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Abstract. — In the present paper, we study the geometry of the stable models of proper
hyperbolic curves over p-adic local fields via the geometrically pro-p étale fundamental groups
of the curves. In particular, we establish functorial “group-theoretic” algorithms for recon-
structing various objects related to the geometry of stable models from the geometrically pro-p
étale fundamental groups. As an application, we also give a pro-p “group-theoretic” criterion
for good reduction of ordinary proper hyperbolic curves over p-adic local fields.
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Introduction

Let p be a prime number, k a p-adic local field [i.e., a finite extension of Qp], k an
algebraic closure of k, and X a proper hyperbolic curve over k [i.e., a proper smooth curve

over k of arithmetic genus ≥ 2]. Write k for the residue field of k, Xk
def
= X ×k k for the

proper hyperbolic curve over k obtained by base changing X from k to k, and

ΠX

for the geometrically pro-p étale fundamental group of X [cf. Definition 2.2]. Then it is
well-known [cf. Theorem 1.3] that the hyperbolic curve Xk has stable reduction over the
ring of integers of k. We shall write Xk for the stable curve over k obtained by forming
the special fiber of the stable model of Xk.

In the present paper, we study the geometry of the stable curve Xk via the profinite
group ΠX . In particular, we center around the task of establishing functorial “group-
theoretic” algorithms whose input data consist of the abstract profinite group ΠX and
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whose output data consist of objects related to the geometry of the stable curve Xk

[cf. the main result of the present paper, i.e., Theorem 3.7]. By applying the functorial
“group-theoretic” algorithms of the present paper, one may reconstruct, from ΠX , for
instance, the following objects:

• The set of irreducible components of Xk whose normalizations are of positive p-rank

[cf. Theorem 3.7, (viii)], as well as the [necessarily positive] p-ranks of the normalizations
of elements of this set [cf. Theorem 3.7, (x)].

• The first Betti number of the [topological space determined by the] dual graph of
Xk [cf. Theorem 3.7, (vii)].

We shall say that the proper hyperbolic curve X is ordinary if the arithmetic genus of X
is equal to the p-rank of Xk [cf. Definition 2.6, (i)]. Moreover, we shall say that a profinite

group Π satisfies the condition (†) if there exist a prime number l and an isomorphism of
Π with the geometrically pro-l étale fundamental group of a proper hyperbolic curve over
an l-adic local field [cf. Definition 3.6]. [So the profinite group ΠX satisfies the condition
(†).] Some of consequences of the functorial “group-theoretic” algorithms of the present
paper may be summarized as follows [cf. Theorem 3.7, (xi), (xiii)]:

THEOREM. — The following hold:

(i) There exists a purely “group-theoretic” condition for profinite groups which
satisfy (†) such that the profinite group ΠX satisfies the condition if and only if the
hyperbolic curve X is ordinary.

(ii) There exists a purely “group-theoretic” condition for profinite groups which
satisfy (†) such that the profinite group ΠX satisfies the condition if and only if the
hyperbolic curve X is ordinary and has good reduction [i.e., over the ring of integers
of k].

In particular, we obtain the following result [cf. Corollary 3.8, (iv), (vi)]:

COROLLARY. — For � ∈ {◦, •}, let p� be a prime number, k� a p�-adic local field, and
X� a proper hyperbolic curve over k�. Suppose that the geometrically pro-p◦ étale
fundamental group of X◦ is isomorphic to the geometrically pro-p• étale fundamental
group of X•. Then the following hold:

(i) It holds that X◦ is ordinary if and only if X• is ordinary.

(ii) Suppose, moreover, that either X◦ or X• is ordinary. Then it holds that X◦ has
good reduction if and only if X• has good reduction.

Note that Theorem, as well as Corollary, may be regarded as a pro-p “group-theoretic”
criterion for good reduction of ordinary proper hyperbolic curves over p-adic local fields.
Here, let us recall [cf. Remark 3.8.1] that, for a nonempty set Σ of prime numbers such
that p 6∈ Σ, we have already a pro-Σ “group-theoretic” criterion for good reduction of [not
necessarily ordinary] hyperbolic curves over p-adic local fields proved by T. Oda [cf. [18],
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Theorem 3.2], A. Tamagawa [cf. [20], Theorem 5.3], and S. Mochizuki [cf. [12], Corollary
2.8].

Finally, let us discuss [cf. Remark 3.8.2] the p-adic criterion for good reduction of curves
proved by F. Andreatta, A. Iovita, and M. Kim in [1] from the point of view of the present
paper. The p-adic criterion of [1] asserts, roughly speaking, that X has good reduction
if and only if every member of a certain collection of finite-dimensional representations

of Gk
def
= Gal(k/k) over Qp determined by the profinite group ΠX and a splitting of the

natural surjection ΠX � Gk arising from a k-rational point of X is crystalline [cf. [1],
Theorem 1.9]. Here, observe that this criterion [is interesting even in a certain point of
view of anabelian geometry but] should be considered to be not “group-theoretic” [i.e., to
be not useful in pro-p absolute anabelian geometry] by the following two reasons:

(1) The issue of whether or not a given finite-dimensional representation of Gk over
Qp is crystalline is not “group-theoretic”. Indeed, it follows immediately from the discus-
sion of [7], Remark 3.3.1, that there exist a prime number l, an l-adic local field L, an
automorphism α of the absolute Galois group GL of L, and a crystalline representation

ρ : GL → GLn(Ql) such that the composite GL

α
∼→ GL

ρ→ GLn(Ql) is not crystalline.

(2) It is not clear that the issue of whether or not a given splitting of the natural
surjection ΠX � Gk arises from a k-rational point of X is “group-theoretic”. Note that
it follows from [5], Theorem A, that there exist a prime number l, an l-adic local field
L, a proper hyperbolic curve C over L, and a splitting of the natural surjection from the
geometrically pro-l étale fundamental group of C onto the absolute Galois group of L
which does not arise from an L-rational point of C.

As a consequence of this discussion, one cannot, at least in the immediate literal sense,
drop the ordinary hypothesis in the statement of Corollary, (ii), even if one applies the
p-adic criterion of [1].
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1. Stable Models

Throughout the present paper, let p be a prime number. In the present §1, we intro-
duce some notational conventions related to the geometry of the stable models of proper
hyperbolic curves over p-adic local fields. We also recall a theorem of P. Deligne and D.
Mumford [cf. Theorem 1.3 below] and a theorem of M. Raynaud [cf. Theorem 1.6 below]

DEFINITION 1.1. — Let V be a proper variety over a field F . Then we shall write

gV
def
= (−1)dim(V ) · (χZar(OV )− 1)

for the arithmetic genus of V . If, moreover, F is algebraically closed and of characteristic
p, then we shall write

γV
def
= dimFp H1

ét(V, Fp)

for the p-rank of V .
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In the remainder of the present §1, let k be a p-adic local field [i.e., a finite extension
of Qp], k an algebraic closure of k, and X a proper hyperbolic curve over k [i.e., a proper

smooth curve over k such that gX ≥ 2]. Write k for the residue field of k and Xk
def
= X×kk

for the proper hyperbolic curve over k obtained by base changing X from k to k.

