Then α induces the identity
automorphism on the set of cusps of X.

(ii) Suppose, moreover, that X is of genus zero. Then there is no nontrivial l-
Galois-like automorphism of X over k.

Proof. — First, we verify assertion (i). Since X is split, it follows immediately from the

various definitions involved that the natural action of Γ
(l)
X , hence also α [cf. our assumption

that α is l-Galois-like], on the set of conjugacy classes of cuspidal inertia subgroups of ∆
(l)
X

is trivial. Thus, assertion (i) follows from the [well-known] injectivity of the natural map
from the set of cusps of X to the set of conjugacy classes of cuspidal inertia subgroups of

∆
(l)
X . This completes the proof of assertion (i). Assertion (ii) follows immediately from

assertion (i), together with the [easily verified] fact that every nontrivial automorphism
of X over k acts nontrivially on the set of cusps of X [cf. our assumption that X is of
genus zero]. This completes the proof of assertion (ii), hence also of Lemma 1.4. □

PROPOSITION 1.5. — Suppose that k is generalized sub-l-adic, and that X is split

and of genus zero. Then the center Z(Γ
(l)
X ) is trivial.

Proof. — This follows immediately from Lemma 1.4, (ii), together with Remark 1.2.1.
□
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LEMMA 1.6. — Let O, A be profinite groups; f : O → A a homomorphism of profinite
groups; G ⊆ O a closed subgroup of O; α ∈ NO(G). Suppose that the following three
conditions are satisfied:

(1) The kernel of f is pro-l.

(2) There exists a positive integer n such that n is prime to l, and, moreover, αn = 1.

(3) It holds that f(α) ∈ f(G).

Then it holds that α ∈ G.

Proof. — Let us first observe that one verifies easily that, to verify Lemma 1.6, we
may assume without loss of generality, by replacing O by the closed subgroup of O
generated by G and α, that G is normal in O [cf. our assumption that α normalizes
G]. Next, let us observe that one verifies immediately from condition (3), together with
the various definitions involved, that, to verify Lemma 1.6, we may assume without
loss of generality, by replacing (O,A) by (f−1(f(G)), f(G)), that f |G, hence also f ,

is surjective. In particular, the natural inclusion N
def
= Ker(f) ↪→ O determines an

isomorphism N/(N ∩ G)
∼→ O/G, which thus implies that O/G is pro-l [cf. condition

(1)]. Thus, it follows immediately from condition (2) that the image of α ∈ O in O/G is
trivial, i.e., that α ∈ G. This completes the proof of Lemma 1.6. □

LEMMA 1.7. — Let α ∈ Autk(V ) be an automorphism of V over k of finite order.
Suppose that α is of order prime to l. Then it holds that α is l-Galois-like if and only
if α is (mod l)-Galois-like.

Proof. — Let us first observe that since the natural surjection ∆V ↠ M
(l)
V factors

through ∆V ↠ ∆
(l)
V , the necessity follows from the various definitions involved. To verify

the sufficiency, suppose that α is (mod l)-Galois-like. Write α[∆
(l)
V ] ∈ Out(∆

(l)
V ) for

the image of α in Out(∆
(l)
V ). Then it follows immediately from the various definitions

involved that α[∆
(l)
V ] centralizes Γ

(l)
V ⊆ Out(∆

(l)
V ). Thus, since the kernel of the natural

homomorphism Out(∆
(l)
V ) ↠ Aut(M

(l)
V ) is pro-l [cf., e.g., [1], Theorem 6], by applying

Lemma 1.6 in the case where we take “(O,A,G, α)” in the statement of Lemma 1.6

to be (Out(∆
(l)
V ),Aut(M

(l)
V ),Γ

(l)
V , α[∆

(l)
V ]), we conclude that α[∆

(l)
V ] ∈ Γ

(l)
V , i.e., that α is

l-Galois-like. This completes the proof of the sufficiency, hence also of Lemma 1.7. □

LEMMA 1.8. — Let (T, o ∈ T (k)) be a nonsplit torus of dimension one over k. Suppose
that X = T \ {o}. [Thus, X is a nonsplit tripod over k.] Suppose, moreover, that the
following two conditions are satisfied:

(1) l is odd.

