RIMS Kokytroku Bessatsu
Bx (201x), 000—000

Mono-anabelian Reconstruction of Number Fields

By

Y UICHIRO HOSsHT*

Contents

§0. Notations and Conventions

§1. Review of the Local Theory

§2. Reconstruction of the Additive Structure on an NF-monoid

§3. Local-global Cyclotomic Synchronization

§4. Reconstruction of the Additive Structure on a GSC-Galois Pair
§5. Mono-anabelian Reconstruction of Number Fields

§6. Global Mono-anabelian Log-Frobenius Compatibility

References

Abstract

The Neukirch-Uchida theorem asserts that every outer isomorphism between the absolute
Galois groups of number fields arises from a uniquely determined isomorphism between the
given number fields. In particular, the isomorphism class of a number field is completely deter-
mined by the isomorphism class of the absolute Galois group of the number field. On the other
hand, neither the Neukirch-Uchida theorem nor the proof of this theorem yields an “explicit
reconstruction of the given number field”. In other words, the Neukirch-Uchida theorem only
yields a bi-anabelian reconstruction of the given number field. In the present paper, we discuss
a mono-anabelian reconstruction of the given number field. In particular, we give a functorial
“group-theoretic” algorithm for reconstructing, from the absolute Galois group of a number
field, the algebraic closure of the given number field [equipped with its natural Galois action]
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that gave rise to the given absolute Galois group. One important step of our reconstruction
algorithm consists of the construction of a global cyclotome [i.e., a cyclotome constructed from
a global Galois group| and a local-global cyclotomic synchronization isomorphism [i.e., a suit-
able isomorphism between a global cyclotome and a local cyclotome]. We also verify a certain
compatibility between our reconstruction algorithm and the reconstruction algorithm given by
S. Mochizuki concerning the étale fundamental groups of hyperbolic orbicurves of strictly Be-
lyi type over number fields. Finally, we discuss a certain global mono-anabelian log- Frobenius
compatibility property satisfied by the reconstruction algorithm obtained in the present paper.

Introduction
The starting point of the present paper is the following naive question:

Can one reconstruct a number field [i.e., a finite extension of the field of rational
numbers| from the absolute Galois group of the given number field?

Recall the following result, i.e., the Neukirch-Uchida theorem [cf., e.g., [11], Theo-
rem 12.2.1]:

For O € {o, e}, let Fj be a number field and F an algebraic closure of Fp.
Write G & Gal(Fo/Fp);

Isom(ﬁ./F., FO/FO)

for the set of isomorphisms F, — F, of fields which map F, bijectively onto
Fy;
Isom(Go, Ge)

for the set of isomorphisms G, = G, of profinite groups. Then the natural

map
Isom(Fo/Fy, Fo/F,) — Isom(Go,G,)

is bijective.

That is to say, every outer isomorphism between the absolute Galois groups of
number fields arises from a uniquely determined isomorphism between the given number
fields. In other words, the functor given by “forming the absolute Galois group” from
the category of number fields and field isomorphisms to the category of profinite groups
and outer isomorphisms is fully faithful. It follows from the [surjectivity portion of the]
Neukirch-Uchida theorem that the isomorphism class of a number field is completely
determined by the isomorphism class of the absolute Galois group of the number field.
From this point of view, one may regard the Neukirch-Uchida theorem as an affirmative

answer to the above naive question.
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On the other hand, let us observe that neither the statement of the Neukirch-Uchida
theorem nor the proof of this theorem yields an “explicit reconstruction of the given
number field”. That is to say, although one may conclude from the Neukirch-Uchida
theorem that the isomorphism class of a number field is completely determined by the
isomorphism class of the associated absolute Galois group, the Neukirch-Uchida theorem
does not tell us how to reconstruct explicitly the given number field from the associated
absolute Galois group. In other words, the Neukirch-Uchida theorem yields only a bi-
anabelian reconstruction — in the sense of [9], Introduction [cf. also [9], Remark 1.9.8]
— of number fields.

In the present paper, we discuss a mono-anabelian reconstruction — in the sense
of [9], Introduction [cf. also [9], Remark 1.9.8] — of number fields. In particular, we
concentrate on the task of establishing “group-theoretic software” [i.e., a “group-theoretic
algorithm”] whose

e input data consists of a single abstract profinite group [which is isomorphic to [a
suitable quotient of] the absolute Galois group of a number field], and whose

e output data consists of a field [which is isomorphic to [a suitable subfield of] some
algebraic closure, equipped with an action of the profinite group, of a number field).

We shall say that an algebraic extension of the field of rational numbers is absolutely
Galois (respectively, solvably closed) if the extension field is Galois over the field of
rational numbers (respectively, if the extension field does not admit any nontrivial
finite abelian extensions) [cf. Definition 3.1]. We shall say that a profinite group G is of
AGSC-type if there exist a number field F', a Galois extension F of F which is absolutely
Galois and solvably closed, and an isomorphism of profinite groups G = Gal(F/F) [cf.
Definition 3.2]. [In particular, if a profinite group is isomorphic to the absolute Galois
group of a number field, then the profinite group is of AGSC-type.] Then the main result
of the present paper may be summarized as follows [cf. Theorem 5.11]:

Theorem A.  There ezists a functorial [¢f. Remark 5.11.4] “group-theoretic”
algorithm [cf. [9], Remark 1.9.8, for more on the meaning the terminology “group-

theoretic”]

G = (G~ F@)

for constructing, from a profinite group G of AGSC-type [cf. Definition 3.2], an ab-
solutely Galois and solvably closed field F(G) equipped with an action of G such

that the subfield F(G)C of F(G) consisting of G-invariants is o number field, and,
moreover, the action of G on F(G) determines an isomorphism of profinite groups

G = Gal(F(Q)/F(G)%).
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We thus conclude from Theorem A that every profinite group which is isomor-
phic to the absolute Galois group of a number field admits a ring-theoretic basepoint
[i.e., a “ring-theoretic interpretation” or “ring-theoretic labeling”] group-theoretically con-
structed from the given profinite group. Note that the Neukirch-Uchida theorem plays
a crucial role in the establishment of our global reconstruction result. In particular,
the proof of this global reconstruction result does not yield an alternative proof of the
Neukirch-Uchida theorem.

In the present paper, we also verify a certain compatibility of the reconstruction
algorithm of Theorem A with the reconstruction algorithm obtained in [9], Theorem
1.9, in the case where the “k” of [9], Theorem 1.9, is a number field. More precisely,
we verify the following assertion [cf. Theorem 5.13|: Let II be a profinite group which
is isomorphic to the étale fundamental group of a hyperbolic orbicurve of strictly Belyi
type over a number field [cf. [8], Definition 3.5]. Write

I ~ F(II)

for the algebraically closed field equipped with an action of II obtained by applying
the functorial “group-theoretic” algorithm given in [9], Theorem 1.9, to II [i.e., the field
“E;(IF U {0}” of [9], Theorem 1.9, (e)] and

I — Q

for the arithmetic quotient of I, i.e., the quotient of II by the [uniquely determined — cf.
[7], Theorem 2.6, (vi)] maximal topologically finitely generated normal closed subgroup
of TI. [Thus, @ is a profinite group of AGSC-type — cf. [7], Theorem 2.6, (vi) — which
thus implies that one may apply Theorem A to @ to construct a field ﬁ(Q) equipped
with an action of @).] Then the natural surjection IT — @ group-theoretically determines

an isomorphism of fields

F(Q) — F(I)

which is compatible with the natural actions of () and II relative to the surjection II — Q.

Finally, we verify that the reconstruction algorithm of Theorem A satisfies a certain
global mono-anabelian log-Frobenius compatibility property [cf. Theorem 6.10], i.e., a
certain compatibility property with the NF-log-Frobenius functor log [cf. Definition 6.8].

The present paper is organized as follows: In §1, we review mono-anabelian re-
constructions of various objects which arise from a mixed characteristic local field [cf.
Theorem 1.4]. In §2, we discuss the notion of an NF-monoid [cf. Definition 2.3]. In
particular, we obtain a mono-anabelian reconstruction of the “additive structure” on an
NF-monoid [cf. Theorem 2.9]. Note that the main result of §2 was already essentially
proved in [3]; in [3], however, the author considered the issue of reconstruction of the
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additive structure not in a “mono-anabelian” fashion but rather in a “bi-anabelian” fash-
ion. In §3, we define a cyclotome [cf. Proposition 3.7, (4)] associated to a profinite group
of GSC-type [cf. Definition 3.2]. Moreover, we discuss a certain local-global cyclotomic
synchronization isomorphism [cf. Theorem 3.8, (ii)], i.e., a certain natural isomorphism
between global and local cyclotomes. We then apply this local-global cyclotomic syn-
chronization isomorphism to construct Kummer containers associated to a profinite
group of GSC-type [cf. Proposition 3.11]. In §4, we discuss the notion of a GSC-Galois
pair [cf. Definition 4.1]. We then apply the main result of §2 to obtain a mono-anabelian
reconstruction of the additive structure on a GSC-Galois pair [cf. Theorem 4.4]. In §5,
we discuss the final portion of the functorial “group-theoretic” algorithm of Theorem A
and prove a certain compatibility property of our reconstruction algorithm with the
reconstruction algorithm obtained in [9], Theorem 1.9. In §6, we give an interpretation
of the global reconstruction result obtained in the present paper in terms of a certain
compatibility with the NF-log-Frobenius functor [cf. Theorem 6.10].

§0. Notations and Conventions

NUMBERS. The notation N will be used to denote the additive monoid of nonnegative
rational integers. The notation Z will be used to denote the ring of rational integers.
The notation Q will be used to denote the field of rational numbers. If n € Z, then
we shall write Z>,, C Z for the subset of Z consisting of m € Z such that m > n. If p
is a prime number, then we shall write @, for the field obtained by forming the p-adic

completion of Q and F, 7 /pZ for the finite field of cardinality p.

SETS. Let S be a finite set. Then we shall write 45 for the cardinality of S. Let G be
a group and T a G-set. Then we shall write T¢ C T for the subset of T' consisting of

G-invariants.

MonNoIDs. In the present paper, every “monoid” is assumed to be commutative. Let
M be a [multiplicative] monoid. Then we shall write M* C M for the abelian group
of invertible elements of M. We shall write M#P for the groupification of M, i.e., the
monoid [which is, in fact, an abelian group| given by the set of equivalence classes with
respect to the relation “~” on M x M defined as follows: for (ay,b1), (az,bs) € M x M,
it holds that (a1,b1) ~ (az,b2) if and only if there exists an element ¢ € M such that
caibs = casb;. We shall write MP! for the perfection of M, i.e., the monoid given by
the inductive limit of the inductive system I, of monoids

- — M — M — -
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given by assigning to each element of n € Z>; a copy of M, which we denote by I,,, and to
every two elements n, m € Z>; such that n divides m the morphism I,, = M — I,,, = M
given by multiplication by m/n. We shall write M® U {*n}; we regard M® as a
monoid [that contains M as a submonoid| by setting a -,/ dof 7 and xp7 - ¥y def *0f

for every a € M.

MoDULES.  Let M be a module. If n € Z, then we shall write M[n] C M for
the submodule obtained by forming the kernel of the endomorphism of M given by

multiplication by n. We shall write M., def U M[n] € M for the submodule of

nEZzl
torsion elements of M,

M* = Tim M/nM

— where the projective limit is taken over n € Z> [regarded as a multiplicative monoid]
— and Z ¥ 77 Thus, if M is finitely generated [which implies that each M /nM in the
above display is finite], then M” is naturally isomorphic to the profinite completion of

M.

GrouPs.  Let G be a group and H C G a subgroup of G. Then we shall write
Za(H) C @G for the centralizer of H in G, i.e., the subgroup consisting of g € G such
that gh = hg for every h € H. We shall write Ng(H) C G for the normalizer of H
in G, i.e., the subgroup consisting of ¢ € G such that H = gHg~'. We shall write
Ce(H) C G for the commensurator of H in G, i.e., the subgroup consisting of g € G
such that H N gHg ! is of finite index in both H and gHg~!. We shall say that
H is normally terminal (respectively, commensurably terminal) in G if No(H) = H
(respectively, Cq(H) = H).

TOPOLOGICAL GROUPS. Let G be a topological group. Then we shall write G&P
for the abelianization of G [i.e., the quotient of G by the closure of the commutator
subgroup of GJ], G®P/*" for the quotient of G2 by the closure of (G®),, € G*P, and
Aut(G) for the group of [continuous| automorphisms of G. Let H be a profinite group
and p a prime number. Then we shall write H®) for the mazimal pro-p quotient of H
and H®) for the mazimal pro-prime-to-p quotient of H.

RiNnGs. In the present paper, every “ring” is assumed to be unital, associative, and
commutative. If R is a ring, then we shall write R* C R for the abelian group [hence,
in particular, the multiplicative monoid] of invertible elements of R. If R is an integral
domain, then we shall write R> o R\ {0} C R for the multiplicative monoid of nonzero
elements of R; thus, we have a natural inclusion R* C R of monoids.
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FieLDs.  We shall refer to a field which is isomorphic to a finite extension of Q as
an NF [i.e., a number field]. We shall refer to a field which is isomorphic to a finite
extension of Q,, for some prime number p, as an MLF [i.e., a mized characteristic local
field). Here, we recall that, for a given MLF, by considering the additive subgroup
generated by the elements € k that are [-divisible for some prime number [, one can
recover the [usual “p-adic”] topology on the MLF. Let K be a field. Then we shall
write p(K) o (K*)tor for the group of roots of unity of K and K, = K* U {0} for
the multiplicative monoid obtained by forgetting the additive structure of K. Thus,
we have a natural isomorphism (K*)® = K, of monoids that sends *xx + 0. If,

moreover, K is algebraically closed and of characteristic zero, then we shall write

AK) < lim p(K)fn] = lim K*[n

— where the projective limits are taken over n € Z>; [regarded as a multiplicative
monoid] — and refer to A(K) as the cyclotome associated to K. Thus, [the abstract
module] A(K) is [noncanonically] isomorphic to Z; we have a natural identification

W(E)[n] = A(K) /nA(K).

§1. Review of the Local Theory

In the present §1, let us review certain well-known mono-anabelian reconstructions
of various objects which arise from an MLF' [cf. Theorem 1.4 below].
In the present §1, let

be an MLF. We shall write
e O C k for the ring of integers of k,
e my; C O, for the maximal ideal of Oy,
o k% O, /my, for the residue field of Oy,

e & char(k) for the characteristic of k,

e d;. for the extension degree of k over the subfield of k obtained by forming the
closure of the prime field contained in k [i.e., “[k : Qp,]"],

e ordy: k* — Z for the [uniquely determined] surjective valuation on k,
° ¢y def ordg(pg) for the absolute ramification index of k, and

e fi. for the extension degree of k over the prime field contained in k [i.e., “[k :
Fpk]”]'



8 Y UICHIRO HOSHI

Let
k
be an algebraic closure of k. We shall write
e Gal(k/k) for the absolute Galois group of k with respect to k/k,
o [;. C (G}, for the inertia subgroup of Gy,

e P C I for the wild inertia subgroup of Gy, and

Froby € Gy /I for the [fk-th power| Frobenius element of Gy /Ij.
Definition 1.1. Let G be a group. Then we shall refer to a collection of data
(K, K, a: Gal(K/K) = Q)

consisting of an MLF K, an algebraic closure K of K, and an isomorphism a: Gal(K /K) =
G of groups as an MLF-envelope for G. We shall say that the group G is of MLF-type
if there exists an MLF-envelope for G.

Proposition 1.2.  Let G be a group of MLF-type. Then the following hold:

(i) The natural homomorphism

G — lmG /N
N
— where the projective limit is taken over the normal subgroups N C G of G of finite
index — is an isomorphism of groups. In particular, any group of MLF-type admits
a natural, group-theoretically determined profinite group structure.

(ii) Let
(k, k, a: Gy = G)

be an MLF-envelope for G. Then the isomorphism « is an isomorphism of profi-
nite groups.

PrROOF.  Assertion (i) follows from [12], Theorem 1.1, together with the fact that
the absolute Galois group of an MLF is topologically finitely generated [cf., e.g., [11],
Theorem 7.4.1]. Assertion (ii) follows from assertion (i). This completes the proof of
Proposition 1.2. U

Remark 1.2.1.  One verifies immediately that every open subgroup of a profinite
group of MLF-type is of MLF-type.
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Lemma 1.3.  The following hold:
(i) The reciprocity homomorphism k* — sz in local class field theory determines
a commutative diagram

ordy 7

1 — @ — kx — 1

| | !

1 —— Im(l = Gy - G¥) —— G x¢, /1, Frob;, —— Frob;, — 1

H l |

1 —— Im([ = Gy —» G¥*) —— Gab — G/l —— 1

— where the horizontal sequences are exact, the upper vertical arrows are isomor-
phisms, the lower vertical arrows are the natural inclusions, the upper right-hand ver-
tical arrow maps 1 € Z to Froby, € Frob%, and we write Frob% C Gy /I, for the [discrete]
subgroup of Gy /1y, generated by Froby,.

(ii) The prime number p may be characterized as the unique prime number [
such that logl(ﬂ(GZb/tor/l : Gib/wr)) > 2.

(iii) 1t holds that dj, = log,, (H(G2*" /py - G°/*")) — 1.
(iv) It holds that fi, = log,, (1 + B((GZP)por ) (PR)).
(v) It holds that e, = di/ fx.

(vi) The closed subgroup I, C Gj may be characterized as the intersection of
the normal open subgroups N C Gy, of G such that ey, = ey, , where we write ky for
the intermediate extension of k/k corresponding to N.

(vii) The closed subgroup P, C Gj may be characterized as the intersection of
the normal open subgroups N C Gy of Gy such that the integer ey, /ey is prime to pg,

where we write ky for the intermediate extension of k/k corresponding to N.