DEFINITION 1.2. — Let K be a(n) [possibly infinite] algebraic extension of k. Then we
shall say that the hyperbolic curve X ×k K over K has stable reduction (respectively,
good reduction) if the structure morphism X ×k K → Spec(K) extends to a stable curve
(respectively, smooth stable curve) over the ring of integers of K [cf. [3], Definition 1.1].

THEOREM 1.3 (Deligne-Mumford). — In the notational conventions introduced in the
discussion preceding Definition 1.2, there exists a finite extension K of k such that the
hyperbolic curve X×k K over K has stable reduction [cf. Definition 1.2]. In particular,
the hyperbolic curve Xk over k has stable reduction.

Proof. — This follows from [3], Corollary 2.7. �

DEFINITION 1.4.

(i) We shall write

Xk

for the stable curve over k [of arithmetic genus gX ] obtained by forming the special fiber
of the stable model of Xk over the ring of integers of k [cf. Theorem 1.3].

(ii) We shall write

GX

for the dual graph of Xk,

Irr(X)

for the set of irreducible components of Xk — i.e., the set of vertices of GX — and

b1(X)
def
= dimQ H1(GX , Q)

for the first Betti number of [the topological space determined by] GX .

(iii) Let v ∈ Irr(X). Then we shall write

Iv

for the proper smooth curve over k obtained by forming the normalization of the irre-
ducible component of Xk corresponding to v ∈ Irr(X),

gv
def
= gIv

for the arithmetic genus of Iv, and

γv
def
= γIv

for the p-rank of Iv.
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(iv) We shall write

Irr(X)γ=0 def
= { v ∈ Irr(X) | γv = 0 } ⊆ Irr(X)

for the set of irreducible components of Xk [whose normalizations are] of p-rank zero and

Irr(X)γ>0 def
= Irr(X) \ Irr(X)γ=0 = { v ∈ Irr(X) | γv > 0 } ⊆ Irr(X)

for the set of irreducible components of Xk [whose normalizations are] of positive p-rank.

REMARK 1.4.1.

(i) It is well-known that, for each v ∈ Irr(X), it holds that gv ≥ γv ≥ 0.

(ii) One verifies easily that

gX = gXk
= b1(X) +

∑
v∈Irr(X)

gv,

γXk
= b1(X) +

∑
v∈Irr(X)

γv = b1(X) +
∑

v∈Irr(X)γ>0

γv.

[One may also find these equalities concerning γXk
in the final discussion of [16], §0.]

REMARK 1.4.2. — Let Y → X be a connected finite étale covering of X.

(i) One verifies easily that Y is a proper hyperbolic curve over a finite extension kY of k
[i.e., the algebraic closure of k in the function field of Y ]. Moreover, one also verifies easily

that the covering Y → X determines a connected finite étale covering Yk
def
= Y ×kY

k → Xk

over k.

(ii) It follows, in light of Theorem 1.3, from [10], Lemma 8.3, that the covering Yk → Xk

of (i) extends to a uniquely determined proper [not necessarily finite] surjection from the
stable model of Yk over the ring of integers of k to the stable model of Xk over the ring of
integers of k. In particular, we obtain a proper [not necessarily finite] surjection Yk → Xk

over k.

(iii) One verifies immediately from the existence of the morphism Yk → Xk of (ii) that
the inequalities

b1(Y ) ≥ b1(X), ]Irr(Y )γ>0 ≥ ]Irr(X)γ>0

hold.

DEFINITION 1.5. — Let Y → X be a connected finite étale covering of X. Then we shall
say that the covering Y → X is a geometrically-p-covering if the Galois closure of the
connected finite étale covering Yk → Xk over k [cf. Remark 1.4.2, (i)] is of degree a power
of p [cf. Remark 2.2.1 below].
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REMARK 1.5.1. — One verifies easily that the composite of finitely many geometrically-
p-coverings is a geometrically-p-covering. Moreover, one also verifies easily that the con-
nected finite étale covering obtained by the “composition” [i.e., obtained by considering
the composite field of the function fields] of finitely many geometrically-p-coverings is a
geometrically-p-covering.

THEOREM 1.6 (Raynaud). — In the notational conventions introduced in the discussion
preceding Definition 1.2, suppose that Xk has good reduction [cf. Definition 1.2]. Then
it holds that b1(Y ) = 0 [cf. Definition 1.4, (ii)] for every geometrically-p-covering Y → X
[cf. Definition 1.5] of X.

Proof. — Let Y → X be a geometrically-p-covering of X. Then it follows from Re-
mark 1.4.2, (iii), that, to verify that b1(Y ) = 0, we may assume without loss of generality,
by replacing Y → X by the Galois closure, that the geometrically-p-covering Y → X is
Galois. Then since the Galois group of the Galois covering Yk → Xk [cf. Remark 1.4.2,
(i)] is a p-group, the equality b1(Y ) = 0 follows from [15], Théorème 1, (ii). �

2. Quotients of Pro-p Fundamental Groups

In the present §2, we discuss certain quotients [cf. Definition 2.3 and Definition 2.4
below] of the pro-p geometric étale fundamental groups [cf. Definition 2.2 below] of proper
hyperbolic curves over p-adic local fields. In the present §2, we maintain the notational
conventions introduced in the discussion preceding Definition 1.2. Write π1(X) for the
étale fundamental group of X relative to some choice of basepoint such that the algebraic

closure of k determined by the basepoint coincides with k, Gk
def
= Gal(k/k) for the absolute

Galois group of k determined by the algebraic closure k, and Ik ⊆ Gk for the inertia
subgroup of Gk.

DEFINITION 2.1. — We shall say that X is split if the natural action of Gk on the dual
graph GX is trivial.

REMARK 2.1.1. — Since the graph GX is finite, it is immediate that there exists a finite
extension K of k such that the hyperbolic curve X ×k K over K is split.

DEFINITION 2.2. — We shall write

∆X

for the pro-p geometric étale fundamental group of X — i.e., the maximal pro-p quotient
of the étale fundamental group π1(Xk) of Xk relative to the basepoint which defines π1(X)
— and

ΠX
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for the geometrically pro-p étale fundamental group of X — i.e., the quotient of π1(X)
by the normal closed subgroup obtained by forming the kernel of the natural surjection
from π1(Xk) (⊆ π1(X)) to ∆X . Thus, we have an exact sequence of profinite groups

1 −→ ∆X −→ ΠX −→ Gk −→ 1,

which thus determines an outer action of Gk on ∆X .

REMARK 2.2.1. — Let Y → X be a connected finite étale covering of X. Then one
verifies easily that the covering Y → X [is isomorphic to the covering which] corresponds
to an open subgroup of ΠX if and only if the covering Y → X is a geometrically-p-covering.

DEFINITION 2.3.

(i) We shall write

∆ét
X

for the pro-p étale fundamental group of Xk — i.e., the maximal pro-p quotient of the étale

fundamental group π1(Xk) of Xk relative to the basepoint determined by the basepoint

which defines π1(X). Thus, the natural open immersion from Xk into the stable model
of Xk over the ring of integers of k determines a surjection

∆X � ∆ét
X .

(ii) Let v ∈ Irr(X). Then we shall write

Dv ⊆ ∆ét
X

for the decomposition subgroup of ∆ét
X [well-defined up to conjugation] associated to the

irreducible component of Xk corresponding to v ∈ Irr(X).