(2) k contains a primitive l-th root of unity.

Then the automorphism α ∈ Autk(X) of X over k induced by the automorphism of T
given by multiplication by −1 is l-Galois-like.
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Proof. — Write χ : Gk ↠ Z× for the [necessarily nontrivial] character determined by

the nonsplit torus T . Let γ ∈ Gk be such that χ(γ) is nontrivial. Write Io ⊆M
(l)
X for the

[uniquely determined] inertia subgroup of M
(l)
X associated to the cusp [corresponding to]

o of X. Then let us observe that one verifies easily that we have a natural exact sequence
of finite Gk-modules

1 −→ Io −→ M
(l)
X −→ M

(l)
T −→ 1.

Observe that Io and M
(l)
T are equipped with natural structures of vector spaces over Fl

of dimension one.
Next, let us observe that it follows immediately from the various definitions involved

that the actions of α on Io, M
(l)
T are given by multiplication by 1, −1, respectively. On the

other hand, it follows immediately from our choice of γ ∈ Gk, together with condition (2),

that the actions of γ on Io, M
(l)
T are given by multiplication by 1, −1, respectively. Thus,

since γ commutes with α, we conclude from condition (1) that the action of α on M
(l)
X

coincides with the action of γ on M
(l)
X . In particular, α is (mod l)-Galois-like, hence also

[cf. condition (1), Lemma 1.7] l-Galois-like. This completes the proof of Lemma 1.8. □

LEMMA 1.9. — Let α ∈ Autk(X) be an automorphism of X over k of order prime to
l. Write αcpt ∈ Autk(X

cpt) for the automorphism of Xcpt determined by α. Then the
following hold:

(i) If α is l-Galois-like [i.e., (mod l)-Galois-like — cf. Lemma 1.7], then αcpt is
l-Galois-like [i.e., (mod l)-Galois-like — cf. Lemma 1.7].

(ii) Suppose that one of the following two conditions is satisfied:

(1) r ≤ 1.

(2) α induces the identity automorphism on the set of cusps of X, k contains a
primitive l-th root of unity, and X is split.

Then it holds that α is l-Galois-like if and only if αcpt is l-Galois-like.

Proof. — Assertion (i) follows immediately from the fact that the natural surjection

∆X ↠ ∆
(l)
Xcpt factors through the natural surjection ∆X ↠ ∆

(l)
X . Assertion (ii) in the case

where condition (1) is satisfied follows immediately — in light of Lemma 1.7 — from the

[easily verified] fact that the natural surjection ∆
(l)
X ↠ ∆

(l)
Xcpt determines an isomorphism

M
(l)
X

∼→M
(l)
Xcpt .

Finally, we verify assertion (ii) in the case where condition (2) is satisfied. Let us
first observe that it follows — in light of Lemma 1.7 — from assertion (i) that it suf-
fices to verify that if condition (2) is satisfied, and αcpt is (mod l)-Galois-like, then α

is (mod l)-Galois-like. Write α[M
(l)
X ] ∈ Aut(M

(l)
X ) for the image of α in Aut(M

(l)
X )

and A ⊆ Aut(M
(l)
X ) for the subgroup of Aut(M

(l)
X ) consisting of automorphisms of

M
(l)
X that induce the identity automorphism on M csp

X
def
= Ker(M

(l)
X ↠ M

(l)
Xcpt) ⊆ M

(l)
X .

Here, let us observe that [since the module HomFl
(M

(l)
Xcpt ,M

csp
X ) of Fl-linear homomor-

phisms M
(l)
Xcpt → M csp

X is of order a power of l] the kernel of the natural homomorphism
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A→ Aut(M
(l)
Xcpt) is an l-group. Moreover, it follows immediately from condition (2) that

α[M
(l)
X ] is contained in A.