(viii) The element Froby, € Gy /I, may be characterized as the unique element
of Gi /Iy, such that the action on [the abelian group| It/ Py by conjugation is given by
multiplication by p”.

(ix) The upper left-hand vertical arrow of the diagram of (i) determines an iso-
morphism £* = Im(I; — Gj — sz)(p;) of modules.

(x) The exact sequences of Gi-modules

1 — pE)n — & 5k — 1
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— where n ranges over the positive integers — determine an injection

Kmmy, : kX — (I{JX)/\ :> Hl(Gk,A(E))

PrROOF.  Assertion (i) follows from local class field theory [cf., e.g., [10], Chapter
V, §1]. Assertions (ii), (iii), (iv), (ix) follow immediately from assertion (i), together
with the well-known explicit description of the topological module k* [cf., e.g., [10],
Chapter II, Proposition 5.3; also [10], Chapter II, Proposition 5.7, (i)]. Assertion (v)
follows from [10], Chapter II, Proposition 6.8. Assertions (vi), (vii) follow immediately
from the definitions of I, Py, respectively. Assertion (viii) follows immediately from
[11], Proposition 7.5.2, together with the easily verified faithfulness of the action of “T"”
[in loc. cit.] on “Z®)(1)” [in loc. cit.]. Assertion (x) follows immediately from the fact
that there is no nontrivial divisible element in k* [cf., e.g., [10], Chapter II, Proposition
5.7, (i)]. This completes the proof of Lemma 1.3. O

Theorem 1.4. In the notation introduced at the beginning of the present §1,
let G be a profinite group of MLF-type |[cf. Definition 1.1; Proposition 1.2, (i)]. We

construct various objects associated to G as follows:

(1) 1t follows from Lemma 1.3, (ii), that there exists a unique prime number [
such that log, (1(G®P/t°r /1 . GaP/tor)) > 2. We shall write

p(G)
for this prime number.

(2) We shall write

def a or a or
d(G) = log, ) (H(G™ " /p(G) - G™/*M)) — 1,

F(G) E Tog, ) (1 + H((G™)ior) PO,

o(G) = d(G)/f(G).

Note that it follows from Lemma 1.3, (iii), (iv), (v), that d(G), f(G), e(G) are positive
integers.

(3) We shall write
IG) € G

for the normal closed subgroup obtained by forming the intersection of the normal open
subgroups N C G of G such that e(N) = e(G) and

P(G) € G



MONO-ANABELIAN RECONSTRUCTION OF NUMBER FIELDS 11

for the normal closed subgroup obtained by forming the intersection of the normal open
subgroups N C G of G such that the positive integer e(N)/e(G) is prime to p(G) [cf.
Lemma 1.3, (vi), (vii)].

(4) It follows from Lemma 1.3, (viii), that there exists a unique element of G/1(Q)
whose action on [the abelian group| I1(G)/P(G) by conjugation is given by multiplication
by p(G)(F). We shall write

Frob(G) € G/I(G)

for this element.

(5) We shall write

0*(G) ¥ Im(I(G) — G — G™)

for the image of I(G) in G* [cf. Lemma 1.3, (i)]. By considering the topology induced
by the topology of I1(G), we regard O* (G) as a profinite, hence also topological, module.
We shall write
E(G) & ox(G) @@
for the module obtained by forming the mazimal pro-prime-to-p(G) quotient of O*(G)
[cf. Lemma 1.3, (ix)].
(6) We shall write

(G G %)) Frob(G)”

— where we write Frob(G)% for the [discrete] subgroup of G/I(G) generated by Frob(G)

— and

O (@) ¥ G xg 1) Frob(G)N

— where we write Frob(G)Y for the [discrete] submonoid of G/I(G) generated by Frob(G)
[cf. Lemma 1.3, (1)]. Note that the topology of O*(G) discussed in (5) naturally deter-
mines respective structures of topological module, monoid on k*(G), O% (G).

(7)  We shall write
ord(G): k*(G) — Frob(G)”

for the natural surjection [cf. Lemma 1.3, (i)]. Thus, we have an exact sequence of
topological modules
1 — 0XQ) — Q) "M Fob(@)? — 1.

(8) We shall write
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[cf. the discussion entitled “Monoids” in §0].

(9) We shall write

—X

FUG) € lim kX(H), Fx(G) € lim ko (H) = F(G)®,
H

“A>

0”(G) © 1im 0% (H), w(G) © lim(H)wr = k (Gror
H H

— where the injective limits are taken over the open subgroups H C G of G, and the
transition morphisms in the limits are given by the homomorphisms determined by the

transfer maps — and

2
8
[

jim 2(G)[n)

n

— where the projective limit is taken over n € Z>1 [cf. the discussion entitled “Fields”
in §0]. Note that G acts on EX(G), k (@), u(GQ), and A(G) by conjugation. We shall
refer to the G-module A(G) as the cyclotome associated to G. Note that one verifies
immediately from our construction that the cyclotome associated to G admits a natural
structure of profinite [cf. also the above definition of A(G)], hence also topological,
G-module; moreover, we have a natural identification pu(G)[n] = A(G)/nA(G).

(10) It follows from Lemma 1.3, (i), (x), that the ezact sequences of G-modules
1 — AG)/nAG) — E(G) 25 (G — 1

— where n ranges over the positive integers — determine an injection
Kmm(G): k*(G) — HY(G,A(Q)).
Let
(k, E, (% Gk; :> G)
be an MLF-envelope for G [cf. Definition 1.1]. Then the following hold:

(i) It holds that

pr = p(G), dp = d(G), fi = f(G), e = e(G).

(ii) The isomorphism « determines isomorphisms

~

Moreover, the resulting isomorphism Gy /I, = G/I(G) maps Froby, to Frob(G).
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(iii) The isomorphism «, together with the reciprocity homomorphism arising from
the local class field theory of k, determines a commutative diagram of topological

modules
e O,j —_— OE e T 20

kX

| | | |

E(G) +—— O0X(GQ) —— O(G) —— kX(G)

— where the horizontal arrows are the natural homomorphisms, and the vertical arrows

are isomorphisms. Thus, the left-hand and right-hand vertical arrows of this diagram
determine isomorphisms of monoids

~

Ex — Ex(G)a kX — kX(G)7

respectively.

(iv)  The isomorphism «, together with the reciprocity homomorphisms arising
rom the local class field theory of the various finite extensions of k in k, determines
)

isomorphisms of modules

and an isomorphism of monoids

~

EX —> EX (G)

which are compatible with the natural actions of Gy and G relative to «.

(v)  The isomorphisms k* =% kX (G) of (iii) and A(k) = A(G) of (iv) fit into a
commutative diagram

R B gy(@y, A(R))

| |

B¥(G) =229 1@ A(G)).
PROOF. These assertions follow immediately from Lemma 1.3, together with
the various definitions involved. U

Remark 1.4.1.

(i) It is well-known [cf., e.g., [4], §1, Theorem; [4], §2] that there exist MLF’s ko
and ke such that k, is not isomorphic to ke, but the absolute Galois group of k, [for
some choice of an algebraic closure of k.| is isomorphic to the absolute Galois group of
ke [for some choice of an algebraic closure of k,|. Moreover, it is known [cf., e.g., the
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final portion of [11], Chapter VII] that, for each MLF k such that py, is odd, there exists
an outer automorphism of the absolute Galois group of k which does not arise from an
automorphism of k.

(ii) It follows immediately from the discussion of (i) that

there is no functorial “group-theoretic” algorithm [as discussed in Theorem 1.4]
for reconstructing, from the absolute Galois group of an MLF, [the field struc-
ture of] the MLF.

(iii) On the other hand, there are some results concerning the geometricity of an
outer homomorphism between absolute Galois groups of MLF’s. For instance, in [5],
S. Mochizuki proved that, for an outer isomorphism between absolute Galois groups of
MLEF’s, it holds that the outer isomorphism is geometric [i.e., arises from a — necessarily
unique — isomorphism of MLF’s] if and only if the outer isomorphism preserves the
[positively indexed| higher ramification filtrations in the upper numbering. Mochizuki
also gave, in [7], §3 [cf. [7], Theorem 3.5; [7], Corollary 3.7], other necessary and sufficient
conditions for an outer open homomorphism between absolute Galois groups of MLF’s to
be geometric [i.e., arise from a — necessarily unique — embedding of MLF’s|. Moreover,
in [2], the author proved that, for an outer open homomorphism between absolute Galois
groups of MLF’s, it holds that the outer open homomorphism is geometric if and only
if the outer open homomorphism is Hodge- Tate-preserving [i.e., the pull-back, via the
outer open homomorphism under consideration, of a Hodge-Tate representation is still
Hodge-Tate].

Remark 1.4.2.

(i) In the proof of the main result of [5] [cf. Remark 1.4.1, (iii)], Mochizuki essen-
tially proved the following assertion:

For O € {o, e}, let ko be an MLF. Write G for the absolute Galois group of kg
[which is well-defined up to conjugation]. Let a: Go = G4 be an outer isomor-
phism of profinite groups. Then it holds that « is geometric if and only if, in
the notation of Theorem 1.4, (6), the following condition is satisfied: For every
open subgroup G:Q C G, of G, if we write Gi C G, for the open subgroup of
G corresponding to Gl c @, via «, then the isomorphism £* (GI,) 5 kX (Gi)
induced by a maps, for each positive integer n, the submodule of k* (GI,) corre-
ny

sponding to “1 + m}” bijectively onto the submodule of k> (Gi) corresponding
to “I +my”.

Here, we recall that, in the above notation, it follows from the functorial “group-
theoretic” algorithms discussed in Theorem 1.4 that the induced isomorphism k* (Gl) =
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k> (G1) maps the submodule of kX (G}) corresponding to “1 +my” [i.c., the kernel of
the natural surjection O*(GL) — k*(G1) — cf. Theorem 1.4, (5)] bijectively onto the
submodule of k* (Gi) corresponding to “14+my” [i.e., the kernel of the natural surjection
O*(GL) — k*(Gl) — cf. Theorem 1.4, (5)].

(ii) In particular, we conclude form the discussion of (i) and Remark 1.4.1, (ii),
that

there is no functorial “group-theoretic” algorithm [as discussed in Theorem 1.4]
for reconstructing, from a group G of MLF-type, the family of submodules of the
module £*(G) of Theorem 1.4, (6), corresponding to the family of submodules
“YI+mp},>1” of “k*7.

Remark 1.4.3.

(i) Write k4, (Og)4 for the modules obtained by forming the underlying additive
modules of the rings k, Oy, respectively. Then, by considering the pg-adic logarithm
on k, we obtain an isomorphism of modules (O, )P' = k, [cf. the discussion entitled
“Monoids” in §0]. Thus, by assigning G' — O (G)P! [cf. Theorem 1.4, (5)], we obtain a
functorial “group-theoretic” algorithm [as discussed in Theorem 1.4] for reconstructing,
from a group G of MLF-type, the module corresponding to “k;”. Then one may give

another interpretation of the assertion of Remark 1.4.2; (i), as follows:

For O € {o, e}, let kg be an MLF. Write G for the absolute Galois group
of ko [which is well-defined up to conjugation]. Let a: G, = G4 be an outer
isomorphism of profinite groups. Then it holds that « is geometric if and only
if, in the notation of Theorem 1.4, (5), the following condition is satisfied: For
every open subgroup Gl C G, of G, if we write Gi C (G, for the open subgroup
of G4 corresponding to Gi C G, via «a, then the isomorphism OX(GZ)pf 5
O*(GH)P! induced by o maps the submodule of O*(GI)P! corresponding to
“(O)+ C ki bijectively onto the submodule of O*(G})Pf corresponding to

“(Ok)_'_ C k}_,_” )

(ii) In particular, we conclude from the discussion of (i) and Remark 1.4.1, (ii),
that

there is no functorial “group-theoretic” algorithm [as discussed in Theorem 1.4]
for reconstructing, from a group G of MLF-type, the submodule of the module
O*(G)P! corresponding to the submodule “(Oy);” of “k,”.

Lemma 1.5.  The following hold:
(i) It holds that

Kmmyp

OF = Ker(k* HY Gy, A(R)) — H'(Iy, A(k)PH))
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[c¢f. Theorem 1.4, (x)].

(ii) The homomorphism
O — HY(Gy/I, A(k)PV)

determined by Kmmy, [cf. (1)] induces an isomorphism

~

KX =5 HY(Gy/Ip, A(k) ).

PROOF. These assertions follow immediately from the well-known explicit de-
scription of the topological module k* [cf., e.g., [10], Chapter II, Proposition 5.3; also
[10], Chapter II, Proposition 5.7, (i)], together with the Kummer theory of k, k. O

8§ 2. Reconstruction of the Additive Structure on an NF-monoid

In the present §2, we introduce the notion of an NF-monoid [cf. Definition 2.3
below| and discuss a mono-anabelian reconstruction of the “additive structure” on an NF-
monoid [cf. Theorem 2.9 below|. Note that the main result of the present §2 was already
essentially proved in [3]; however, the discussion in [3] of the issue of reconstruction of the

additive structure was presented in a “bi-anabelian” fashion, not in a “momno-anabelian”

fashion, as is necessary in the present paper.
In the present §2, let
a

be an NF. We shall write
e Op C F for the ring of integers of F',
e Vr for the set of nonarchimedean primes of F', and
o Fium C F for the prime field contained in F' [i.e., “Q”].
If v € Vg, then we shall write
e ord,: F* — Z for the [uniquely determined] surjective valuation associated to v,

e O, C F for the subring of F' obtained by forming the localization of OF at the
maximal ideal corresponding to v,

° m(v) Q O(U) for the maximal ideal of O(v),
o 1, O(v) /My for the residue field of Oy,
e char(v) def char(k,) for the characteristic of &, and

. O(<v) ©y m,y C O(f)) for the kernel of the natural homomorphism O(f)) — Ko
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Finally, for a € F'*, we shall write
o Supp(a) & {v e Vp |ordy(a) #0} C Vp.

Definition 2.1.  We shall say that the NF F' is of PmF-type [where “PmF” is
to be understood as an abbreviation for “Prime Field”] if F' = Fp,.

Definition 2.2. We shall refer to the collection of data
(F><7 O? g F><7 VF; {O(—i) g FX}UEVF)

[consisting of the monoid Fy, the submonoid O% C Fy of F, the set Vg, and, for each
v € Vr, the submonoid (’)(f)) C Fy of Fy] as the NF-monoid associated to F.

Definition 2.3. Let
M = (M, O° C M, 8§, {0F C M},cs)

be a collection of data consisting of a monoid M [the monoid operation of M will be
written multiplicatively], a submonoid O® C M of M, a set S, and, for each s € S,
a submonoid OF C M of M. Then we shall refer to an isomorphism of the NF-
monoid associated to an NF (respectively, an NF of PmF-type — cf. Definition 2.1) [cf.
Definition 2.2] with M [in the evident sense, i.e., a pair consisting of an isomorphism
of “F\” with M and a bijection of “Vp” with S which satisfy suitable conditions] as an
NF-envelope (respectively, NF-envelope of PmF-type) for M. We shall say that M is
an NF-monoid (respectively, NF-monoid of PmF-type) if there exists an NF-envelope
(respectively, NF-envelope of PmF-type) for M.

Lemma 2.4.  The following hold:

(i) The NF F is of PmF-type if and only if, for all but finitely many v € Vg, it

holds that Kk, is a prime number.

(i) The element 0 € Fx of Fx may be characterized as the unique element of
Fy \ FX.

(iii) The element 1 € Fy of Fyx may be characterized as the unique element
a € Fy such that ax = x for every x € F\.

(iv) The element —1 € Fy of Fx may be characterized as the unique element
a € Fy such that a # 1 but a® = 1.

v) Let v € Vr. Then the natural injection O, — F* determines an isomor-
(v)
phism x* = (FX/Oa))tor-

(vi) Let v € Vp. Then the prime number char(v) may be characterized as the
unique prime number that divides gk, .
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(vil) Let v € Vp. Then the {£1}-orbit [with respect to the action of {£1} on
Z) of the wvaluation ord,: F* — 7Z may be characterized as the {+1}-orbit of the
homomorphism F* — 7Z obtained by forming the composite

Fx = FX/OEZ) _y (FX/O(?))ab/tor ~ 7
— where we regard F* / Oa) as a topological group by equipping it with the discrete topol-
ogy, and the “=7 is an isomorphism of groups. Moreover, the valuation ord,: F* — Z
may be characterized as the unique element of this orbit which maps O% C F* to
Z>o C 7.

(vili) Let v € Vp. Then it holds that O, = Ker(ord,).

PRrOOF.  Assertion (i) follows immediately from Cebotarev’s density theorem [cf.
also [10], Chapter VII, Corollary 13.7]. Assertions (ii), (iii), (iv), (vi), (viii) follow from
the various definitions involved. Assertion (v) and the first portion of assertion (vii)
follow immediately from the fact that F*/ (95; ) s [noncanonically] isomorphic to Z,
hence also torsion-free [cf. also the proof of [3], Lemma 1.5, (i)]. The final portion of
assertion (vii) follows from the various definitions involved. This completes the proof of
Lemma 2.4. 0

Proposition 2.5. Let
M = (M, O C M, S, {OF C M}ses)

be an NF-monoid. We construct various objects associated to M as follows:

(1) It follows from Lemma 2.4, (ii), that there exists a unique element of M\ M *.
We shall write
O € M

for this element.

(2) It follows from Lemma 2.4, (iii), that there exists a unique element a € M of
M such that ax = x for any x € M. We shall write

v e M

for this element.

(3) It follows from Lemma 2.4, (iv), that there exists a unique element a € M of
M such that a # 1 but a®> = 1. We shall write

-1y e M
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for this element.

(4) Let s € S. Then we shall write

0F % (M* )0 om0 X (01)°

S

[cf. Lemma 2.4, (V)].
(5) Let s € S. Then it follows from Lemma 2.4, (v), (vi), that there exists a
unique prime number which divides §(O,)x. We shall write

char(s)

for this prime number.