(iii) We shall write

∆cmb
X

for the quotient of ∆ét
X by the normal closed subgroup topologically normally generated by

the Dv’s, where v ranges over the elements of Irr(X). Thus, we have a natural surjection

∆ét
X � ∆cmb

X .

DEFINITION 2.4. — We shall write

∆ab
X , ∆ab-ét

X , ∆ab-cmb
X

for the respective abelianizations of ∆X , ∆ét
X , ∆cmb

X . Thus, ∆ab
X , ∆ab-ét

X , ∆ab-cmb
X have

natural structures of Zp-modules, respectively.

REMARK 2.4.1.

(i) One verifies easily that if X has stable reduction, then the quotients ∆ab
X � ∆ab-ét

X �
∆ab-cmb

X of ∆ab
X are Gk-stable.
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(ii) One also verifies easily from the various definitions involved that the following
hold:

• If X has stable reduction, then the action of Ik on the Gk-stable [cf. (i)] quotient
∆ab-ét

X is trivial.

• If X is split, then the action of Gk on the Gk-stable [cf. (i)] quotient ∆ab-cmb
X is

trivial.

PROPOSITION 2.5. — The following hold:

(i) The profinite groups ∆ét
X , ∆cmb

X are free pro-p of rank γXk
, b1(X), respectively.

In particular, the Zp-modules ∆ab-ét
X , ∆ab-cmb

X are free of rank γXk
, b1(X), respectively.

(ii) Let v ∈ Irr(X). Then the profinite group Dv is free pro-p of rank γv. In
particular, the abelianization Dab

v of Dv is a free Zp-module of rank γv.

(iii) The natural inclusions Dv ↪→ ∆ét
X — where v ranges over the elements of Irr(X) —

and the natural surjection ∆ét
X � ∆cmb

X determine an exact sequence of finitely generated
free Zp-modules

0 −→
⊕

v∈Irr(X)

Dab
v −→ ∆ab-ét

X −→ ∆ab-cmb
X −→ 0.

(iv) Let v, w ∈ Irr(X)γ>0. Then the following conditions are equivalent:

(1) It holds that v = w.

(2) The conjugacy class of Dv coincides with the conjugacy class of Dw.

(3) The intersection Dv ∩Dw is nontrivial for some choices of Dv and Dw [i.e.,
among their conjugates].

(v) Let v ∈ Irr(X)γ>0. Then the closed subgroup Dv ⊆ ∆ét
X is commensurably

terminal, i.e., for δ ∈ ∆ét
X , it holds that δ ∈ Dv if and only if the intersection Dv ∩

(δDvδ
−1) is of finite index in both Dv and δDvδ

−1.

(vi) Suppose that X has stable reduction [which thus implies that the quotients
∆ab

X � ∆ab-ét
X � ∆ab-cmb

X of ∆ab
X are Gk-stable — cf. Remark 2.4.1, (i)]. Then, for every

open subgroup J ⊆ Gk of Gk, there is no nontrivial torsion-free J-stable quotient
of

Ker(∆ab-ét
X � ∆ab-cmb

X )

on which J acts trivially.

Proof. — First, we verify assertion (i). Let us first observe that it follows immediately
from the definition of ∆cmb

X that ∆cmb
X is naturally isomorphic to the pro-p completion

of the topological fundamental group of the [topological space determined by the] graph
GX . Next, let us recall the well-known fact that the topological fundamental group of the
[topological space determined by the] graph GX is free of rank b1(X). Thus, the profinite
group ∆cmb

X is free pro-p of rank b1(X), as desired.
Next, to verify the assertion for ∆ét

X in assertion (i), let us recall the well-known fact
that H2

ét(Xk, Z/pZ) = {0} [cf., e.g., [9], Chapter VI, Remark 1.5, (b)]. Thus, it follows
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from [19], Corollary A.1.4, that H2(∆ét
X , Z/pZ) = {0}. In particular, it follows from [17],

Theorem 7.7.4, that ∆ét
X is free pro-p [of rank γk — cf. Definition 1.1]. This completes

the proof of assertion (i).
Next, we verify assertions (ii), (iii). For each v ∈ Irr(X), write ∆v for the maximal

pro-p quotient of the étale fundamental group of the proper smooth curve Iv over k. Then
it follows from a similar argument to the argument applied in the proof of the assertion
for ∆ét

X in assertion (i) that

(a) the profinite group ∆v is free pro-p of rank γv [which thus implies that the abelian-
ization ∆ab

v of ∆v is a free Zp-module of rank γv].

Next, let us observe that since Dv is a closed subgroup of a free pro-p [cf. assertion (i)]
group ∆ét

X , it follows from [17], Corollary 7.7.5, that

(b) the profinite group Dv is free pro-p [which thus implies that the Zp-module Dab
v

is free].

Moreover, it follows from the definition of Dv that

(c) the natural finite morphism Iv → Xk over k determines a surjection ∆v � Dv

[well-defined up to N∆ét
X
(Dv)-conjugation — where we write N∆ét

X
(Dv) for the normalizer

of Dv in ∆ét
X ].

Thus, it follows from (a), (b), (c) that, to verify assertion (ii), it suffices to verify the
following assertion:

(A) The surjection ∆ab
v � Dab

v determined by the surjection of (c) is injective.

Next, let us observe that one verifies easily that the various homomorphisms appearing
in the statement of assertion (iii) determine an exact sequence of Zp-modules⊕

v∈Irr(X)

Dab
v −→ ∆ab-ét

X −→ ∆ab-cmb
X −→ 0.

In particular, to verify assertion (iii), it suffices to verify the following assertion:

(B) The natural homomorphism
⊕

v∈Irr(X) Dab
v → ∆ab-ét

X is injective.

Thus, we conclude [cf. (A), (B)] that, to complete the verification of assertions (ii),
(iii), it suffices to verify the following assertion:

(C) The homomorphism
⊕

v∈Irr(X) ∆ab
v → ∆ab-ét

X determined by the natural finite

morphisms Iv → Xk — where v ranges over the elements of Irr(X) — is injective.

On the other hand, (C) follows immediately from a similar argument to the argument
applied in the proof of [6], Lemma 1.4 [cf. also Remark 2.5.1, (ii), below]. This completes
the proofs of assertions (ii), (iii).

Assertion (iv) follows immediately from assertions (ii), (iii), together with the fact that
every nontrivial closed subgroup of a free pro-p group is infinite [cf. [17], Corollary 7.7.5].
Assertion (v) is a formal consequence of assertion (iv). Assertion (vi) follows immediately
from assertion (iii) [cf. also (A)] and [20], Proposition 3.3, (ii). This completes the proof
of Proposition 2.5. �



10 Yuichiro Hoshi

REMARK 2.5.1.

(i) One can also verify the equalities concerning γXk
of Remark 1.4.1, (ii), from

Proposition 2.5, (i), (ii), (iii).

(ii) The assertion (C) in the proof of Proposition 2.5 also follows, in light of the exact
sequence in the discussion preceding the assertion (B), from the equalities concerning γXk

of Remark 1.4.1, (ii), together with Proposition 2.5, (i), and the assertions (a), (c) in the
proof of Proposition 2.5.

DEFINITION 2.6.