Next, let us observe that the natural action of Γ
(mod l)
X on M

(l)
X preserves the sub-

space M csp
X ⊆ M

(l)
X . Moreover, it follows immediately from condition (2) that the re-

sulting action of Γ
(mod l)
X on M csp

X is trivial, i.e., that Γ
(mod l)
X ⊆ A. Thus, by applying

Lemma 1.6 in the case where we take “(O,A,G, α)” in the statement of Lemma 1.6 to

be (A,Aut(M
(l)
Xcpt),Γ

(mod l)
X , α[M

(l)
X ]), we conclude that α[M

(l)
X ] ∈ Γ

(mod l)
X , i.e., that α is

(mod l)-Galois-like. This completes the proof of assertion (ii) in the case where condition
(2) is satisfied. □

DEFINITION 1.10. — Let α ∈ Autk(X) be an automorphism of X over k. Then we
shall say that α is a hyperelliptic involution if g ≥ 1, and, moreover, there exist a proper
smooth curve C over k of genus zero and a finite morphism Xcpt → C of degree two over
k such that AutC(X

cpt) is generated by [the automorphism of Xcpt determined by] α. In
particular, a hyperelliptic involution is of order two.

REMARK 1.10.1. — If (g, r) ∈ {(1, 1), (2, 0)}, then it is well-known that, in the notation
of Definition 1.3, (ii), the image of the unique nontrivial [cf. Remark 1.3.1, (iii)] element
of AutMg,r(Cg,r) in Autk(X) [cf. the fact that X is split] is a hyperelliptic involution.

LEMMA 1.11. — Let α ∈ Autk(X) be a hyperelliptic involution of X. Then α acts

on ∆ab
Xcpt, hence also M

(l)
Xcpt, via multiplication by −1.

Proof. — Let us first observe that it follows immediately that we may assume without
loss of generality, by replacing k by k, that k is algebraically closed. Write JX for the
Jacobian variety of Xcpt. Then one verifies immediately from the various definitions in-
volved that, to verify Lemma 1.11, it suffices to verify that α acts on JX via multiplication
by −1. Write j : Xcpt ↪→ JX for the closed immersion associated to a k-rational closed
point of Xcpt that is preserved by α. [Note that since g ≥ 1, there exists a k-rational
point of Xcpt that is preserved by α.] Then since JX is generated by the image of j,
Lemma 1.11 follows immediately, by considering the trace of j with respect to α, from
the [well-known] fact that any morphism from a smooth curve of genus zero to an abelian
variety is constant. This completes the proof of Lemma 1.11. □

LEMMA 1.12. — Let α ∈ Autk(X) be a hyperelliptic involution of X. Suppose that
the following two conditions are satisfied:

(1) l is odd.

(2) −1 ∈ Γ
(mod l)
Xcpt ⊆ Aut(M

(l)
Xcpt).

Suppose, moreover, that one of the following two conditions is satisfied:

(3) r ≤ 1.
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(4) g = 1, X is split, and α induces the identity automorphism on the set of cusps
of X.

Then α is l-Galois-like.

Proof. — First, I claim that the following assertion holds:

Claim 1.12.A: If g = 1, then condition (2) implies condition (2) in the
case where we take “X” to be X ⊗k k(ζl) — where ζl ∈ k is a primitive
l-th root of unity.

Indeed, Claim 1.12.A follows immediately from the [well-known] fact that ∧2 M
(l)
Xcpt is

isomorphic, as a Gk-module, to the group of l-th roots of unity of k [cf. our assumption

that g = 1], together with the [easily verified] fact that −1 ∈ Aut(M
(l)
Xcpt) acts trivially

on ∧2M (l)
Xcpt . This completes the proof of Claim 1.12.A.

Now since α acts on M
(l)
Xcpt via multiplication by −1 [cf. Lemma 1.11], Lemma 1.12

in the case where condition (3) (respectively, (4)) is satisfied follows immediately from
Lemma 1.9, (ii) (respectively, Lemma 1.9, (ii), together with Claim 1.12.A). This com-
pletes the proof of Lemma 1.12. □

THEOREM 1.13. — Let (g, r) be a pair of nonnegative integers such that 2g−2+ r > 0, l
an odd prime number, k a generalized sub-l-adic field [cf. [7], Definition 4.11], k an
algebraic closure of k, and X a split [cf. Definition 1.3, (i); Remark 1.3.1, (i)] hyperbolic
curve of type (g, r) over k which has no special symmetry [cf. Definition 1.3, (ii);

