RIMS-1822

A Note on Dormant Opers of Rank p-1 in Characteristic p

By

Yuichiro HOSHI

<u>April 2015</u>

京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan

A Note on Dormant Opers of Rank p-1 in Characteristic p

Yuichiro Hoshi

April 2015

ABSTRACT. — In the present paper, we prove that the set of equivalence classes of dormant opers of rank p-1 over a projective smooth curve of genus ≥ 2 over an algebraically closed field of characteristic p > 0 whose Jacobian variety is ordinary is of cardinality one.

CONTENTS

Intr	CODUCTION	1
§1.	Construction of Dormant Opers of Rank $p-1$. 2
§2.	Uniqueness of Dormant Opers of Rank $p-1$. 5
Refi	ERENCES	8

INTRODUCTION

In the present paper, we study dormant opers of rank p-1 over projective smooth curves of characteristic p > 0. In particular, we prove that the set of equivalence classes of dormant opers of rank p-1 over a suitable curve of characteristic p > 0 is of cardinality one.

The notion of *oper* was introduced in [1] [cf. also [2]]. Let k be an algebraically closed field and X a projective smooth curve of genus ≥ 2 over k. Let us recall that an *oper* over X/k is a suitable triple consisting of a locally free coherent \mathcal{O}_X -module, a connection on the module relative to X/k, and a filtration of the module. The study of *opers in positive characteristic* was initiated by, for instance, [4], [5], [9], [10]. Suppose that we are in the situation in which k is of *characteristic* p > 0. Then we shall say that a given oper is *dormant* if the p-curvature of the connection of the oper is zero. We refer to Definition 1.1 [cf. also Definition 1.2] concerning the precise definition of the notion of "dormant oper" discussed in the present paper. Note that a *dormant oper of rank two* is essentially the same as a *dormant indigenous bundle* studied in the p-adic Teichmüller theory [cf. [7]].

The main result of the present paper, which is a *generalization* of the first portion of [3], Theorem A [cf. Remark 2.1.1], is as follows [cf. Proposition 1.3, Theorem 2.1]:

²⁰¹⁰ Mathematics Subject Classification. - 14H60.

KEY WORDS AND PHRASES. — dormant oper, *p*-adic Teichmüller theory.

This research was supported by JSPS KAKENHI Grant Number 15K04780.

THEOREM A. — Let k be an algebraically closed field of characteristic p > 0 and X a projective smooth curve of genus ≥ 2 over k. Then the following hold:

(i) There exists a dormant oper of rank p-1 over X/k.

(ii) Suppose that the Jacobian variety of X is ordinary. Then the set of equivalence classes of dormant opers of rank p-1 over X/k is of cardinality one.

In [5], Joshi posed a conjecture concerning the number of equivalence classes of dormant opers of rank r over a projective smooth curve of genus $g \ge 2$ over an algebraically closed field of characteristic p > 0 for $p > C(r, g) \stackrel{\text{def}}{=} r(r-1)(r-2)(g-1)$ [cf. [5], Conjecture 8.1]; moreover, Wakabayashi proved, in [10], this conjecture for a sufficiently general curve [cf. [10], Theorem 8.7.1]. Note that the triple $(r, g, p) \stackrel{\text{def}}{=} (p-1, g, p)$ [i.e., the triple in the case discussed in Theorem A] does not satisfy the condition "p > C(r, g)" unless $p \in \{2, 3\}$.

1. Construction of Dormant Opers of Rank p-1

In the present §1, let p be a prime number, $g \ge 2$ an integer, k an algebraically closed field of characteristic p, and X a projective smooth curve over k [i.e., a scheme which is projective, smooth, geometrically connected, and of relative dimension one over k] of genus g. Write X^F for the projective smooth curve over k obtained by base-changing X via the absolute Frobenius morphism of k, $\Phi: X \to X^F$ for the relative Frobenius morphism over $k, \mathcal{I} \subseteq \mathcal{O}_{X \times_k X}$ for the ideal of $\mathcal{O}_{X \times_k X}$ which defines the diagonal morphism with respect to X/k, and $X_{(n)} \subseteq X \times_k X$ for the closed subscheme of $X \times_k X$ defined by the ideal $\mathcal{I}^{n+1} \subseteq \mathcal{O}_{X \times_k X}$ [where n is a nonnegative integer]. In particular, it follows that $\mathcal{I}/\mathcal{I}^2 = \omega_{X/k}$ (respectively, $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{I}/\mathcal{I}^2, \mathcal{O}_X) = \tau_{X/k}$), where we use the notation " ω " (respectively, " τ ") to denote the cotangent (respectively, tangent) sheaf. Finally, write $d: \mathcal{O}_X \to \omega_{X/k}$ for the exterior differentiation operator.