(i) We shall say that X is ordinary if gX [i.e., gXk
— cf. Remark 1.4.1, (ii)] is equal

to γk.

(ii) We shall say that X is rationally degenerate if gv = 0 for every v ∈ Irr(X).

LEMMA 2.7. — The following hold:

(i) It holds that X is ordinary if and only if gv = γv for every v ∈ Irr(X).

(ii) It holds that X is rationally degenerate if and only if the following condition
is satisfied: The hyperbolic curve X is ordinary, and Irr(X)γ>0 = ∅.

(iii) If X is ordinary, then it holds that either b1(X) 6= 0, Irr(X)γ=0 = ∅, or
]Irr(X)γ>0 ≥ 3.

Proof. — Assertion (i) follows from Remark 1.4.1, (i), (ii). Assertion (ii) follows from
assertion (i), together with Remark 1.4.1, (i). Assertion (iii) follows immediately from
assertion (i), together with the definition of a stable curve. �

DEFINITION 2.8. — Let C be a hyperbolic curve over k. Then we shall say that Xk

is p-isogenous to C if there exist a hyperbolic curve Z over k and finite étale coverings
Z → Xk, Z → C over k such that the respective Galois closures of Z → Xk, Z → C are
of degree a power of p.

THEOREM 2.9. — In the notational conventions introduced at the beginning of §2, con-
sider the following conditions:

(1) The hyperbolic curve Xk has good reduction [cf. Definition 1.2].

(2) The hyperbolic curve Xk is p-isogenous [cf. Definition 2.8] to a hyperbolic curve
over k which has good reduction.

(3) It holds that b1(Y ) = 0 [cf. Definition 1.4, (ii)] for every geometrically-p-covering
Y → X [cf. Definition 1.5] of X.

(4) It holds that ]Irr(Y )γ>0 ≤ 1 [cf. Definition 1.4, (iv)] for every geometrically-p-
covering Y → X of X.
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Then the following hold:

(i) The implications

(1) =⇒ (2) =⇒ (3) =⇒ (4)

hold.

(ii) Suppose that there exists a geometrically-p-covering Y → X of X such that
Irr(Y )γ>0 6= ∅. Then the equivalence

(3) ⇐⇒ (4)

holds.

(iii) Suppose that X is ordinary [cf. Definition 2.6, (i)]. Then the equivalence

(1) ⇐⇒ (3)

holds.

Proof. — First, we verify assertion (i). The implication (1) ⇒ (2) is immediate. The
implication (2) ⇒ (3) follows, in light of Remark 1.4.2, (iii), and Remark 1.5.1, from
Theorem 1.6. Finally, we verify the implication (3) ⇒ (4). Suppose that condition (4)
is not satisfied, i.e., that there exist a geometrically-p-covering Y → X and distinct
elements v1, v2 ∈ Irr(Y )γ>0. Then it follows from Proposition 2.5, (ii), (iii), that there
exists a Galois geometrically-p-covering Z → Y of Y such that

• the surjection ∆Y � ∆Y /∆Z [cf. Remark 2.2.1] factors through ∆Y � ∆ét
Y ,

• ∆Y /∆Z
∼= Z/pZ, and, moreover,

• for each w ∈ Irr(Y ), it holds that the image of the composite Dw ↪→ ∆ét
Y � ∆Y /∆Z

is nontrivial if and only if w ∈ {v1, v2}.
Then, by considering liftings in GZ — relative to the finite étale covering Zk → Yk [cf.

Remark 1.4.2, (ii)] — of a “simple path” in GY from v1 to v2, one verifies easily that
b1(Z) 6= 0, which thus implies [cf. Remark 1.5.1] that condition (3) is not satisfied. This
completes the proof of the implication (3) ⇒ (4), hence also of assertion (i).

Next, we verify assertion (ii). Suppose that there exists a geometrically-p-covering
Y → X of X such that Irr(Y )γ>0 6= ∅, and that condition (3) is not satisfied. Thus, it
follows from Remark 1.4.2, (iii), and Remark 1.5.1 that there exists a geometrically-p-
covering Z → Y of Y such that b1(Z) 6= 0, which thus implies that ∆ab-cmb

Z ⊗ZpZ/pZ 6= {0}
[cf. Proposition 2.5, (i)]. Let W → Z be a geometrically-p-covering of Z such that the
open subgroup ∆W ⊆ ∆Z [cf. Remark 2.2.1] coincides with the kernel of the natural
surjection ∆Z � ∆ab-cmb

Z ⊗Zp Z/pZ. Then it is immediate that

0 < ]Irr(Y )γ>0 ≤ ]Irr(Z)γ>0 < ](∆ab-cmb
Z ⊗Zp Z/pZ) · ]Irr(Z)γ>0 = ]Irr(W )γ>0

[cf. Remark 1.4.2, (iii)]. Thus, condition (4) is not satisfied [cf. Remark 1.5.1]. This
completes the proof of assertion (ii).

Finally, we verify assertion (iii). Suppose that X is ordinary, and that condition (3) is
satisfied [which thus implies that condition (4) is satisfied — cf. assertion (i)]. Then it
follows from Lemma 2.7, (iii), together with the fact that b1(X) = 0 [cf. condition (3)],
that it holds that either Irr(X)γ=0 = ∅ or ]Irr(X)γ>0 ≥ 3. In particular, it follows from
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the fact that ]Irr(X)γ>0 ≤ 1 [cf. condition (4)] that Irr(X)γ=0 = ∅. Thus, again by the
fact that ]Irr(X)γ>0 ≤ 1 [cf. condition (4)], it follows that

1 ≥ ]Irr(X)γ>0 = ]Irr(X)− ]Irr(X)γ=0 = ]Irr(X).

In particular, again by the fact that b1(X) = 0 [cf. condition (3)], it follows that Xk is

smooth over k, as desired. This completes the proof of assertion (iii). �

REMARK 2.9.1. — Suppose that we are in the situation of Theorem 2.9:

(i) In general, the implication (2)⇒ (1) does not hold as follows: Let us recall the well-
known fact that the Zp-module ∆ab

X is free of rank 2gX (= 2gXk
> γXk

). Thus, it follows

from Proposition 2.5, (i), that the natural surjection ∆X � ∆ét
X is not an isomorphism.

Now suppose that Xk has good reduction. Thus, it follows from [20], Lemma 5.5, that
there exists a geometrically-p-covering Y → X of X such that Yk does not have good
reduction. Then the hyperbolic curve Y violates the implication (2) ⇒ (1).

(ii) It follows from (i) that, in general, the implication (3) ⇒ (1), hence also the
implication (4) ⇒ (1), does not hold.

COROLLARY 2.10. — In the notational conventions introduced at the beginning of §2, let
Y be an ordinary [cf. Definition 2.6, (i)] proper hyperbolic curve over k such that Yk has
good reduction [cf. Definition 1.2]. Consider the following conditions:

(1) The hyperbolic curve X is ordinary.

(2) The hyperbolic curve Xk has good reduction.

Then the following hold:

(i) If Xk is p-isogenous [cf. Definition 2.8] to Yk, then the implication

(1) =⇒ (2)

holds.

