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Abstract. — In the present paper, we discuss the Grothendieck conjecture for hyperbolic
curves over Kummer-faithful fields. In particular, we prove that every point-theoretic and
Galois-preserving outer isomorphism between the étale/tame fundamental groups of affine
hyperbolic curves over Kummer-faithful fields arises from a uniquely determined isomor-
phism between the original hyperbolic curves.
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Introduction

In the present paper, we discuss the [semi-absolute version of the] Grothendieck con-
jecture for hyperbolic curves over Kummer-faithful fields. In [4], §2, S. Mochizuki proved
that every point-theoretic outer isomorphism between the fundamental groups of affine
hyperbolic curves over finite extensions of either Qp or Fp for some prime number p arises
from a uniquely determined isomorphism between the original hyperbolic curves [cf. [4],
Corollary 2.2]. In the present paper, by refining various arguments given in [4], §1, §2;
[5], §1, we generalize this result of Mochizuki to the case of affine hyperbolic curves over
arbitrary Kummer-faithful fields [cf. Definition 1.2; also [5], Definition 1.5]. The main
result of the present paper is as follows [cf. Theorem 3.4].

THEOREM A. — Let � ∈ {◦, •}, k� a Kummer-faithful field [cf. Definition 1.2], and
X� a hyperbolic curve over k�. Write Xcpt

� for the smooth compactification of X� and
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DX�
⊆ Xcpt

� for the divisor at infinity of X�. Let

ΠX�

be either the étale fundamental group π1(X�) of X� or the tame fundamental group
πtame

1 (Xcpt
� , DX�

) of (Xcpt
� , DX�

). Write

Isom(ΠX◦ , ΠX•)

for the set of isomorphisms of profinite groups ΠX◦
∼→ ΠX•;

IsomPG(ΠX◦ , ΠX•) ⊆ Isom(ΠX◦ , ΠX•)

for the subset of isomorphisms ΠX◦
∼→ ΠX• that are point-theoretic [i.e., induce bi-

jections between the set of decomposition subgroups of ΠX◦ associated to closed points of
Xcpt
◦ and the set of decomposition subgroups of ΠX• associated to closed points of Xcpt

•
— cf. Definition 3.1, (i)] and Galois-preserving [i.e., induce isomorphisms between the
respective geometric subgroups — cf. Definition 3.1, (ii)];

Isom(X◦, X•)

for the set of isomorphisms of schemes X◦
∼→ X•. Then the following hold:

(i) Suppose that IsomPG(ΠX◦ , ΠX•) is nonempty. Then it holds that ΠX◦ = π1(X◦)
if and only if ΠX• = π1(X•).

(ii) Suppose, moreover, that either X◦ or X• is affine. Then the natural map

Isom(X◦, X•) −→ Isom(ΠX◦ , ΠX•)/ΠX•

[cf. (i)] determines a bijection

Isom(X◦, X•)
∼−→ IsomPG(ΠX◦ , ΠX•)/ΠX• .

0. Notations and Conventions

Numbers. — We shall write Primes for the set of all prime numbers. Let Σ ⊆ Primes
be a subset of Primes. Then we shall say that a positive integer is a Σ-integer if every
prime divisor of the integer is contained in Σ. We shall refer to a finite extension of Qp

(respectively, Fp) for some prime number p as an MLF [i.e., a mixed-characteristic local
field] (respectively, FF [i.e., a finite field]).

Profinite Groups. — We shall say that a profinite group is slim if every open subgroup
of the profinite group is center-free. One verifies immediately that an extension of center-
free (respectively, slim) profinite groups is center-free (respectively, slim).

Let G be a profinite group and H ⊆ G a closed subgroup. We shall say that H
is characteristic if every [continuous] isomorphism of G preserves H. We shall write

ZG(H) for the centralizer of H in G, Z(G)
def
= ZG(G) for the center of G, Gab for the

abelianization of G [i.e., the quotient of G by the closure of the commutator subgroup
of G], Aut(G) for the group of [continuous] automorphisms of G, Inn(G) ⊆ Aut(G) for

the group of inner automorphisms of G, and Out(G)
def
= Aut(G)/Inn(G) for the group of

outer automorphisms of G. Note that if G is topologically finitely generated, then it follows
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immediately that the topology of G admits a basis of characteristic open subgroups, which
thus induces a profinite topology on Aut(G), hence also Out(G).

Let G be a center-free and topologically finitely generated profinite group and ρ : J →
Out(G) a homomorphism of profinite groups. Thus, we have a natural exact sequence of
profinite groups

1 −→ G −→ Aut(G) −→ Out(G) −→ 1.

Then, by pulling back this exact sequence by the homomorphism ρ, we obtain a profinite

group G
out
o J , which fits into an exact sequence of profinite groups

1 −→ G −→ G
out
o J −→ J −→ 1.

Curves. — Let S be a scheme and X a scheme over S. Then we shall say that X is a
smooth curve over S if there exist a scheme Xcpt which is smooth, proper, geometrically
connected, and of relative dimension one over S and a closed subscheme D ⊆ Xcpt of
Xcpt which is finite and étale over S such that the complement Xcpt \ D of D in Xcpt

is isomorphic to X over S. Note that if S is the spectrum of a field k, then it follows
immediately from elementary algebraic geometry that the pair “(Xcpt, D)” is uniquely
determined up to canonical isomorphism over k; we shall refer to Xcpt as the smooth
compactification of X and to D as the divisor at infinity of X.

Let S be a scheme. Then we shall say that a smooth curve X over S is hyperbolic if
there exist a pair (Xcpt, D) satisfying the condition in the above definition of the term
“smooth curve” and a pair (g, r) of nonnegative integers such that 2g − 2 + r > 0, the
OS-module (Xcpt → S)∗(Ω

1
Xcpt/S) is [locally free] of rank g, and the finite étale covering

D ↪→ Xcpt → S is of degree r.

1. Fundamental Groups of Hyperbolic Curves over Kummer-faithful
Fields

In the present §1, we discuss various objects related to the étale/tame fundamental
group of a hyperbolic curve over a Kummer-faithful field [cf. Definition 1.2 below]. In
the present §1, let k be a perfect field, k an algebraic closure of k, and X a hyperbolic

curve over k. Write Gk
def
= Gal(k/k). Note that one verifies immediately from the various

definitions involved that since k is perfect, every connected finite étale covering of X is a
hyperbolic curve over the finite extension of k obtained by forming the algebraic closure
of k in the function field of the covering.

DEFINITION 1.1. — We shall write

• Primes×/k ⊆ Primes for the set of prime numbers which are invertible in k,

• Ẑ×/k for the maximal pro-Primes×/k quotient of Ẑ,

• Xcpt for the smooth compactification of X,

• DX ⊆ Xcpt for the divisor at infinity of X,

• gX for the genus of Xcpt,
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• rX
def
= ]DX(k),

• KX for the function field of X,

• Xcl+ for the set of closed points of Xcpt, and

• Div(X) for the group of divisors on Xcpt.

If x ∈ Xcpt(k) is a k-rational point of Xcpt, then we shall write

• ordx : K×
X � Z for the [uniquely determined] surjective valuation associated to x ∈

Xcpt(k).

In the following, let
ΠX

be either the étale fundamental group π1(X) of X or the tame fundamental group
πtame

1 (Xcpt, DX) of (Xcpt, DX). Write

∆X ⊆ ΠX

for the quotient of the étale fundamental group π1(X⊗k k) ⊆ π1(X) of X⊗k k determined
by ΠX . Thus, we have an exact sequence of profinite groups

1 −→ ∆X −→ ΠX −→ Gk −→ 1.

Now let us recall [cf., e.g., [6], Corollary 1.4; [6], Proposition 1.11] that ∆X is slim.

DEFINITION 1.2. — We shall say that k is Kummer-faithful if, for every finite extension
K of k and every semi-abelian variety A over K, it holds that⋂

N

N · A(K) = {0}

— where N ranges over the positive integers [cf. Remark 1.2.1 below].

REMARK 1.2.1. — If k is of characteristic zero, then it is immediate that k is Kummer-
faithful in the sense of Definition 1.2 if and only if k is Kummer-faithful in the sense of
[5], Definition 1.5.

REMARK 1.2.2. — If k is Kummer-faithful, then the following assertion holds:

If K is a finite extension of k, then it holds that⋂
N

(K×)N = {1}

— where N ranges over the Primes×/k-integers.

Indeed, this follows immediately, by considering the semi-abelian variety “Gm”, from the
definition of the term “Kummer-faithful”, together with our assumption that k, hence
also K, is perfect.
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REMARK 1.2.3. — A typical example of a Kummer-faithful field of characteristic zero is
a sub-p-adic field for some prime number p [i.e., a field which is isomorphic to a subfield
of a finitely generated extension of an MLF — cf. [3], Definition 15.4, (i)] [cf. [5], Remark
1.5.4]. A typical example of a Kummer-faithful field of positive characteristic is an FF.

