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Abstract. — In the present paper, we prove that the set of equivalence classes of dormant
opers of rank p − 1 over a projective smooth curve of genus ≥ 2 over an algebraically closed
field of characteristic p > 0 whose Jacobian variety is ordinary is of cardinality one.
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Introduction

In the present paper, we study dormant opers of rank p − 1 over projective smooth
curves of characteristic p > 0. In particular, we prove that the set of equivalence classes
of dormant opers of rank p−1 over a suitable curve of characteristic p > 0 is of cardinality
one.

The notion of oper was introduced in [1] [cf. also [2]]. Let k be an algebraically closed
field and X a projective smooth curve of genus ≥ 2 over k. Let us recall that an oper over
X/k is a suitable triple consisting of a locally free coherent OX-module, a connection on
the module relative to X/k, and a filtration of the module. The study of opers in positive
characteristic was initiated by, for instance, [4], [5], [9], [10]. Suppose that we are in the
situation in which k is of characteristic p > 0. Then we shall say that a given oper is
dormant if the p-curvature of the connection of the oper is zero. We refer to Definition 1.1
[cf. also Definition 1.2] concerning the precise definition of the notion of “dormant oper”
discussed in the present paper. Note that a dormant oper of rank two is essentially the
same as a dormant indigenous bundle studied in the p-adic Teichmüller theory [cf. [7]].

The main result of the present paper, which is a generalization of the first portion of
[3], Theorem A [cf. Remark 2.1.1], is as follows [cf. Proposition 1.3, Theorem 2.1]:
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THEOREM A. — Let k be an algebraically closed field of characteristic p > 0 and X a
projective smooth curve of genus ≥ 2 over k. Then the following hold:

(i) There exists a dormant oper of rank p − 1 over X/k.

(ii) Suppose that the Jacobian variety of X is ordinary. Then the set of equivalence
classes of dormant opers of rank p − 1 over X/k is of cardinality one.

In [5], Joshi posed a conjecture concerning the number of equivalence classes of dormant
opers of rank r over a projective smooth curve of genus g ≥ 2 over an algebraically closed

field of characteristic p > 0 for p > C(r, g)
def
= r(r−1)(r−2)(g−1) [cf. [5], Conjecture 8.1];

moreover, Wakabayashi proved, in [10], this conjecture for a sufficiently general curve [cf.

[10], Theorem 8.7.1]. Note that the triple (r, g, p)
def
= (p−1, g, p) [i.e., the triple in the case

discussed in Theorem A] does not satisfy the condition “p > C(r, g)” unless p ∈ {2, 3}.

1. Construction of Dormant Opers of Rank p− 1

In the present §1, let p be a prime number, g ≥ 2 an integer, k an algebraically closed
field of characteristic p, and X a projective smooth curve over k [i.e., a scheme which
is projective, smooth, geometrically connected, and of relative dimension one over k] of
genus g. Write XF for the projective smooth curve over k obtained by base-changing
X via the absolute Frobenius morphism of k, Φ: X → XF for the relative Frobenius
morphism over k, I ⊆ OX×kX for the ideal ofOX×kX which defines the diagonal morphism
with respect to X/k, and X(n) ⊆ X ×k X for the closed subscheme of X ×k X defined by
the ideal In+1 ⊆ OX×kX [where n is a nonnegative integer]. In particular, it follows that
I/I2 = ωX/k (respectively, HomOX

(I/I2,OX) = τX/k), where we use the notation “ω”
(respectively, “τ”) to denote the cotangent (respectively, tangent) sheaf. Finally, write
d : OX → ωX/k for the exterior differentiation operator.

Let us define the notion of dormant oper, as well as the notion of equivalence of dormant
opers, discussed in the present paper as follows [cf., e.g., [5], §3; also [4], Definitions 3.1.1,
3.1.2 and (1)-(5) of pp. 51-52]:

DEFINITION 1.1. — Let r be a positive integer. Then we shall say that a collection of
data

(E , ∇E , {0} = Er ⊆ Er−1 ⊆ · · · ⊆ E1 ⊆ E0 = E)
consisting of a locally free coherent OX-module E , a connection ∇E on E relative to X/k,
and a filtration {0} = Er ⊆ Er−1 ⊆ · · · ⊆ E1 ⊆ E0 = E by OX-submodules of E is a
dormant oper of rank r over X/k if the following five conditions are satisfied:

(1) For every i ∈ {1, . . . , r}, the subquotient Ei−1/Ei is an invertible sheaf on X.