(ii) If there exists a geometrically-p-covering X → Y [cf. Definition 1.5] over k such
that the connected finite étale covering Xk → Yk over k [cf. Remark 1.4.2, (i)] is Galois,
then the equivalence

(1) ⇐⇒ (2)

holds.

Proof. — First, we verify assertion (i). Suppose that X is ordinary, and that Xk

is p-isogenous to Yk. Since X satisfies condition (2) of Theorem 2.9, it follows from
Theorem 2.9, (i), that X satisfies condition (3) of Theorem 2.9. Thus, since [we have
assumed that] X is ordinary, it follows from Theorem 2.9, (iii), that the hyperbolic curve
Xk has good reduction, as desired. This completes the proof of assertion (i).

The implication (2) ⇒ (1) in the case where there exists a geometrically-p-covering
X → Y over k such that the connected finite étale covering Xk → Yk over k is Galois
follows immediately from [20], Lemma 5.5, together with the Riemann-Roch formula [for
genus] and the Deuring-Shafarevich formula [for p-rank]. This completes the proof of
Corollary 2.10. �
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REMARK 2.10.2. — Note that Corollary 2.10, (ii), may be regarded as a special case of
[16], Proposition 3.

3. Pro-p Group-theoretic Algorithms

In the present §3, we establish functorial “group-theoretic” algorithms for reconstruct-
ing various objects related to the geometry of the stable models of proper hyperbolic
curves over p-adic local fields from the geometrically pro-p étale fundamental groups
of the curves [cf. Theorem 3.7 below]. In the present §3, we maintain the notational
conventions introduced at the beginning of §2.

DEFINITION 3.1. — We shall write

ΛX
def
= HomZp

(
H2(∆X , Zp), Zp

)
for the pro-p cyclotome associated to X.

REMARK 3.1.1. — One verifies easily that the natural outer action of Gk on ∆X de-
termines an action of Gk on the cyclotome ΛX . Moreover, one also verifies easily [cf.,
e.g., [9], Chapter V, Theorem 2.1, (a)] that the resulting Gk-module is isomorphic to the
Gk-module “Zp(1)” obtained by forming the projective limit lim←−n

µpn(k) — where the

projective limit is taken over the positive integers n — of the groups µpn(k) ⊆ k× of

pn-th roots of unity in k.

Let us first recall the following well-known fact:

LEMMA 3.2. — Suppose that X has stable reduction. Then there exists a sequence of
Gk-stable Zp-submodules of ∆ab

X

F0 = {0} ⊆ F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 = ∆ab
X

which satisfies the following conditions:

(1) For each 0 ≤ i ≤ 4, the quotient Fi+1/Fi is a free Zp-module.

(2) The submodule F3 (respectively, F4) coincides with the kernel of the natural
surjection ∆ab

X � ∆ab-ét
X (respectively, ∆ab

X � ∆ab-cmb
X ). In particular, we obtain Gk-

equivariant isomorphisms

F5/F3
∼→ ∆ab-ét

X , F5/F4
∼→ ∆ab-cmb

X .

(3) There exist Gk-equivariant isomorphisms

F1
∼= HomZp(∆

ab-cmb
X , ΛX), F2

∼= HomZp(∆
ab-ét
X , ΛX).

(4) For every open subgroup J ⊆ Ik of Ik, there is no nontrivial torsion-free
J-stable quotient of F3/F2 on which J acts trivially.
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Proof. — This follows immediately, in light of Remark 3.1.1, from, for instance, the
discussion preceding [10], Lemma 8.1, together with [10], Lemma 8.1. �

LEMMA 3.3. — The following hold:

(i) Let V be a finite-dimensional representation of Gk over Qp. Suppose that the
restriction of V to Ik is isomorphic to an extension of the direct product of finitely many
copies of the trivial representation Qp by the direct product of finitely many copies of the
representation ΛX ⊗Zp Qp. Then the representation V of Gk is semistable.

(ii) Suppose that X is ordinary. Then it holds that X has stable reduction if and
only if the finite-dimensional representation ∆ab

X ⊗Zp Qp of Ik over Qp is isomorphic to an
extension of the direct product of gX copies of the trivial representation Qp by the direct
product of gX copies of the representation ΛX ⊗Zp Qp.

Proof. — First, we verify assertion (i). Let us first observe that it follows from [4],
Proposition of §5.1.5, that the representation V of Gk is semistable if and only if the
restriction of V to Ik is semistable. Thus, to verify assertion (i), we may assume with-
out loss of generality that the representation V of Gk is isomorphic to an extension of
the direct product of finitely many copies of the trivial representation Qp by the direct
product of finitely many copies of the representation ΛX ⊗Zp Qp. Then the assertion that
the representation V of Gk is semistable follows immediately from the second comment
following the table in the final discussion of [2], §16. This completes the proof of assertion
(i).

Next, we verify assertion (ii). First, we verify the necessity. Suppose that X has stable
reduction. Then since [we have assumed that] X is ordinary, it follows from Proposi-
tion 2.5, (i), that the Zp-module ∆ab-ét

X is free of rank gX . Thus, since [it is well-known
that] the Zp-module ∆ab

X is free of rank 2gX , the necessity follows immediately, in light of
Remark 2.4.1, (ii), from Lemma 3.2. This completes the proof of the necessity.

Finally, we verify the sufficiency. Suppose that the representation ∆ab
X ⊗Zp Qp of Ik is

isomorphic to an extension of the direct product of gX copies of the trivial representation
Qp by the direct product of gX copies of the representation ΛX ⊗Zp Qp. Then it follows
from assertion (i) that the representation ∆ab

X ⊗Zp Qp of Gk is semistable. In particular, it
follows from [2], Theorem 14.1, that the Jacobian variety of X has semistable reduction
[i.e., over the ring of integers of k]. Thus, it follows from [3], Theorem 2.4, that X has
stable reduction. This completes the proof of assertion (ii), hence also of Lemma 3.3. �

LEMMA 3.4. — The following hold:

(i) The closed subgroup ∆X ⊆ ΠX of ΠX may be characterized as the uniquely
determined maximal nontrivial pro-l — for some prime number l — topologically
finitely generated normal closed subgroup of ΠX .

(ii) The quotient ∆ab
X � ∆ab-ét

X (respectively, ∆ab
X � ∆ab-cmb

X ) of ∆ab
X may be charac-

terized as the uniquely determined maximal torsion-free quotient of ∆ab
X which satisfies

the following condition: There exists an open subgroup J ⊆ Gk of Gk such that the quo-
tient is J-stable, and, moreover, the resulting action of J ∩ Ik (respectively, J) on the
quotient is trivial.
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Proof. — First, we verify assertion (i) [cf. Remark 3.4.1 below]. Let l be a prime
number and N ⊆ ΠX a maximal nontrivial pro-l topologically finitely generated normal
closed subgroup of ΠX . Then it is immediate that the image N ⊆ Gk of N in Gk is a
pro-l topologically finitely generated normal closed subgroup of Gk. In particular, since
Gk is elastic [cf. [13], Definition 1.1, (ii); [13], Theorem 1.7, (ii)], the closed subgroup
N is either trivial or open in Gk. Thus, since [one verifies easily — by considering, for
instance, the quotient determined by the maximal unramified extension — that] every
open subgroup of Gk is not pro-l, we conclude that N = {1}, i.e., that N ⊆ ∆X . Thus,
since ∆X is pro-p, and [we have assumed that] N is nontrivial and pro-l, it holds that
l = p. Moreover, since ∆X is a nontrivial pro-p topologically finitely generated normal
closed subgroup of ΠX , it follows from the maximality of N that N = ∆X , as desired.
This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that, to verify assertion (ii), we
may assume without loss of generality, by replaing k by a suitable finite extension of k
contained in k, that X has stable reduction [cf. Theorem 1.3] and is split [cf. Remark 2.1.1],
which thus implies that [the quotients ∆ab

X � ∆ab-ét
X � ∆ab-cmb

X are Gk-stable — cf.
Remark 2.4.1, (i) — and, moreover]

(a) the action of Ik (respectively, Gk) on ∆ab-ét
X (respectively, ∆ab-cmb

X ) is trivial [cf.
Remark 2.4.1, (ii)].