DEFINITION 1.3.

(i) Let G be a profinite group. Then we shall write C(G) for the set of closed subgroups
of G. Note that G acts on C(G) by conjugation.

(ii) We shall write
SX : Xcl+ −→ C(ΠX)/ΠX

[cf. (i)] for the map given by mapping a closed point of Xcpt to the ΠX-conjugacy class
of a decomposition subgroup associated to the closed point.

DEFINITION 1.4. — We shall write
ΛX

for the cyclotome associated to the semi-graph of anabelioids of pro-Primes×/k PSC-type
[with no nodes] arising from the hyperbolic curve X ⊗k k [cf. [2], Definition 3.8, (i)].

REMARK 1.4.1. — In the notation of Definition 1.4:

(i) The cyclotome ΛX is isomorphic, as a Gk-module, to lim←−N
µN(k) — where the

projective limit is taken over the Primes×/k-integers N , and we write µN(k) for the
group of N -th roots of unity in k.

(ii) If X is proper over k [i.e., rX = 0], then

ΛX
def
= HombZ×/k

(
H2(∆X , Ẑ×/k), Ẑ×/k

)
.

PROPOSITION 1.5. — Suppose that k is Kummer-faithful. Then the following hold:

(i) Write

χ×/k
cyc : Gk −→ Aut(lim←−

N

µN(k)) = (Ẑ×/k)
×

— where the projective limit is taken over the Primes×/k-integers N , and we write µN(k)
for the group of N-th roots of unity in k — for the Primes×/k-adic cyclotomic character

of Gk. Then it holds that Z(Gk) ∩Ker(χ
×/k
cyc ) = {1}.

(ii) The profinite group ΠX is slim.

Proof. — First, we verify assertion (i). Assume that there exists a nontrivial element

γ ∈ Z(Gk)∩Ker(χ
×/k
cyc ). Let K be a finite Galois extension of k contained in k such that

the corresponding normal open subgroup GK ⊆ Gk does not contain γ ∈ Gk. Then since

γ ∈ Z(Gk)∩Ker(χ
×/k
cyc ), the natural action of γ on H1(GK , lim←−N

µN(k)) is trivial. On the
other hand, it follows from Remark 1.2.2, together with the Kummer theory, that this
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triviality implies the triviality of the action of γ on K. Thus, since γ 6∈ GK , we obtain a
contradiction. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that since a connected finite étale
covering of X is a hyperbolic curve over a Kummer-faithful field [cf. our assumption that
k is perfect], to verify assertion (ii), it suffices to verify that ΠX is center-free. Next, let us
observe that since ∆X is center-free, the composite Z(ΠX) ↪→ ΠX � Gk is an injection,
whose image is contained in the center Z(Gk) of Gk. On the other hand, it follows
immediately from the various definitions involved that the natural action of Z(ΠX) on
ΛX is trivial, i.e., that the image of the composite Z(ΠX) ↪→ ΠX � Gk is contained in

Ker(χ
×/k
cyc ) [cf. Remark 1.4.1, (i)]. Thus, it follows from assertion (i) that Z(ΠX) = {1}.

This completes the proof of assertion (ii), hence also of Proposition 1.5. �

REMARK 1.5.1. — In the situation of Proposition 1.5, (i), in general, it does not hold
that Z(Gk) = {1}. Indeed, although [one verifies easily that] an FF is Kummer-faithful,
the absolute Galois group of an FF is abelian and nontrivial.

LEMMA 1.6. — The following hold:

(i) The quotient of ΠX by the normal closed subgroup generated by the intersections
∆X ∩H — where H ranges over the closed subgroups of ΠX whose images in C(ΠX)/ΠX

are contained in the image of the map SX of Definition 1.3, (ii) — coincides with the
quotient ΠX � π1(X

cpt).

(ii) The subset Primes×/k ⊆ Primes is the [uniquely determined] maximal infinite
subset on which the map Primes→ Z given by mapping p ∈ Primes to dimQp

(
π1(X

cpt⊗k

k)ab ⊗bZ Qp

)
(<∞ — cf. [6], Proposition 1.1) is constant.

(iii) For every p ∈ Primes×/k, it holds that dimQp(∆
ab
X ⊗bZ Qp) = 2gX +max{0, rX−1},

dimQp

(
π1(X

cpt ⊗k k)ab ⊗bZ Qp

)
= 2gX .

(iv) It holds that X is proper over k [i.e., rX = 0] if and only if, for every p ∈
Primes×/k, the maximal pro-p quotient of ∆X is not free pro-p.

(v) It holds that ∆X is not topologically finitely generated if and only if char(k) 6=
0, rX 6= 0, and ΠX = π1(X). In particular, it holds that ∆X is topologically finitely
generated if and only if ΠX = πtame

1 (Xcpt, DX).

Proof. — Assertion (i) follows immediately from the various definitions involved. As-
sertions (ii) and (iii) follow immediately from [6], Corollary 1.2. Assertions (iv) and (v)
follow immediately from [6], Proposition 1.1. This completes the proof of Lemma 1.6. �

LEMMA 1.7. — Suppose that k is Kummer-faithful. Then the following hold:

(i) The map SX : Xcl+ → C(ΠX)/ΠX of Definition 1.3, (ii), is injective.

(ii) Suppose that X is proper over k [i.e., rX = 0]. Let m be a positive integer
and x1, . . . , xm ∈ X(k) distinct k-rational points. Thus, for each i ∈ {1, . . . ,m}, the
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k-rational point xi ∈ X(k) determines a splitting si [well-defined up to ∆ab
X -conjugation]

of the exact sequence of profinite groups

1 −→ ∆ab
X −→ ΠX/Ker(∆X � ∆ab

X ) −→ Gk −→ 1.

Let (n1, . . . , nm) ∈ Z⊕m be such that
∑m

i=1 ni = 0. Thus, by considering the linear
combination “

∑m
i=1 ni · si” of the si’s, we obtain a cohomology class [

∑m
i=1 ni · si] ∈

H1(Gk, ∆
ab
X ). Then the divisor

∑m
i=1 ni ·xi [of degree zero] on X is principal if and only

if [
∑m

i=1 ni · si] = 0 in H1(Gk, ∆
ab
X ).

Proof. — Assertion (i) follows immediately from a similar argument to the argument
applied in the proof of [6], Proposition 2.8, (i). Assertion (ii) follows immediately from a
similar argument to the argument applied in the proof of [4], Proposition 2.2, (i). This
completes the proof of Lemma 1.7. �

LEMMA 1.8. — Suppose that k is Kummer-faithful, and that DX(k) = DX(k). For
x ∈ DX(k), let Ix ⊆ ∆X be an inertia subgroup of ∆X associated to x. Then the following
hold:

(i) The inclusions Ix ↪→ ΠX — where x ranges over the elements of DX(k) — and
the surjection ΠX � Gk determine an exact sequence

0 −→ H1(Gk, ΛX) −→ H1(ΠX , ΛX) −→
⊕

x∈DX(k)

HombZ(Ix, ΛX).

Thus, by considering the isomorphism [well-defined up to a (Ẑ×/k)
×-multiple]

(k×)×/k def
= lim←−

N

k×/(k×)N ∼−→ H1(Gk, ΛX)

— where the projective limit is taken over the Primes×/k-integers N — obtained by the
Kummer theory [cf. Remark 1.4.1, (i)] and the identification

Ẑ×/k = HombZ×/k
(ΛX , ΛX)

∼−→ HombZ×/k
(I×/k

x , ΛX)
∼−→ HombZ(Ix, ΛX)

— where we write I
×/k
x for the maximal pro-Primes×/k quotient of Ix — obtained by the

synchronization of cyclotomes I
×/k
x

∼→ ΛX discussed in [2], Corollary 3.9, (v), we obtain
an exact sequence

0 −→ (k×)×/k −→ H1(ΠX , ΛX) −→
⊕

x∈DX(k)

Ẑ×/k.

(ii) The exact sequence of the final display of (i) fits into the following commutative
diagram

0 −−−→ k× −−−→ O×
X(X)

L
x∈DX (k) ordx

−−−−−−−−−→
⊕

x∈DX(k) Zy y y
0 −−−→ (k×)×/k −−−→ H1(ΠX , ΛX) −−−→

⊕
x∈DX(k) Ẑ×/k

— where the horizontal sequences are exact, the vertical arrows are injective, the left-
hand and middle vertical arrows are the homomorphisms obtained by the Kummer theory,
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and the right-hand vertical arrow is the homomorphism determined by the natural inclu-

sion Z ↪→ Ẑ×/k.

(iii) Let y ∈ X(k) be a k-rational point. Then the composite

O×
X(X) −→ H1(ΠX , ΛX) −→ H1(Gk, ΛX)

∼←− (k×)×/k

— where the first arrow is the middle vertical arrow of the diagram of (ii), and the
second arrow is the homomorphism determined by the splitting [well-defined up to ∆X-
conjugation] of ΠX � Gk induced by y ∈ X(k), i.e., “SX(y)” — coincides [up to a

(Ẑ×/k)
×-multiple — cf. the isomorphism (k×)×/k ∼→ H1(Gk, ΛX) discussed in (i)] with

the composite
O×

X(X) −→ k× −→ (k×)×/k

f 7→ f(y)

— where the second arrow is the natural homomorphism.