(2) For every i ∈ {1, . . . , r}, it holds that ∇E(Ei) ⊆ Ei−1 ⊗OX
ωX/k.

(3) For every i ∈ {1, . . . , r − 1}, the homomorphism of OX-modules obtained by
forming the composite

Ei
∇E→ Ei−1 ⊗OX

ωX/k ↠ (Ei−1/Ei)⊗OX
ωX/k
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[cf. (2)] determines an isomorphism Ei/Ei+1
∼→ (Ei−1/Ei) ⊗OX

ωX/k of invertible sheaves
on X [cf. (1)].

(4) The p-curvature of ∇E is zero.

(5) There exists an isomorphism (det E , det∇E)
∼→ (OX , d).

DEFINITION 1.2. — Let r be a positive integer and

E
def
= (E , ∇E , {0} = Er ⊆ Er−1 ⊆ · · · ⊆ E1 ⊆ E0 = E),

F
def
= (F , ∇F , {0} = Fr ⊆ Fr−1 ⊆ · · · ⊆ F1 ⊆ F0 = F)

dormant opers of rank r over X/k. Then we shall say that E is equivalent to F if the
following condition is satisfied: There exists a triple (L,∇L, ϕ) consisting of an invertible
sheaf L on X, a connection ∇L on L relative to X/k, and a horizontal isomorphism ϕ of
(E ,∇E) with (F ,∇F)⊗OX

(L,∇L) such that ϕ maps, for each i ∈ {0, . . . , r}, the subsheaf
Ei ⊆ E isomorphically onto the subsheaf Fi ⊗OX

L ⊆ F ⊗OX
L.

REMARK 1.2.1. — Note that the notion of the “equivalence class of a dormant oper of
rank r” of the present paper coincides with the notion of “isomorphism class of a dormant
PGL(r)-oper” in the terminology given in [5], §3.

REMARK 1.2.2. — One verifies immediately from the various definitions involved that
the notion of dormant oper of rank two is essentially the same as the notion of dormant
indigenous bundle studied in [7].

In the remainder of the present §1, let us construct a dormant oper of rank p− 1 over
X/k [cf. Proposition 1.3 below]. We shall write

B◦ def
= Coker(OXF → Φ∗OX)

for the OXF -module obtained by forming the cokernel of the natural homomorphism
OXF → Φ∗OX . Since [one verifies immediately that] the homomorphism OXF → Φ∗OX

admits a natural splitting after pulling back via Φ — which thus determines a natural
isomorphism of OX-modules

Φ∗Φ∗OX
∼−→ OX ⊕ Φ∗B◦

— and Φ is finite flat of degree p, it follows that B◦, hence also Φ∗B◦, is locally free of
rank p− 1.

Next, let us observe that one verifies immediately that the natural morphism over k

X ×XF X −→ X ×k X

determines an isomorphism over k

X ×XF X
∼−→ X(p−1).



4 Yuichiro Hoshi

Moreover, this isomorphism X ×XF X
∼→ X(p−1), together with the cartesian diagram

X ×XF X
pr2−−−→ X

pr1

y yΦ

X −−−→
Φ

XF ,

determines isomorphisms of OX-modules

Φ∗Φ∗OX
∼−→ pr1∗OX×

XF X
∼←− pr1∗OX(p−1)

,

which are compatible with the respective natural surjections onto OX [arising from the
diagonal morphism with respect to X/XF ] from each of these three modules. In par-
ticular, by forming the kernels of the respective natural surjections onto OX , we obtain
isomorphisms of OX-modules

Φ∗B◦ ∼−→ Ker(pr1∗OX×
XF X ↠ OX)

∼←− pr1∗(I/Ip).
Thus, by considering the filtration of pr1∗(I/Ip)

{0} = pr1∗(Ip/Ip) ⊆ pr1∗(Ip−1/Ip) ⊆ · · · ⊆ pr1∗(I2/Ip) ⊆ pr1∗(I/Ip),

we conclude that Φ∗ detB◦ = det(Φ∗B◦) is isomorphic to ω
p(p−1)

2

X/k , which thus implies

that degB◦ = (p − 1)(g − 1). In particular, one verifies immediately that there exists
an invertible sheaf L◦ on XF such that det(L◦ ⊗O

XF
B◦) (= (L◦)⊗p−1 ⊗O

XF
detB◦) is

isomorphic to OXF [cf. Remark 1.3.1 below].
We shall write

E◦ def
= Φ∗(L◦ ⊗O

XF
B◦).