Thus, in light of Proposition 2.5, (i), to complete the verification of assertion (ii), it
suffices to verify the following assertion:

If ∆ab
X � Q is a torsion-free Gk-stable quotient of ∆ab

X on which Ik (respectively,
Gk) acts trivially, then the surjection ∆ab

X � Q factors through the sur-
jection ∆ab

X � ∆ab-ét
X (respectively, ∆ab

X � ∆ab-cmb
X ).

To this end, let ∆ab
X � Q be a torsion-free Gk-stable quotient of ∆ab

X . Now let us recall
the sequence of Gk-stable Zp-submodules of ∆ab

X

F0 = {0} ⊆ F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 = ∆ab
X

of Lemma 3.2.
To verify the non-resp’d portion of assertion (ii), suppose that the action of Ik on Q is

trivial. Then it follows from (a), together with condition (3) of Lemma 3.2, that we have
an Ik-equivariant isomorphism of F2 with the direct product of finitely many copies of
ΛX . Thus, since [one verifies easily from Remark 3.1.1 that] the image of the character
Ik → Z×

p determined by the action of Ik on ΛX is open in Z×
p , the image of the composite

F2 ↪→ ∆ab
X � Q is zero. Moreover, it follows from condition (4) of Lemma 3.2 that the

image of F3/F2 ⊆ ∆ab
X /F2 via the resulting surjection ∆ab

X /F2 � Q is zero. Thus, the
surjection ∆ab

X � Q factors through the surjection ∆ab
X � ∆ab

X /F3 = ∆ab-ét
X [cf. condition

(2) of Lemma 3.2]. This completes the proof of the non-resp’d portion of assertion (ii).
Next, to verify the resp’d portion of assertion (ii), suppose that the action of [not only

Ik but also] Gk on the quotient Q is trivial. Thus, it follows from the above proof of the
non-resp’d portion of assertion (ii) that, to verify the resp’d portion of assertion (ii), it
suffices to verify that the image of F4/F3 via the resulting surjection ∆ab

X /F3 � Q is zero
[cf. condition (2) of Lemma 3.2]. On the other hand, this follows from Proposition 2.5,
(vi), together with condition (2) of Lemma 3.2. This completes the proof of the resp’d
portion of assertion (ii), hence also of assertion (ii). �
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REMARK 3.4.1. — Note that Lemma 3.4, (i), is a special case of [13], Theorem 2.6, (iv).
Note, moreover, that the assertion for ∆ab-ét

X in Lemma 3.4, (ii), may be considered to be
essentially the same as [10], Lemma 8.2.

LEMMA 3.5. — The following hold:

(i) Let N ⊆ ∆ét
X be a normal open subgroup of ∆ét

X . Write Z → Xk for the finite étale

Galois covering corresponding to N ⊆ ∆ét
X and b1(Z) for the first Betti number of the

[topological space determined by the] dual graph of Z. Then the following conditions are
equivalent:

(1) There exists an element v ∈ Irr(X) such that Z ×Xk
Iv is connected, and,

moreover, for each w ∈ Irr(X)\{v}, the restriction of the covering Z → Xk to the generic
point of the irreducible component corresponding to w is trivial.

(2) It holds that
b1(Z) = [∆ét

X : N ] · b1(X).

(ii) Consider the following set IX and the following equivalence relation ∼IX
:

• The set IX of minimal normal open subgroups N ⊆ ∆ét
X of ∆ét

X such that ∆ét
X/N

is abelian and annihilated by p, and, moreover, the subgroup N satisfies conditions
(1), (2) of (i).

• For two elements N1, N2 of IX , we write N1 ∼IX
N2 if there exist two splittings

s1, s2 : ∆cmb
X ↪→ ∆ét

X of the natural surjection ∆ét
X � ∆cmb

X such that, for each i ∈ {1, 2},
it holds that Ni = (N1 ∩N2) · Im(si).

Then there exists a bijection

Irr(X)γ>0 ∼−→ IX/ ∼IX

which satisfies the following condition: Let N be an element of IX . Write v ∈ Irr(X)
for the element corresponding, via the bijection, to [the class determined by] N . Then it
holds that Ker(∆ét

X � ∆cmb
X ) ⊆ N ·Dv.

Proof. — First, we verify assertion (i). Write Irr(Z) for the set of irreducible compo-
nents of Z. Write, moreover, Nd(X), Nd(Z) for the sets of nodes of the stable curves Xk,
Z, respectively. Then let us first observe that since the covering Z → Xk is Galois and

of degree a power of p, one verifies easily that condition (1) is equivalent to the following
condition (1′):

(1′) The equality

]Irr(Z) = [∆ét
X : N ] · (]Irr(X)− 1) + 1

holds.

Next, let us observe that it follows from a well-known fact concerning the first Betti
numbers of [the topological spaces determined by] connected graphs that condition (2) is
equivalent to the following condition (2′):

(2′) The equality

1− ]Irr(Z) + ]Nd(Z) = [∆ét
X : N ] · (1− ]Irr(X) + ]Nd(X))
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holds.

On the other hand, since the covering Z → Xk is finite étale, it holds that

]Nd(Z) = [∆ét
X : N ] · ]Nd(X).

Thus, assertion (i) holds. This completes the proof of assertion (i).
Assertion (ii) follows immediately from assertion (i), together with Proposition 2.5, (i),

(ii), (iii). This completes the proof of Lemma 3.5. �

REMARK 3.5.1. — Note that Lemma 3.5, (i), may be regarded as a “pro-p variant” of
the discussion of [14], Remark 1.2.3, (iii), related to the term “verticially purely totally
ramified”. Note, moreover, that Lemma 3.5, (ii), may be regarded as a “pro-p variant”
of the discussion of [14], Remark 1.2.3, (iv), related to the “functorial characterization of
the set of vertices of G”.

DEFINITION 3.6. — We shall say that a profinite group Π satisfies the condition (†) if
there exist a prime number l and an isomorphism of Π with the geometrically pro-l étale
fundamental group of a proper hyperbolic curve over an l-adic local field.

REMARK 3.6.1. — One verifies easily [cf. Remark 1.4.2, (i)] that if a profinite group
satisfies the condition (†), then every open subgroup of the profinite group satisfies the
condition (†).