Let us define the notion of *dormant oper*, as well as the notion of *equivalence of dormant opers*, discussed in the present paper as follows [cf., e.g., [5], §3; also [4], Definitions 3.1.1, 3.1.2 and (1)-(5) of pp. 51-52]:

DEFINITION 1.1. — Let r be a positive integer. Then we shall say that a collection of data

$$(\mathcal{E}, \nabla_{\mathcal{E}}, \{0\} = \mathcal{E}_r \subseteq \mathcal{E}_{r-1} \subseteq \cdots \subseteq \mathcal{E}_1 \subseteq \mathcal{E}_0 = \mathcal{E})$$

consisting of a locally free coherent \mathcal{O}_X -module \mathcal{E} , a connection $\nabla_{\mathcal{E}}$ on \mathcal{E} relative to X/k, and a filtration $\{0\} = \mathcal{E}_r \subseteq \mathcal{E}_{r-1} \subseteq \cdots \subseteq \mathcal{E}_1 \subseteq \mathcal{E}_0 = \mathcal{E}$ by \mathcal{O}_X -submodules of \mathcal{E} is a *dormant oper* of rank r over X/k if the following five conditions are satisfied:

- (1) For every $i \in \{1, \ldots, r\}$, the subquotient $\mathcal{E}_{i-1}/\mathcal{E}_i$ is an invertible sheaf on X.
- (2) For every $i \in \{1, \ldots, r\}$, it holds that $\nabla_{\mathcal{E}}(\mathcal{E}_i) \subseteq \mathcal{E}_{i-1} \otimes_{\mathcal{O}_X} \omega_{X/k}$.

(3) For every $i \in \{1, \ldots, r-1\}$, the homomorphism of \mathcal{O}_X -modules obtained by forming the composite

$$\mathcal{E}_i \xrightarrow{\nabla_{\mathcal{E}}} \mathcal{E}_{i-1} \otimes_{\mathcal{O}_X} \omega_{X/k} \twoheadrightarrow (\mathcal{E}_{i-1}/\mathcal{E}_i) \otimes_{\mathcal{O}_X} \omega_{X/k}$$

[cf. (2)] determines an isomorphism $\mathcal{E}_i/\mathcal{E}_{i+1} \xrightarrow{\sim} (\mathcal{E}_{i-1}/\mathcal{E}_i) \otimes_{\mathcal{O}_X} \omega_{X/k}$ of invertible sheaves on X [cf. (1)].

- (4) The *p*-curvature of $\nabla_{\mathcal{E}}$ is zero.
- (5) There exists an isomorphism $(\det \mathcal{E}, \det \nabla_{\mathcal{E}}) \xrightarrow{\sim} (\mathcal{O}_X, d).$

DEFINITION 1.2. — Let r be a positive integer and

$$\mathfrak{E} \stackrel{\text{def}}{=} (\mathcal{E}, \nabla_{\mathcal{E}}, \{0\} = \mathcal{E}_r \subseteq \mathcal{E}_{r-1} \subseteq \cdots \subseteq \mathcal{E}_1 \subseteq \mathcal{E}_0 = \mathcal{E}),$$

$$\mathfrak{F} \stackrel{\text{def}}{=} (\mathcal{F}, \nabla_{\mathcal{F}}, \{0\} = \mathcal{F}_r \subseteq \mathcal{F}_{r-1} \subseteq \cdots \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_0 = \mathcal{F})$$

dormant opers of rank r over X/k. Then we shall say that \mathfrak{E} is equivalent to \mathfrak{F} if the following condition is satisfied: There exists a triple $(\mathcal{L}, \nabla_{\mathcal{L}}, \phi)$ consisting of an invertible sheaf \mathcal{L} on X, a connection $\nabla_{\mathcal{L}}$ on \mathcal{L} relative to X/k, and a horizontal isomorphism ϕ of $(\mathcal{E}, \nabla_{\mathcal{E}})$ with $(\mathcal{F}, \nabla_{\mathcal{F}}) \otimes_{\mathcal{O}_X} (\mathcal{L}, \nabla_{\mathcal{L}})$ such that ϕ maps, for each $i \in \{0, \ldots, r\}$, the subsheaf $\mathcal{E}_i \subseteq \mathcal{E}$ isomorphically onto the subsheaf $\mathcal{F}_i \otimes_{\mathcal{O}_X} \mathcal{L} \subseteq \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}$.