(6) Let se€ S. Then we shall write

Zs d:ef (MX/O:)ab/tor

— where we regard M* /O as a topological group by equipping it with the discrete
topology — and
ordf: M* — Z,

for the natural surjection [cf. Lemma 2.4, (vii)].

(7) Letse€ S anda € M*. Then we define an integer
ords(a) € Z

as follows: Write ordE(a)N C ord¥(a)? C Z for the submonoids of Z, generated,
respectively, by ordE (a) € Z, +ord¥ (a) € Z, [where we write the monoid operation of
Zs additively|; is 4 def [Z, : ord¥ (a)?] € Z>1 U {c0}. Then

0 ifigq =00,
is.a if is,qa <00 and lj(ord;t(a)N N ordsi(OD)) #1,
—lg,q if 1s,q < 00 and lj(ord;t(a)N N ordf(OD)) =1

ord(a) et

[cf. Lemma 2.4, (vii)].
(8) Leta € M*. Then we shall write

Supp(a) & {se€S|ords(a) #0} C S.
(9) Let s € S. Then we shall write

ox ¢ Ker(ords) € M*

S
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[cf. Lemma 2.4, (viii)].
Let
(p: Fy = M, 7: Vp = S)
be an NF-envelope for M. Then the following hold:

(i) The NF-monoid M is of PmF-type if and only if, for all but finitely many
s € S, it holds that §(O,)« is a prime number [cf. Lemma 2.4, (i)].

(ii) The isomorphism ¢: Fx = M of monoids maps 0, 1, —1 to Opq, 1ag, —1aq,

respectively.

(iii) Letv € Vp. Write s def 7(v). Then it holds that
char(v) = char(s), ord, = ordso (¢|px).

Moreover, the isomorphism ¢: Fy — M of monoids determines isomorphisms of
monoids

X ~ ~

kS — OF, (ku)x — (0.)x, (’)(f)) — OF.

(iv) Let a € F*. Then the bijection 7: Vg — S determines a bijection
Supp(a) — Supp(¢(a)).

(v) Lets € S. Then the composite OF — M* — M* /O3 determines a surjec-
tion

o; — 0Of
which fits into a commutative diagram

O(Xv) e A

| |

0f —— O

S

— where the upper horizontal arrow is the natural surjection, and the vertical arrows
are the isomorphisms of (iii).

PRrROOF. These assertions follow immediately from Lemma 2.4, together with
the various definitions involved. O

Lemma 2.6.  Suppose that F is of PmF-type. Write (Op); C Op for the
complement of {0} C Op in the submonoid of the underlying additive module of Op
generated by the identity element of the multiplicative group F'*, i.e., the subset “Z>, C
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Z”. For each prime number p, write v, € Vr for the nonarchimedean prime of F
corresponding to the maximal ideal pOp C Op of Or. Then the following hold:

(i) The nonarchimedean prime vy (respectively, vs; vs) of F may be characterized
as the unique nonarchimedean prime v of F' such that char(v) = 2 (respectively, 3; 5).

(i) The element 2 € O% of O% may be characterized as the unique element
a € O% such that Supp(a) = {va}, ord,,(a) =1, and a & O(j)s)'
(iii) The element 3 € O% of O% may be characterized as the unique element

a € O% such that Supp(a) = {vs}, ordy,(a) =1, and 2a € (’)(15).

(iv) Let a € O% be such that a & {—1,1}. Then it holds that

{a—1,a+1} = {bec O%\ {a}|Suppla—b) =0}
= {b€ O% | Supp(a) N Supp(b) =0, a-b~' ¢ O,y for allv € Vp }.

(v) Let a € OF be such that Supp(a) € {va}. Then it holds that
_ <
{a+1} = {a—La+1} n [ OF)

vESupp(a)

(vi) Leta € OF be such that a & {—2,—1,1,2}, and, moreover, Supp(a) C {va}.
Then, for every b € {a — 1,a + 1}, it holds that Supp(b) € {v2}, hence also that
be {-2 -1,1,2}.

(vii) The map O — Op given by mapping a to a + 1 is bijective.

(viii) The subset (Op); C Op may be characterized uniquely as the minimal
subset of O which contains 1 € O and, moreover, is mapped into itself by the bijection
discussed in (vii).

(ix) Let v € Vg. Then the composite (Op), N Og;) — (’)(f}) — KX is surjective.
ProoF.  These assertions follow from the various definitions involved. O
Proposition 2.7.  Let

M = (M, O C M, S, {OF € M}es)

be an NF-monoid of PmF-type. We construct various objects associated to M as

follows:

(1) It follows from Proposition 2.5, (iii), and Lemma 2.6, (i), that there exists a
unique element s € S such that char(s) = 2 (respectively, 3; 5) [cf. Proposition 2.5,
(5)]. We shall write

(2)m (respectively, (3)am; B)m) €S
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for this element.

(2) It follows from Proposition 2.5, (iii), (iv), and Lemma 2.6, (ii), that there exists
a unique element a € O of O% such that Supp(a) = {(2)m} [¢f. Proposition 2.5, (8)],
ord(g),,(a) = 1 [c¢f. Proposition 2.5, (7)], and a ¢ Oé)M. We shall write

2M€Ol>

for this element a € O and

oy ¥ 20 € OF

[cf. Proposition 2.5, (3); Proposition 2.5, (ii)].

(3) 1t follows from Proposition 2.5, (iii), (iv), and Lemma 2.6, (iii), that there
exists a unique element a € O% of O% such that Supp(a) = {(3)m}, ord(s),, (a) = 1,
and 20 - a € Oé)M. We shall write

3M€Ol>

for this element a € O.

(4) Let a € O \ {=1r1, 1} [¢f. Proposition 2.5, (2)]. Then we shall write

adj g (a) f {bc O | Supp(a) NSupp(b) =0, a-b~' ¢ OF forallsc S} C O%

[cf. Proposition 2.5, (ii), (iv); Lemma 2.6, (iv)].
(5) Let a € O% be such that Supp(a) € {(2)m}. Then it follows from Proposi-
tion 2.5, (iv), and Lemma 2.6, (iv), (v), that the intersection
adj (a) N m on
s€Supp(a)

1s of cardinality one. We shall write
nexta(a) € O%

for the unique element of this intersection.

(6) Let a € O% \ {—2x, —1m, La, 20} be such that Supp(a) C {(2)am}. Then it
follows from Proposition 2.5, (ii), (iv), and Lemma 2.6, (iv), (v), (vi), that there exists a
unique element b € adj,(a) of adj(a) such that Supp(b) € {(2)m}, and, moreover,
a # nextapq(b). We shall write

nextp(a) € OF

for this element b € adj (a).
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(7)  We shall write

IleXtM(—zM) d:ef —lM, IleXtM(—lM) d:ef OM, HeXtM(OM) déf lM,

next (1) def 20, nextag(2a) def 3 m

[cf. Proposition 2.5, (1); Proposition 2.5, (ii)]. Then, by Lemma 2.6, (vii), together with
our construction, we have a bijection

nexty: O U{0p} — O U{0um}.

(8) It follows from Lemma 2.6, (viii), that there exists a unique subset of O% U
{0} which is minimal among those subsets that contain 1 and, moreover, are mapped

into themselves by the map next . We shall write
Oy C o~ U{OM}

for this subset.

(9) Let s€ S;a,be (0,)x [cf. Proposition 2.5, (4)]. Then we define an element

Of (QS)X
alBsb € (O,)«

as follows: Write 0, € (O,)« for the unique element of (O,)x \ O [cf. Proposition 2.5,
(4)]. If a = 0,, then a Bs b def Ifb=0,, then aBs b ©f . In the following, suppose
that a, b € OF. Then it follows from Lemma 2.6, (ix), that there exist respective liftings
a, b € Oy NOX [¢f Proposition 2.5, (9)] of a, b € OX [relative to the surjection
OF — OF of Proposition 2.5, (v)]. Write ny € Z for the positive integer defined by
[Lses char(s)ords(g) [cf. Proposition 2.5, (iii)] and

g

N

c nextpag o ---onexta(a) € O
Then
y X
a,EHsb d:ef . QS . Zf0¢087
the image of ¢ in (O,)x if c € OF.

Note that one verifies immediately from our construction that “aBsb” does not depend
on the choice of the respective liftings a, b € Oy NOX of a, b€ OF.

(10) Let s € S. Then it follows immediately from our construction that the ‘Hg”
of (9), together with the monoid structure of (O,)x, determines a structure of field
on (O,)x. We shall write

0

]
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for the resulting field.
Let
(p: Fy = M, 7: Vp = S)

be an NF-envelope [necessarily of PmF-type — cf. Lemma 2.4, (i); Proposition 2.5,
(i), (iii)] for M. Let v € Vp; write s def 7(v). Then the isomorphism of monoids

(Fo)x — (O4)x
of Proposition 2.5, (iii), determines an isomorphism of fields

Ky — O,.

PROOF. This follows immediately from Lemma 2.6, together with the various
definitions involved. O

Lemma 2.8.  The following hold:

(i) Fora € F*, it holds that a € F.;,, if and only if, for all but finitely many
v € Vp, it holds that a®hr(W)—1 ¢ (’)a).

(ii) Let v € Vp. Then the intersection Fy5,, N OF (respectively, FJi, N (’)(f}))
coincides with “O%.” (respectively, “Oa) ”) in the case where we take “(F,v)” to be

(Fprm) Vchar(v)) [¢f the notation introduced in Lemma 2.6].

(i) Write Vl{::l C Vr for the subset of Vg consisting of v € Vg such that fk, =
char(v). Then VI=' is infinite.

(iv) Leta, b€ F* be such that 0 & {a,b,a+b}. Then the element a+b € F* may
be characterized as the unique element ¢ € F* which satisfies the following condition:
For infinitely many v € Vg such that {a,b,c} C (’)Efu), if we write @, b, ¢ € kX for the
respective images of a, b, ¢ € O(f)), then it holds that @+ b =¢.

PRrROOF. Assertion (i) follows from [3], Lemma 2.3. Assertions (ii) and (iv)
follow from the various definitions involved. Assertion (iii) follows from Cebotarev’s
density theorem |[cf., e.g., [10], Chapter VII, Theorem 13.4]. This completes the proof
of Lemma 2.8. O

Theorem 2.9. Let
M = (M, O C M, S, {0 C M}es)

be an NF-monoid [cf. Definition 2.3]. We construct various objects associated to M
as follows:
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(1) We shall write
MY C M~

prm

for the submodule consisting of a € M* such that, for all but finitely many s € S, it
holds that a®*® ()=t ¢ OF [cf. Proposition 2.5, (7); Proposition 2.5, (iii); Lemma 2.8,
(0]

Mpm = MS, U0} € M; Oby S My N O

prm
[cf. Proposition 2.5, (1); Proposition 2.5, (ii); Lemma 2.8, (ii)].

(2) We shall write
def

Sprm - S/ ~prm
for the set of equivalence classes with respect to the relation “~pmm” on S defined as
follows: For s1, so € S, it holds that $1 ~pwm S2 if and only if char(s1) = char(sz2) [cf.
Proposition 2.5, (iii)].

(3) Let Sprm € Sprm- Then it follows from Lemma 2.8, (ii), that the intersection
Mprm NOZ does not depend on the choice of a lifting s € S of Sprm. We shall write

O< C Mprm

Sprm —
for this intersection.

(4) It follows from Lemma 2.8, (i), (ii), that the collection of data

def > <
Mprm = (MPTHU Oprm g Mprm7 Spl“mv {O - Mprm}sprmesprm)

forms an NF-monoid of PmF-type [cf. Definition 2.3].
(5) We shall write

§I=1 L {s€5[4(0,)x = char(s) }

[cf. Proposition 2.5, (4)]. Then it follows from Proposition 2.5, (iii), and Lemma 2.8,
(iii), that SY=1 is infinite.

(6) Let s € Sf=1. Write Sprm € Sprm for the element of Sprm determined by
s € S/=1. Then one verifies immediately that the homomorphism (O, )x — (Og)x
[¢f. Proposition 2.5, (iii)] of monoids induced by the natural inclusion My, — M
is an isomorphism. Thus, it follows from Proposition 2.7, (10), that the ‘Bs” of
Proposition 2.7, (9), in the case where we take the (M, s)” of Proposition 2.7, (9), to
be (Moprm, Sprm), together with the monoid structure of (Oy)x, determines a structure
of field on (O,)x. We shall write

@)

]
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for the resulting field.
(7) Leta,be M. Then we define an element of M

aBmb € M

as follows [cf. Proposition 2.5, (ii)]: If a = Oarq, then a Baq b def If b = Opgq,
then a B b df 4. If a = =1 - b, [cf. Proposition 2.5, (3)], then a Baq b def Opm.
Suppose that a, b € M*, and that a # —1xr - b. Then a Baq b is defined to be the
uniquely determined [cf. Lemma 2.8, (iv)] element ¢ € M* of M* which satisfies
the following condition: For infinitely many s € S/=1 such that {a,b,c} C OF [cf.
Proposition 2.5, (9); Proposition 2.5, (iii)], if we write @, b, ¢ € O [cf. Proposition 2.5,
(4); Proposition 2.5, (iii)] for the respective images of a, b, ¢ € OF [cf. Proposition 2.5,
(v)], then it holds that @@, b = ¢, where we write B, for the addition operation of the
field O, defined in (6).

(8) It follows immediately from our construction that the operation By ” of (7),
together with the monoid structure of M, determines a structure of field on M. We
shall write

A/fd

for the resulting field.
In the notation introduced at the beginning of the present §2, let
(¢p: Fx = M, 7: Vp = S)
be an NF-envelope for M [cf. Definition 2.3]. Then the isomorphism of monoids
o Fy — M
determines an isomorphism of fields

F = pMid,

In particular, the field M7 of (8) is an NF.

PRrooF. This follows immediately from Lemma 2.8, together with the various
definitions involved. O

83. Local-global Cyclotomic Synchronization

In the present §3, we construct a global cyclotome [cf. Proposition 3.7, (4), below]
associated to a profinite group of GSC-type [cf. Definition 3.2 below] and discuss a
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closely related local-global cyclotomic synchronization isomorphism [cf. Theorem 3.8,
(ii), below], i.e., a certain natural isomorphism between this global cyclotome and var-
ious local cyclotomes. Finally, we apply this local-global cyclotomic synchronization
isomorphism to construct Kummer containers associated to a profinite group of GSC-
type [cf. Proposition 3.11 below].

In the present §3, we maintain the notation introduced at the beginning of the
preceding §2. In particular, we assume that we have been given an NF' F'. Let

F

be an algebraic closure of F'. We shall write

o dp [F': Fyrm] for the extension degree of F' over Fpm,

e T!I" for the group of finite ideles of F, and

e [ for the group of ideles of F.
If v € Vg, then we shall write

e [, for the MLF obtained by forming the completion of F' at v.
We shall write

° V}jfl C Vr for the subset consisting of v € Vg such that dp, = 1 [cf. the notation
introduced at the beginning of the §1].

Definition 3.1. Let E be a field of characteristic zero which is algebraic over
the prime field contained in E [i.e., “Q”]. Then we shall say that E is absolutely Galois
if F is Galois over the prime field contained in F [i.e., “Q”]. We shall say that E is
solvably closed if there is no nontrivial finite abelian extension of F.

Definition 3.2. Let G be a profinite group. Then we shall refer to a collection
of data

(K, K, a: Gal(K/K) 3 G)

consisting of an NF K| a Galois extension K of K which is solvably closed (respectively,
absolutely Galois and solvably closed; algebraically closed), and an isomorphism of profi-
nite groups a: Gal([?/K) 5 G as a GSC-envelope (respectively, an AGSC-envelope; an
NF-envelope) [where “GSC” (respectively, “AGSC”; “NF”) is to be understood as an
abbreviation for “Global Solvably Closed” (respectively, “Absolutely Galois and Global
Solvably Closed”; “Number Field”] for G. We shall say that the profinite group G is
of GSC-type (respectively, of AGSC-type; of NF-type) if there exists a GSC-envelope
(respectively, an AGSC-envelope; an NF-envelope) for G.
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Remark 3.2.1.

(i) One verifies immediately that every open subgroup of a profinite group of
GSC-type (respectively, of AGSC-type; of NF-type) is of GSC-type (respectively, of
AGSC-type; of NF-type).

(ii) It follows from the definitions that
NF-type =— AGSC-type =— GSC-type.

Note that these two implications are strict. Indeed, let us recall the well-known fact
that there exists a finite Galois extension K of Q whose Galois group is isomorphic to
the symmetric group on 6 letters [hence, in particular, not solvable]. This fact already
implies that the absolute Galois group Gg of Q is not solvable and hence that the first
implication is strict. Next, let L C K be an intermediate field of the Galois extension
K/Q such that the subgroup Gal(K/L) C Gal(K/Q) is isomorphic to the symmetric
group on 5 letters [hence, in particular, not solvable] and L a solvable closure of L.
Then observe that the assumption that the extension L /Q is Galois implies [since, as
is easily verified, K is a Galois closure of L over Q] that there exists a surjection of
Galois groups Gal(L/L) — Gal(K/L), in contradiction to the fact that Gal(K/L) is not
solvable. Thus, the field L is solvably closed, but not absolutely Galois. In particular,
the second implication is also strict.

(iii) A typical example of a field which is absolutely Galois and solvably closed is
a solvable closure of an absolutely Galois NF.

Now let us recall the famous Neukirch-Uchida theorem:

Theorem 3.3 (Neukirch-Uchida).  For O € {o, e}, let Frj be an NF and F a
Galois extension of Fry which is solvably closed. Write Qn def Gal(Fg/Fp);

Isom(F,/F,, F,/F,)
for the set of isomorphisms Fo 3 F, of fields which map Fy bijectively onto Fy;

Isom(Qo, Q)

for the set of isomorphisms Qo — Qe of profinite groups. Then the natural map
Isom(ﬁ./F.,ﬁo/Fo) — Isom(Q., Q)
is bijective.