Then since the closed immersion X(1) ↪→ X ×k X factors through the closed subscheme
X×XF X ⊆ X×kX [as verified above], it follows that the OX-module E◦ admits a natural
connection relative to X/k. We shall write

∇E◦

for the connection on E◦. Moreover, the above filtration of pr1∗(I/Ip) [together with the

above isomorphism Φ∗B◦ ∼→ pr1∗(I/Ip)] determines a filtration of E◦

{0} = E◦p−1 ⊆ E◦p−2 ⊆ · · · ⊆ E◦1 ⊆ E◦0 = E◦.
[Thus, one verifies immediately that E◦/E◦1 ∼= Φ∗L◦ ⊗OX

pr1∗(I/I2) = Φ∗L◦ ⊗OX
ωX/k.]

PROPOSITION 1.3. — The collection of data

E◦ def
= (E◦, ∇E◦ , {0} = E◦p−1 ⊆ E◦p−2 ⊆ · · · ⊆ E◦1 ⊆ E◦0 = E◦)

forms a dormant oper of rank p − 1 over X/k.

Proof. — The assertion that E◦ satisfies condition (1) of Definition 1.1 follows from
the definition of the OX-submodules E◦i ⊆ E◦. The assertion that E◦ satisfies conditions
(2) and (3) of Definition 1.1 follows immediately from a local explicit calculation [cf. also
[4], Theorem 3.1.6]. The assertion that E◦ satisfies condition (4) of Definition 1.1 follows
from the definition of the connection ∇E◦ . The assertion that E◦ satisfies condition (5) of
Definition 1.1 follows from the fact that det(L◦⊗O

XF
B◦) is isomorphic to OXF , together

with the definition of the connection∇E◦ . This completes the proof of Proposition 1.3. □
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REMARK 1.3.1. — Let us observe that the choice of “L◦” in the discussion preceding
Proposition 1.3 is not unique. More precisely, if we write (PicX)[p − 1] ⊆ PicX for
the subgroup of PicX obtained by forming the kernel of the endomorphism of PicX
given by multiplication by p− 1, then one verifies immediately that the set consisting of
isomorphism classes of “possible L◦’s” forms a (PicX)[p− 1]-torsor. On the other hand,
one also verifies immediately from the various definitions involved that the adoption
of another possible “L◦” does not affect the equivalence class of the dormant oper of
Proposition 1.3.

2. Uniqueness of Dormant Opers of Rank p− 1

In the present §2, we maintain the notation of the preceding §1. In particular, we have
a projective smooth curve X over k. In the present §2, we prove the following theorem:

THEOREM 2.1. — If the Jacobian variety of X is ordinary, then every dormant oper
of rank p − 1 over X/k is equivalent [cf. Definition 1.2] to the dormant oper of
Proposition 1.3 [cf. also Remark 1.3.1].

REMARK 2.1.1. — One verifies immediately from the various definitions involved, to-
gether with Remark 1.2.2, that if p = 3, then Theorem 2.1 implies and is implied by the
first portion of [3], Theorem A [cf. the first paragraph of the proof of [3], Theorem 2.1].
Thus, Theorem 2.1 is a generalization of the first portion of [3], Theorem A.

To complete the verification of Theorem 2.1, let

E
def
= (E , ∇E , {0} = Ep−1 ⊆ Ep−2 ⊆ · · · ⊆ E1 ⊆ E0 = E)

be a dormant oper of rank p− 1 over X/k. We shall write

Ξ◦ def
= E◦/E◦1 , Ξ

def
= E/E1.

Then it follows from the definition of a dormant oper that both (Ξ◦)⊗p−1 and Ξ⊗p−1 are

isomorphic to τ
⊗ (p−1)(p−2)

2

X/k , which thus implies that HomOX
(Ξ,Ξ◦) is of degree zero. In

particular, one verifies immediately that there exists an invertible sheaf on XF whose
pull back via Φ is isomorphic to HomOX

(Ξ,Ξ◦). Thus, to complete the verification of
Theorem 2.1, we may assume without loss of generality, by tensoring E with the above
pull back via Φ, that

Ξ◦ ∼= Ξ.