REMARK 1.2.1. — Note that the notion of the "equivalence class of a dormant oper of rank r" of the present paper coincides with the notion of "isomorphism class of a dormant PGL(r)-oper" in the terminology given in [5], §3.

REMARK 1.2.2. — One verifies immediately from the various definitions involved that the notion of *dormant oper of rank two* is essentially the same as the notion of *dormant indigenous bundle* studied in [7].

In the remainder of the present §1, let us construct a *dormant oper of rank* p-1 over X/k [cf. Proposition 1.3 below]. We shall write

$$\mathcal{B}^{\circ} \stackrel{\text{def}}{=} \operatorname{Coker}(\mathcal{O}_{X^F} \to \Phi_*\mathcal{O}_X)$$

for the \mathcal{O}_{X^F} -module obtained by forming the cokernel of the natural homomorphism $\mathcal{O}_{X^F} \to \Phi_* \mathcal{O}_X$. Since [one verifies immediately that] the homomorphism $\mathcal{O}_{X^F} \to \Phi_* \mathcal{O}_X$ admits a natural splitting after pulling back via Φ — which thus determines a natural isomorphism of \mathcal{O}_X -modules

$$\Phi^* \Phi_* \mathcal{O}_X \xrightarrow{\sim} \mathcal{O}_X \oplus \Phi^* \mathcal{B}^\circ$$

— and Φ is finite flat of degree p, it follows that \mathcal{B}° , hence also $\Phi^*\mathcal{B}^{\circ}$, is locally free of rank p-1.

Next, let us observe that one verifies immediately that the natural morphism over k

$$X \times_{X^F} X \longrightarrow X \times_k X$$

determines an isomorphism over k

$$X \times_{X^F} X \xrightarrow{\sim} X_{(p-1)}.$$

Moreover, this isomorphism $X \times_{X^F} X \xrightarrow{\sim} X_{(p-1)}$, together with the cartesian diagram

$$\begin{array}{cccc} X \times_{X^F} X & \xrightarrow{\operatorname{pr}_2} & X \\ & & & \downarrow^{\operatorname{pr}_1} \downarrow & & \downarrow^{\operatorname{pr}_2} \\ & & & & \downarrow^{\operatorname{pr}_1} \\ & X & \xrightarrow{\operatorname{pr}_2} & X^F, \end{array}$$

determines *isomorphisms* of \mathcal{O}_X -modules

$$\Phi^* \Phi_* \mathcal{O}_X \xrightarrow{\sim} \mathrm{pr}_{1*} \mathcal{O}_{X \times_{X^F} X} \xleftarrow{\sim} \mathrm{pr}_{1*} \mathcal{O}_{X_{(p-1)}},$$

which are *compatible* with the respective natural surjections onto \mathcal{O}_X [arising from the diagonal morphism with respect to X/X^F] from each of these three modules. In particular, by forming the kernels of the respective natural surjections onto \mathcal{O}_X , we obtain *isomorphisms* of \mathcal{O}_X -modules

$$\Phi^*\mathcal{B}^\circ \xrightarrow{\sim} \operatorname{Ker}(\operatorname{pr}_{1*}\mathcal{O}_{X\times_{X^F}X} \twoheadrightarrow \mathcal{O}_X) \xleftarrow{\sim} \operatorname{pr}_{1*}(\mathcal{I}/\mathcal{I}^p).$$

Thus, by considering the filtration of $\operatorname{pr}_{1*}(\mathcal{I}/\mathcal{I}^p)$

$$\{0\} = \operatorname{pr}_{1*}(\mathcal{I}^p/\mathcal{I}^p) \subseteq \operatorname{pr}_{1*}(\mathcal{I}^{p-1}/\mathcal{I}^p) \subseteq \cdots \subseteq \operatorname{pr}_{1*}(\mathcal{I}^2/\mathcal{I}^p) \subseteq \operatorname{pr}_{1*}(\mathcal{I}/\mathcal{I}^p),$$

we conclude that $\Phi^* \det \mathcal{B}^\circ = \det(\Phi^*\mathcal{B}^\circ)$ is *isomorphic* to $\omega_{X/k}^{\frac{p(p-1)}{2}}$, which thus implies that $\deg \mathcal{B}^\circ = (p-1)(g-1)$. In particular, one verifies immediately that there exists an invertible sheaf \mathcal{L}° on X^F such that $\det(\mathcal{L}^\circ \otimes_{\mathcal{O}_{X^F}} \mathcal{B}^\circ) (= (\mathcal{L}^\circ)^{\otimes p-1} \otimes_{\mathcal{O}_{X^F}} \det \mathcal{B}^\circ)$ is *isomorphic* to \mathcal{O}_{X^F} [cf. Remark 1.3.1 below].