Proof. — Since the Gk-invariant of the Primes×/k-adic Tate module of the Jacobian
variety of Xcpt is trivial [by our assumption that k is Kummer-faithful], assertion (i)
follows immediately from a similar argument to the argument applied in the proof of
[4], Proposition 2.1, (ii). Assertions (ii) and (iii) follow immediately — in light of Re-
mark 1.2.2 — from the functoriality of the Kummer class, together with the various
definitions involved. This completes the proof of Lemma 1.8. �

DEFINITION 1.9. — Suppose that k is Kummer-faithful, and that X is proper [i.e., rX =
0]. Let S ⊆ X(k) be a finite subset and x ∈ X(k) \ S. Thus, since X \ S is a hyperbolic
curve over k, it follows from Lemma 1.8, (i), that we have an exact sequence

0 −→ (k×)×/k −→ H1(ΠX\S, ΛX) −→
⊕
s∈S

Ẑ×/k

— where we write ΠX\S
def
= πtame

1 (X, S). We shall write

P(X, S)
def
=

{
(ns)s∈S ∈

⊕
s∈S

Z
∣∣∣ The divisor

∑
s∈S

ns · s is principal.
}
⊆

⊕
s∈S

Ẑ×/k;

O×(ΠX , S) ⊆ H1(ΠX\S, ΛX)

for the submodule obtained by forming the inverse image of the submodule P(X, S) ⊆⊕
s∈S Ẑ×/k via the third arrow of the above exact sequence;

evx(ΠX , S) : O×(ΠX , S) −→ H1(Gk, ΛX)

for the restriction toO×(ΠX , S) ⊆ H1(ΠX\S, ΛX) of the homomorphism H1(ΠX\S, ΛX)→
H1(Gk, ΛX) determined by the splitting [well-defined up to ∆X\S-conjugation] of ΠX\S �
Gk induced by x ∈ X(k) \ S, i.e., “SX\S(x)”;

K×(ΠX)
def
= lim−→

K,T

O×(ΠX⊗kK , T )

— where the injective limit is taken over the finite extensions K of k contained in k and the
finite subsets T ⊆ (X ⊗k K)(K). Here, we note that the natural injection ΠX⊗kK ↪→ ΠX

[well-defined up to ∆X-conjugation] and the natural surjection ΠX⊗kK � GK determine

an isomorphism ΠX⊗kK
∼→ ΠX ×Gk

GK [well-defined up to (∆X × {1})-conjugation].
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LEMMA 1.10. — Suppose that k is Kummer-faithful, and that X is proper [i.e.,
rX = 0]. Then the following hold:

(i) The middle vertical arrows of the diagram of Lemma 1.8, (ii), in the case where
we take “X” of Lemma 1.8, (ii), to be (X ⊗k K) \ T — where K ranges over the finite
extensions of k contained in k and T ranges over the finite subsets of (X ⊗k K)(K) —
determine an injective homomorphism

K×
X⊗kk

↪→ K×(ΠX)

[cf. Definition 1.1].

(ii) Let S ⊆ X(k) be a finite subset. Then the diagram of Lemma 1.8, (ii), determines
a commutative diagram

0 −−−→ k× −−−→ O×
X(X \ S)

L
x∈S ordx−−−−−−→ P(X, S) −−−→ 0y y ∥∥∥

0 −−−→ H1(Gk, ΛX) −−−→ O×(ΠX , S) −−−→ P(X, S) −−−→ 0.

— where the horizontal sequences are exact, and the vertical arrows are injective.

(iii) Let S ⊆ X(k) be a finite subset and x ∈ X(k) \ S. Then the kernel of the
homomorphism

evx(ΠX , S) : O×(ΠX , S) −→ H1(Gk, ΛX)

coincides, relative to the middle vertical injection of the diagram of (ii), with the sub-
group

{ f ∈ O×
X(X \ S) | f(x) = 1 }

of O×
X(X \ S), i.e.,

Ker
(
evx(ΠX , S)

)
= { f ∈ O×

X(X \ S) | f(x) = 1 } ⊆ O×
X(X \ S).

In particular, for every y ∈ X(k) \ S, relative to the left-hand vertical injection of the
diagram of (ii), it holds that

evy(ΠX , S)(Ker
(
evx(ΠX , S)

)
) ⊆ k×.

(iv) Let x1, x2 ∈ X(k) be such that x1 6= x2. Then

(a) the subgroups

Ker
(
ev(xi)K

(ΠX⊗kK , Si)
)
⊆ O×(ΠX⊗kK , Si) ⊆ K×(ΠX)

— where i ranges over the elements of {1, 2}, K ranges over the finite extensions of k
contained in k, Si ranges over the finite subsets of (X ⊗k K)(K) which do not contain
(xi)K, and we write (xi)K ∈ (X ⊗k K)(K) for the K-rational point determined by xi —
and

(b) the subgroups

ev(x2)K
(ΠX⊗kK , S)(Ker

(
ev(x1)K

(ΠX⊗kK , S)
)
) ⊆ H1(GK , ΛX) ⊆ K×(ΠX)

— where K ranges over the finite extensions of k contained in k, S ranges over the
finite subsets of (X ⊗k K)(K) which do not contain (x1)K and (x2)K, and we write
(xi)K ∈ (X ⊗k K)(K) for the K-rational point determined by xi —
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generate the image of the injection of (i).

Proof. — Assertions (i), (ii) follow immediately from the various definitions involved,
together with our assumption that k is Kummer-faithful. Next, we verify assertion (iii).
Let us first observe that one verifies immediately from Lemma 1.8, (iii), together with the
various definitions involved, that, to complete the verification of assertion (iii), it suffices
to verify that Ker(evx(ΠX , S)) ⊆ O×

X(X \ S). Let f ∈ Ker(evx(ΠX , S)). Next, let us
observe that it follows immediately from assertion (ii) that there exist g ∈ O×

X(X \ S)
and a ∈ H1(Gk, ΛX) such that f = a · g. Thus, it holds that

1 = evx(ΠX , S)(f) = a · evx(ΠX , S)(g),

which thus implies that a = evx(ΠX , S)(g)−1 ∈ k× [cf. Lemma 1.8, (iii)]. In particular,
we conclude that f = a · g ∈ O×

X(X \ S). This completes the proof of assertion (iii).
Finally, we verify assertion (iv). Write F ⊆ K×(ΠX) for the subgroup generated by

the various subgroups (a), (b) appearing in the statement of assertion (iv) and regard
K×

X⊗kk
as a subgroup of K×(ΠX) by means of the injection of assertion (i). Then let us

observe that it follows from assertion (iii) that F ⊆ K×
X⊗kk

. Moreover, by considering

the subgroups (b), one verifies immediately — in light of Lemma 1.11, (i), below — from
assertion (iii), together with Lemma 1.8, (iii), that

k
× ⊆ F ⊆ K×

X⊗kk
.

In particular, by considering the subgroups (a), we conclude from assertion (iii), together
with Lemma 1.8, (iii), that, for a rational function f ∈ K×

X⊗kk
, if f((xi)k) 6∈ {0,∞} for

some i ∈ {1, 2} [where we write (xi)k ∈ (X⊗k k)(k) for the k-valued point determined by
xi], then f ∈ F . Thus, the equality F = K×

X⊗kk
follows immediately from Lemma 1.11,

(ii), below. This completes the proof of assertion (iv). �

LEMMA 1.11. — Let Ω be an algebraically closed field; C a proper hyperbolic curve over
Ω; x, y ∈ C(Ω) distinct Ω-valued points of C. Then the following hold:

(i) For every λ ∈ Ω\{0, 1}, there exists a rational function f ∈ KC [cf. Definition 1.1]
such that f(x) = 1 and f(y) = λ.

(ii) The multiplicative group K×
C is generated by rational functions f ∈ K×

C such
that f({x, y}) 6⊆ {0,∞}.