Proor.  This follows from [13], Theorem. O
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In the remainder of the present §3, let

F

be a Galois extension of F which is solvably closed and contained in F. We shall write

e Vz for the set of nonarchimedean primes of F and

e Qr def Gal(f/F) for the Galois group of ﬁ/F

Note that, for v € V5, if we write v € Vp for the nonarchimedean prime of I’ determined
by v, then since Fis solvably closed, it follows immediately from [6], Proposition 2.3,
(iii) [i-e., the Grunwald-Wang Theorem — cf., e.g., [11], Theorem 9.2.8], that the pair
(ﬁ ,v) determines an algebraic closure Fy of F,, together with an inclusion F s Fy of
fields.

Lemma 3.4.  The following hold:

(i) The map given by assigning to v € Vgz the decomposition subgroup of Qp
associated to v determines a bijection of Vi with the set of maximal closed subgroups
of Qr of MLF-type. Moreover, the natural map Vi — Vr and the natural action of
Qr on Vg determines a bijection

Vi/Qr — Vr
from the quotient Vz/Qr of Vi by the action of Qp onto V.
(ii) Let p be a prime number. Then it holds that

dp = > dp, .

vEVFE; char(v)=p

ProOOF.  Assertion (i) follows immediately, in light of [6], Proposition 2.3, (iii),
(iv), from a similar argument to the argument applied in the proof of [11], Corollary
12.1.11. Assertion (ii) follows from [10], Chapter II, Corollary 8.4. This completes the
proof of Lemma 3.4. U

Proposition 3.5.  Let G be a profinite group of GSC-type. We construct var-

tous objects associated to G as follows:

(1) We shall write
V(G)
for the set of maximal closed subgroups of G of MLF-type and

V(@) € V(G)/G
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for the quotient of 17(6’) by the action of G by conjugation [cf. Lemma 3.4, (i)].
(2) Letv e V(G). Then we shall write

for any D € v [cf. Theorem 1.4, (1), (2)]. [One verifies immediately that the quantities
of the above display do not depend on the choice of D € v.] We shall write

VELG) < V(6)

for the subset of V(G) consisting of v € V(G) such that d(v) = 1.
(3) Letwvg € V(G). Then since the sum
> d(v)
vEV(G); p(v)=p(vo)

does not depend on the choice of vg € V(G) [¢f. Lemma 3.4, (1), (ii)], we shall write
d(G)

for this sum.

Let
(F, F, a: Qr 5 G)

be a GSC-envelope for G. Then the following hold:

(i) The isomorphism « determines [cf. the first bijection of Lemma 3.4, (i)] a
bijection
Ve = V(G).
This bijection is compatible with the natural actions of Qp and G relative to o, which
thus induces a bijection [cf. the second bijection of Lemma 3.4, (i)]

~

Ve 5 V(G).

Let us identify Vz, Vi with V(G), V(Q), respectively, by means of these bijections.
(ii) Letv € V(G). Then it holds that

[cf. Theorem 1.4, (i)].
(iii) It holds that dp = d(G) [cf. (ii); Lemma 3.4, (ii)].
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(iv) Let H C G be an open subgroup of G. Then we have a bijection

V(G) > V(H)
D — DNH

whose inverse is given by
V(H) =+ V(G)

Moreover, this inverse determines a surjection

V(H) - V(G).

PROOF.  Assertions (i), (ii), (iii) follow immediately from the references quoted
in the statements of these assertions, together with the various definitions involved.
Assertion (iv) follows immediately from assertion (i), together with the commensurable
terminality in G [cf. [6], Proposition 2.3, (v)] of a closed subgroup of G which is contained
in 17(G) This completes the proof of Proposition 3.5. O

Lemma 3.6.  The following hold:

(i) We have a natural injection of groups
F* « Tin,

We regard F* as a subgroup of ]I%n by means of this injection.

(ii) By considering the reciprocity homomorphism I — (Gal(F/F)* =) Q3 in
global class field theory, together with the natural inclusion ]I%n — I, we obtain [cf. also

(i)] homomorphisms of groups
FX e T Qsb,

[Note that, in general, this composite is nontrivial. For instance, one verifies easily
that if F' is of PmF-type, then the image of —1 € F* wvia this composite is nontrivial.|

(iii) Relative to the arrows of the display of (ii), we have
Ker(If' = Q%)wor € pu(F) (S FX).

If, moreover, F is totally imaginary, then, relative to the arrows of the display of (ii),

we have
Ker(It" = Q®)tor = m(F) (S FX).
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(iv) Let n be a positive integer and (, € F a primitive n-th root of unity. Then it
holds that C,, € F. Moreover, the subfield ofF corresponding to the kernel of the natural
action of Qr on

(h_n>1 Ker(Ifn — QaEb)tor) [n]
E

— where the injective limit is taken over the finite extensions E& of F' contained in F ,
and we write Qg o Gal(F/E) — is equal to F((,).

ProoOF.  Assertions (i), (ii) follow from the various definitions involved. Next,
we verify assertion (iii). Write F;* C I for the image of the natural injection F'* — Ip
and Dp C Ip/F for the kernel of the reciprocity homomorphism 1p/F — Q% in
global class field theory, i.e., the connected component of I/ F;* containing the identity
element [cf. [11], Corollary 8.2.2]. [Let us recall that the subgroup Fy* C Iy does not
coincide with the image of the composite F* < I < .| First, we verify the inclusion

Ker(I'" — Q%) € F*.

Let o € ]I%“ C Ir be a torsion finite idele whose image in Q3P is trivial. Then one
verifies immediately that the image of o via the composite

i Ip - Ip/F*

is a torsion element contained in Dp. In particular, it follows immediately from [11],

Theorem 8.2.5, together with the fact that the objects “Z/Z” and “R” in loc. cit. are

torsion-free, that there exists an infinite idéle 8 € I such that the image of o in I/ F{*

coincides with the image of 3 in Ip/F, i.e., that a- 7! € F* in Ir. On the other

hand, it follows immediately from the various definitions involved that this implies that

a € F* [i.e., the image of F* in If"]. This completes the proof of the desired inclusion.
Next, we verify the inclusion

u(F) C Ker([i — QF)

under the assumption that F is totally imaginary. Let a € F* be a torsion element.
Then it follows immediately from the various definitions involved that, to complete the
verification of the desired inclusion, it suffices to verify that the image in Ir/F;* of the
infinite idele determined by a € F* is contained in Dp. On the other hand, since F
is totally imaginary, this follows immediately from [11], Theorem 8.2.5. This completes
the proof of the desired inclusion, hence also of assertion (iii). Assertion (iv) follows
immediately from assertion (iii), together with our assumption that Fis solvably closed.
This completes the proof of Lemma 3.6. Ol
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Proposition 3.7.  Let G be a profinite group of GSC-type. We construct var-
tous objects associated to G as follows:

(1) Let v € V(G) [cf. Proposition 3.5, (1)]. Then one verifies immediately from
the commensurable terminality in G [cf. [6], Proposition 2.3, (v)] of any closed
subgroup of G that belongs to V(G) [cf. Proposition 3.5, (1)] that there exists a uniquely
determined submodule (respectively, submonoid)

P < T #5) (< [T o™

Dev Dewv

(respectively, O% (v) C H O" (D) (< H D*Y)

Decv Dev
[cf. Theorem 1.4, (6)] which satisfies the following two conditions:
(a) The action of G on [[pe, kX (D) (respectively, []pe, OF (D)) by conju-
gation [preserves and] induces the identity automorphism on the submodule k> (v)
(respectively, O% (v)).
(b) For every Dy € v, the composite

() < [ ¥*(D) - k(Do)

(respectively, O% (v) — H O% (D) — O%(Dy))
Dev
is an isomorphism of modules (respectively, monoids).

The isomorphism of (b), together with the topology on k> (Dy) (respectively, O% (Dy)),
determines a topology on k* (v) (respectively, O% (v)). [Note that one verifies immedi-

ately that this topology on k*(v) (respectively, O% (v)) does not depend on the choice
of Dy € v.]

(2) We shall write

[cf. Theorem 1.4, (8)].

(3) Let X CV(G) be a finite subset of V(G). Then we shall write
n def a
L6 = (I # )< (1L o*@) < 1T p™)
veEY vEY DGT)(G)

— where we write O (v) i O% (v)* — and

) < e < J[ o™

st DeV(Q)
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— where the union is taken over the finite subsets X7 C V(G) of V(G).
(4) It follows from our construction in (3) that the inclusions D — G, where D
ranges over the elements of V(G), determine a homomorphism of groups

I"™(G) — G*.

We shall write
w(@) « lim Ker(I°(H) = H*)ior
H

— where the injective limit is taken over the open subgroups H C G of G, and the
transition morphisms in the limit are given by the homomorphisms determined by the
transfer maps [cf. Lemma 3.6, (iii)];

2
D)
I

jim 2(G)[n)

n

— where the projective limit is taken over n € Z>1. Note that G acts on p(G), A(G) by
conjugation. We shall refer to the G-module A(G) as the cyclotome associated to G.
Note that one verifies immediately from our construction of A(G) that A(G) has a nat-
ural structure of profinite [cf. also the above definition of A(G)], hence also topological,
G-module; moreover, we have a natural identification u(G)[n] = A(G)/nA(G).

(5) Letn be a positive integer. Then we shall write
PG C G
for the open subgroup of G obtained by forming the kernel of the action
G — Aut(A(G)/nA(G))

[cf. Lemma 3.6, (iv)].
Let
(F, F, a: Qr = G)
be a GSC-envelope for G. Then the following hold:

(i) Let v € V(G). Then the isomorphism « determines a commutative diagram
of topological monoids
op —— Ff

| |

O%(v) —— k*(v)
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— where the horizontal arrows are the natural inclusions, and the vertical arrows are
isomorphisms. Thus, the right-hand vertical arrow of this diagram determines an
isomorphism of monoids

(Fy)x — kx(v).

(ii) The diagram of groups
H%n Qan

| |
]Iﬁn(G) Gab
— where the upper horizontal arrow is the homomorphism of Lemma 3.6, (ii); the
lower horizontal arrow is the homomorphism of (4); the left-hand vertical arrow is the
isomorphism induced by the various isomorphisms “EX = kX (v)” of (i); the right-hand

vertical arrow is the isomorphism induced by « — commutes.

(iii) The commutative diagram of (ii) determines isomorphisms

—_— ~ e ~

p(l) — w(G), AF) — AG)

which are compatible with the natural actions of Qr and G relative to o [cf. Lemma 3.6,
(iii)].

(iv) Let n be a positive integer and ¢, € F a primitive n-th root of unity. Then
the isomorphism o determines an isomorphism of profinite groups

~

Gal(F/F(Cy)) —» G

[cf. Lemma 3.6, (iv)].

PROOF. These assertions follow immediately from Lemma 3.6, together with
the various definitions involved. O

Theorem 3.8.  In the notation introduced at the beginning of the present §3 and
the discussion following Theorem 3.3, let G be a profinite group of GSC-type [cf.
Definition 3.2] and D € V(G). Then the following hold:

(i) Let H C G be an open subgroup of G. Then we have natural identifications

~ ~

wG) — p(H), MG) — A(H)

larising from the definitions of “u(—)” and “A(—)” — cf. Proposition 3.7, (4)] which
are H-equivariant.
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(ii) The natural homomorphism 18%(G) — kX (D) [arising from the definition of
I8 (G) — cf. Proposition 3.7, (3)] determines D-equivariant isomorphisms

~ ~

mG) — (D), MG) — A(D)

[c¢f. Theorem 1.4, (9)]. We shall refer to the isomorphism of cyclotomes A(G) = A(D)
as the local-global cyclotomic synchronization isomorphism with respect to D €
V(G).
(iii) Let
(F7 F7 O[QF;G)

be a GSC-envelope for G [cf. Definition 3.2]. Write v € Vi for the nonarchimedean
prime of F' which corresponds to D € V(G) [cf. Proposition 3.5, (i)] and v € Vg for
the nonarchimedean prime of F determined by v. Thus, by the discussion following

Theorem 3.3, we have an algebraic closure Fy of F,, together with an inclusion F s F;

of fields. Then the diagram
AF) —— A(Fp)

| |
AG) —=— A(D)

— where the upper horizontal arrow s the isomorphism induced by the inclusion F <
F5 of fields [cf. the first assertion of Lemma 3.6, (iv)]; the lower horizontal arrow is the
local-global cyclotomic synchronization isomorphism; the left-hand vertical arrow is the
isomorphism of Proposition 3.7, (iii); the right-hand vertical arrow is the isomorphism
of Theorem 1.4, (iv) — commutes.

ProoOF. These assertions follow immediately from the various definitions in-
volved. O

Definition 3.9.  We shall write
H*(F)
for the module obtained by forming the fiber product of the diagram of natural injections
Tén

l

(F*) —— Tlyey, (F)"

v

[cf. the discussion entitled “Modules” in §0; [11], Theorem 9.1.11, (i)] and

Ho(F) & 3 (7)®.
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Thus, we have natural injections of monoids

Fo = Ho(F) = ] (Fo)x

vEVFE

We shall refer to H* (F), H«(F') as the Kummer containers associated to F.

Lemma 3.10.  The following hold:
(i) We have a natural commutative diagram of modules
l—— 0p —— F* —— F*/0f —— 1
1 —— (Op)N —— H*(F) —— F*/0p —— 1
— where the horizontal sequences are exact, and the vertical arrows are injective.

(ii) If, moreover, O is finite [or, equivalently, F is contained in an imaginary
quadratic field — cf., e.g., [10], Chapter 1, Theorem 7.4], then the natural homomor-
phism F'* — H*(F), hence also Fyx — H(F'), is an isomorphism of monoids.

(iii) The natural inclusion F* — H*(F) determines an isomorphism of finite

groups

M(F) — 7-[><(F1)1:01r~

(iv) The module H* (F) is generated by the images [cf. (1)] of (Of)" and F*.

(v) The composite of natural homomorphisms

HX(F) - H (Fv)x - H (Fv)x

vEVFE veyi=t
is injective.
(vi) Letn be a positive integer. Then the sequence of Qp-modules
1 — p(F)n] — F* 2 FX — 1

[cf. the first assertion of Lemma 3.6, (iv)] is exact. Moreover, these sequences —
where n ranges over the positive integers — determine an injection, together with an
isomorphism,
Kmmg 0 F* — (F)" 5 HY(Qp,A(F)).
PROOF. First, we verify assertion (i). The [existence and| exactness of the

lower horizontal sequence of the diagram of (i) follows immediately from [1], Lemma
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5.29, (i), together with the various definitions involved. The injectivity of the left-hand,
hence also middle, vertical arrow follows immediately from the fact that O is a finitely
generated module [cf., e.g., [10], Chapter I, Theorem 7.4]. This completes the proof
of assertion (i). Assertions (ii), (iv) follow immediately from assertion (i). Assertion
(iii) follows immediately from assertion (i), together with the [easily verified] fact that
F*/OF is torsion-free. Next, we verify assertion (v). Let us first observe that the
subset V&=! C V- of Vi is of density 1 [cf., e.g., the discussion preceding [10], Chapter
VII, Theorem 13.2]. Thus, it follows immediately from [11], Theorem 9.1.11 [cf. also
[10], Chapter I, Theorem 7.4], that the composite
) — 1T e — 1T @&,
vEVFR vepd=1

hence [cf. the easily verified injectivity of the natural homomorphism F — (F;)"]
also the composite discussed in assertion (v), is injective. This completes the proof of
assertion (v). Finally, we verify assertion (vi). The first portion of assertion (vi) follows
from our assumption that F is solvably closed. The final portion of assertion (vi) follows
from Kummer theory, together with the fact that the module F'* has no nontrivial
divisible elements [cf., e.g., assertion (i), together with [10], Chapter I, Theorem 7.4].
This completes the proof of assertion (vi), hence also of Lemma 3.10. O

Proposition 3.11.  Let G be a profinite group of GSC-type. Then, as D
ranges over the elements of 17(G), the inclusions D — G and local-global cyclotomic
synchronization isomorphisms A(G) = A(D) [cf. Theorem 3.8, (ii)] determine an in-
jective [c¢f. Lemma 1.3, (x); Definition 3.9; Lemma 3.10, (vi)] homomorphism

HY(G,AMG) — ][] H'(D.AD)).
DeV(G)
We shall write
H*(G) € HY(G,\QG))
for the inverse image, via the above injective homomorphism, of the image of the com-
posite of injections

G < [ @ < [[ D) Hoevig fmmi) [1 #'(D.AD))
veEV(G) DeV(GQ) DeV(G)

[cf. Theorem 1.4, (10); Proposition 3.7, (1), (3)]. Thus, the injective homomorphism

in the first display determines an injective homomorphism H>*(G) < [[,cp(q) k™ (v),

which we shall apply to regard H*(G) [by abuse of notation] as a submodule of the

product [ [, cy(q) k™ (v):

1G) < [ k).

veV(G)
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We shall write
He(G) = HYG)® € [ kx(v)
veV(G)

[cf. Proposition 3.7, (2)]. We shall refer to H* (G), H« (G) as the Kummer containers

associated to G.

Let
(F7 F7 O‘QF:)G)

be a GSC-envelope for G. Then the following hold:
(i) The isomorphism « determines a commutative diagram of monoids
Hy(F) —— HuevF (Fy) x
| |
Hx(G) —— Ilveva) kx(v)

— where the horizontal arrows are the natural inclusions [cf. Definition 3.9; the above
discussion|, and the right-hand vertical arrow is the isomorphism determined by the

various isomorphisms of monoids of Proposition 3.7, (i).

(ii) The composite

Ho(G) = J[ kxw) » [  kx)

vEV(G) veVI=1(Q)
[cf. Proposition 3.5, (2)] is injective.