We shall write

$$\mathcal{E}^{\circ} \stackrel{\text{def}}{=} \Phi^*(\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^F}} \mathcal{B}^{\circ}).$$

Then since the closed immersion $X_{(1)} \hookrightarrow X \times_k X$ factors through the closed subscheme $X \times_{X^F} X \subseteq X \times_k X$ [as verified above], it follows that the \mathcal{O}_X -module \mathcal{E}° admits a natural connection relative to X/k. We shall write

 $\nabla_{\mathcal{E}^\circ}$

for the connection on \mathcal{E}° . Moreover, the above filtration of $\operatorname{pr}_{1*}(\mathcal{I}/\mathcal{I}^p)$ [together with the above isomorphism $\Phi^*\mathcal{B}^{\circ} \xrightarrow{\sim} \operatorname{pr}_{1*}(\mathcal{I}/\mathcal{I}^p)$] determines a filtration of \mathcal{E}°

$$\{0\} = \mathcal{E}_{p-1}^{\circ} \subseteq \mathcal{E}_{p-2}^{\circ} \subseteq \cdots \subseteq \mathcal{E}_{1}^{\circ} \subseteq \mathcal{E}_{0}^{\circ} = \mathcal{E}^{\circ}$$

[Thus, one verifies immediately that $\mathcal{E}^{\circ}/\mathcal{E}_{1}^{\circ} \cong \Phi^{*}\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X}} \operatorname{pr}_{1*}(\mathcal{I}/\mathcal{I}^{2}) = \Phi^{*}\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X}} \omega_{X/k}$.]

PROPOSITION 1.3. — The collection of data

$$\mathfrak{E}^{\circ} \stackrel{\text{def}}{=} (\mathcal{E}^{\circ}, \nabla_{\mathcal{E}^{\circ}}, \{0\} = \mathcal{E}_{p-1}^{\circ} \subseteq \mathcal{E}_{p-2}^{\circ} \subseteq \cdots \subseteq \mathcal{E}_{1}^{\circ} \subseteq \mathcal{E}_{0}^{\circ} = \mathcal{E}^{\circ})$$

forms a dormant oper of rank p - 1 over X/k.

PROOF. — The assertion that \mathfrak{E}° satisfies condition (1) of Definition 1.1 follows from the definition of the \mathcal{O}_X -submodules $\mathcal{E}_i^{\circ} \subseteq \mathcal{E}^{\circ}$. The assertion that \mathfrak{E}° satisfies conditions (2) and (3) of Definition 1.1 follows immediately from a local explicit calculation [cf. also [4], Theorem 3.1.6]. The assertion that \mathfrak{E}° satisfies condition (4) of Definition 1.1 follows from the definition of the connection $\nabla_{\mathcal{E}^{\circ}}$. The assertion that \mathfrak{E}° satisfies condition (5) of Definition 1.1 follows from the fact that $\det(\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^F}} \mathcal{B}^{\circ})$ is *isomorphic* to \mathcal{O}_{X^F} , together with the definition of the connection $\nabla_{\mathcal{E}^{\circ}}$. This completes the proof of Proposition 1.3. **REMARK 1.3.1.** — Let us observe that the choice of " \mathcal{L}° " in the discussion preceding Proposition 1.3 is *not unique*. More precisely, if we write $(\operatorname{Pic} X)[p-1] \subseteq \operatorname{Pic} X$ for the subgroup of Pic X obtained by forming the kernel of the endomorphism of Pic X given by multiplication by p-1, then one verifies immediately that the set consisting of isomorphism classes of "possible \mathcal{L}° 's" forms a $(\operatorname{Pic} X)[p-1]$ -torsor. On the other hand, one also verifies immediately from the various definitions involved that the adoption of another possible " \mathcal{L}° " does *not affect* the equivalence class of the dormant oper of Proposition 1.3.

2. Uniqueness of Dormant Opers of Rank p-1

In the present §2, we maintain the notation of the preceding §1. In particular, we have a projective smooth curve X over k. In the present §2, we prove the following theorem:

THEOREM 2.1. — If the Jacobian variety of X is ordinary, then every dormant oper of rank p - 1 over X/k is equivalent [cf. Definition 1.2] to the dormant oper of Proposition 1.3 [cf. also Remark 1.3.1].