Remark 1.3.1, (ii)]. Write Gk
def
= Gal(k/k), ∆

(l)
X for the pro-l geometric fundamental

group of X [i.e., the maximal pro-l quotient of π1(X ⊗k k)], ρ
(l)
X : Gk → Out(∆

(l)
X ) for

the pro-l outer Galois action associated to X, Γ
(l)
X

def
= Im(ρ

(l)
X ) ⊆ Out(∆

(l)
X ), and M

(l)
X

def
=

(∆
(l)
X )ab ⊗Zl

Fl. Then the following three conditions are equivalent:

(1) It holds that (g, r) ∈ {(1, 1), (2, 0)}, and that −1 ∈ Aut(M
(l)
X ) is contained in the

image of the action Gk → Aut(M
(l)
X ) induced by ρ

(l)
X .

(2) The center Z(Γ
(l)
X ) is isomorphic to Z/2Z.

(3) The center Z(Γ
(l)
X ) is nontrivial.

Proof. — First, we verify the implication (1) ⇒ (2). Suppose that condition (1) is
satisfied. Then since [we have assumed that] X is split and has no special symmetry,

it follows from Remark 1.3.1, (iii), that Autk(X) ≃ Z/2Z. Write α ∈ Autk(X)
∼→

Z
Out(∆

(l)
X )

(Γ
(l)
X ) [cf. Theorem 1.1] for the unique nontrivial element of Autk(X). Then it

follows from Lemma 1.12, together with Remark 1.10.1, that α ∈ Γ
(l)
X , i.e., that α ∈

Z(Γ
(l)
X ). In particular, it follows that

Z/2Z ≃ ⟨α⟩ ⊆ Z(Γ
(l)
X ) ⊆ Z

Out(∆
(l)
X )

(Γ
(l)
X )

∼← Autk(X) ≃ Z/2Z.

Thus, condition (2) is satisfied. This completes the proof of the implication (1) ⇒ (2).
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The implication (2) ⇒ (3) is immediate. Finally, we verify the implication (3) ⇒
(1). Suppose that condition (3) is satisfied. Let us first observe that it follows from
Proposition 1.5 that g ≥ 1. Next, let us observe that since [we have assumed that] X has
no special symmetry, if (g, r) ̸∈ {(1, 1), (1, 2), (2, 0)}, then it follows from Remark 1.3.1,
(iii), together with Remark 1.2.1, that condition (3) is not satisfied. Thus, we conclude
that (g, r) ∈ {(1, 1), (1, 2), (2, 0)}.

Assume that (g, r) = (1, 2). Then one verifies immediately [cf., e.g., the proof of
[3], Proposition 3.2, (i)] that the unique nontrivial automorphism of X over k [cf. Re-
mark 1.3.1, (iii)] acts nontrivially on the set of cusps of X. Thus, it follows immediately
from Lemma 1.4, (i), together with Remark 1.2.1, that condition (3) is not satisfied. In
particular, we conclude that (g, r) ∈ {(1, 1), (2, 0)}.

Next, let us observe that since (g, r) ∈ {(1, 1), (2, 0)}, it follows immediately from
Remark 1.3.1, (iii), together with Remark 1.10.1, that Autk(X) is generated by a hyper-

elliptic involution α of X, i.e., (Z/2Z ≃) ⟨α⟩ = Autk(X)
∼→ Z

Out(∆
(l)
X )

(Γ
(l)
X ). Thus, since

Z(Γ
(l)
X ) (⊆ Z

Out(∆
(l)
X )

(Γ
(l)
X )) is nontrivial [cf. condition (3)], it holds that α ∈ Z(Γ

(l)
X ) ⊆ Γ

(l)
X .