(iii) Let H C G be an open subgroup of G. Then the various restriction maps
of cohomology groups involved determine a commutative diagram of inclusions of

monoids
Hx(G) — Tlieve) Fx @)
Hx(H) — [lwev) Fx(w).
PROOF. These assertions follow immediately from Lemma 3.10, (v), (vi), to-
gether with the various definitions involved. U

§4. Reconstruction of the Additive Structure on a GSC-Galois Pair

In the present §4, we discuss the notion of a GSC-Galois pair [cf. Definition 4.1
below]. In particular, we apply the main result of §2 to obtain a mono-anabelian recon-
struction of the “additive structure” on a GSC-Galois pair [cf. Theorem 4.4 below].
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In the present §4, we maintain the notation introduced at the beginning of the
preceding §3. Let

F
be a Galois extension of F which is solvably closed and contained in F. We shall write
e V5 for the set of nonarchimedean primes of F )

e Oz C F for the ring of integers of ﬁ, and
e Qr o Gal(F/F) for the Galois group of F/F.
Definition 4.1. Let

(G~ M)

be a collection of data consisting of a group G and a G-monoid M. Then we shall refer
to a collection of data

(K, K, a: Gal(K/K) 5 G, 8: 0% 5 M)
consisting of an NF K| a Galois extension K of K which is solvably closed (respectively,
absolutely Galois and solvably closed; algebraically closed), an isomorphism of groups
a: Gal(K/K) S @, and an isomorphism of monoids 3 O% = M [where we write Oz
for the ring of integers of K] which is compatible with the actions of Gal(K/K) and
G relative to a as a GSC-envelope (respectively, an AGSC-envelope; an NF-envelope)
for (G ~ M). We shall say that the collection of data (G ~ M) is a GSC-Galois pair
(respectively, an AGSC-Galois pair; an NF-Galois pair) if there exists a GSC-envelope
(respectively, an AGSC-envelope; an NF-envelope) for (G ~ M).

Lemma 4.2. Let H C Qp be a subgroup of Qr. Then H is an open subgroup
of Qr if and only if H coincides with the stabilizer of some element of F* [with respect
to the natural action of Qp on F*].

Proor.  This follows from elementary field theory. O

Proposition 4.3.  Let (G ~ M) be a GSC-Galois pair. Then the following
hold:

(i) The natural homomorphism
G — %i?mG/N

— where the projective limit is taken over the normal subgroups N C G of G such that
N coincides with the stabilizer [with respect to the natural action of G on M®P] of
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some element of M®P [so N is necessarily of finite index — cf. Lemma 4.2] — is an
isomorphism of groups. In particular, the group “G” of any GSC-Galois pair “(G
M)” admits a natural, group-theoretically determined profinite group structure.
(ii) Let
(F, F, a: Qr > G, B: O; 5 M)
be a GSC-envelope for (G ~ M). Then the isomorphism « is an isomorphism of
profinite groups [cf. (i)]. In particular, the collection of data

(Fa ﬁv Q‘QF;G)

forms a GSC-envelope for the profinite group G.

(iii) The profinite group G is of GSC-type. If, moreover, the GSC-Galois pair
(G ~ M) is an AGSC-Galois pair (respectively, NF-Galois pair), then the profinite
group G is of AGSC-type (respectively, of NF-type).

PROOF. These assertions follow immediately from Lemma 4.2, together with
the various definitions involved. U

Theorem 4.4.  In the notation introduced at the beginning of the present §4, let
(G ~ M) be a GSC-Galois pair [cf. Definition 4.1]. We construct various objects
associated to (G ~ M) as follows:

(1) We shall write

p(M) € (M)
and
A(M) = Jim p(M)[n]

n

— where the projective limit is taken over n € Z>1. Note that G acts on p(M) and
A(M). We shall refer to the G-module A(M) as the cyclotome associated to (G ~ M).
Note that one verifies immediately from our construction of A(M) that A(M) has a nat-
ural structure of profinite [cf. also the above definition of A(M)], hence also topological,
G-module; moreover, we have a natural identification p(M)n] = A(M)/nA(M).

(2) It follows from Lemma 3.10, (vi), that the exact sequences of G-modules

1 — AM)/nA(M) — M 5 M — 1

— where n ranges over the positive integers — determine an injection

(M®&PYE — HYG,A(M)).
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(3) Let D € v € V(Q) [¢f. Proposition 3.5, (1); Proposition 4.3, (iii)]. Then it
follows immediately, by considering the conjugation action of G, that the kernel of the
composite

(MG — HYG,A(M)) — HY(I(D), A(M)PP)))

[cf. Theorem 1.4, (1), (3); Lemma 1.5, (i)] depends only on v [i.e., does not depend
on the choice of D € v]. We shall write

(MEP)ELS C (MEP)©

for this kernel. Thus, it follows from the definition of (M®&P)E|X C (M®&P)Y that the
composite
(ME)S s HY(G,A(M)) — H'(D,A(M)TP0)

determines a homomorphism
(ME)C — H'(D/I(D), A(M)®P)));

moreover, it follows immediately, by considering the conjugation action of G, that the

kernel of this homomorphism
(MEP)C| C (MEP) <)
[cf. Lemma 1.5, (ii)] depends only on v [i.e., does not depend on the choice of D € v].

(4) It follows from the construction of (3), together with Lemma 1.5, that the
collection of data

M(G ~ M) E(M#P)9)E, MC C (M=), V(@) {(M#)C]5 C (M#)F)®}pevie)

forms an NF-monoid [cf. Definition 2.3]. Thus, by Theorem 2.9, (7), (8), we have a
map
def
Bram = Ba@any: (MP)9)® x (MEP)D)® — ((MPP))®

such that the map Bp ), together with the monoid structure of (Me&PYE)® | deter-
mines a structure of field on ((M8P))®. We shall write

F(G~ M)
for the resulting field.

(5) If H C G is an open subgroup of G, then we shall write (H ~ M) for the
GSC-Galois pair obtained by forming the collection of data consisting of H, M, and
the action of H on M induced by the action of G on M. Write

def

F(G~ M) = lim F(H ~ M)
H
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— where the injective limit is taken over the open subgroups H C G of G. Thus, G acts
naturally on F(G ~ M).

Let
(F, F, a: Qp > G, B: 0% 5 M)

be a GSC-envelope for (G ~ M) [cf. Definition 4.1]. Then the isomorphism ( deter-
mines o commutative diagram of fields

F —_— F

| |
F(GA M) —— F(G~ M)

— where the horizontal arrows are the natural inclusions, the vertical arrows are iso-
morphisms, and the right-hand vertical arrow is compatible with the natural actions
of Qr and G relative to .

Proor.  This follows immediately from the various definitions involved. O

Remark 4.4.1.  One verifies immediately from the various definitions involved
that we have a natural identification

F(G~ M)y = (M®)®,
Corollary 4.5. Let (G ~ M) be a GSC-Galois pair [cf. Definition 4.1]. Write
Aut(M)
for the group of automorphisms of the monoid M and
Aut™ (M) € Aut(M)

for the subgroup of Aut(M) consisting of those automorphisms o of M such that the
automorphism of (M®&P)® induced by o is compatible with the field structure of F(G ~
M) [c¢f. Remark 4.4.1]. [Thus, the image of the faithful action

G — Aut(M)
15 contained n Aut C Aut . en it holds that
ined in Aut™ (M) C Aut(M).] Th holds th

NAut(M) (G) g Autﬂd(M).

Proor.  This follows immediately from Theorem 4.4. U
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Corollary 4.6.  Let Q be an algebraic closure of Q. Write Og C Q for the ring
of integers of Q and Aut((’)%) for the group of automorphisms of the monoid Og. Thus,
we have a natural injection

Gal(Q/Q) Aut((’)%).
Let us regard Gal(Q/Q) as a subgroup of Aut((’)%) by means of this injection. Then the
following hold:

(i) The subgroup Gal(Q/Q) is normally terminal in Aut(O%), i.e., it holds that

NAut(Og)(Gal(@/Q)) = Gal(Q/Q).

(ii) The centralizer of Gal(Q/Q) in Aut(@%) is trivial, i.e., it holds that

ZAut(o@D)(Gal(@/@)) = {1}.

(iii) The group Aut((?%) is center-free.

PROOF. Assertion (i) follows from Corollary 4.5. Assertion (ii) follows from
assertion (i), together with the well-known fact that ZGal(@/Q)(Gal(@/@)) = {1} [cf,,
e.g., [11], Corollary 12.1.6]. Assertion (iii) follows from assertion (ii). This completes
the proof of Corollary 4.6. O

§5. Mono-anabelian Reconstruction of Number Fields

In the present §5, we finish establishing a functorial “group-theoretic” algorithm for
reconstructing, from [a suitable quotient of] the absolute Galois group of an NF, the
given NF [cf. Theorem 5.11 below].

In the present §5, we maintain the notation introduced at the beginning the pre-
ceding §4. Suppose that Fis absolutely Galois. We shall write

* Qr,.., &t Gal(ﬁ/Fprm) for the Galois group of ﬁ/Fprm.

Lemma 5.1.  The following hold:

(i) It holds that F is absolutely Galois if and only if the following condition is
satisfied: For any v, w € Vg such that pr, = pp, and fr, =1, it holds that fr, = 1.

(ii) There exists a uniquely determined minimal intermediate extension of F /F
among the intermediate extensions of F'/F which are absolutely Galois and finite
over F'.
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(iii) Suppose that F' is absolutely Galois. Then the action

QP — Aut(Qp)

by conjugation is an isomorphism of groups.

PrROOF.  Assertion (i) follows from [10], Chapter VII, Corollary 13.8. Assertion
(ii) follows immediately from our assumption that F is absolutely Galois, together with
elementary field theory. Assertion (iii) follows from Theorem 3.3. This completes the
proof of Lemma 5.1. O

Proposition 5.2.  Let G be a profinite group of AGSC-type [cf. Definition 3.2].
We construct various objects associated to G as follows:

(1) We shall say that G is absolutely Galois if the following condition is satisfied:
For any v, w € V(G) [cf. Proposition 3.5, (1)] such that p(v) = p(w) [cf. Proposition 3.5,
(2)] and f(v) =1 [¢f. Proposition 3.5, (2)], it holds that f(w) =1 [c¢f. Lemma 5.1, (1)].

(2) It follows from (1) and Lemma 5.1, (ii), that there exists a uniquely determined
mazimal open subgroup of G which is absolutely Galois. We shall refer to this open
subgroup as the Galois closure-subgroup of G.

(3) We shall write

def

Ge ' Aut(H)

for the group obtained by forming the group of automorphisms of the Galois closure-
subgroup H C G of G [c¢f. Lemma 5.1, (iii)]. Thus, since H is normal in G [cf.
Lemma 5.1, (ii)], by considering the action of G on H by conjugation, we obtain a

homomorphism of groups

G—>GQ‘.

(4) It follows from Lemma 5.1, (iii), that the homomorphism G — Ge¢ of (3) is an
injection whose image is of finite index. Thus, the structure of profinite group on G
determines a structure of profinite group on Gg. We always regard G¢ as a profinite
group by means of this structure of profinite group.

Let
(F7 ﬁv aQF;G)
be an AGSC-envelope for G [cf. Definition 3.2]. Then the following hold:
(i) It holds that F is absolutely Galois if and only if G is absolutely Galois.
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(ii) The isomorphism « determines a commutative diagram of profinite groups
Qr — QF,,..
I
G —— Ge¢

— where the horizontal arrows are the natural open injections [cf. (4)], and the vertical

arrows are isomorphisms.

PROOF. These assertions follow immediately from Lemma 5.1, together with
the various definitions involved. U

Proposition 5.3.  Let G be a profinite group of AGSC-type. We construct
various objects associated to G as follows:
(1) We shall write
def
H(Ge) € TF(Ge) & Hx(Ge) € [ kx(v)
’UEV(GQ)

P (Ge) =

[cf. Proposition 3.5, (1); Proposition 3.7, (2); Proposition 3.11; Proposition 5.2, (ii)].
(2) We shall write
TO>(Ge) C TF.(Ge)
for the submonoid of 1 Fy (G¢) consisting of a € TFy (Ge) such that, for everyv € V(Ge),
the image in kx (v) is contained in O% (v) C ky (v) [cf. Proposition 3.7, (1)].
(3) Forv e V(Ge), we shall write

0> (v) def

OD(U)X 7
E*(v) & 0% ()@,

TP (Ge)ls E Ker(TF*(Ge) = K (v) = K (v)/0* (v)),

FX(@oly = Ker((F*(Go)lf = 0 (v) » k" (v))
[cf. Proposition 3.5, (2); Proposition 3.7, (1)].

(4) It follows from Lemma 3.10, (ii), together with the constructions of (1), (2),
and (3), that the collection of data

M(Ge) € (1Fe(Ge), TO” (Ge) € TFL(Ge). V(Ge), {TF*(Ge)li € TP (Ge)buevice))

forms an NF-monoid of PmF-type [cf. Definition 2.3]. Thus, by Theorem 2.9, (7),

(8), we have a map

Bir(ce) = Brmce): Fx(Ge) x TF(Ge) — TF((Ge)
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such that the map Bi (g, ), together with the monoid structure of TFy (G¢), determines
a structure of field on TFy (G¢). We shall write

TF(Ge)

for the resulting field.
Let
(F7 F7 O‘QF:)G)

be an AGSC-envelope for G. Then the arrows in the second display of Lemma 3.10,
(vi), and the inclusion in the fourth display of Proposition 3.11, together with the iso-
morphism «, determine isomorphisms of fields

~

Fprm ;) TF((QF)@) — TF(GC)

Proor.  This follows immediately from the various definitions involved. U
Lemma 5.4. Letv € V. Write

(FX x FX)7% C FX x FX

v

for the subset of F, x F.} consisting of (a,b) € F) x F} such that a+b # 0. Then the
subset
(FX x F*) N (FX x FX)70 C (FE)X x FX)7Y

v v
is dense in (F* x F)X)79.
Proor.  This follows immediately from the various definitions involved. O

Proposition 5.5. Let G be a profinite group of AGSC-type. We construct
various objects associated to G as follows:

(1) Let v € V(G) [cf. Proposition 3.5, (1)]. Then we shall write
(*(v) x k*(v))™° € k*(v) x k*(v)

[cf. Proposition 3.7, (1)] for the subset of the topological space k™ (v) X k*(v) consisting
of (a,b) € kX (v) x kX (v) such that ab=' # 1 but (ab=1)? = 1;

(X () x kX ()70 € (X (0) x kX (0)) \ (% (v) x k™ (0))7°).

(2) Letve € V(Ge) |cf. Proposition 5.2, (3); Proposition 5.2, (ii)]. Note that [it fol-
lows from the various definitions involved that] the natural homomorphism TF*(G¢) —
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k*(ve) [cf. Proposition 5.3, (1)] is injective. Let us regard TF*(G¢) as a submodule
of k™ (ve) by means of this injection. Write x € ky (ve) [cf. Proposition 3.7, (2)] for the
unique element of the set ky(ve) \ k™ (ve). Then we define a map

Brve): Fx(ve) X kx(ve) — kx(ve)

as follows:

(a) It holds that By (ye)(*,a) = By (a, %) = a for every a € kx (ve).

(b) The image of (k* (ve) X k™ (ve))™" via Byve) is {x}.

(c) Let (a,b) € (KX (ve)xk*(ve))7Y. Now it follows immediately from Lemma 5.4
that there exists a sequence (a;,b;)i>1 consisting of elements of (1F*(Ge) x TF*(Ge))N
(B> (ve) x kX (ve)) 7 such that lim;_, o (ai, b;) = (a,b) [with respect to the topology of the
topological module k™ (ve) X k™ (ve)]. Then write By(,,)(a,b) M im0 B p(ae)(ai, bi)
[cf. Proposition 5.3, (4)]. Note that it follows from Proposition 3.11, (i), and Proposi-

tion 5.3 that this limit ‘B, (a,b)” exists and does not depend on the choice of the
sequence (a;,b;)i>1.

If D¢ € vg, then we shall write
Br(pe): kx(De) X kx(De) — kx(De)

[cf. Theorem 1.4, (8)] for the map determined by By, () and the isomorphism of kyx (ve)
with kx(Dg¢) of Proposition 3.7, (1), (b). Then one verifies immediately [cf. Proposi-
tion 3.11, (i); Proposition 5.3 that the map By, (respectively, By p,)), together with
the monoid structure of kx (ve) (respectively, kx (Dg)), determines a structure of field
on ky (ve) (respectively, ky (De¢)). We shall write

k(ve) (respectively, k(D))

for the resulting field.

(3) Let v € V¥&=1(Q) [¢f. Proposition 3.5, (2)] and D € v. Write ve € V(G¢)
for the element determined by v, i.e., the Ge-conjugacy class of Cg (D) C Ge¢ [cf.
Proposition 3.5, (iv)]. Then since d(D) = 1, it follows immediately from the various
definitions involved that the natural inclusion D — Cg, (D) determines an isomor-
phism of monoids

(kx(ve) =) kx(Cge(D)) — kx(D) (+— kx(v)).
We shall write

Eﬂk(v)i kx(v) ka(v) — k:x(v), EEk(D)Z kX(D) X/{iX(D) — kX(D)
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for the maps determined by this isomorphism and the map By (,.). Then one verifies
immediately that the map By, (respectively, By py), together with the monoid structure
of kx (v) (respectively, k« (D)), determines a structure of field on ky (v) (respectively,
ky(D)). We shall write

k(v) (respectively, k(D))

for the resulting field.