REMARK 2.1.1. — One verifies immediately from the various definitions involved, together with Remark 1.2.2, that if p = 3, then Theorem 2.1 implies and is implied by the first portion of [3], Theorem A [cf. the first paragraph of the proof of [3], Theorem 2.1]. Thus, Theorem 2.1 is a *generalization* of the first portion of [3], Theorem A.

To complete the verification of Theorem 2.1, let

$$\mathfrak{E} \stackrel{\text{def}}{=} (\mathcal{E}, \nabla_{\mathcal{E}}, \{0\} = \mathcal{E}_{p-1} \subseteq \mathcal{E}_{p-2} \subseteq \cdots \subseteq \mathcal{E}_1 \subseteq \mathcal{E}_0 = \mathcal{E})$$

be a dormant oper of rank p-1 over X/k. We shall write

$$\Xi^{\circ} \stackrel{\text{def}}{=} \mathcal{E}^{\circ}/\mathcal{E}_{1}^{\circ}, \quad \Xi \stackrel{\text{def}}{=} \mathcal{E}/\mathcal{E}_{1},$$

Then it follows from the definition of a dormant oper that both $(\Xi^{\circ})^{\otimes p-1}$ and $\Xi^{\otimes p-1}$ are isomorphic to $\tau_{X/k}^{\otimes \frac{(p-1)(p-2)}{2}}$, which thus implies that $\mathcal{H}om_{\mathcal{O}_X}(\Xi,\Xi^{\circ})$ is of degree zero. In particular, one verifies immediately that there exists an invertible sheaf on X^F whose pull back via Φ is isomorphic to $\mathcal{H}om_{\mathcal{O}_X}(\Xi,\Xi^{\circ})$. Thus, to complete the verification of Theorem 2.1, we may assume without loss of generality, by tensoring \mathcal{E} with the above pull back via Φ , that

 $\Xi^{\circ} \cong \Xi.$

By means of such an isomorphism, let us identify Ξ° with Ξ .

Next, let us observe that since the *p*-curvature of $\nabla_{\mathcal{E}}$ is zero, and $(\det \mathcal{E}, \det \nabla_{\mathcal{E}})$ is *isomorphic* to (\mathcal{O}_X, d) , it follows from a theorem of *Cartier* [cf., e.g., [6], Theorem 5.1] that if we write $\mathcal{F} \stackrel{\text{def}}{=} \mathcal{E}^{\nabla_{\mathcal{E}}}$ for the \mathcal{O}_{X^F} -module of horizontal sections of \mathcal{E} with respect to $\nabla_{\mathcal{E}}$, then

(a) \mathcal{E} is naturally isomorphic to $\Phi^* \mathcal{F}$,

(b) the connection $\nabla_{\mathcal{E}}$ arises from the isomorphism of (a) [together with the factorization $X_{(1)} \hookrightarrow X \times_{X^F} X \hookrightarrow X \times_k X$ of the closed immersion $X_{(1)} \hookrightarrow X \times_k X$ discussed in §1], and

(c) det \mathcal{F} is *isomorphic* to \mathcal{O}_{X^F} .

Thus, the isomorphism $\Phi^* \mathcal{F} \xrightarrow{\sim} \mathcal{E}$ of (a) and the surjection $\mathcal{E} \twoheadrightarrow \Xi = \Xi^\circ$ determine a surjection of \mathcal{O}_X -modules

$$\Phi^* \mathcal{F} \twoheadrightarrow \Xi^\circ,$$

hence also a homomorphism of \mathcal{O}_{X^F} -modules

$$\mathcal{F} \longrightarrow \Phi_* \Xi^\circ.$$

LEMMA 2.2. — The above homomorphism $\mathcal{F} \to \Phi_* \Xi^\circ$ is a locally split injection.

PROOF. — Let us first observe that it is immediate that, to verify Lemma 2.2, it suffices to verify that the homomorphism $\gamma: \mathcal{E} \leftarrow \Phi^* \mathcal{F} \to \mathcal{G} \stackrel{\text{def}}{=} \Phi^* \Phi_* \Xi^\circ$ of \mathcal{O}_X -modules obtained by pulling back, via Φ , the homomorphism under consideration is a *split injection*. Now one verifies immediately that the composite of γ and the natural homomorphism $\mathcal{G} = \Phi^* \Phi_* \Xi^\circ \to \Xi^\circ$ coincides with the natural surjection $\mathcal{E} \to \Xi = \Xi^\circ$.