In particular, condition (1) follows immediately from Lemma 1.11. This completes the
proof of the implication (3) ⇒ (1), hence also of Theorem 1.13. □

PROPOSITION 1.14. — Let Y → X be a finite étale Galois covering over k such that Y
is geometrically connected over k, i.e., that Y is a hyperbolic curve over k. Write

Π
(l)
X , Π

(l)
Y for the respective geometrically pro-l fundamental groups of X, Y [i.e., the

respective quotients of π1(X), π1(Y ) by the normal closed subgroups Ker(∆X ↠ ∆
(l)
X ) ⊆

π1(X), Ker(∆Y ↠ ∆
(l)
Y ) ⊆ π1(Y )]. Suppose that Y → X induces an outer open injection

Π
(l)
Y ↪→ Π

(l)
X . Consider the following three conditions:

(1) It holds that Ker(ρ
(l)
X ) ̸= Ker(ρ

(l)
Y ), or, equivalently [cf. [4], Proposition 25, (i)],

Ker(ρ
(l)
X ) ̸⊆ Ker(ρ

(l)
Y ).

(2) There exists an automorphism α ∈ AutX(Y ) ⊆ Autk(Y ) of Y over X, hence also
over k, which is nontrivial and l-Galois-like.

(3) The hyperbolic curve Y ⊗k k
Ker(ρ

(l)
X )

over k
Ker(ρ

(l)
X )

is not split.

Then we have implications

(1) ⇐⇒ (2) ⇐= (3).

If, moreover, Y , hence also X, is of genus zero, then we have equivalences

(1) ⇐⇒ (2) ⇐⇒ (3).

Proof. — First, we verify the equivalence (1) ⇔ (2). Write QX
def
= Π

(l)
X /Z

Π
(l)
Y
(∆

(l)
Y ),

QY
def
= Π

(l)
Y /Z

Π
(l)
Y
(∆

(l)
Y ). [Thus, QY coincides with the quotient “Φ

{l}
Y/k” defined in [4],

Definition 1, (iv) — cf. also [4], Lemma 4, (i).] Then it follows immediately that one
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obtains a commutative diagram of profinite groups [cf. also [4], Lemma 4, (i)]

1 −−−→ ∆
(l)
Y −−−→ QY −−−→ Γ

(l)
Y −−−→ 1y y ∥∥∥

1 −−−→ ∆
(l)
X −−−→ QX −−−→ Γ

(l)
Y −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are outer injections
whose images are open and normal.

Now let us observe that one verifies immediately from the various definitions involved
that condition (2) is equivalent to the following condition:

(a) There exist elements γQY
∈ QY , γ

∆
(l)
X
∈ ∆

(l)
X \ ∆

(l)
Y such that the [necessarily

nontrivial — cf. our assumption that γ
∆

(l)
X
̸∈ ∆

(l)
Y ] outer action of γ

∆
(l)
X

on ∆
(l)
Y obtained

by conjugation coincides with the outer action of γQY
on ∆

(l)
Y obtained by conjugation.

In particular, by multiplying “γQY
” in (a) with a suitable element of ∆

(l)
Y if necessary, it

follows that condition (2) is equivalent to the following condition:

(b) There exist elements γQY
∈ QY , γ∆(l)

X
∈ ∆

(l)
X \∆

(l)
Y such that γQY

·γ−1

∆
(l)
X

∈ ZQX
(∆

(l)
Y ).

Now since ∆
(l)
Y = ∆

(l)
X ∩ QY , one verifies immediately that condition (b) is equivalent to

the following condition:

(c) It holds that ZQX
(∆

(l)
Y ) ̸⊆ QY .

Moreover, since ZQY
(∆

(l)
Y ) = {1} [cf. [4], Lemma 4, (i)], condition (c) is equivalent to the

following condition:

(d) It holds that ZQX
(∆

(l)
Y ) ̸= {1}, or, equivalently [cf. [4], Lemma 5], ZQX

(∆
(l)
X ) ̸= {1}.

On the other hand, one verifies immediately from the various definitions involved that
condition (d) is equivalent to condition (1). This completes the proof of the equivalence
(1) ⇔ (2).

Next, we verify the implication (3) ⇒ (1). Suppose that condition (3) is satisfied.