(4) It follows from Proposition 3.11, (ii), that the composite of homomorphisms of
monoids

Ho(G) = J[ kxw) - [  Fx)

vEV(Q) veVI=1(Q)
is injective. Observe that the field structures on the ky(v)’s of (3), where v ranges
over the elements of V¥=1(G), determine a ring structure on

H ky (v).

veEVI=1(Q)
Let
(Fa F? Q‘QF;G)

be an AGSC-envelope for G and v € VI=Y(G). Then the isomorphism of monoids
(Fy)x = kx(v) of Proposition 3.7, (i), determines an isomorphism of fields

~

F, — k(v).
Proor.  This follows immediately from the various definitions involved. O
Lemma 5.6. Let E be a finite Galois extension of F' contained in F and d a

positive integer. Thus, we have a commutative diagram of monoids

Fy —— Hy(F)

! l

Ey —— Hx(E) —— Hwevgfl (Bw)x

[cf. Definition 3.9] — where the arrows are injective [cf. Lemma 3.10, (i), (v)]. For a

positive integer r, we use the notation ¢, € F to denote a primitive r-th root of unity
in F. Then the following hold:

(i) Suppose that E = F((4). Then there exists a torsion element of H*(E) [cf.
Definition 3.9] of order d. Moreover, for every torsion element ( € H*(FE) of order
d, the monoid Ey maps isomorphically onto the submonoid of Hwev%ﬂ (Ew)x 0b-
tained by forming the underlying [multiplicative] monoid of the subring of Hwevéﬁ E,
generated by F and C.
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(ii) Suppose that d is a prime number, that (g € F', and that Gal(E/F') is of order
d. Then there exists an element x € Hy (F) such that x ¢ Fy but xz? € Fy. Moreover,
for every such an “x”, the monoid E« maps isomorphically onto the submonoid
of Hwev%=1 (Ew)x obtained by forming the underlying [multiplicative] monoid of the

subring of HweV%ﬁ E., generated by F and x.

(i) Suppose that E is contained in a finite solvable extension of Fyoum. Then,
after possibly replacing E by a finite extension of E which is contained in a finite solvable
extension of Fyorm, there exists a finite sequence of finite extensions of Frm contained
n E

Fom =F CFH C--CF,_, CF €E

such that, for eachi € {1,...,n}, the extension F;/F;_; is Galois, and, moreover, one

of the following two conditions is satisfied:

(a) It holds that F; = F;_1((,) for some positive integer r;.

(b) It holds that d; def 1Gal(F;/F;—1) is a prime number, and, moreover,

Cd, € Fi—1.

PROOF. Assertion (i) follows immediately from Lemma 3.10, (iii), together
with the various definitions involved. Next, we verify assertion (ii). Since [we have
assumed| that Gal(E/F) is [necessarily cyclic and| of order d, the existence of such
an x follows immediately from Kummer theory, together with our assumption that
Ca € F. In order to verify the final portion of assertion (ii), let u € (O3)", a € E*
be such that x = u - a [cf. Lemma 3.10, (iv)]. [Here, we regard (O5)" and E* as
submonoids of H (E).] Since ¢ € F* it follows from Lemma 3.10, (i), that u?¢ € O}.
Thus, since [one verifies immediately that] the cokernel of the natural homomorphism
OF < (OF)" is torsion-free [cf. also [1], Lemma 5.29, (ii)], it holds that v € Of,
hence that x € E*. In particular, the subring of Hwev%zl E,, generated by F' and =
determines an intermediate extension of the finite extension E/F. On the other hand,
since d is a prime number, and Gal(F/F) is of order d, the assumption that © ¢ F
implies that this intermediate extension coincides with E. This completes the proof of
assertion (ii). Assertion (iii) follows immediately from elementary field theory. This
completes the proof of Lemma 5.6. O

Proposition 5.7.  Let G be a profinite group of AGSC-type. We construct
various objects associated to G as follows:

(1) Let H C Ge¢ [cf. Proposition 5.2, (3); Proposition 5.2, (ii)] be an open subgroup
of Gg. Suppose that we are given a finite sequence of open subgroups of G¢

HY G, C G C-CG C Gy ¥ Ge
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such that, for each i € {1,...,n}, G; is normal in G;_1, and, moreover, one of the
following two conditions is satisfied:

(a) It holds that G; = ¥ri G, [cf. Proposition 3.7, (5)] for some positive integer

(b) It holds that d; def $(Gi—1/G;) is a prime number, and, moreover, G;_1 C

Ka; GQ.

Then we shall inductively define submonoids TFy(G;)’s of the Hx(G;)’s [cf. Proposi-
tion 3.11]

TF, (Go) =P, (Ge) CTFx(G1) T+ R (Gry) C TRy (Gy) = Ty (H)
N N N N

HX(GO) = HX(GC) C HX(GI) C---C HX(Gn—l) C HX(Gn) = HX(H)

as follows: Leti € {1,...,n}. Suppose that we are given a submonoid TF\(G;_1) C
H(Gi_1). [Note that the submonoid TFy (Go) = TFy(Ge) of Hx(Go) = Hx (Ge) was
already defined in Proposition 5.3, (1).]

e Suppose that G; = Hi G, for some positive integer r; [cf. condition (a)]. Let
¢ € Hx(G;) be a torsion element of order r; [cf. Lemma 5.6, (1)]. We shall write

FG) ¢ I kx)

veEVI=1(G;)

[cf. Proposition 3.5, (2); Proposition 3.7, (2)] for the underlying [multiplicative] monoid
of the subring of the ring [[,cya-1(q,) kx(v) [¢f. Proposition 5.5, (4)] generated by the
images of TFy (G;_1) and ¢. Then it follows from our construction [cf. also Lemma 5.6,
(i)] that TFy(G;) is contained in the image of H«(G;) [relative to the injection dis-
cussed in Proposition 5.5, (4)] and, moreover, independent of the choice of (. In
particular, it makes sense to regard 'F\ (G;) as a submonoid of Hx (G;).

e Suppose that d; def #(Gi—1/G;) is a prime number, and, moreover, G;_1 C

Ha;Ge [cf. condition (b)]. Let x € Hx(G;) be such that x ¢ TFy(G;_1) but % €
TF (Gio1) [cf. Lemma 5.6, (ii)]. We shall write

P G) € I kx()
veEVI=1(G;)

[cf. Proposition 3.5, (2); Proposition 3.7, (2)] for the underlying [multiplicative] monoid
of the subring of the ring Huevd=1(Gi) kx (v) [cf. Proposition 5.5, (4)] generated by the
images of TFy (G;_1) and x. Then it follows from our construction [cf. also Lemma 5.6,
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(ii)] that TFy(G;) is contained in the image of Hx (G;) [relative to the injection dis-
cussed in Proposition 5.5, (4)] and, moreover, independent of the choice of . In
particular, it makes sense to regard ' Fy (G;) as a submonoid of Hyx (G;).

Neaxt, let us observe that it follows immediately from our construction [cf. also Lemma 5.6,
(i), (ii)] that the maps By, [cf. Proposition 5.5, (3)], where v ranges over the elements
of VI=Y(H), determine [cf. the injection discussed in Proposition 5.5, (4)] a map

Bipay: TFx(H) x TF(H) — TF(H).

Moreover, one verifies immediately that this map Bip g, together with the monoid
structure of 1Fy (H), determines a structure of field on 'F, (H). We shall write

"F(H)

for the resulting field. Note that it follows from the various definitions involved |cf.
also Proposition 3.11, (i); Proposition 5.3; Lemma 5.6, (i), (ii)] that the submonoid
TP (H) C Hy(H) and the map Bt gy, hence also the field structure of VF(H), do not
depend on the choice of the sequence

HY G, CGi1 € CG C Gy Y Ge.

(2) Write Ge — G for the mazimal prosolvable quotient of Ge. Then it follows
from Lemma 5.6, (iii), that every open subgroup of G¢ which arises from an open sub-
group of G’S@l" contains an open subgroup of G¢ which satisfies the conditions imposed
on “H” in (1), i.e., the conditions to the effect that there exists a suitable sequence of
open subgroups of Gg. Thus, we have a submonoid

T (Ge) = lim TR (H) C lim M, (H)
H H

— where the injective limits are taken over the open subgroups H C Gg¢ of G¢ which
satisfy the conditions imposed on “H” in (1) [cf. Proposition 3.11, (iii)] — equipped with
a map [determined by the various W+ p(gy’s — where H ranges over the open subgroups
of G¢ which satisfy the conditions imposed on “H” in (1)]

Bipev(ce): Fx (Ge) x TFY(Ge) — TFYY(Ge).

Moreover, one verifies immediately that the map Bipav(q,), together with the monoid
structure of TFSV(Ge), determines a structure of field on TF$V(G¢). We shall write

TFSIV (G@)

for the resulting field.
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Let
(F, F, a: Qr = G)
be an AGSC-envelope for G. Write ng‘;n for the solvable closure of Fyrm in F. Then
the arrows in the second display of Lemma 3.10, (vi), and the inclusion in the fourth
display of Proposition 3.11, together with the isomorphism «, determine isomorphisms

of fields

Fslv AN TFSIV((QF)Q‘) AN TFS]V(GQ).

prm

Proor. This follows from Lemma 5.6, together with the various definitions
involved. U

Proposition 5.8. Let G be a profinite group of AGSC-type. We construct

various objects associated to G as follows:

(1) Let D¢ € ]7(6’@) [cf. Proposition 3.5, (1); Proposition 5.2, (3); Proposition 5.2,
(ii)]. Write Ge — GV for the mazimal prosolvable quotient of G¢. Then since the
composite Dg — Ge¢ — G5 is injective [cf. [6], Proposition 2.3, (iii)], there exists a
sequence of normal open subgroups of G¢ which arise from open subgroups of G%l"

- C Gpy1 € Gy C© - ©C G C Go = Ge

such that if we write (Dg )y, G, N De for each n, then

() (De)n = {1}.

n>0
Write *F*(G,,) Lof (TFY(Gg)9)* [cf. Proposition 5.7, (2)]. Note that one verifies
immediately [cf. Proposition 3.11, (i); Proposition 5.7] that the natural homomorphism
FEPX(GL) — KX ((De)n) [cf. Theorem 1.4, (6)] is injective. Let us regard *F*(G,,)
as a submodule of k*((D¢)n) by means of this injection. Write x € ky((De)n) [cf.
Theorem 1.4, (8)] for the unique element of the set ky ((De¢)n) \ k™ ((De)n). Then we
define a map

Bii((De)n): kx(De)n) X kx (De)n) — kx((De)n)
as follows:
(a) 1t holds that Bty ((py), ) (*, @) = Bry((pe),) (@, %) = a for every a € kx ((De)n)-
(b)  The image of (k*((De¢)n) X k*((De)n))™Y [c¢f. Proposition 5.5, (1)] via
Bir((De)n) B8 1}

(c) Let (a,b) € (k*((Dg)n) x E*((De)n))?° [cf. Proposition 5.5, (1)]. Now
it follows immediately from Lemma 5.4 that there exists a sequence (a;,b;)i>1 con-
sisting of elements of (FF>*(Gy) x ¥FX(Gn)) N (kX ((Dg)n) x kX ((Dg)n))?° such that
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lim; o (a;, b;) = (a, b) [with respect to the topology of the topological module k> ((D¢)p) X
E*((De)n)].  Then write Biy((pe),.)(a;b) L Jim; e Bt peiv(Ge) (@i, bi) [cf. Proposi-
tion 5.7, (2)]. Note that it follows from Proposition 3.11, (i), and Proposition 5.7 that
this limit ‘EETk((D@)n)(C% b)” exists and does not depend on the choice of the sequence

(@i, bi)i>1.

One verifies immediately from Proposition 3.11, (i), and Proposition 5.7 that the map

Bt r((De),)s together with the monoid structure of kx ((De¢)n), determines a structure
of field on kx ((D¢)y).

(2) In the notation of (1), since it holds that
kx (De) = hﬂ kx((De)n)

[cf. Theorem 1.4, (9)], it follows immediately from the construction of (1) that the various

maps Bﬂfk((DG)n), where n ranges over the nonnegative integers, determine a map
EE(D¢)3 kx(De) X kx(De) — kx(De)

such that the map HHE(D@} together with the monoid structure of kv (Dg), determines a
structure of field on k. (Dg). We shall write

k(D)
for the resulting field. Note that it follows from our construction that the map BHE(DQ):
hence also the field structure of k(D¢), does not depend on the choice of the sequence

def
- C Guy1 € G, C - C G C Gy E Ge.

(3) Let D € V(G). Thus, it holds that Cq, (D) € V(Ge) [¢f. Proposition 3.5, (iv)].
Moreover, it follows immediately from the various definitions involved that k(D) =

kx(Cae(D)). We shall write

Brp): Fx(D) x kx(D) — kx(D)

for the map determined by EEE(CG (D))’ which thus determines a structure of field on

kyx (D). We shall write
k(D)

for the resulting field.

(4) Let D € v € V(G) [cf. Proposition 3.5, (1)]. Then it follows from Theorem 1.4,
(iv), that ky (D) =k« (D)P. We shall write

Eﬂk(D)Z kﬁX(D)XkX(D) — k’x(D)
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for the map determined by BHE(D) and
Brw): kx(v) X kx(v) — kx(v)

[cf. Proposition 3.7, (2)] for the map determined by By py and the isomorphism of kx (v)
with kv« (D) of (b) of Proposition 3.7, (1). Then one verifies immediately that the map
Br(p) (respectively, By (.)), together with the monoid structure of ky (D) (respectively,
kx (v)), determines a structure of field on k(D) (respectively, ky (v)). We shall write

k(D) (respectively, k(v))

for the resulting field.

(5) Observe that the field structures on the ky(v)’s of (4), where v ranges over the
elements of V(G), determine a structure of ring on

I k.

veV(G)

Let
(F, F, a: Qr 3 Q)

be an AGSC-envelope for G and D € v € V(G). Write v € Vi for the element of
V5 corresponding, via o, to D € V(G) [cf. Proposition 3.5, (i)]. Then the commutative

diagram of monoids

kEx(v) — ky(D)
— where the horizontal arrows are the natural inclusions, the left-hand vertical arrow
is the isomorphism of monoids of Theorem 1.4, (iii), and the right-hand vertical arrow
is the isomorphism of monoids of Theorem 1.4, (iv) — determines a commutative

diagram of fields

PROOF. This follows from the various definitions involved. O

Lemma 5.9.  Suppose that F' is of PmF-type [cf. Definition 2.1]. Let v € V5.
Write v € Vg for the nonarchimedean prime of F' determined by v,

Fli] € Fs
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for the image of the inclusion F s F3, and
Aut™ (F[7])

for the group of field automorphisms of F[0]. [Thus, the natural inclusion F[] < Fy
induces an injection Gal(Fy/F,) < Aut?(F[3]).] Note that the various subfields of
F[0] which are NF’s determine a structure of profinite group on Aut?(F[3]) with
respect to which Autﬂd(ﬁ[@]) is isomorphic to Qp as an abstract profinite group. Then
the following hold:

(i) Let M be a subfield of Fz. Suppose that M is algebraic over F (C Fy),
absolutely Galois, and solvably closed, and that the group of field automorphisms
of M — equipped with the profinite topology determined by the wvarious subfields
of M which are NF’s — is isomorphic to Qr as an abstract profinite group. Then
M = F[3].

(ii) There exists a uniquely determined isomorphism
e Aut(FR]) = Qr

of profinite groups that restricts to the natural identification of the subgroup Gal(Fy/F,)
Autﬂd(F[?ﬂ) with the decomposition subgroup of Qp associated to v.

(iii) Let w € V. Then the isomorphism

F[5] = Fla]

obtained by forming the composite of the inverse of the natural isomorphism F3 ﬁ[ﬂ
[i.e., obtained by the definition of F[v]] and the natural isomorphism F = Flw] [i.e.,

obtained by the definition of F [w]] may be characterized as the unique isomorphism
i@ F[o] 5 Flw) of fields that satisfies the following condition: The composite

s L

Qr =5 AwtM(FR]) =5 Awt™(Fla]) = Qn

8

[cf. (ii)] — where the second arrow is the isomorphism obtained by conjugation by ity i
— coincides with the identity automorphism of Qr.

PrROOF.  First, we verify assertion (i). Since M is absolutely Galois and solvably
closed, and the group of field automorphisms of M is isomorphic to Qr, it follows from
Theorem 3.3 that M is isomorphic to F. Thus, since Fis absolutely Galois, we conclude
that M = F [v], as desired. This completes the proof of assertion (i).

Next, we verify assertion (ii). Since [one verifies easily that] the isomorphism
Autﬂd(ﬁ [0]) = QF obtained by conjugation by the natural isomorphism F3F [0]

N
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satisfies the condition imposed on “i3”, to verify assertion (ii), it suffices to verify the
uniqueness of such isomorphisms. To this end, let 11, 1o: Aut?(F[0]) 3 Qp be isomor-
phisms that satisfy the condition in the statement of assertion (ii). Then since [we have
assumed that| F' is of PmF-type, it follows from Theorem 3.3 that ¢ o Ll_l is an inner
automorphism of Qp. Thus, since the decomposition subgroup of QQr associated to v
is commensurably terminal in Qp |[cf. [6], Proposition 2.3, (v)] and center-free [cf. [6],
Proposition 2.3, (iii)], we conclude from the condition in the statement of assertion (ii)
that 19 o Ll_l is the identity automorphism of QQr, as desired. This completes the proof
of assertion (ii).

Finally, we verify assertion (iii). Since [one verifies easily that] the composite of the
inverse of the natural isomorphism F =% F[0] and the natural isomorphism F = F[a]
satisfies the condition imposed on “i3 5", to verify assertion (iii), it suffices to verify the
uniqueness of such isomorphisms. On the other hand, the desired uniqueness follows
immediately from the fact that Qg is center-free [cf. [6], Corollary 2.2]. This completes
the proof of assertion (iii), hence also of Lemma 5.9. O

Proposition 5.10.  Let G be a profinite group of AGSC-type. We construct

various objects associated to G as follows:

(1) Let D¢ € ]7(G’¢) [cf. Proposition 3.5, (1); Proposition 5.2, (3); Proposition 5.2,
(ii)]. Then it follows from Lemma 5.9, (i), that there exists a uniquely determined
subfield of k(D¢) [cf. Proposition 5.8, (3)]

F(D¢) C k(De)

such that F(De) is algebraic over the prime field contained in k(De¢), absolutely
Galois, and solvably closed, and, moreover, the group of field automorphisms of
ﬁ(D@) — equipped with the profinite topology determined by the various subfields
of PN’(DQ) which are NF’s — is isomorphic to G¢ as an abstract profinite group. We
shall write

Aut™(F(De))

for the [profinite] group of field automorphisms of ﬁ(Dg). Thus, the natural inclusion
F(D¢) < k(D¢) and the action of Dg on k(Dg) determine an injection

De — Awt™(F(De)).