Proof. — Assertion (i) follows immediately by considering, for instance, a suitable
linear fractional transformation (ag + b)/(cg + d) [where a, b, c, d ∈ Ω] of a rational
function g ∈ K×

C such that g(x) 6= g(y) . Next, we verify assertion (ii). Write F ⊆ K×
C

for the subgroup of K×
C generated by rational functions f ∈ K×

C such that f({x, y}) 6⊆
{0,∞}. To complete the verification of the equality F = K×

C , let us take a rational
function g ∈ K×

C such that g({x, y}) ⊆ {0,∞}. Now, to verify g ∈ F , we may assume
without loss of generality, by replacing g by g−1 if necessary, that g(x) = ∞, i.e., that
ordx(g) < 0. Then one verifies immediately from the Riemann-Roch theorem that there
exists a rational function h ∈ K×

C such that ordx(g) = ordx(h) (= ordx(h + 1)) and
h(y) = 0 [i.e., (h + 1)(y) = 1]. Thus, since g/(h + 1), h + 1 ∈ F , we conclude that g ∈ F .
This completes the proof of assertion (ii). �
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DEFINITION 1.12. — We shall write

∆c-ab
X (respectively, ∆c-cn

X )

for the maximal quotient of ∆X such that the natural surjection ∆X � π1(X
cpt ⊗k k)

factors through the surjection ∆X � ∆c-ab
X (respectively, ∆c-cn

X ), and, moreover, the kernel
of the resulting surjection ∆c-ab

X (respectively, ∆c-cn
X ) � π1(X

cpt ⊗k k) is pro-Primes×/k

and abelian (respectively, pro-Primes×/k and contained in the center of ∆c-cn
X ). We shall

write

Πc-ab
X (respectively, Πc-cn

X )

for the quotient of ΠX by the kernel of ∆X � ∆c-ab
X (respectively, ∆c-cn

X ). Thus, we have
a commutative diagram of profinite groups

1 −−−→ ∆X −−−→ ΠX −−−→ Gk −−−→ 1y y ∥∥∥
1 −−−→ ∆c-ab

X −−−→ Πc-ab
X −−−→ Gk −−−→ 1y y ∥∥∥

1 −−−→ ∆c-cn
X −−−→ Πc-cn

X −−−→ Gk −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are surjective.

LEMMA 1.13. — The following hold:

(i) The natural surjections

ΠX � Πc-ab
X � Πc-cn

X

determine isomorphisms

H1(Πc-cn
X , ΛX)

∼−→ H1(Πc-ab
X , ΛX)

∼−→ H1(ΠX , ΛX).

(ii) Suppose that X is proper [i.e., rX = 0]. Let x1, . . . , xn ∈ X(k) be distinct k-

rational points. For i ∈ {1, . . . , n}, write Ui
def
= X \{xi} and U

def
= X \{x1, . . . , xn}. Then

the natural open immersions U ↪→ Ui — where i ranges over the elements of {1, . . . , n}—
determine an isomorphism of profinite groups [well-defined up to ∆c-cn

U1
×∆X

· · ·×∆X
∆c-cn

Un
-

conjugation]

Πc-cn
U

∼−→ Πc-cn
U1
×ΠX

· · · ×ΠX
Πc-cn

Un
.

Proof. — Assertion (i) follows immediately from the various definitions involved. As-
sertion (ii) follows immediately from a similar argument to the argument applied in the
proof of the final portion of [4], Proposition 1.6, (iii). �
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2. Maximal Cuspidally Abelian Quotients

In the present §2, we discuss the maximal cuspidally abelian quotients “Πc-ab
UX×kX

” [cf.

Definition 2.1, (ii), below] of the étale fundamental groups of the second configuration
spaces of proper hyperbolic curves. In the present §2, we maintain the notation of the
preceding §1. Suppose, moreover, that X is proper over k [i.e., rX = 0]. Write

ΠX×kX
def
= π1(X ×k X) ⊇ ∆X×kX

def
= π1((X ×k X)⊗k k)

for the respective étale fundamental groups of X×k X, (X×k X)⊗k k. Then let us recall
that the two projections X ×k X → X determine an isomorphism of profinite groups

ΠX×kX
∼−→ ΠX ×Gk

ΠX ,

which restricts to an isomorphism of profinite groups

∆X×kX
∼−→ ∆X ×∆X .

Let N be a Primes×/k-integer. Write

ΛX,N
def
= ΛX/NΛX = HombZ×/k

(
H2(∆X , Ẑ×/k), Z/NZ

)
[cf. Definition 1.4; Remark 1.4.1, (ii)].

DEFINITION 2.1.

(i) We shall write UX×kX ⊆ X ×k X for the second configuration space of X, i.e., the
open subscheme of X ×k X obtained by forming the complement of the diagonal divisor
X ⊆ X ×k X. Thus, the natural inclusion UX×kX ↪→ X ×k X determines a commutative
diagram of profinite groups

1 −−−→ π1((UX×kX)⊗k k) −−−→ π1(UX×kX) −−−→ Gk −−−→ 1y y ∥∥∥
1 −−−→ ∆X×kX −−−→ ΠX×kX −−−→ Gk −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are surjective.

(ii) We shall write

∆
c-(×/k)
UX×kX

(respectively, ∆c-ab
UX×kX

; ∆c-cn
UX×kX

)

for the maximal quotient of π1((UX×kX)⊗k k) such that the left-hand vertical arrow of the

diagram of (i) factors through the surjection π1((UX×kX)⊗k k) � ∆
c-(×/k)
UX×kX

(respectively,

∆c-ab
UX×kX

; ∆c-cn
UX×kX

), and, moreover, the kernel of the resulting surjection ∆
c-(×/k)
UX×kX

(respectively,

∆c-ab
UX×kX

; ∆c-cn
UX×kX

) � ∆X×kX is pro-Primes×/k (respectively, pro-Primes×/k and abelian;

pro-Primes×/k and contained in the center of ∆c-cn
UX×kX

). We shall write

Π
c-(×/k)
UX×kX

(respectively, Πc-ab
UX×kX

; Πc-cn
UX×kX

)
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for the quotient of π1(UX×kX) by the kernel of π1((UX×kX)⊗k k) � ∆
c-(×/k)
UX×kX

(respectively,

∆c-ab
UX×kX

; ∆c-cn
UX×kX

). Thus, the diagram of (i) determines a commutative diagram of profi-

nite groups

1 −−−→ ∆
c-(×/k)
UX×kX

−−−→ Π
c-(×/k)
UX×kX

−−−→ Gk −−−→ 1y y ∥∥∥
1 −−−→ ∆c-ab

UX×kX
−−−→ Πc-ab

UX×kX
−−−→ Gk −−−→ 1y y ∥∥∥

1 −−−→ ∆c-cn
UX×kX

−−−→ Πc-cn
UX×kX

−−−→ Gk −−−→ 1y y ∥∥∥
1 −−−→ ∆X×kX −−−→ ΠX×kX −−−→ Gk −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are surjective.

LEMMA 2.2. — Let x ∈ X(k) be a k-rational point. Write U
def
= X \ {x}. Then the

splitting [well-defined up to ∆X-conjugation] s : Gk → ΠX induced by x, i.e., “SX(x)”,
determines an isomorphism of profinite groups over Gk

Πc-cn
U

∼−→ Πc-cn
UX×kX

×ΠX×kX
(s(Gk)×Gk

ΠX)

[cf. Definition 1.12].

Proof. — This follows immediately from a similar argument to the argument applied
in the proof of [4], Proposition 1.6, (iii), (iv). �

LEMMA 2.3. — Suppose that ΠX is slim, and that k is p-cyclotomically full for every
p ∈ Primes×/k [i.e., the image of the p-adic cyclotomic character of Gk is open in Z×

p

for every p ∈ Primes×/k]. Then an extension of an open subgroup of either ΠX or ΠX×kX

by a [possibly empty] finite product of copies of ΛX is slim.

Proof. — Let us first observe that since the profinite group ΠX×kX
∼→ ΠX ×Gk

ΠX has
a structure of extension of ΠX by ∆X , and ∆X is slim, it follows that ΠX×kX is slim. In
particular, since k is p-cyclotomically full for every p ∈ Primes×/k, it follows immediately
from Remark 1.4.1, (i), that an extension of an open subgroup of either ΠX or ΠX×kX by
a finite product of copies of ΛX is slim. This completes the proof of Lemma 2.3. �

REMARK 2.3.1. — It follows immediately from Proposition 1.5, (ii), together with a
similar argument to the argument given in [5], Remark 1.5.1, that if k is Kummer-faithful,
then the two assumptions in the statement of Lemma 2.3 are satisfied. In particular, in
this situation, it follows from Lemma 2.3 that an extension of an open subgroup of either
ΠX or ΠX×kX by a [possibly empty] finite product of copies of ΛX is slim.
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DEFINITION 2.4. — Let ∆ ⊆ ∆X be a characteristic open subgroup of ∆X and ΠY ⊆ ΠX

an open subgroup of ΠX such that ∆Y = ΠY ∩ ∆X = ∆. Write GkY
⊆ Gk for the

image of the composite ΠY ↪→ ΠX � Gk. [Thus, the connected finite étale covering
Y → X [corresponding to ΠY ⊆ ΠX ] is a hyperbolic curve over the finite extension kY of
k [corresponding to GkY

⊆ Gk].]

(i) By conjugation, we obtain an action ΠX → Aut(∆), hence also a semi-direct
product ∆ o ΠX , which fits into an exact sequence of profinite groups

1 −→ ∆ o ∆X −→ ∆ o ΠX −→ Gk −→ 1.

Observe that since ∆X is slim, it follows that ∆ o ∆X is slim.