THEOREM 3.7. — In the notational conventions introduced at the beginning of §3, let

Π

be a profinite group which satisfies the condition (†) [cf. Definition 3.6]. Suppose that Π
is isomorphic to the geometrically pro-p étale fundamental group ΠX of X [cf. Defini-
tion 2.2]. Let

α : Π
∼−→ ΠX

be an isomorphism of profinite groups. Then the following hold:

(i) We shall write

∆Π ⊆ Π

for the [uniquely determined] maximal nontrivial pro-l — for some prime number l —
topologically finitely generated normal closed subgroup of Π. Then α restricts to
an isomorphism of profinite groups

α∆ : ∆Π
∼−→ ∆X

[cf. Definition 2.2].

(ii) We shall write

GΠ
def
= Π/∆Π
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for the quotient of Π by ∆Π. Then α determines an isomorphism of profinite groups

αG : GΠ
∼−→ Gk.

(iii) The profinite group GΠ is of MLF-type [cf. [8], Definition 1.1; also [8], Proposi-
tion 1.2, (i)]. Thus, by applying the functorial “group-theoretic” algorithm of [8], Theorem
1.4, (3), to GΠ, we obtain a normal closed subgroup

IΠ
def
= I(GΠ) ⊆ GΠ.

Then the isomorphism αG of (ii) restricts to an isomorphism of profinite groups

αI : IΠ
∼−→ Ik.

(iv) We shall write

pΠ

for the [uniquely determined] prime number such that ∆Π is pro-pΠ. Then it holds that

pΠ = p.

(v) We shall write

∆ét
Π

def
= ∆Π/J ét

Π (respectively, ∆cmb
Π

def
= ∆Π/Jcmb

Π )

for the quotient of ∆Π by the normal closed subgroup

J ét
Π ⊆ ∆Π (respectively, Jcmb

Π ⊆ ∆Π)

obtained by forming the intersection of the normal open subgroups N ⊆ ∆Π of ∆Π which
satisfy the following condition: Let

N0 = N ⊆ N1 ⊆ · · · ⊆ Nr−1 ⊆ Nr = ∆Π

be a finite sequence of normal open subgroups of ∆Π such that Ni+1/Ni is abelian for
each 0 ≤ i ≤ r−1 [note that since ∆Π is pro-pΠ, one verifies easily that such a sequence
always exists] and

P0 ⊆ P1 ⊆ · · · ⊆ Pr−1 ⊆ Pr = Π

a finite sequence of open subgroups of Π such that Pi ∩ ∆Π = Ni [which thus implies
that Pi/Ni may be regarded as an open subgroup of GΠ] for each 0 ≤ i ≤ r. Then, for
each 0 ≤ i ≤ r − 1, the surjection Ni+1 � Ni+1/Ni factors through the surjection onto
the [uniquely determined] maximal abelian torsion-free quotient of Ni+1 which satisfies
the following condition: There exists an open subgroup Ji+1 ⊆ Pi+1/Ni+1 of Pi+1/Ni+1

such that the quotient is Ji+1-stable, and, moreover, the resulting action of Ji+1 ∩ IΠ

(respectively, Ji+1) on the quotient is trivial. Then the isomorphism α∆ of (i) determines
a commutative diagram of profinite groups

∆Π −−−→ ∆ét
Π −−−→ ∆cmb

Π

α∆

yo αét
∆

yo αcmb
∆

yo

∆X −−−→ ∆ét
X −−−→ ∆cmb

X

[cf. Definition 2.3, (i), (iii)] — where the horizontal arrows are the natural surjections,
and the vertical arrows are isomorphisms of profinite groups.
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(vi) We shall write
∆ab

Π � ∆ab-ét
Π � ∆ab-cmb

Π

for the respective abelianizations of ∆Π, ∆ét
Π , ∆cmb

Π . Then the diagram of (v) determines
a commutative diagram of profinite groups

∆ab
Π −−−→ ∆ab-ét

Π −−−→ ∆ab-cmb
Π

αab
∆

yo αab-ét
∆

yo αab-cmb
∆

yo

∆ab
X −−−→ ∆ab-ét

X −−−→ ∆ab-cmb
X

[cf. Definition 2.4] — where the horizontal arrows are the natural surjections, and the
vertical arrows are isomorphisms of profinite groups.

(vii) We shall write

gΠ
def
=

1

2
· rankZpΠ

(∆ab
Π ), γΠ

def
= rankZpΠ

(∆ab-ét
Π ), b1(Π)

def
= rankZpΠ

(∆ab-cmb
Π ).

Then it holds that

gΠ = gX , γΠ = γXk
, b1(Π) = b1(X)

[cf. Definition 1.1; Definition 1.4, (ii)].

(viii) We shall write
IΠ

for the set of minimal normal open subgroups N ⊆ ∆Π of ∆Π such that N contains J ét
Π ,

∆X/N is abelian and annihilated by pΠ, and, moreover, there exists an open subgroup
P ⊆ Π of Π such that P ∩∆Π = N and b1(P ) = [∆Π : N ] · b1(Π), where we write b1(P )
for the integer obtained by applying the “group-theoretic” algorithm “b1(−)” of (vii) to
the profinite group P [which satisfies the condition (†) — cf. Remark 3.6.1];

∼IΠ

for the equivalence relation on the set IΠ defined as follows: For two elements N1, N2 of
IΠ, we write N1 ∼IΠ

N2 if there exist two splittings s1, s2 : ∆cmb
Π ↪→ ∆Π of the natural

surjection ∆Π � ∆cmb
Π such that, for each i ∈ {1, 2}, it holds that Ni = (N1∩N2) · Im(si);

Irr(Π)γ>0 def
= IΠ/ ∼IΠ

.

Then the isomorphism αét
∆ of (v) determines — relative to the bijection of Lemma 3.5,

(ii) — a bijection

αIrr : Irr(Π)γ>0 ∼−→ Irr(X)γ>0

[cf. Definition 1.4, (iv)].

(ix) Let vΠ ∈ Irr(Π)γ>0. Then we shall write

DvΠ
⊆ ∆ét

Π

for the [uniquely determined, up to conjugation] maximal closed subgroup of ∆ét
Π such that

• for each normal open subgroup P ⊆ Π of Π such that J ét
Π ⊆ P , the closed subgroup

DvΠ
⊆ ∆ét

Π is contained in the stabilizer [with respect to the action induced by the
action by conjugation] of an element of the set Irr(P )γ>0 obtained by applying the “group-
theoretic” algorithm “Irr(−)γ>0” of (viii) to the profinite group P [which satisfies the
condition (†) — cf. Remark 3.6.1], and, moreover,
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• if N ⊆ ∆Π is an element of IΠ which determines the class vΠ ∈ Irr(Π)γ>0, then it
holds that Ker(∆ét

Π � ∆cmb
Π ) ⊆ Im(N ↪→ ∆Π � ∆ét

Π) ·DvΠ
.

Then the isomorphism αét
∆ of (v) determines a bijection between the set of conjugates of

DvΠ
⊆ ∆ét

Π and the set of conjugates of DαIrr(vΠ) ⊆ ∆ét
X [cf. Definition 2.3, (ii)].

(x) Let vΠ ∈ Irr(Π)γ>0. Then we shall write

γvΠ

def
= rankZpΠ

(Dab
vΠ

)

— where we write Dab
vΠ

for the abelianization of DvΠ
. Then it holds that

γvΠ
= γαIrr(vΠ)

[cf. Definition 1.4, (iii)].