By means of such an isomorphism, let us identify Ξ◦ with Ξ.
Next, let us observe that since the p-curvature of ∇E is zero, and (det E , det∇E) is

isomorphic to (OX , d), it follows from a theorem of Cartier [cf., e.g., [6], Theorem 5.1]

that if we write F def
= E∇E for the OXF -module of horizontal sections of E with respect to

∇E , then

(a) E is naturally isomorphic to Φ∗F ,
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(b) the connection ∇E arises from the isomorphism of (a) [together with the factor-
ization X(1) ↪→ X ×XF X ↪→ X ×k X of the closed immersion X(1) ↪→ X ×k X discussed
in §1], and

(c) detF is isomorphic to OXF .

Thus, the isomorphism Φ∗F ∼→ E of (a) and the surjection E ↠ Ξ = Ξ◦ determine a
surjection of OX-modules

Φ∗F ↠ Ξ◦,

hence also a homomorphism of OXF -modules

F −→ Φ∗Ξ
◦.

LEMMA 2.2. — The above homomorphism F → Φ∗Ξ
◦ is a locally split injection.

Proof. — Let us first observe that it is immediate that, to verify Lemma 2.2, it suffices

to verify that the homomorphism γ : E ∼← Φ∗F → G def
= Φ∗Φ∗Ξ

◦ of OX-modules obtained
by pulling back, via Φ, the homomorphism under consideration is a split injection. Now
one verifies immediately that the composite of γ and the natural homomorphism G =
Φ∗Φ∗Ξ

◦ → Ξ◦ coincides with the natural surjection E ↠ Ξ = Ξ◦.
Write ∇G for the connection on G determined by the factorization X(1) ↪→ X×XF X ↪→

X ×k X of the closed immersion X(1) ↪→ X ×k X discussed in §1. Thus, it follows
immediately from the definitions of ∇E and ∇G that γ is horizontal with respect to ∇E
and ∇G. Moreover, for i ∈ {1, . . . , p}, let us define submodules Gi ⊆ G inductively as

follows: We shall write G1
def
= Ker(G = Φ∗Φ∗Ξ

◦ ↠ Ξ◦). If i ≥ 2, then we shall write

Gi
def
= Ker

(
Gi−1 ↪→ G ∇G→ G ⊗OX

ωX/k ↠ (G/Gi−1) ⊗OX
ωX/k

)
. Then it follows that the

submodule Gi ⊆ G is an OX-submodule, and Gp = {0}; moreover, one verifies immediately
from a local explicit calculation [cf. also [4], Theorem 3.1.6] that the collection of data

(G, ∇G, {0} = Gp ⊆ Gp−1 ⊆ · · · ⊆ G1 ⊆ G0
def
= G)

satisfies conditions (1), (2), (3), and (4) of Definition 1.1.
Now I claim that the following assertion holds:

For each i ∈ {1, . . . , p − 1}, the composite Ei−1 ↪→ E γ→ G determines an

isomorphism Ei−1/Ei
∼→ Gi−1/Gi of OX-modules.

Let us verify this claim by induction on i. If i = 1, then the desired assertion has already
been verified [in the first paragraph of this proof]. Let i ∈ {2, . . . , p − 1}. Suppose that

γ determines an isomorphism Ei−2/Ei−1
∼→ Gi−2/Gi−1 of OX-modules, which thus implies

that γ(Ei−1) ⊆ Gi−1. Thus, since γ is horizontal, the diagram

Ei−1
⊆−−−→ E ∇E−−−→ E ⊗OX

ωX/k −−−→ (E/Ei−1)⊗OX
ωX/ky γ

y γ⊗id

y y
Gi−1

⊆−−−→ G ∇G−−−→ G ⊗OX
ωX/k −−−→ (G/Gi−1)⊗OX

ωX/k

commutes. In particular, it follows immediately from condition (3) of Definition 1.1,

together with the induction hypothesis, that γ determines an isomorphism Ei−1/Ei
∼→

Gi−1/Gi of OX-modules, as desired. This completes the proof of the above claim.
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By the above claim, one verifies easily that the composite E γ→ G ↠ G/Gp−1 is an
isomorphism of OX-modules. In particular, γ is split injection. This completes the proof
of Lemma 2.2. □

By Lemma 2.2, together with the fact that Ξ◦ is isomorphic to Φ∗L◦ ⊗OX
ωX/k [cf.

the discussion preceding Proposition 1.3], we have an exact sequence of locally free OXF -
modules

0 −→ F −→ L◦ ⊗O
XF

Φ∗ωX/k −→ Q −→ 0.

LEMMA 2.3. — The above OXF -module Q is isomorphic to L◦ ⊗O
XF

ωXF /k.