(ii) By restricting the action ΠX → Aut(∆) of (i) to ΠY ⊆ ΠX , we obtain a semi-direct
product ∆ o ΠY . Then one verifies easily from the fact that ∆ is center-free that the
centralizer Z∆o∆Y

(∆) ⊆ ∆ o ∆Y determines a splitting of the exact sequence of profinite
groups

1 −→ ∆ −→ ∆ o ∆Y −→ ∆Y −→ 1.

Thus, the natural surjections ∆ o ∆Y � (∆ o ∆Y )/Z∆o∆Y
(∆), ∆Y determine isomor-

phisms of profinite groups

∆ o ∆Y
∼−→

(
(∆ o ∆Y )/Z∆o∆Y

(∆)
)
×∆Y

∼←− ∆×∆Y ,

which are compatible with the natural outer actions of GkY
. In particular, by considering

“(−)
out
o GkY

” [cf. the slimness of ∆ o ∆X discussed in (i)], we obtain an isomorphism of
profinite groups

∆ o ΠY
∼−→ ΠY ×GkY

ΠY (
∼←− ΠY×kY

Y ).

Observe that one verifies immediately from the various definitions involved that the natu-
ral splitting of the surjection ΠY×kY

Y
∼→ ∆oΠY � ΠY arises from the diagonal morphism

Y ↪→ Y ×kY
Y .

(iii) We shall write Z∆ → X×k X for the connected finite étale covering corresponding
to the open subgroup

ΠZ∆

def
= ∆ o ΠX ⊆ ∆X o ΠX

∼→ ΠX×kX

— where the “
∼→” is the isomorphism obtained in (ii). Thus, the exact sequence of (i)

determines an exact sequence of profinite groups

1 −→ ∆Z∆

def
= Ker(ΠZ∆

� Gk) −→ ΠZ∆
−→ Gk −→ 1.

Observe that one verifies immediately from the various definitions involved that the sur-
jection ΠZ∆

= ∆oΠX � ΠX arises from an “isotrivial” [cf. (ii)] hyperbolic curve Z∆ → X
over X, and the natural splitting of the surjection ΠZ∆

= ∆ o ΠX � ΠX arises from a
section ι∆ : X ↪→ Z∆ — that lies over the diagonal morphism X ↪→ X ×k X [cf. (ii)] —
of this hyperbolic curve Z∆ → X.

REMARK 2.4.1. — One verifies easily from the various definitions involved that, in the
notation of Definition 2.4, if k is either an MLF or FF, then the finite étale covering
Z∆ → X ×k X of Definition 2.4, (iii), is the diagonal covering associated to the covering
Y → X in the sense of [4], Definition 1.2, (i).
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LEMMA 2.5. — In the notation of Definition 2.4, the following hold:

(i) Let i 6= 0 be an integer, G ∈ {∆, ΠZ∆
}, and A a finite G-module annihilated by a

Primes×/k-integer. Then

lim−→
H

H i(H, A) = {0}

— where the inductive limit is taken over the open subgroups H ⊆ G, and the transition
morphisms in the limit are given by the restriction maps.

(ii) Let i 6= 2 be an integer and A a finite module equipped with the trivial action of
∆ that is annihilated by a Primes×/k-integer. Then

lim←−
H

H i(H, A) = {0}

— where the projective limit is taken over the open subgroups H ⊆ ∆, and the transition
morphisms in the limit are given by the corestriction maps.

(iii) Let i be an integer and A a finite ΠZ∆
-module annihilated by a Primes×/k-integer.

Then the natural homomorphism

H i(ΠZ∆
, A) −→ H i(Z∆, A)

is an isomorphism.

Proof. — Assertion (i) follows immediately from a similar argument to the argument
applied in the proof of [1], Lemma 4.2, (iii). Next, we verify assertion (ii). Let us recall
[cf., e.g., [4], Proposition 1.3, (ii)] that the homomorphism

H i(H, A) −→ HombZ×/k

(
H2−i(H, ΛX), A

)
determined by the cup product in group cohomology and the natural isomorphism of ΛX

with “ΛX” with respect to H [cf., e.g., [4], Remark 1] is an isomorphism. Thus, assertion
(ii) follows immediately from assertion (i). This completes the proof of assertion (ii).
Assertion (iii) is a formal consequence of assertion (i) [cf., e.g., the proof of [1], Lemma
4.2, (iii)]. This completes the proof of Lemma 2.5. �

LEMMA 2.6. — In the notation of Definition 2.4, write

Ei,j
2 (∆) = H i(ΠX , Hj(∆, ΛX,N)) =⇒ Ei+j(∆) = H i+j(ΠZ∆

, ΛX,N)

for the spectral sequence associated to the exact sequence of profinite groups

1 −→ ∆ −→ ΠZ∆
(= ∆ o ΠX) −→ ΠX −→ 1.

Then the following hold:

(i) The natural homomorphism

lim←−
∆†

E0,2
2 (∆†) −→ E0,2

2 (∆) (= H0(ΠX , H2(∆, ΛX,N)) = Z/NZ)

— where the projective limit is taken over the characteristic open subgroups ∆† ⊆ ∆X

contained in ∆, and the transition morphisms in the limit are given by the corestriction
maps — is an isomorphism.
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(ii) The natural homomorphism

lim←−
∆†

E2(∆†) −→ lim←−
∆†

E0,2
2 (∆†)

— where the projective limits are taken over the characteristic open subgroups ∆† ⊆ ∆X

contained in ∆, and the transition morphisms in the limits are given by the corestriction
maps — is an isomorphism.

(iii) The image of 1 ∈ Z/NZ via the composite

Z/NZ = H0(ΠX , H2(∆, ΛX,N)) = E0,2
2 (∆)

∼←− lim←−
∆†

E0,2
2 (∆†)

∼←− lim←−
∆†

E2(∆†) −→ E2(∆) = H2(ΠZ∆
, ΛX,N)

∼−→ H2(Z∆, ΛX,N)

— where the first “
∼←” is the isomorphism of (i), the second “

∼←” is the isomorphism of

(ii), and the “
∼→” is the isomorphism of Lemma 2.5, (iii) — coincides with the first Chern

class c1(ι∆(X)) of the divisor ι∆(X) ⊆ Z∆ obtained by forming the scheme-theoretic image
of the section ι∆ : X ↪→ Z∆ of the hyperbolic curve Z∆ → X [cf. Definition 2.4, (iii)].

Proof. — First, we verify assertion (i). Let us recall [cf., e.g., [4], Proposition 1.3, (ii)]
that the homomorphism

(E0,2
2 (∆†) =) H2(∆†, ΛX,N) −→ HombZ×/k

(
H0(∆†, ΛX), ΛX,N

)
(= Z/NZ)

determined by the cup product in group cohomology and the natural isomorphism of
ΛX with “ΛX” with respect to ∆† [cf., e.g., [4], Remark 1] is an isomorphism. Thus,
assertion (i) follows immediately from the various definitions involved. Assertion (ii)
follows immediately from Lemma 2.5, (ii). Assertion (iii) follows immediately from the
[easily verified] fact that the image of the compatible system

(c1(ι∆†(X)))∆† ∈ lim←−
∆†

E2(∆†)

[cf. Lemma 2.5, (iii)] via the composite of natural homomorphisms

lim←−
∆†

E2(∆†) −→ lim←−
∆†

E0,2
2 (∆†) −→ E0,2

2 (∆) = Z/NZ

coincides with 1 ∈ Z/NZ. This completes the proof of Lemma 2.6. �

DEFINITION 2.7. — In the notation of Lemma 2.6:

(i) We shall refer to an extension of ΠZ∆
by ΛX,N

1 −→ ΛX,N −→ E∆,N −→ ΠZ∆
−→ 1

whose associated extension class is given by the image of 1 ∈ Z/NZ via the composite

Z/NZ = H0(ΠX , H2(∆, ΛX,N)) = E0,2
2 (∆)

∼←− lim←−
∆†

E0,2
2 (∆†)

∼←− lim←−
∆†

E2(∆†) −→ E2(∆) = H2(ΠZ∆
, ΛX,N)

— where the first “
∼←” is the isomorphism of Lemma 2.6, (i), and the second “

∼←” is the
isomorphism of Lemma 2.6, (ii) — as a mod N fundamental extension of ΠZ∆

.
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(ii) We shall refer to the extension of ΠZ∆
by ΛX

1 −→ ΛX −→ E∆
def
= lim←−

N

E∆,N −→ ΠZ∆
−→ 1

— where the projective limit is taken over the Primes×/k-integers N — obtained by
forming the projective limit of a compatible system of mod N fundamental extensions
{E∆,N}N [cf. (i)] as a fundamental extension of ΠZ∆

. [Here, let us observe that the natural
surjection ΠZ∆

� Gk, together with the Kummer theory, determines an exact sequence

1 −→ k×/(k×)N −→ H1(ΠZ∆
, ΛX,N) −→ H1(∆Z∆

, ΛX,N);

moreover, one verifies easily that H1(∆Z∆
, ΛX,N) is finite — cf. Lemma 1.6, (v). In partic-

ular, for every N , there exists a Primes×/k-integer N0 which is divisible by N such that, if
N ′ is a Primes×/k-integer which is divisible by N0, then the image of H1(ΠZ∆

, ΛX,N ′)→
H1(ΠZ∆

, ΛX,N) coincides with the image of H1(ΠZ∆
, ΛX,N0)→ H1(ΠZ∆

, ΛX,N).]