Let us first observe that since Ker(ρ
(l)
Y ) ⊆ Ker(ρ

(l)
X ) [cf. [4], Proposition 25, (i)], we may

assume without loss of generality, by replacing k by k
Ker(ρ

(l)
X )

, that ρ
(l)
X is trivial. On the

other hand, by considering the natural action of Gk on the set of cusps of Y , we conclude

that condition (3) implies that ρ
(l)
Y is nontrivial. In particular, condition (1) is satisfied.

This completes the proof of the implication (3) ⇒ (1). Finally, the implication (2) ⇒
(3) in the case where Y is of genus zero follows immediately — in light of the inclusion

Ker(ρ
(l)
Y ) ⊆ Ker(ρ

(l)
X ) [cf. [4], Proposition 25, (i)], together with the equivalence (1)⇔ (2)

— from Lemma 1.4, (ii). This completes the proof of Proposition 1.14. □

2. Finiteness of the Moderate Points of Certain Hyperbolic Curves

In the present §2, we discuss the finiteness of the set of moderate rational points of a
hyperbolic curve over a number field. In particular, we prove that the set of moderate
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rational points of the hyperbolic curve obtained by forming the complement of the origin
in an elliptic curve, as well as a nonsplit torus of dimension one, over a number field is
finite [cf. Corollaries 2.6, 2.7].

In the present §2, we maintain the notation of the preceding §1. Suppose, moreover,
that k is a number field, which thus implies that k is generalized sub-p-adic for every
prime number p.

DEFINITION 2.1. — Let x ∈ X be a closed point of X. Then we shall say that x is
moderate if there exists a prime number p such that x is p-moderate [cf. [5], Definition
2.4, (ii)].

PROPOSITION 2.2. — The set of l-moderate [cf. [5], Definition 2.4, (ii)] k-rational
points of X is finite.

Proof. — This follows immediately — in light of the equivalence (1) ⇔ (3) of [5],
Proposition 2.5 — from the final portion of [4], Theorem A. □

LEMMA 2.3. — Let x ∈ X(k) be a k-rational point of X and α ∈ Autk(X) an automor-
phism of X over k. Suppose that x is l-moderate, and that α is l-Galois-like. Then
x ∈ X(k) is preserved by α.

Proof. — Write U ⊆ X for the open subscheme of X obtained by forming the com-

plement of [the image of] x in X and Outx(∆
(l)
U ) ⊆ Out(∆

(l)
U ) for the group of outer

automorphisms of ∆
(l)
U that preserve the conjugacy class of a cuspidal inertia subgroup

associated to x ∈ X(k). Then one verifies immediately from the various definitions
involved that the natural open immersion U ↪→ X induces a commutative diagram of
profinite groups

Γ
(l)
U −−−→ Γ

(l)
X

∩
y y∩

Outx(∆
(l)
U ) −−−→ Out(∆

(l)
X )

— where the vertical arrows are the natural inclusions. Now since x is l-moderate, it
follows immediately from the equivalence (1) ⇔ (2) of [5], Proposition 2.5, that the

upper horizontal arrow Γ
(l)
U ↠ Γ

(l)
X of the above diagram is an isomorphism.

On the other hand, since α is l-Galois-like, it follows immediately from Remark 1.2.1

that α determines an element of Z(Γ
(l)
X ). Thus, by means of the isomorphism Γ

(l)
U

∼→ Γ
(l)
X ,

we obtain an element of Z(Γ
(l)
U ). Write β ∈ Autk(U) for the automorphism of U over k

that corresponds — relative to the isomorphism in the second display of Remark 1.2.1—

to this element of Z(Γ
(l)
U ). Then one verifies immediately from the various definitions

involved that β = α|U , which thus implies that α preserves the k-rational point x ∈ X(k).
This completes the proof of Lemma 2.3. □
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PROPOSITION 2.4. — In the notation of Proposition 1.14, suppose that k is a number
field. Then any of the three conditions (1), (2), and (3) implies the following condition:
Y has no l-moderate k-rational point.