Proof. — Let us first observe that F is of rank p− 1, and L◦ ⊗O
XF

Φ∗ωX/k is of rank

p, which thus implies that Q is an invertible sheaf on XF . Thus, by the exact sequence
of the discussion preceding Lemma 2.3, together with (c) of the discussion preceding
Lemma 2.2, it holds that

Q ∼= (L◦)⊗p ⊗O
XF

detΦ∗ωX/k.

In particular, since [it follows from our choice of L◦ — cf. the discussion preceding Propo-
sition 1.3 — that] (L◦)⊗p−1 is isomorphic to HomO

XF
(detB◦,OXF ), we obtain that

Q ∼= L◦ ⊗O
XF
HomO

XF
(detB◦, detΦ∗ωX/k).

Next, let us recall [cf., e.g., [6], Theorem 7.2] the well-known exact sequence of OXF -
modules

0 −→ OXF −→ Φ∗OX
Φ∗d−→ Φ∗ωX/k

c−→ ωXF /k −→ 0

— where we write c for the Cartier operator. Thus, it follows from the definition of B◦

that
detΦ∗ωX/k

∼= ωXF /k ⊗O
XF

detB◦.

This completes the proof of Lemma 2.3. □

By Lemma 2.3, we have an exact sequence of locally free OXF -modules

0 −→ F −→ L◦ ⊗O
XF

Φ∗ωX/k −→ L◦ ⊗O
XF

ωXF /k −→ 0.

On the other hand, we have an exact sequence of locally free OXF -modules

0 −→ L◦ ⊗O
XF
B◦ −→ L◦ ⊗O

XF
Φ∗ωX/k

c−→ L◦ ⊗O
XF

ωXF /k −→ 0

[cf. the well-known exact sequence that appears in the second paragraph of the proof of
Lemma 2.3].
Let us complete the proof of Theorem 2.1:

Proof of Theorem 2.1. — In the above two exact sequences, assume that L◦ ⊗O
XF

B◦ ̸⊆ F [in L◦ ⊗O
XF

Φ∗ωX/k]. Then it is immediate that the composite

L◦ ⊗O
XF
B◦ ↪→ L◦ ⊗O

XF
Φ∗ωX/k ↠ (L◦ ⊗O

XF
Φ∗ωX/k)/F ∼= L◦ ⊗O

XF
ωXF /k

is nonzero. In particular, since we have an isomorphism B◦ ∼→ HomO
XF

(B◦, ωXF /k) of
OXF -modules [cf. the discussion preceding [8], Théorème 4.1.1], we conclude that the
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OXF -module B◦ admits a nonzero global section. Thus, it follows — in light of the exact
sequence of OXF -modules

0 −→ OXF −→ Φ∗OX −→ B◦ −→ 0

— that the Jacobian variety of X is not ordinary — in contradiction to our assumption.
Thus, we conclude that L◦ ⊗O

XF
B◦ ⊆ F [in L◦ ⊗O

XF
Φ∗ωX/k].

Next, let us observe that since OXF
∼= det(L◦⊗O

XF
B◦) ∼= detF , the inclusion L◦⊗O

XF

B◦ ⊆ F implies the equality L◦ ⊗O
XF
B◦ = F [in L◦ ⊗O

XF
Φ∗ωX/k]. In particular, we

have an isomorphism ϕ : E◦ ∼→ E [i.e., “Φ∗id”]. Moreover, it follows immediately from
the definition of ∇E◦ , together with (b) of the discussion preceding Lemma 2.2, that the
isomorphism ϕ is horizontal with respect to ∇E◦ , ∇E .

Finally, we verify that ϕ(E◦p−i) = Ep−i for each i ∈ {1, . . . , p−1} by induction on i. The
equality ({0} =) ϕ(E◦p−1) = Ep−1 (= {0}) is immediate. Let i ∈ {2, . . . , p − 1}. Suppose
that ϕ(E◦p−i+1) = Ep−i+1 holds. Then, to verify that ϕ(E◦p−i) = Ep−i, it suffices to verify

that the induced isomorphism E◦/E◦p−i+1
∼→ E/Ep−i+1 maps E◦p−i/E◦p−i+1 isomorphically

onto Ep−i/Ep−i+1. On the other hand, since [one verifies easily from the definition of a
dormant oper that]

E◦j−1/E◦j ∼= Ej−1/Ej ∼= Ξ◦ ⊗OX
ω⊗j−1
X/k

for each j ∈ {1, . . . , p− 1}, the desired assertion follows immediately from the ampleness
of ωX/k. This completes the proof of Theorem 2.1. □
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