REMARK 2.7.1. — One verifies easily from Lemma 2.6, (iii), together with the various
definitions involved, that, in the notation of Definition 2.7, if k is either an MLF or FF,
then the notion of a fundamental extension of ΠZ∆

defined in Definition 2.7, (ii), coincides
with the notion of a fundamental extension of ΠZ∆

defined in [4], Definition 1.2, (i) [cf.
also Remark 2.4.1].

DEFINITION 2.8. — Suppose that k is Kummer-faithful. Let

∆‡ ⊆ ∆† ⊆ ∆ ⊆ ∆X

be characteristic open subgroups of ∆X ;

1 −→ ΛX −→ E∆† −→ ΠZ
∆† −→ 1,

1 −→ ΛX −→ E∆‡ −→ ΠZ
∆‡ −→ 1

respective fundamental extensions of ΠZ
∆† , ΠZ

∆‡ [cf. Definition 2.7, (ii)]; s : Gk → ΠX a
splitting of the natural surjection ΠX � Gk. Write

Y ‡ −→ Y † −→ Y −→ X

for the connected finite étale coverings corresponding to the open subgroups

ΠY ‡
def
= ∆‡ · Im(s) ⊆ ΠY †

def
= ∆† · Im(s) ⊆ ΠY

def
= ∆ · Im(s) ⊆ ΠX .

(i) By similar procedures to the procedures given in the discussion following [4],
Proposition 1.6, in the case where we take “(X ′′ → X ′ → X∗ → X,D′′)” in the discussion
following [4], Proposition 1.6, to be (Y ‡ → Y † → Y → X, E∆‡) [cf. Remarks 2.4.1, 2.7.1],
together with Remark 2.3.1, one may define extensions

1 −→
∏

∆/∆‡

ΛX −→ SY ‡/Y (E∆‡) −→ ΠZ∆
−→ 1,

1 −→
∏

∆/∆†

ΛX −→ TrY ‡/Y †:Y (E∆‡) −→ ΠZ∆
−→ 1
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— in which ΠZ∆
is only determined up to ∆‡×{1}-inner automorphisms. We shall refer

to SY ‡/Y (E∆‡) as the [Y ‡/Y -]symmetrized fundamental extension [cf. [4], Definition 1.3,

(i)] and to TrY ‡/Y †:Y (E∆‡) as the [Y ‡/Y † : Y -]trace-symmetrized fundamental extension
[cf. [4], Definition 1.3, (i)].

(ii) By a similar argument to the argument given in [4], Definition 1.3, (ii), together
with similar results to the results given in [4], Proposition 1.7, (i), (ii), one may define
the notion of a morphism of trace type

SY ‡/X(E∆‡) −→ (SY †/X(TrY ‡/Y †:Y †(E∆‡)) −→) SY †/X(E∆†).

DEFINITION 2.9. — Suppose that k is Kummer-faithful. Let s : Gk → ΠX be a splitting
of the natural surjection ΠX � Gk and

· · · ⊆ ∆i ⊆ · · · ⊆ ∆j ⊆ · · · ⊆ ∆0 = ∆X

a system of characteristic open subgroups of ∆X indexed by the nonnegative integers
such that ⋂

i≥0

∆i = {1}.

[Note that since ∆X is topologically finitely generated [by Lemma 1.6, (v)], such a system
always exists.] Write

· · · → Yi → · · · → Yj → · · · → Y0 = X

for the connected finite étale coverings corresponding to the open subgroups

· · · ⊆ ΠYi

def
= ∆i · Im(s) ⊆ · · · ⊆ ΠYj

def
= ∆j · Im(s) ⊆ · · · ⊆ ΠX .

(i) We shall refer to a compatible system of morphisms of trace type [cf. Defini-
tion 2.8, (ii)], up to inner automorphisms of the appropriate type, between symmetrized
fundamental extensions

· · · � Si � · · · � Sj � · · · � S0 (� ΠX×kX)

— where Si is the Yi/X-symmetrized fundamental extension [cf. Definition 2.8, (i)] — as
a pro-symmetrized fundamental extension of ΠX×kX [cf. [4], Definition 1.3, (iii)]. In this
situation, we shall refer to the profinite group

S∞
def
= lim←−

i≥0

Si (� ΠX×kX)

as a pro-fundamental extension of ΠX×kX [cf. [4], Definition 1.3, (iii)].

(ii) Let S∞ be a pro-fundamental extension of ΠX×kX [cf. (i)]. Then, by a similar
argument to the argument given in [4], Definition 1.4, (ii), together with a similar result to
the result given in [4], Proposition 1.8, (i), one may define the notion of a pro-fundamental
section

ΠUX×kX
−→ S∞.
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PROPOSITION 2.10. — Suppose that k is Kummer-faithful, and that the natural sur-
jection ΠX � Gk has a splitting. Then the following hold:

(i) Let S∞ be a pro-fundamental extension of ΠX×kX [cf. Definition 2.9, (i)].
Then a pro-fundamental section ΠUX×kX

→ S∞ [cf. Definition 2.9, (ii)] determines
isomorphisms of profinite groups

Πc-ab
UX×kX

∼−→ S∞, Πc-cn
UX×kX

∼−→ S0

— where we write S0 for the X/X-symmetrized fundamental extension [cf. Definition 2.8,
(i)] [i.e., a fundamental extension of ΠZ∆X

= ΠX×kX — cf. Definition 2.7, (ii)] appear-

ing in the pro-symmetrized fundamental extension of ΠX×kX [cf. Definition 2.9, (i)]
that determines S∞.

(ii) Let DX ⊆ Πc-ab
UX×kX

be a decomposition subgroup associated to the diagonal di-

visor X ⊆ X ×k X such that the image of the composite DX ↪→ Πc-ab
UX×kX

� ΠX×kX

coincides with the image of the diagonal homomorphism ΠX ↪→ ΠX ×Gk
ΠX

∼← ΠX×kX .
Then if an automorphism α of Πc-ab

UX×kX
satisfies the following two conditions, then α is

Ker(∆c-ab
UX×kX

� ∆X×kX)-inner:

(a) α preserves the quotient Πc-ab
UX×kX

� ΠX×kX , and, moreover, the resulting

automorphism of ΠX×kX is the identity automorphism.

(b) α preserves the inertia subgroup of DX .

(iii) Let {Si}i be a pro-symmetrized fundamental extension of ΠX×kX and x ∈
X(k) a k-rational point. Write U

def
= X \ {x} and s : Gk → ΠX for the splitting [well-

defined up to ∆X-conjugation] induced by x, i.e., “SX(x)”. Then the first isomorphism
of (i) determines an isomorphism of profinite groups

Πc-ab
U

∼−→ lim←−
i≥0

(
Si ×ΠX×kX

(s(Gk)×Gk
ΠX)

)
[cf. Definition 1.12].

(iv) In the notation of (iii), let Dx ⊆ Πc-ab
U be a decomposition subgroup associated to

x ∈ X(k). Then if an automorphism α of Πc-ab
U satisfies the following two conditions,

then α is Ker(∆c-ab
U � ∆X)-inner:

(a) α preserves the quotient Πc-ab
U � ΠX , and, moreover, the resulting automor-

phism of ΠX is the identity automorphism.

(b) α preserves the inertia subgroup of Dx.

Proof. — First, let us observe that if we regard ΠX as a closed subgroup of ΠX ×Gk

ΠX by means of the diagonal homomorphism ΠX ↪→ ΠX ×Gk
ΠX , then one verifies

immediately that the set of (ΠX ×Gk
ΠX)-conjugates of ΠX coincides with the set of

(∆X ×{1})-conjugates of ΠX . Thus, assertion (i) (respectively, (iii)) follows immediately
from a similar argument to the argument applied in the proof of [4], Proposition 1.9, (ii)
(respectively, [4], Proposition 1.9, (i)). In particular, assertion (ii) (respectively, (iv))
follows immediately — in light of Lemma 2.11 below and a similar result to the result
given as [4], Lemma 1.1 — from a similar argument to the argument applied in the
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proof of [4], Proposition 1.10, (i) (respectively, [4], Proposition 2.3, (i), together with
Lemma 1.7, (i)). This completes the proof of Proposition 2.10. �

LEMMA 2.11. — Suppose that k is Kummer-faithful. Let G be an open subgroup of
either ΠX or ΠX×kX which surjects onto Gk. Then the natural surjection G � Gk

determines an isomorphism

H1(Gk, ΛX)
∼−→ H1(G, ΛX).