Proof. — Since [one verifies immediately that] every k-rational point of Y is not pre-
served by the “α” in condition (2), this follows immediately from Lemma 2.3. □

THEOREM 2.5. — Let X be a hyperbolic curve over a number field k. Suppose that
there exists a nontrivial automorphism α ∈ Autk(X) of X over k such that, for all but
finitely many prime numbers p, the automorphism α is p-Galois-like [cf. Definition 1.2].
Then the set of moderate [cf. Definition 2.1] k-rational points of X is finite.

Proof. — Write S for the set of prime numbers p such that the automorphism α is
p-Galois-like and ZS ⊆ X(k) for the set of k-rational points of X which is p-moderate
for some p ∈ S. Then let us observe that since [we have assumed that] the complement
of S in the set of all prime numbers is finite, it follows immediately from Proposition 2.2
that, to complete the verification of Theorem 2.5, it suffices to verify that ZS is finite.
On the other hand, it follows immediately from Lemma 2.3 that every element of ZS is
preserved by α. Thus, the finiteness of ZS follows immediately from the [well-known]
finiteness of the set of fixed points of a nontrivial automorphism of a hyperbolic curve.
This completes the proof of Theorem 2.5. □

COROLLARY 2.6. — Let (T, o ∈ T (k)) be a nonsplit torus of dimension one over a

number field k. Write X
def
= T \ {o}. [Thus, X is a nonsplit — cf. Definition 1.3, (i)

— tripod over k.] Then the set of moderate [cf. Definition 2.1] k-rational points of
X is finite.

Proof. — Write α ∈ Autk(X) for the automorphism of X over k induced by the
automorphism of T given by multiplication by−1. Then it follows from Theorem 2.5 that,
to complete the verification of Corollary 2.6, it suffices to verify that α is p-Galois-like for
all but finitely many prime numbers p. On the other hand, this follows immediately from
Lemma 1.8, together with the [easily verified] fact that Gal(k/k(ζp)) ̸⊆ Ker(χ), where
we write χ : Gk ↠ Z× for the — necessarily nontrivial — character determined by the
nonsplit torus T and use the notation ζp ∈ k to denote a primitive p-th root of unity, for
all but finitely many prime numbers p. This completes the proof of Corollary 2.6. □

COROLLARY 2.7. — Let (E, o ∈ E(k)) be an elliptic curve over a number field k. For
a positive integer n, write E[n] ⊆ E for the subgroup scheme of E obtained by forming
the kernel of the endomorphism of E given by multiplication by n. Let D ⊆ E be a

closed subscheme of E such that E[1] (=“{o}”) ⊆ D ⊆ E[2]. Write X
def
= E \D for the

hyperbolic curve over k obtained by forming the complement of D in E. [Thus, X
is of type (1, 1), (1, 2), (1, 3), or (1, 4).] Then the set of moderate [cf. Definition 2.1]
k-rational points of X is finite.

In particular, the set of moderate rational points of a hyperbolic curve of type
(1, 1) over a number field is finite.
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Proof. — Let us first observe that it follows immediately from the equivalence (1)
⇔ (2′) of [5], Proposition 2.5, that, to verify Corollary 2.7, we may assume without
loss of generality, by replacing k by a suitable finite extension of k, that X is split [cf.
Remark 1.3.1, (i)]. Write α ∈ Autk(X) for the automorphism of X over k determined by
the automorphism of E given by multiplication by −1. Now it follows immediately from
Theorem 2.5 that, to complete the verification of Corollary 2.7, it suffices to verify that
α is p-Galois-like for all but finitely many prime numbers p.

Next, let us observe that one verifies easily that α is a hyperelliptic involution of X and
induces the identity automorphism on the set of cusps of X. Thus, it follows immediately
from Lemma 1.12 [in the case where condition (4) is satisfied] that, to verify the assertion
that α is p-Galois-like for all but finitely many prime numbers p, it suffices to verify that

−1 ∈ Aut(M
(p)
E ) (= Aut(E[p](k))) is contained in Γ

(mod p)
E ⊆ Aut(M

(p)
E ) (= Aut(E[p](k)))

for all but finitely many prime numbers p. On the other hand, this follows from [9],
§4.4, Théorème 3; [9], §4.5, Corollaire to Théorème 5. This completes the proof of
Corollary 2.7. □
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