Write $\nabla_{\mathcal{G}}$ for the connection on \mathcal{G} determined by the factorization $X_{(1)} \hookrightarrow X \times_{X^F} X \hookrightarrow X \times_k X$ of the closed immersion $X_{(1)} \hookrightarrow X \times_k X$ discussed in §1. Thus, it follows immediately from the definitions of $\nabla_{\mathcal{E}}$ and $\nabla_{\mathcal{G}}$ that γ is *horizontal* with respect to $\nabla_{\mathcal{E}}$ and $\nabla_{\mathcal{G}}$. Moreover, for $i \in \{1, \ldots, p\}$, let us define submodules $\mathcal{G}_i \subseteq \mathcal{G}$ inductively as follows: We shall write $\mathcal{G}_1 \stackrel{\text{def}}{=} \operatorname{Ker}(\mathcal{G} = \Phi^* \Phi_* \Xi^\circ \twoheadrightarrow \Xi^\circ)$. If $i \geq 2$, then we shall write $\mathcal{G}_i \stackrel{\text{def}}{=} \operatorname{Ker}(\mathcal{G}_{i-1} \hookrightarrow \mathcal{G} \stackrel{\nabla_{\mathcal{G}}}{\to} \mathcal{G} \otimes_{\mathcal{O}_X} \omega_{X/k} \twoheadrightarrow (\mathcal{G}/\mathcal{G}_{i-1}) \otimes_{\mathcal{O}_X} \omega_{X/k})$. Then it follows that the submodule $\mathcal{G}_i \subseteq \mathcal{G}$ is an \mathcal{O}_X -submodule, and $\mathcal{G}_p = \{0\}$; moreover, one verifies immediately from a local explicit calculation [cf. also [4], Theorem 3.1.6] that the collection of data

$$(\mathcal{G}, \nabla_{\mathcal{G}}, \{0\} = \mathcal{G}_p \subseteq \mathcal{G}_{p-1} \subseteq \cdots \subseteq \mathcal{G}_1 \subseteq \mathcal{G}_0 \stackrel{\text{def}}{=} \mathcal{G})$$

satisfies conditions (1), (2), (3), and (4) of Definition 1.1.

Now I *claim* that the following assertion holds:

For each $i \in \{1, \ldots, p-1\}$, the composite $\mathcal{E}_{i-1} \hookrightarrow \mathcal{E} \xrightarrow{\gamma} \mathcal{G}$ determines an isomorphism $\mathcal{E}_{i-1}/\mathcal{E}_i \xrightarrow{\sim} \mathcal{G}_{i-1}/\mathcal{G}_i$ of \mathcal{O}_X -modules.

Let us verify this *claim* by *induction on i*. If i = 1, then the desired assertion has already been verified [in the first paragraph of this proof]. Let $i \in \{2, \ldots, p-1\}$. Suppose that γ determines an *isomorphism* $\mathcal{E}_{i-2}/\mathcal{E}_{i-1} \xrightarrow{\sim} \mathcal{G}_{i-2}/\mathcal{G}_{i-1}$ of \mathcal{O}_X -modules, which thus implies that $\gamma(\mathcal{E}_{i-1}) \subseteq \mathcal{G}_{i-1}$. Thus, since γ is *horizontal*, the diagram

commutes. In particular, it follows immediately from condition (3) of Definition 1.1, together with the induction hypothesis, that γ determines an *isomorphism* $\mathcal{E}_{i-1}/\mathcal{E}_i \xrightarrow{\sim} \mathcal{G}_{i-1}/\mathcal{G}_i$ of \mathcal{O}_X -modules, as desired. This completes the proof of the above *claim*.

By the above *claim*, one verifies easily that the composite $\mathcal{E} \xrightarrow{\gamma} \mathcal{G} \twoheadrightarrow \mathcal{G}/\mathcal{G}_{p-1}$ is an *isomorphism* of \mathcal{O}_X -modules. In particular, γ is *split injection*. This completes the proof of Lemma 2.2.

By Lemma 2.2, together with the fact that Ξ° is *isomorphic* to $\Phi^* \mathcal{L}^{\circ} \otimes_{\mathcal{O}_X} \omega_{X/k}$ [cf. the discussion preceding Proposition 1.3], we have an *exact sequence of locally free* \mathcal{O}_{X^F} -*modules*

 $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^{F}}} \Phi_{*} \omega_{X/k} \longrightarrow \mathcal{Q} \longrightarrow 0.$

LEMMA 2.3. — The above \mathcal{O}_{X^F} -module \mathcal{Q} is isomorphic to $\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{Y^F}} \omega_{X^F/k}$.