In particular, it holds that ⋂
n

n ·H1(G, ΛX) = {0}

— where n ranges over the Primes×/k-integers.

Proof. — The first portion of the statement follows immediately from a similar argu-
ment to the argument applied in the proof of Lemma 1.8, (i). The final portion of the
statement follows immediately from the first portion of the statement, together with the
Kummer theory [cf. Remark 1.4.1, (i)]. This completes the proof of Lemma 2.11. �

3. The Grothendieck Conjecture over Kummer-faithful Fields

In the present §3, we discuss the [semi-absolute version of the] Grothendieck conjecture
for affine hyperbolic curves over Kummer-faithful fields. In the present §3, let � ∈ {◦, •},
k� a Kummer-faithful field, k� an algebraic closure of k�, X� a hyperbolic curve over k�,
and

ΠX�

either the étale fundamental group π1(X�) of X� or the tame fundamental group

πtame
1 (Xcpt

� , DX�
) of (Xcpt

� , DX�
). Write Gk�

def
= Gal(k�/k�) and

∆X�
⊆ ΠX�

for the quotient of the étale fundamental group π1(X� ⊗k�
k�) ⊆ π1(X�) of X� ⊗k�

k�

determined by ΠX�
.

DEFINITION 3.1. — Let α : ΠX◦
∼→ ΠX• be an isomorphism of profinite groups.

(i) We shall say that α is point-theoretic if α determines a bijection between the set
of decomposition subgroups of ΠX◦ associated to closed points of Xcpt

◦ and the set of
decomposition subgroups of ΠX• associated to closed points of Xcpt

• [cf. Remark 3.1.1
below].

(ii) We shall say that α is Galois-preserving if α determines an isomorphism of profinite

groups α∆ : ∆X◦
∼→ ∆X• . In particular, we obtain an isomorphism of profinite groups

αG : Gk◦
∼→ Gk• .

We shall say that an outer isomorphism ΠX◦
∼→ ΠX• is point-theoretic (respectively,

Galois-preserving) if it arises from a point-theoretic (respectively, Galois-preserving) iso-
morphism.
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REMARK 3.1.1. — One verifies easily from [4], Proposition 2.2, (ii), that, in the notation
of Definition 3.1, if k is either an MLF or FF, then α is point-theoretic in the sense of
Definition 3.1, (i), if and only if α is point-theoretic in the sense of [4], Definition 1.5, (ii).

LEMMA 3.2. — Let α : ΠX◦
∼→ ΠX• be a point-theoretic and Galois-preserving iso-

morphism of profinite groups. Then the following hold:

(i) The isomorphism α determines a bijection αcl+ : Xcl+
◦

∼→ Xcl+
• such that, for every

x◦ ∈ Xcl+
◦ , if we write x•

def
= αcl+(x◦) ∈ Xcl+

• , then the following conditions are satisfied:

(a) The diagram

Xcl+
◦

αcl+

−−−→ Xcl+
•

SX◦

y ySX•

C(ΠX◦)/ΠX◦ −−−→ C(ΠX•)/ΠX•

— where the lower horizontal arrow is the bijection induced by α — commutes.

(b) It holds that x◦ lies on X◦ if and only if x• lies on X•.

(c) If we write κ(x◦), κ(x•) for the residue fields at x◦, x•, respectively, then it
holds that [κ(x◦) : k◦] = [κ(x•) : k•].

We shall write
Div(α) : Div(X◦)

∼−→ Div(X•)

[cf. Definition 1.1] for the isomorphism of groups determined by αcl+.

(ii) The isomorphism α determines an isomorphism of profinite groups

αcpt : π1(X
cpt
◦ )

∼→ π1(X
cpt
• ),

which restricts to an isomorphism of profinite groups

αcpt
∆ : π1(X

cpt
◦ ⊗k◦ k◦)

∼→ π1(X
cpt
• ⊗k• k•).

(iii) It holds that (gX◦ , rX◦ , char(k◦)) = (gX• , rX• , char(k•)).

(iv) The isomorphism α determines an isomorphism Λα : ΛX◦
∼→ ΛX•.

Proof. — First, we verify assertion (i). One verifies immediately from Lemma 1.7,

(i), that there exists a [uniquely determined] bijection αcl+ : Xcl+
◦

∼→ Xcl+
• that satisfies

condition (a). The assertion that αcl+ satisfies condition (b) follows from the easily verified
fact that, for x� ∈ Xcl+

� , it holds that x� lies on X� if and only if ∆X�
∩SX�

(x�) = {1},
together with condition (a). The assertion that αcl+ satisfies condition (c) follows from
the easily verified fact that, for x� ∈ Xcl+

� , the index of the image of SX�
(x�) in Gk�

coincides with [κ(x�) : k�], together with condition (a). This completes the proof of
assertion (i).

Assertion (ii) follows immediately from Lemma 1.6, (i). Assertion (iii) follows imme-
diately — in light of assertion (ii) — from Lemma 1.6, (ii), (iii), (iv). Assertion (iv)
follows immediately — in light of the equality char(k◦) = char(k•) in assertion (iii) —
from conditions (a) and (b) of assertion (i), together with the definition of the cyclotome
“Λ(−)”. This completes the proof of Lemma 3.2. �
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LEMMA 3.3. — In the situation of Lemma 3.2, suppose, moreover, that the natural sur-
jection ΠX◦ � Gk◦ has a splitting, and that X◦ is proper over k◦. [Thus, it follows
from Lemma 3.2, (iii), that X• is proper over k•.] Let S◦ ⊆ X◦(k◦) be a finite subset.

Write S•
def
= αcl+(S◦) ⊆ X•(k•) [cf. condition (c) of Lemma 3.2, (i)], U◦

def
= X◦ \ S◦, and

U•
def
= X• \ S•. Then the following hold:

(i) Let m be a positive integer; x1
◦, . . . , x

m
◦ ∈ X◦(k◦); n1, . . . , nm ∈ Z. Then the divisor

D◦
def
=

∑m
i=1 ni·xi

◦ ∈ Div(X◦) is principal if and only if the divisor Div(α)(D◦) ∈ Div(X•)
[cf. Lemma 3.2, (i)] is principal.

(ii) The isomorphism α determines an isomorphism αc-ab : Πc-ab
UX◦×k◦X◦

∼→ Πc-ab
UX•×k•X•

[cf.

Definition 2.1, (ii)] [well-defined up to Ker(Πc-ab
UX•×k•X•

� ΠX•×k•X•)-inner automorphisms]

such that the diagram

Πc-ab
UX◦×k◦X◦

αc-ab

−−−→ Πc-ab
UX•×k•X•y y

ΠX◦×k◦X◦ −−−→ ΠX•×k•X•

— where the lower horizontal arrow is an isomorphism induced by α and the natural
isomorphism ΠX�×k�

X�

∼→ ΠX�
×Gk�

ΠX�
— commutes, and, moreover, αc-ab maps a

decomposition subgroup of Πc-ab
UX◦×k◦X◦

associated to the diagonal divisor of X◦×k◦ X◦ to a

decomposition subgroup of Πc-ab
UX•×k•X•

associated to the diagonal divisor of X• ×k• X•.

(iii) The isomorphism α determines an isomorphism αc-cn
S◦ : Πc-cn

U◦

∼→ Πc-cn
U• [cf. Def-

inition 1.12] [well-defined up to Ker(Πc-cn
U• � ΠX•)-inner automorphisms] such that the

diagram

Πc-cn
U◦

αc-cn
S◦−−−→ Πc-cn

U•y y
ΠX◦

α−−−→ ΠX•

commutes, and, moreover, αc-cn
S◦ maps the [uniquely determined] inertia subgroup of Πc-cn

U◦
associated to x◦ ∈ S◦ to the [uniquely determined] inertia subgroup of Πc-cn

U• associated to
αcl+(x◦) ∈ S•.

(iv) The isomorphism H1(Πc-cn
U◦ , ΛX◦)

∼→ H1(Πc-cn
U• , ΛX•) determined by the isomor-

phisms αc-cn
S◦ of (iii) and Λα of Lemma 3.2, (iv), determines — relative to the isomorphism

of Lemma 1.13, (i) — an isomorphism

O×(α, S◦) : O×(ΠX◦ , S◦)
∼−→ O×(ΠX• , S•)

[cf. Definition 1.9] such that the diagram

0 −−−→ H1(Gk◦ , ΛX◦) −−−→ O×(ΠX◦ , S◦) −−−→ P(X◦, S◦) −−−→ 0y O×(α,S◦)

y y
0 −−−→ H1(Gk• , ΛX•) −−−→ O×(ΠX• , S•) −−−→ P(X•, S•) −−−→ 0

— where the horizontal sequences are the lower exact sequence of the diagram of Lemma 1.10,
(ii) [in the case where we take “X” in Lemma 1.10 to be X◦, X•]; the left-hand vertical
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arrow is the isomorphism induced by the isomorphisms αG of Definition 3.1, (ii), and Λα

of Lemma 3.2, (iv); the right-hand vertical arrow is the isomorphism determined by the
isomorphism Div(α) of Lemma 3.2, (i) — commutes.