(2) Let De € V(Ge). Then it follows from Lemma 5.9, (i), that there exists a
uniquely determined isomorphism of profinite groups

~

e : Aut!(F(Dg)) = Ge
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such that the composite of the injection De — Auti(F(D¢)) of the final display of (1)
and this isomorphism vp, coincides with the natural inclusion D¢ — Ge.

(3) Let D¢, E¢ € V(Ge). Then it follows from Lemma 5.9, (iii), that there exists
a uniquely determined isomorphism of fields

1/D¢,E‘¢: F(D@) ; ﬁ(E@)

such that the composite

—1
L
D¢ LEC

Ge = AWtM(F(De)) = AWtM(F(Ee)) =5 Ge

[cf. (2)] — where the second arrow is the isomorphism obtained by conjugation by tp, k.

— coincides with the identity automorphism of Ge.

(4) It follows from Lemma 5.9, (iii), that, by considering the “diagonal” via the var-

ious isomorphisms “up, g, of (3), we obtain a subring of the product HDeeﬁ(Ge) F(Dg).
We shall write

FG ¢ JI Foo < ] kDo) = ][ *D
De€V(Ge) De€V(Ge) DeV(G)
[cf. Proposition 3.5, (iv)] for this subring.
Then the following hold:

(i) The ring F(G) of (4) is a field which is absolutely Galois and solvably
closed.

(ii) The natural action of G on HD€1~)(G) k(D) preserves this subring F(G).

(iii) The subfield F(G)C of F(G) consisting of G-invariants [cf. (ii)] is an NF.
Moreover, the action of G on F(G) determines an isomorphism of profinite groups

G =5 Gal(F(Q)/F(G)%).
PROOF. This follows from Lemma 5.9, together with the various definitions
involved. U

Theorem 5.11.  Let G be a profinite group of AGSC-type [cf. Definition 3.2].
Thus, it follows from Proposition 5.10 that we have an absolutely Galois and solvably
closed field ﬁ(G) equipped with an action of G such that the subfield ﬁ(G)G of ﬁ(G)
consisting of G-invariants is an NF', and, moreover, the action of G on ﬁ(G) determines
an isomorphism of profinite groups

G =5 Gal(F(Q)/F(®)%).
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We shall write
FG) ¥ Fe)°

for the NF obtained by forming the subfield of ﬁ(G) consisting of G-invariants,
(G~ O%(@))

for the AGSC-Galois pair [cf. Definition 4.1] determined by the absolutely Galois and
solvably closed field F(G) equipped with an action of G, and

o"(G) ¥ 07 (G)°
for the submonoid of 6>(G) of G-invariants. Then the following hold:

(i) Let D € V(G) [¢f. Proposition 3.5, (1)]. Then the natural inclusion D < G
determines o commutative diagram of fields

F(G) —— F(G)

l l

k(D) —— k(D)

[cf. Proposition 5.8, (3), (4); Proposition 5.10, (4)] — where the horizontal arrows are
the natural inclusions, and the right-hand vertical arrow is D-equivariant.
(ii) Let

(F, F, a: Qp ¥ Gal(F/F) > G)

be an AGSC-envelope for G [cf. Definition 3.2]. Then the arrows in the second display
of Lemma 3.10, (vi), and the inclusion in the fourth display of Proposition 3.11, together
with the isomorphism «, determine a commutative diagram of fields

r — F

| |
F(Qr) —— F(Qr)
| i
FG) —— F(G)

— where the horizontal arrows are the natural inclusions, the vertical arrows are iso-
morphisms, and the right-hand vertical arrows are compatible with the respective
actions of Qr and G relative to «.

PROOF. These assertions follow from the various definitions involved. O
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Remark 5.11.1. In the notation of Theorem 5.11, one verifies immediately that

we have a natural isomorphism
(0% (G)")® = F(G)x

and natural inclusions

F(G)* C lim H*(H) C lim H'(H,A(H))
H H

— where the injective limits are taken over the open subgroups H C G of G.

Remark 5.11.2. Note that, in the establishment of our global reconstruction
result, the Neukirch-Uchida theorem [i.e., Theorem 3.3] plays a crucial role [cf. the
proofs of Lemma 5.1, (iii), and Lemma 5.9, (i), (ii)]. In particular, the proof of this
global reconstruction result does not yield an alternative proof of the Neukirch-Uchida
theorem.

Remark 5.11.3. We thus conclude from the global reconstruction result ob-
tained in the present paper that every profinite group of NF-type admits a ring-theoretic
basepoint [i.e., a “ring-theoretic interpretation” or a “ring-theoretic label”] group-theoretically

constructed from the given profinite group.

Remark 5.11.4. Let G,, G4 be profinite groups of AGSC-type; a: Go — G
an open homomorphism of profinite groups.

(i) Suppose that « is injective. Then one verifies immediately that o determines
a commutative diagram of fields

F(Gy) —— F(G,)

l i

F(Gy) —— F(G,)

— where the horizontal arrows are the natural inclusions, and the right-hand vertical
arrow is an isomorphism that is compatible with the respective actions of G4, G, relative
to a.

(ii) Suppose that « is surjective, and that Ker(«) is perfect, i.e., Ker(a) =
[Ker(a), Ker()]. Then one verifies immediately that the subfield F/(G)Xe*(@) of F(G,)
consisting of Ker(a)-invariants is solvably closed. In particular, by applying Proposi-
tion 5.2, (1), to the various open subgroups of G,/Ker(a) (= G,), we conclude that
G./Ker(a) is of AGSC-type, and that ﬁ(Go)Ker(a) is absolutely Galois and solvably
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closed. Thus, it follows immediately from the construction of “F(—)” [cf. Proposi-

tion 5.10, (1), (2), (3), (4)] that the surjection « determines a commutative diagram of
fields

F(G.) —_— F(G,)

F(G,) — F(G,)

— where the upper vertical arrows are the isomorphisms induced by the isomorphism
Go/Ker(a) = G, determined by «; the horizontal arrows are the natural inclusions;
the left-hand vertical arrows are isomorphisms; the right-hand upper vertical arrow is
an isomorphism that is compatible with the respective actions of G, G, relative to a.

(iii) Suppose that Ker(«) is perfect. Then it follows from (i), (ii) that o determines

a commutative diagram of fields

F(Gy) —— F(G,)

| !

F(Gy) —— F(G,)

— where the horizontal arrows are the natural inclusions, and the right-hand vertical
arrow is compatible with the respective actions of G,o, G, relative to a. In particular,
one may assert that the “group-theoretic” algorithm

“G — (G ~ F(G)

established in the present paper is functorial with respect to open homomorphisms of
profinite groups of AGSC-type whose kernels are perfect.

Theorem 5.12.  Let (G ~ M) be an AGSC-Galois pair [cf. Definition 4.1].
Recall that we have an injections
MY — M < lim H'(H,A(M))

—
H

— where the injective limit is taken over the open subgroups H C G of G [cf. Theo-
rem 4.4, (1), (2)]. Moreover, let us also recall that we have inclusions

O%(G) C F(G)* C lim H'(H,A(H))
H
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— where the injective limit is taken over the open subgroups H C G of G [cf. Proposi-
tion 3.7, (4); Theorem 5.11; Remark 5.11.1]. Then there exists a uniquely determined

G-equivariant isomorphism
AM) = A(G)
such that the induced isomorphism [cf. also Theorem 3.8, (i)]

lim H'(H,A(M)) > lim H'(H,A(H))
H H

maps MY bijectively onto O™ (G). Moreover, this induced isomorphism

~

lim H'(H,A(M)) > lim H'(H,A(H))
H H

also determines an isomorphism M 5 F(G)* that extends to a G-equivariant

isomorphism of fields
F(G~ M) = F(G)

[cf. Theorem 4.4, (5); Remark 4.4.1]. We shall refer to this uniquely determined iso-
morphism A(M) = A(G) as the cyclotomic synchronization isomorphism for
(G M).

PROOF.  The existence of such an isomorphism A(M) = A(G) follows immedi-
ately from the definition of the notion of an AGSC-Galois pair [cf. also Theorem 4.4;
Theorem 5.11, (ii)]. The uniqueness of such an isomorphism follows immediately from
the following elementary observation: Let a € Z*. Then it holds that the automorphism
of Z given by multiplication by a induces an automorphism of the submonoid N C (Z Q)
Z if and only if @ = 1. The final assertion follows immediately from the [existence and|
uniqueness of such an isomorphism. This completes the proof of Theorem 5.12. O

Finally, we prove a certain compatibility between the functorial “group-theoretic”
algorithm obtained in the present paper and the functorial “group-theoretic” algorithm
obtained in [9], Theorem 1.9.

Theorem 5.13.  Let Il be a profinite group which is isomorphic to the étale
fundamental group of a hyperbolic orbicurve X [cf. the discussion entitled “Curves” in
[7], §0] over an NF. Write Il — Q for the arithmetic quotient of I1, i.e., the quotient
of IT by the [uniquely determined — cf. [7], Theorem 2.6, (vi)] mazimal topologically
finitely generated normal closed subgroup of II. Thus, the quotient Q) is a profinite
group of NF-type [cf. [7], Theorem 2.6, (vi)]. Suppose that X is of strictly Belyi
type [cf. [8], Definition 3.5]. Write

I ~ F()
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for the algebraically closed field equipped with an action of II obtained by applying the
functorial “group-theoretic” algorithm given in [9], Theorem 1.9 to II [i.e., the
field “E;IF U{0}” of [9], Theorem 1.9, (e)]. Thus, by the construction of F(IT), we have
an inclusion

FID* < lim H' (Ty, pz(Iy))

— where we refer to the statement of [9], Theorem 1.9, for an explanation of the notation
ling, | H'(Iy, pz(I1y))”. Then the natural homomorphism

lim H'(H,A(H)) — lim H(Iy, p5(My))

=y —
H %
[cf. Proposition 3.7, (4)] — where the first injective limit is taken over the open subgroups

H C Q of Q — induced by the various natural surjections from the “Ily ’s” to the “H’s”
[where we observe that every sufficiently small “H” arises as the arithmetic quotient of
some “Ily 7|, together with the isomorphisms of the A(H)’s with the pz(Ily)’s discussed

in Lemma 5.14 below, determines [cf. Remark 5.11.1] a II-equivariant isomorphism
of fields

~

F(Q) = F(II).

Proor.  Theorem 5.13 follows immediately from the fact that, in the situation
where the profinite groups involved are not just “abstract profinite groups”, but rather
arise from familiar objects of scheme theory, the homomorphism

lim H'(H,A(H)) — lim H'(Ily, ps(Iy))

— e
H %

under consideration coincides with the conventional homomorphism between the injec-
tive limits of cohomology groups involved that arise from conventional scheme the-
ory. U

Lemma 5.14.  Let II be a profinite group which is isomorphic to the étale fun-
damental group of a hyperbolic orbicurve over an NF. Write Il — @Q for the arithmetic
quotient of I [cf. the statement of Theorem 5.13]. Let D € V(Q) [cf. Proposition 3.5,
(1)]. Then the composite

AMQ) — A(D) — pz(IIxg D) = py(1l)
— where we refer to (9], Theorem 1.9, (b) [cf. also [9], Remark 1.10.1, (ii)], for an
explanation of the notation “pz(—)”; the first arrow is the local-global cyclotomic
synchronization isomorphism of Theorem 3.8, (ii) [c¢f. also Theorem 1.4, (9); Propo-
sition 3.7, (4)]; the second arrow is the isomorphism of [9], Corollary 1.10, (ii), (c) [note
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that one verifies easily that the D-module A(D) coincides with the “puz(G)” defined in
[9], Corollary 1.10, (i), (a), in the case where we take the “G” of loc. cit. to be D]; the

is the natural identification that arises from the definitions of ps(Il xg D) and
p5(II) — is IT-equivariant and independent of the choice of D € V(Q).

PROOF.  These assertions follow immediately from the fact that, in the situation
where the profinite groups involved are not just “abstract profinite groups”, but rather
arise from familiar objects of scheme theory, the composite under consideration coincides
with the conventional identification between the cyclotomes involved that arise from
conventional scheme theory. This completes the proof of Lemma 5.14. O

§6. Global Mono-anabelian Log-Frobenius Compatibility

In the present §6, we give an interpretation of the global reconstruction result ob-
tained in the present paper in terms of a certain compatibility with the NF-log- Frobenius
functor [cf. Theorem 6.10 below].

Definition 6.1. Let D be a profinite group of MLF-type [cf. Definition 1.1;
Proposition 1.2, (i)]. Then we shall refer to a collection of data

(G, D= G)

consisting of a profinite group G of NF-type [cf. Definition 3.2] and an injection D — G
of profinite groups as an NF-holomorphic structure on D.

Definition 6.2. Let D be a profinite group of MLF-type and hol def (G, D — G)
an NF-holomorphic structure on D. Then it follows immediately from [11], Theorem
12.1.9; [6], Proposition 2.3, (v), that the injection D < G in hol determines an open
injection D — Cg(Im(D)) — where we write Im(D) for the image of the injection
D < G, and we observe that C;(Im(D)) € V(G) [cf. Proposition 3.5, (1)]. Thus, we

have an isomorphism of monoids
T (Ca(Im(D)) > Fx(D)
[cf. Theorem 1.4, (9)], which is compatible with the natural actions of C¢(Im(D)) and
D relative to the open injection D — Cg(Im(D)). In particular, the field structure
on kv« (Cg(Im(D))) constructed in Proposition 5.8, (3), determines a field structure on
k(D). We shall write
(D, bol)

for the resulting field [equipped with a natural action by D].
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Remark 6.2.1.  One verifies immediately from the various definitions involved
that we have a natural identification

E(D,hol)x = kx(D).

Definition 6.3. Let (D ~ M) be an MLF-Galois TM-pair of mono-analytic
type [cf. [9], Definition 3.1, (ii)]. Thus, D is a profinite group of MLF-type. We shall refer
to an NF-holomorphic structure on D as an NF-holomorphic structure on (D ~ M).

Definition 6.4. Let (D ~ M) be an MLF-Galois TM-pair of mono-analytic
type.

(i) We shall write

and

— where the projective limit is taken over n € Z>;. Note that D acts on (M) and
A(M). We shall refer to the D-module A(M) as the cyclotome associated to (D ~ M).
Note that one verifies immediately that the cyclotome A(M) has a natural structure of
profinite [cf. the above definition of A(M)], hence also topological, G-module; moreover,
we have a natural identification pu(M)[n] = A(M)/nA(M). [Let us observe that one ver-
ifies easily that the D-modules u(M), A(M) coincide with the D-modules “pq,7(M)”,
“pz(M)” defined in [9], Definition 3.1, (v), respectively.]

(
(ii) It follows from Lemma 1.3, (x), that the exact sequences of D-modules
1 — AM)/nA(M) — M 5 M — 1
— where n ranges over the positive integers — determine an injection

(M&P)P — HY(D,A(M)).

(ili) Note that one verifies easily that the D-module A(D) [cf. Theorem 1.4, (9)]
coincides with the D-module “ps(G)” defined in [9], Corollary 1.10, (i), (a), in the case
where we take the “G” of loc. cit. to be D. Thus, by [9], Remark 3.2.1, we have a
functorial algorithm for constructing, from (D ~ M), a D-equivariant isomorphism

AM) = A(D)

such that the induced isomorphism

~

HY(D,A(M)) = HY(D,A(D))
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determines — relative to the injection Kmm(D) of Theorem 1.4, (10), and the injection
of (ii) — an isomorphism of modules

(MeEPYP = kX(D).

(iv) By applying the discussion of (iii) to the various open subgroups of D, we
obtain an isomorphism of modules
~ —X

M 5 (D)

[cf. Theorem 1.4, (9)], hence also an isomorphism of monoids

(MEP)® = k(D)
[cf. Theorem 1.4, (9)]. It follows immediately from the various definitions involved that
these isomorphisms of monoids are D-equivariant.

(v) Let hol be an NF-holomorphic structure on (D ~ M). Then the D-equivariant
isomorphism of monoids of (iv), together with the field structure of k(D, hol) obtained
in Definition 6.2 [cf. also Remark 6.2.1], determines a field structure on (MSP)®. We
shall write

k(D ~ M, bol)
for the resulting field [equipped with a natural action by D].

Remark 6.4.1.  One verifies immediately from the various definitions involved
that we have a natural identification

k(D ~ M, bol), = (MeP)®,

Definition 6.5. Let (D ~ M) be an MLF-Galois TM-pair of mono-analytic
type and hol an NF-holomorphic structure on (D ~ M).

(i) Write
(M)

for the module [whose underlying set is (M8P)®| obtained by forming the underlying
additive module of the field k(D ~ M, bol) of Definition 6.4, (v) [cf. Remark 6.4.1].
Then the p(D)-adic [cf. Theorem 1.4, (1)] logarithm on k(D ~ M, hol) determines a

D-equivariant isomorphism of modules

~

(M*)PE = (M3P)S.