PROOF. — Let us first observe that \mathcal{F} is of rank p-1, and $\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^F}} \Phi_* \omega_{X/k}$ is of rank p, which thus implies that \mathcal{Q} is an *invertible sheaf* on X^F . Thus, by the exact sequence of the discussion preceding Lemma 2.3, together with (c) of the discussion preceding Lemma 2.2, it holds that

$$\mathcal{Q} \cong (\mathcal{L}^{\circ})^{\otimes p} \otimes_{\mathcal{O}_{X^F}} \det \Phi_* \omega_{X/k}.$$

In particular, since [it follows from our choice of \mathcal{L}° — cf. the discussion preceding Proposition 1.3 — that] $(\mathcal{L}^{\circ})^{\otimes p-1}$ is *isomorphic* to $\mathcal{H}om_{\mathcal{O}_{XF}}(\det \mathcal{B}^{\circ}, \mathcal{O}_{XF})$, we obtain that

 $\mathcal{Q} \cong \mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^{F}}} \mathcal{H}om_{\mathcal{O}_{X^{F}}}(\det \mathcal{B}^{\circ}, \det \Phi_{*}\omega_{X/k}).$

Next, let us recall [cf., e.g., [6], Theorem 7.2] the *well-known* exact sequence of \mathcal{O}_{X^F} -modules

$$0 \longrightarrow \mathcal{O}_{X^F} \longrightarrow \Phi_* \mathcal{O}_X \xrightarrow{\Phi_* d} \Phi_* \omega_{X/k} \xrightarrow{c} \omega_{X^F/k} \longrightarrow 0$$

— where we write c for the *Cartier operator*. Thus, it follows from the definition of \mathcal{B}° that

$$\det \Phi_* \omega_{X/k} \cong \omega_{X^F/k} \otimes_{\mathcal{O}_{X^F}} \det \mathcal{B}^{\circ}$$

This completes the proof of Lemma 2.3.

By Lemma 2.3, we have an *exact* sequence of locally free \mathcal{O}_{X^F} -modules

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^{F}}} \Phi_{*} \omega_{X/k} \longrightarrow \mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^{F}}} \omega_{X^{F}/k} \longrightarrow 0.$$

On the other hand, we have an *exact* sequence of locally free \mathcal{O}_{X^F} -modules

$$0 \longrightarrow \mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^{F}}} \mathcal{B}^{\circ} \longrightarrow \mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^{F}}} \Phi_{*} \omega_{X/k} \xrightarrow{c} \mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^{F}}} \omega_{X^{F/k}} \longrightarrow 0$$

[cf. the *well-known* exact sequence that appears in the second paragraph of the proof of Lemma 2.3].

Let us complete the proof of Theorem 2.1:

PROOF OF THEOREM 2.1. — In the above two exact sequences, assume that $\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^F}} \mathcal{B}^{\circ} \not\subseteq \mathcal{F}$ [in $\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^F}} \Phi_* \omega_{X/k}$]. Then it is immediate that the composite

$$\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{XF}} \mathcal{B}^{\circ} \hookrightarrow \mathcal{L}^{\circ} \otimes_{\mathcal{O}_{XF}} \Phi_{*} \omega_{X/k} \twoheadrightarrow (\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{XF}} \Phi_{*} \omega_{X/k}) / \mathcal{F} \cong \mathcal{L}^{\circ} \otimes_{\mathcal{O}_{XF}} \omega_{XF/k}$$

is nonzero. In particular, since we have an isomorphism $\mathcal{B}^{\circ} \xrightarrow{\sim} \mathcal{H}om_{\mathcal{O}_{X^F}}(\mathcal{B}^{\circ}, \omega_{X^F/k})$ of \mathcal{O}_{X^F} -modules [cf. the discussion preceding [8], Théorème 4.1.1], we conclude that the

 \mathcal{O}_{X^F} -module \mathcal{B}° admits a nonzero global section. Thus, it follows — in light of the exact sequence of \mathcal{O}_{X^F} -modules

$$0 \longrightarrow \mathcal{O}_{X^F} \longrightarrow \Phi_* \mathcal{O}_X \longrightarrow \mathcal{B}^\circ \longrightarrow 0$$

— that the Jacobian variety of X is not ordinary — in contradiction to our assumption.