(v) The various isomorphisms “O×(α, S◦)” of (iv) determine an isomorphism of
abelian groups

K×(α) : K×(ΠX◦)
∼−→ K×(ΠX•)

[cf. Definition 1.9].

Proof. — Assertion (i) follows immediately from Lemma 1.7, (ii), together with con-
ditions (a) and (c) of Lemma 3.2, (i). Assertion (ii) follows immediately — in light of
Proposition 2.10, (i); Lemma 2.11 — from a similar argument to the argument applied
in the proof of [4], Theorem 1.1, (iii), together with similar results to the results given
as [4], Lemma 1.1; [4], Proposition 1.8. Assertion (iii) follows immediately — in light of
condition (a) of Lemma 3.2, (i) — from assertion (ii), together with Lemma 1.13, (ii);
Lemma 2.2. Assertion (iv) follows immediately from assertion (i), together with the var-
ious definitions involved. Assertion (v) follows immediately from the various definitions
involved. This completes the proof of Lemma 3.3. �

THEOREM 3.4. — Let � ∈ {◦, •}, k� a Kummer-faithful field [cf. Definition 1.2], and
X� a hyperbolic curve over k�. Write Xcpt

� for the smooth compactification of X� and

DX�
⊆ Xcpt

� for the divisor at infinity of X�. Let

ΠX�

be either the étale fundamental group π1(X�) of X� or the tame fundamental group
πtame

1 (Xcpt
� , DX�

) of (Xcpt
� , DX�

). Write

Isom(ΠX◦ , ΠX•)

for the set of isomorphisms of profinite groups ΠX◦
∼→ ΠX•,

IsomPG(ΠX◦ , ΠX•) ⊆ Isom(ΠX◦ , ΠX•)

for the subset of point-theoretic [cf. Definition 3.1, (i)] and Galois-preserving [cf.

Definition 3.1, (ii)] isomorphisms of profinite groups ΠX◦
∼→ ΠX•, and

Isom(X◦, X•)

for the set of isomorphisms of schemes X◦
∼→ X•. Then the following hold:

(i) Suppose that IsomPG(ΠX◦ , ΠX•) is nonempty. Then it holds that ΠX◦ = π1(X◦)
if and only if ΠX• = π1(X•).

(ii) Suppose, moreover, that either X◦ or X• is affine. Then the natural map

Isom(X◦, X•) −→ Isom(ΠX◦ , ΠX•)/ΠX•

[cf. (i)] determines a bijection

Isom(X◦, X•)
∼−→ IsomPG(ΠX◦ , ΠX•)/ΠX• .
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Proof. — Assertion (i) follows immediately from Lemma 1.6, (v). Next, we verify
assertion (ii). First, let us observe that it follows immediately from [6], Lemma 4.2, that
the natural map

Isom(X◦, X•) −→ Isom(ΠX◦ , ΠX•)/ΠX•

factors through the subset IsomPG(ΠX◦ , ΠX•)/ΠX• ⊆ Isom(ΠX◦ , ΠX•)/ΠX• . Next, let
us observe that the injectivity of the map under consideration follows immediately from
Lemma 3.2, (i). Thus, to complete the verification of assertion (ii), it suffices to verify

the surjectivity of the map under consideration. To this end, let α : ΠX◦
∼→ ΠX• be a

point-theoretic and Galois-preserving isomorphism of profinite groups.
Next, let us observe that it follows immediately from the injectivity of the map under

consideration that we may assume without loss of generality, by replacing ΠX◦ by a suit-
able open subgroup of ΠX◦ if necessary, that gX◦ ≥ 2, hence also gX• ≥ 2 [cf. Lemma 3.2,
(iii)], and, moreover, rX◦ ≥ 3, hence also rX• ≥ 3 [cf. Lemma 3.2, (iii)]. Next, again by the
injectivity of the map under consideration, we may assume without loss of generality, by
replacing Gk◦ by a suitable open subgroup of Gk◦ if necessary, that DX◦(k◦) = DX◦(k◦),
hence also DX•(k•) = DX•(k•) [cf. conditions (b), (c) of Lemma 3.2, (i)], and that the
natural surjection ΠX◦ � Gk◦ , hence also the natural surjection ΠX• � Gk• , has a
splitting.

Let S◦ ⊆ Xcpt
◦ (k◦) be a finite subset such that DX◦(k◦) 6⊆ S◦ and x◦ ∈ DX◦(k◦) \

(DX◦(k◦) ∩ S◦). Write S•
def
= αcl+(S◦) ⊆ Xcpt

• (k•) [cf. condition (c) of Lemma 3.2, (i)],

x•
def
= αcl+(x◦) ∈ DX•(k•) \ (DX•(k•) ∩ S•) [cf. conditions (b), (c) of Lemma 3.2, (i)],

U◦
def
= Xcpt

◦ \ S◦, U•
def
= Xcpt

• \ S•, and

αcpt : ΠXcpt
◦

∼−→ ΠXcpt
•

for the isomorphism of profinite groups obtained in Lemma 3.2, (ii). Let us observe that
one verifies immediately from the various definitions involved that αcpt is point-theoretic
and Galois-preserving. Now I claim that the following assertion holds:

Claim 3.4.A: The diagram

O×(ΠXcpt
◦

, S◦)
O×(αcpt,S◦)−−−−−−−→ O×(ΠXcpt

•
, S•)

evx◦ (Π
X

cpt
◦

,S◦)

y yevx• (Π
X

cpt
•

,S•)

H1(Gk◦ , ΛX◦) −−−→ H1(Gk• , ΛX•)

— where the upper horizontal arrow is the isomorphism obtained in
Lemma 3.3, (iv); the lower horizontal arrow is the isomorphism induced
by the isomorphisms αG of Definition 3.1, (ii), and Λα of Lemma 3.2,
(iv) — commutes.

Indeed, since [we have assumed that] x◦, hence also x•, is a cusp of the given hyperbolic
curve, this follows immediately — in light of Proposition 2.10, (ii), (iv) — from a similar
argument to the argument applied in [4], Remarks 15, 21. This completes the proof of
Claim 3.4.A.

Since [we have assumed that] ]DX◦(k◦) = rX◦ , ]DX•(k•) = rX• ≥ 3 ≥ 2, by applying
Claim 3.4.A to the various isomorphisms “O×(α, S◦)” of Lemma 3.3, (iv), we conclude
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from Lemma 1.10, (iv), that the isomorphism K×(αcpt) : K×(ΠXcpt
◦

)
∼→ K×(ΠXcpt

•
) of

Lemma 3.3, (v), determines an isomorphism of abelian groups

K×
α : K×

X◦⊗k◦k◦

∼−→ K×
X•⊗k•k•

[relative to the injections K×
X◦⊗k◦k◦

↪→ K×(ΠXcpt
◦

), K×
X•⊗k•k•

↪→ K×(ΠXcpt
•

) of Lemma 1.10,

(i), in the case where we take “X” in Lemma 1.10 to be Xcpt
◦ , Xcpt

• ], which restricts to
an isomorphism of abelian groups

k
×
◦

∼−→ k
×
• .

Moreover, since [we have assumed that] ]DX◦(k◦) = rX◦ , ]DX•(k•) = rX• ≥ 3, it follows
immediately — in light of Claim 3.4.A and the commutativity of the right-hand square
of the diagram of Lemma 3.3, (iv) — from [6], Lemma 4.7, that the bijection

KX◦⊗k◦k◦
= K×

X◦⊗k◦k◦
∪ {0} ∼−→ KX•⊗k•k•

= K×
X•⊗k•k•

∪ {0}

induced by K×
α is an isomorphism of fields, which restricts to an isomorphism of fields

k◦ = k
×
◦ ∪ {0}

∼−→ k• = k
×
• ∪ {0}.

Thus, by considering the ΠX◦-, ΠX•-invariants, we obtain a commutative diagram of
schemes

Xcpt
◦

∼−−−→ Xcpt
•y y

Spec(k◦)
∼−−−→ Spec(k•)

— where the horizontal arrows are isomorphisms. Now let us observe that it follows
immediately from our construction of the above diagram that the bijection Xcl+

◦
∼→ Xcl+

•
induced by the upper horizontal arrow coincides with the bijection αcl+ of Lemma 3.2,
(i). Thus, it follows from condition (b) of Lemma 3.2, (i), that the upper horizontal

arrow of the above diagram determines an isomorphism X◦
∼→ X•. The assertion that

the outer isomorphism ΠX◦
∼→ ΠX• induced by this isomorphism X◦

∼→ X• coincides with
the outer isomorphism determined by α follows immediately from a similar argument to
the argument given in the discussion preceding [3], Theorem 14.1. This completes the
proof of assertion (ii), hence also of Theorem 3.4. �
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