Thus, the field structure on (M8P)? [i.e., the field structure of k(D ~ M, bol)] deter-
mines a field structure on (M *)Pf. We shall write

log(%)(D ~ M, bol)
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for the resulting field [equipped with a natural action by D].
(ii) We shall write

O[og(%)(DmM,ha[) g [09(%)(DWMJ)0[)

for the ring of integers of log(k)(D ~ M, bhol) [cf. Remark 6.5.2 below] and

def
log(D ~ M. hol) = (O (DAnsbon) -

(iii) One verifies immediately from the various definitions involved [cf. Remark 6.5.2

below| that the action of D on log(k)(D ~ M, hol) determines a natural action of D on
log(D ~ M, bhol); moreover, the collection of data

(D ~ log(D ~ M, hol))

consisting of the profinite group D and the topological [cf. Remark 6.5.2 below| D-
monoid log(D ~ M, hol) forms an MLF-Galois TM-pair of mono-analytic type.

Remark 6.5.1.  One verifies immediately that if we write
log(K)(D ~ M, hol)

for the underlying additive module of the field log(k)(D ~ M, bol), then we have a
natural identification

log(k)(D ~ M, bol), = (M>)PL

Remark 6.5.2.  One verifies immediately that the field structure on log(k)(D
M, hol), together with the natural action by D, determines [cf. the discussion entitled

“Fields” in §0, applied to the various subfields of invariants of log(k)(D ~ M, hol) by the

open subgroups of D] a topology on log(k)(D ~ M, hol), i.e., the “p(D)-adic topology”

of log(k)(D ~ M, bol). Moreover, this topology on log(k)(D ~ M, hol) determines a
topology on log(D ~ M, hol)*. We shall regard log(D ~ M, hol) as a topological monoid
by means of the topology determined by the topology on log(D ~ M, hol)*.

Definition 6.6.

(i) We shall say that a collection of data

(G~ M), {(D~ MD)}D@?(G), {pp: M — MD}DET;(G))

consisting of an NF-Galois pair (G ~ M) [cf. Definition 4.1], an MLF-Galois TM-pair
(D ~ Mp) of mono-analytic type for each D € V(G) [cf. Proposition 3.5, (1)], and a



68 Y UicHIRO HOSHI

D-equivariant injection pp: M — Mp of monoids for each D € ]7(G) is an NF-Galois
theater if, for each D € V(G), the diagram

Mer —~ F(G)*

| l

M —~ E(D)
— where the left-hand vertical arrow is the homomorphism determined by pp; the right-
hand vertical arrow is the homomorphism induced by the right-hand vertical arrow of
the diagram of Theorem 5.11, (i), together with the natural identification of & (D)
with the monoid “k(D)*” of Proposition 5.8, (3); the upper horizontal arrow is the
[non-displayed] isomorphism of the final assertion of Theorem 5.12; the lower horizontal

arrow is the isomorphism of Definition 6.4, (iv) — commutes.
(ii) Let

def
T = ((Gl ~ M1)7 {(Dl ~ MDl)}Dlef;(Gl)a {PD13 My — MD1}D1@7(01))7

def
75 = ((G2 5% M2)7 {(D2 v MDz)}D2E\7(G2)’ {pDz: M2 7 MD2}D2€§(G2))

be NF-Galois theaters. Then we shall say that a collection of data

(a: Gy = Ga, 7: V(G1) 3 V(Ga), B: My = Ma, {Bp,: Mp, > M: ()} p,eviayy)

consisting of an open injection a: G; — G4 of profinite groups, a bijection 7: ]7(G1) =
V(Gs), an isomorphism 3: M; = My of monoids, and, for each D; € V(G}), an iso-
morphism fSp,: Mp, — M (p,) of topological monoids is a morphism of NF-Galois
theaters

i — Te
if the following three conditions are satisfied:

(a) The isomorphism 8: M; = My of monoids is compatible with the actions
of G1, G5 relative to the open injection «.

(b) For each D; € V(Gy), it holds that 7(D;) = Cg,(a(Dy)), which thus
implies [cf. [11], Theorem 12.1.9] that « restricts to an open injection Dy — 7(D1).

(¢) For each Dy € V(G4), the isomorphism 8p, : Mp, M. (p,) of topological
monoids is compatible with the actions of D, 7(D;) relative to the open injection
D1 — T(Dl) of (b)

(iii) We shall write
ThNF
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for the category of NF-Galois theaters and morphisms of NF-Galois theaters [cf. (i),
(ii)].
(iv) We shall write
NF

for the category whose objects are profinite groups of NF-type [cf. Definition 3.2], and
whose morphisms are open injections of profinite groups. Thus, the assignment

(G~ M), {(D~ Mp)}pesay {pp: M = Mp}pepe) = G

determines a functor
ThNF 5 NF.

(v) We shall write
An [NF]

for the category defined as follows: An object of 2n|NF] is a collection of data of the
form

A(G) E (G~ O%(G), {(D O (D)} pepay 107(G) = 0% (D)} pepe)

— where O (G) < O (D) [cf. Theorem 1.4, (9); Theorem 5.11] is the inclusion deter-
mined by the right-hand vertical arrow of the diagram of Theorem 5.11, (i), together
with the natural inclusion O (D) < k(D) [cf. Proposition 5.8, (3)] — for some object
G of NF. The morphisms of 2n[NF] are the morphisms induced by morphisms of NF.
Thus, the assignment

G — An(G)

determines a functor

NF —s An[NF].

Remark 6.6.1. In the notation of Definition 6.6, (i), if we write holp for the
NF-holomorphic structure on D [cf. Definition 6.1] determined by the natural inclusion
D — @G, then it follows immediately from Theorem 5.11, (i); Theorem 5.12, together
with the definition of the field k(D ~ Mp,holp) given in Definition 6.4, (v), that the
morphism of modules induced by pp

M®&P —s MEP
extends to an inclusion of fields
F(G~ M) < k(D ~ Mp,bolp)

[cf. Theorem 4.4, (5); Remark 4.4.1; Remark 6.4.1].
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Remark 6.6.2. In the notation of Definition 6.6, (ii), it follows immediately
from [11], Theorem 12.1.9, that the bijection 7 is completely determined by the open
injection « as follows: The element 7(D;) is the unique element of V(G5) that contains
Oé(Dl).

Proposition 6.7.  The three functors
NF — 2n[NF] — TN — NF

— where the first arrow is the functor of Definition 6.6, (v), the second arrow is the
functor obtained by forgetting the way in which the object An(G) arose from G, and the
third arrow is the functor of Definition 6.6, (iv) — are equivalences of categories.
Moreover, the composite NF — NIF of these three functors is naturally isomorphic to the
identity functor.

PrOOF.  This follows immediately from Theorem 5.12; Remark 6.6.2; [9], Propo-
sition 3.2, (iv), together with the various definitions involved. O
Definition 6.8. Let

T (G~ M), (D~ Mb)) pegiey {00: M = Mp}pepa)

be an NF-Galois theater and Dy € V(G) [cf. Proposition 3.5, (1)]. Write
(G~ TM, {(D~TMb)} peyayr {Top: TM = TMp} fp6)

for the NF-Galois theater obtained by forming the image of the profinite group G of
NF-type by the composite of the first two functors of the display of Proposition 6.7 and
holp, for the NF-holomorphic structure on (Dy ~ Mp,) determined by the natural
inclusion Dy < G. Thus, by Definition 6.5, (iii), we have an MLF-Galois TM-pair of
mono-analytic type

(Do ~ log(Do ~ Mp,, holp,)).

Moreover, one verifies easily that the second Kummer map of the display of [9], Propo-
sition 3.2, (ii) [cf. also the displayed isomorphism of [9], Remark 3.2.1] — applied to the
MLF-Galois TM-pairs of mono-analytic type

(Do ~ log(Do ~ Mp,,holp,)) and (Do~ TMp,)
— determines a Dg-equivariant isomorphism

fupe: log(Do ~ Mp,,bholp,) — TMp,.
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Now one verifies immediately from the various definitions involved that the collection
of data

def _
log(T) = (G~ M, {(D ~log(D ~ Mp, f)U[D))}DeT;(G)a {T’/Dl © TPD}DeT;(G))

forms an NF-Galois theater. Thus, we obtain a functor
log: THNY — IHNF,
We shall refer to this functor log as the NF-log-Frobenius functor.

Remark 6.8.1. One verifies immediately that the NF-log-Frobenius functor of
Definition 6.8 is naturally isomorphic to the identity functor, hence, in particular, an
equivalence of categories.

Definition 6.9. Let G be a profinite group of NF-type [cf. Definition 3.2], i.e.,
an object of the category NF, and p a prime number.

(i) We shall write
NF[G] C NF

for the full subcategory of NFF consisting of profinite groups which are isomorphic to
G. [Thus, it follows from Theorem 3.3 that every morphism in this full subcategory is
an isomorphism.] This full subcategory determines, in an evident fashion [cf. also the
equivalences of categories of Proposition 6.7], full subcategories

THNF[G] € THNF,  An[NF[G]] C An[NF].

Moreover, one verifies immediately that the NF-log-Frobenius functor log: THNF —
THNF determines a functor

THG] — THNT[G).
By abuse of notation, we shall denote this functor by log.

(ii) We shall write
N,  (respectively, N;Ea )

for the category defined as follows: An object of the category N, (respectively, ./\/EE) is
a collection of data

(H~ M), {(D~Mp)}peyry {pp: M = Mp} gy, {(D ™ ND)Y by, ppy=p)

— where

(H ~ M), {(D ~Mp)} pegy: 10t M = Mp}pesim)
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is an object of THNF[G] [ie., a certain NF-Galois theater], and, for each D € V(H) [cf.
Proposition 3.5, (1)] such that p(D) = p [cf. Theorem 1.4, (1)],

(DNND)

is an MLF-Galois TS-pair (respectively, TSH-pair) [necessarily of mono-analytic type]
cf. [9], Definition 3.1, (ii)]. A morphism in the category N, (respectively, ./\/;EE) is a pair
consisting of a morphism of NF-Galois theaters and a compatible [in the evident sense]
morphism of MLF-Galois TS-pairs (respectively, TSH-pairs) [cf. [9], Definition 3.1, (ii)].
Thus, we have natural functors

NE — N, — NF[G].

p

(iii) Let v be a vertex of the oriented graph “T''8” of [9], Definition 5.4, (iii).

non

Then, by a similar procedure to the procedure applied in [9], Definition 5.4, (iv), to

define the functor “/\E%V”, one may define a functor

B . guNF m
At TG — N

(iv) Let € be an edge of the oriented graph “FX 2 of [9], Definition 5.4, (iii),

non

running from a vertex v; to a vertex 5. Then, by a similar procedure to the procedure

« B »

applied in [9], Definition 5.4, (vii), to define the natural transformation “.7’.”, one may

define a natural transformation

B . 8 H
bp,e: )‘p,moAVl — )‘pmz

— where, for each pre-log (respectively, post-log) vertex v [cf. [9], Definition 5.4, (iii)]
of the oriented graph “TC%8” of [9], Definition 5.4, (iii), we take A, to be the identity

functor on THNF[G] (respectively, NF-log-Frobenius functor log: THNY[G] — THNF[G]
— cf. (1)).

Finally, we prove the following global mono-anabelian log-Frobenius compatibility:

Theorem 6.10.  Let G be a profinite group of NF-type [cf. Definition 3.2].
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Consider the diagram of categories D [cf. [9], Definition 3.5, (i)]

. Loy, X L X fog, .
idim1 N\ Lid; v idiga
X
N URERRUPY:: N N\
Nyt Ny Nt
} \J \J
Ny N, Ny
N\ ) v

£
Lx
An
!
£

— where we write

x oM, £ ¥ NFIG), 9 X an|NFG)]
[cf. Definition 6.9, (1)]; we write “NIEB 7, “NL,” for the categories defined in Definition 6.9,
(ii); we think of the vertices of the first row of D as being indexed by the elements of
Z; we write Z.(>) 7 u {o0} for the ordered set obtained by appending to Z a formal
symbol “c0” — which we think of as corresponding to the unique verter of the second
row of D — such that i < oo for all i € 7Z; we write id; for the identity functor at
the vertex i € Z; for an element n € {1,...,7}, we write D<,, for the subdiagram of
categories [cf. 9], Definition 3.5, (i)] of D determined by the first n [of the seven| rows
of D; the vertices of the third and fourth rows of D are indexed by the prime numbers
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p, pt, pt...; the arrows from the second row to the category N]EE in the third row are

given by the collection of functors )\]Hf def {)\]EE 4o of Definition 6.9, (iii), where v ranges
over the pre-log vertices of the oriented graph “T'°% 7 of [9], Definition 5.4, (iii) [or,

alternatively, over all the vertices of the oriented graph “l:l[l‘fjgn 7 of 19], Definition 5.4,
(iii), subject to the proviso that we identify the functors associated to the space-link
and post-log vertices|; the arrows from the third to fourth and from the fourth to fifth
rows are the natural functors ./\/;EE — N, — & of Definition 6.9, (ii); the arrows from
the fifth to sixzth and from the sixth to seventh rows are the natural equivalences of
categories £ — An — & — the first of which we shall denote by Kk — of Proposition 6.7
restricted to “|G]”; we shall apply the notation “{—]” to the names of arrows appearing
in D to denote the path [cf. the discussion entitled “Combinatorics” in [9], §0] of length

1 associated to the arrow. Also, let us write
¢: An — X

for the equivalence of categories given by the “‘forgetful functor” of Proposition 6.7
restricted to “|G]”;

X — £ 5 An

for the quasi-inverse for ¢ given by the composite of the natural projection functor
X — & with k;

n: gom — idy

for the isomorphism that exhibits ¢, ®™ as quasi-inverses to one another. Then the

following hold:

(i) Formn € {5,6,7}, D<, admits a natural structure of core [cf. [9], Definition
3.5, (ili)] on D<p—_1. That is to say, loosely speaking, £, An “form cores” of the functors
in D.

(ii) The ‘forgetful functor” ¢ gives rise to a telecore structure T [cf. [9],

Definition 3.5, (iv)] on D<s — whose underlying diagram of categories we denote by
D< — by appending to D<¢ telecore edges [cf. [9], Definition 3.5, (iv), (a)]

An
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from the core 2n [cf. (i)] to the various copies of X in D<o given by copies of ¢ —
which we denote by ¢; — fori € Z(®). That is to say, loosely speaking, ¢ determines a
telecore structure on D<s. Finally, for each i € Z(>) | let us write (8] for the path on
f’Dz of length 0 at i and [B}] for some [cf. the coricity of (i)] path on fp‘z of length
€ {5,6} [i.e., depending on whether or not i = oo| that starts from i, descends via some
path of length € {4,5} to the core vertex “Un” [cf. (1)], and returns to i via the telecore
edge ¢;. Then the collection of natural transformations

—1 —1
{Noo.is Moo.is Mi» M Yiez, jentoo
— where we write
Moo, i+ (boo ; ldzo¢z
for the identity natural transformation and

n: (Ds)igyy — (Ds)igo)

[cf. [9], Definition 3.5, (i)] for the isomorphism arising from n — generate a contact
structure H [cf. [9], Definition 3.5, (iv)] on the telecore .

(iii) The natural transformations

BB o, — B

pe’ \pin P, v2
[cf. Definition 6.9, (iv)] — where p is a prime number; € is an edge of the oriented
graph “T% 7 of [9], Definition 5.4, (iii), running from a vertex vy to a vertex vs; if 1

B
b€

associated to the paths of length 1 from the second to third rows of D determined by p
and vy, vo; if 11 is a post-log vertex, then we interpret the domain of LEG as the arrow
associated to the path of length 3 from the first to the third rows of D determined by p,
vy, and the condition that the initial length 2 portion of the path be a path of the form
[id;] o [log] [for i € Z], and we interpret the codomain of L;IEE as the arrow associated to
the path of length 2 from the first to the third rows of D determined by p, v, and the

condition that the initial length 1 portion of the path be a path of the form [id;—1] [for

1s a pre-log vertex, then we interpret the domain and codomain of ;> . as the arrows

the same i € Z| — belong to a family of homotopies [cf. [9], Definition 3.5, (ii)] on
D3 that determines on the portion of D<3 indexed by p a structure of observable G4
[cf. [9], Definition 3.5, (iii)] on D<a. Moreover, the family of homotopies that constitute
S0y is compatible [cf. [9], Definition 3.5, (ii)] with the families of homotopies that
constitute the core and telecore structures of (i), (ii).

(iv) The diagram of categories D<o does not admit a structure of core on D<q
which [i.e., whose constituent family of homotopies] is compatible with [the constituent
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family of homotopies of] the observable &,y of (iii). Moreover, the telecore struc-
ture T of (ii), the contact structure #H of (ii), and the observable G,y of (iii) are

not simultaneously compatible.

(v) The unique vertex oo of the second row of D is a nexus [cf. the discussion
entitled “Combinatorics” in [9], §0] of I'p. Moreover, D is totally co-rigid [cf. Proposi-
tion 6.7; [6], Corollary 2.2; [9], Definition 3.5, (vi)], and the natural action of Z on the
infinite linear oriented graph I'p -, extends to an action of Z on D by nexus-classes
of self-equivalences of D [cf. [9], Definition 3.5, (vi)|. Finally, the self-equivalences in
these nexus-classes are compatible with the families of homotopies that constitute
the cores and observable of (i), (iii); these self-equivalences also extend naturally |[cf.
the technique of extension applied in 9], Definition 3.5, (vi)] to the diagram of cate-
gories [cf. [9], Definition 3.5, (iv), (a)] that constitutes the telecore of (ii), in a fashion
that is compatible with both the family of homotopies that constitutes this telecore
structure [cf. [9], Definition 3.5, (iv), (b)] and the contact structure H of (ii).

PROOF. This follows immediately from a similar argument to the argument
applied in the proof of [9], Corollary 5.5. O

Remark 6.10.1.  The “general formal content’ of the remarks following [9],
Corollaries 3.6, 3.7, applies to the situation discussed in Theorem 6.10, as well. We
leave the routine details of translating these remarks into the language of the situation
of Theorem 6.10 to the interested reader.
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