Thus, we conclude that $\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^{F}}} \mathcal{B}^{\circ} \subseteq \mathcal{F}$ [in $\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^{F}}} \Phi_{*}\omega_{X/k}$]. Next, let us observe that since $\mathcal{O}_{X^{F}} \cong \det(\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^{F}}} \mathcal{B}^{\circ}) \cong \det \mathcal{F}$, the inclusion $\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{X^{F}}} \mathcal{O}_{X^{F}}$ $\mathcal{B}^{\circ} \subseteq \mathcal{F}$ implies the equality $\mathcal{L}^{\circ} \otimes_{\mathcal{O}_{YF}} \mathcal{B}^{\circ} = \mathcal{F} [in \mathcal{L}^{\circ} \otimes_{\mathcal{O}_{YF}} \Phi_* \omega_{X/k}]$. In particular, we have an isomorphism $\phi \colon \mathcal{E}^{\circ} \xrightarrow{\sim} \mathcal{E}$ [i.e., " Φ^* id"]. Moreover, it follows immediately from the definition of $\nabla_{\mathcal{E}^{\circ}}$, together with (b) of the discussion preceding Lemma 2.2, that the isomorphism ϕ is *horizontal* with respect to $\nabla_{\mathcal{E}^{\circ}}, \nabla_{\mathcal{E}}$.

Finally, we verify that $\phi(\mathcal{E}_{p-i}^{\circ}) = \mathcal{E}_{p-i}$ for each $i \in \{1, \ldots, p-1\}$ by *induction on i*. The equality $(\{0\} =) \phi(\mathcal{E}_{p-1}^{\circ}) = \mathcal{E}_{p-1}$ (= $\{0\}$) is immediate. Let $i \in \{2, \ldots, p-1\}$. Suppose that $\phi(\mathcal{E}_{p-i+1}^{\circ}) = \mathcal{E}_{p-i+1}$ holds. Then, to verify that $\phi(\mathcal{E}_{p-i}^{\circ}) = \mathcal{E}_{p-i}$, it suffices to verify that the induced isomorphism $\mathcal{E}^{\circ}/\mathcal{E}_{p-i+1}^{\circ} \xrightarrow{\sim} \mathcal{E}/\mathcal{E}_{p-i+1}$ maps $\mathcal{E}_{p-i}^{\circ}/\mathcal{E}_{p-i+1}^{\circ}$ isomorphically onto $\mathcal{E}_{p-i}/\mathcal{E}_{p-i+1}$. On the other hand, since [one verifies easily from the definition of a dormant oper that]

$$\mathcal{E}_{j-1}^{\circ}/\mathcal{E}_{j}^{\circ} \cong \mathcal{E}_{j-1}/\mathcal{E}_{j} \cong \Xi^{\circ} \otimes_{\mathcal{O}_{X}} \omega_{X/k}^{\otimes j-1}$$

for each $j \in \{1, \ldots, p-1\}$, the desired assertion follows immediately from the *ampleness* of $\omega_{X/k}$. This completes the proof of Theorem 2.1.

References

- [1] A. Beilinson and V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, Available at: http://math.uchicago.edu/mitya/langlands/hitchin/BDhitchin.pdf
- [2] A. Beilinsion and V. Drinfeld, *Opers*, arXiv:math/0501398v1 [math.AG] (January 2005).
- [3] Y. Hoshi, Nilpotent admissible indigenous bundles via Cartier operators in characteristic three, RIMS Preprint 1811 (October 2014): http://www.kurims.kyoto-u.ac.jp/~yuichiro/papers_e.html for an updated version.
- [4] K. Joshi and C. Pauly, Hitchin-Mochizuki morphism, opers and Frobenius-destabilized vector bundles over curves, Adv. Math. 274 (2015), 39–75.
- [5] K. Joshi, The degree of the dormant operatic locus, arXiv:1311.4359v2 [math.AG] (November 2005).
- [6] N. M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. No. 39 (1970), 175–232.
- [7] S. Mochizuki, Foundations of p-adic Teichmüller theory, AMS/IP Studies in Advanced Mathematics, 11. American Mathematical Society, Providence, RI; International Press, Cambridge, MA, 1999.
- [8] M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), no. 1, 103-125.
- [9] Y. Wakabayashi, An explicit formula for the generic number of dormant indigenous bundles, *Publ. Res. Inst. Math. Sci.* **50** (2014), no. **3**, 383–409.
- [10] Y. Wakabayashi, A theory of dormant opers on pointed stable curves a proof of Joshi's conjecture, arXiv:1411.1208v1 [math.AG] (November 2014).

(Yuichiro Hoshi) RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYото 606-8502, JAPAN

E-mail address: yuichiro@kurims.kyoto-u.ac.jp