(xi) We shall say that the profinite group Π is ordinary if the equality gΠ = γΠ holds.
We shall say that the profinite group Π is rationally degenerate if Π is ordinary, and,
moreover, Irr(Π)γ>0 = ∅. Then it holds that Π is ordinary (respectively, rationally
degenerate) if and only if X is ordinary [cf. Definition 2.6, (i)] (respectively, ratio-
nally degenerate [cf. Definition 2.6, (ii)]).

(xii) Suppose that Π is ordinary [which thus implies that X is ordinary — cf. (xi)].
Then we shall say that the profinite group Π has stable reduction if the representation
∆ab

Π ⊗ZpΠ
QpΠ

of IΠ is isomorphic to an extension of the direct product of gΠ copies of the
trivial representation QpΠ

by the direct product of gΠ copies of the representation

HomZpΠ

(
H2(∆Π, ZpΠ

), QpΠ

)
.

Then it holds that Π has stable reduction if and only if X has stable reduction [cf.
Definition 1.2].

(xiii) Suppose that Π is ordinary [which thus implies that X is ordinary — cf.
(xi)]. Then we shall say that the profinite group Π has good reduction if Π has stable
reduction, and, moreover, b1(P ) = 0 for every open subgroup P ⊆ Π of Π, where we
write b1(P ) for the integer obtained by applying the “group-theoretic” algorithm “b1(−)”
of (vii) to the profinite group P [which satisfies the condition (†) — cf. Remark 3.6.1].
Then it holds that Π has good reduction if and only if X has good reduction [cf.
Definition 1.2].

Proof. — Assertions (i), (ii) follow from Lemma 3.4, (i). Assertion (iii) follows from
[8], Theorem 1.4, (ii), together with assertion (ii). Assertion (iv) follows from assertion
(i). Assertions (v), (vi) follow from Lemma 3.4, (ii), together with assertions (i), (ii), (iii).
The assertion for gΠ in assertion (vii) follows from assertions (iv), (vi), together with the
well-known fact that the Zp-module ∆ab

X is free of rank 2gX . The assertion for γΠ and
b1(Π) in assertion (vii) follows from Proposition 2.5, (i), together with assertion (iv), (vi).
Assertions (viii), (ix) follow, in light of the finiteness of Irr(−)γ>0, from Lemma 3.5, (ii),
together with assertions (i), (iv), (v), (vii). Assertion (x) follows from Proposition 2.5,
(ii), together with assertions (iv), (ix). Assertion (xi) follows from Lemma 2.7, (ii),
together with assertions (vii), (viii). Assertion (xii) follows, in light of Definition 3.1,
from Lemma 3.3, (ii), together with assertions (i), (iii), (iv), (vi), (vii), (xi). Assertion
(xiii) follows from Theorem 2.9, (iii), together with assertions (vii), (xi), (xii). This
completes the proof of Theorem 3.7. �
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COROLLARY 3.8. — For � ∈ {◦, •}, let p� be a prime number, k� a p�-adic local field,
and X� a proper hyperbolic curve over k�; write ΠX�

for the geometrically pro-p�

étale fundamental group of X� [cf. Definition 2.2]. Let

α : ΠX◦
∼−→ ΠX•

be an isomorphism of profinite groups. Then the following hold:

(i) It holds that p◦ = p•, gX◦ = gX• [cf. Definition 1.1], and b1(X◦) = b1(X•) [cf.
Definition 1.4, (ii)].

(ii) The isomorphism α determines a commutative diagram of profinite groups

∆X◦ −−−→ ∆ét
X◦ −−−→ ∆cmb

X◦

α∆

yo αét
∆

yo αcmb
∆

yo

∆X• −−−→ ∆ét
X• −−−→ ∆cmb

X•

[cf. Definition 2.3, (i), (iii)] — where the horizontal arrows are the natural surjections,
and the vertical arrows are isomorphisms of profinite groups.

(iii) There exists a bijection

αIrr : Irr(X◦)
γ>0 ∼−→ Irr(X•)

γ>0

[cf. Definition 1.4, (iv)] such that, for each v ∈ Irr(X◦)
γ>0,

(1) the isomorphism αét
∆ [cf. (ii)] determines a bijection between the set of conjugates

of Dv ⊆ ∆ét
X◦ [cf. Definition 2.3, (ii)] and the set of conjugates of DαIrr(v) ⊆ ∆ét

X•, and

(2) it holds that γv = γαIrr(v) [cf. Definition 1.4, (iii)].

(iv) It holds that X◦ is ordinary [cf. Definition 2.6, (i)] (respectively, rationally de-
generate [cf. Definition 2.6, (ii)]) if and only if X• is ordinary (respectively, rationally
degenerate).

(v) Suppose, moreover, that either X◦ or X• is ordinary. Then it holds that X◦ has
stable reduction [cf. Definition 1.2] if and only if X• has stable reduction.

(vi) Suppose, moreover, that either X◦ or X• is ordinary. Then it holds that X◦ has
good reduction [cf. Definition 1.2] if and only if X• has good reduction.

Proof. — Assertion (i) follows from Theorem 3.7, (iv), (vii). Assertion (ii) follows from
Theorem 3.7, (v). Assertion (iii) follows from Theorem 3.7, (viii), (ix), (x). Assertion
(iv) follows from Theorem 3.7, (xi). Assertion (v) follows, in light of assertion (iv), from
Theorem 3.7, (xii). Assertion (vi) follows, in light of assertion (iv), from Theorem 3.7,
(xiii). This completes the proof of Corollary 3.8. �

REMARK 3.8.1.

(i) Note that Theorem 3.7, (xiii), may be regarded as a pro-p “group-theoretic” crite-
rion for good reduction of ordinary proper hyperbolic curves over p-adic local fields. As a
consequence of the “group-theoreticity”, Theorem 3.7, (xiii), implies in fact Corollary 3.8,
(vi).
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(ii) Let Σ be a nonempty set of prime numbers such that p 6∈ Σ. Then we have a pro-
Σ “group-theoretic” criterion for good reduction of [not necessarily ordinary] hyperbolic
curves over p-adic local fields in the following sense: Let C be a [not necessarily proper]
hyperbolic curve over k and Π a profinite group which is isomorphic to the geometrically
pro-Σ étale fundamental group of C [i.e., the quotient of the étale fundamental group
of C obtained by replacing “pro-p” in the definition of the “geometrically pro-p étale
fundamental group ΠX” in Definition 2.2 by pro-Σ]. Then it follows from [13], Theorem
2.6, (iv), that one may define a normal closed subgroup ∆Π ⊆ Π of Π which corresponds
to the pro-Σ geometric étale fundamental group of C [i.e., the quotient of the étale
fundamental group of C ×k k obtained by replacing “pro-p” in the definition of the “pro-
p geometric étale fundamental group ∆X” in Definition 2.2 by pro-Σ]. Thus, one may
also define a normal closed subgroup IΠ ⊆ Π/∆Π of Π/∆Π which corresponds to the
inertia subgroup Ik of Gk [cf., e.g., Theorem 3.7, (iii)]. Then [18], Theorem 3.2, and [20],
Theorem 5.3, assert that

it holds that C has good reduction [cf. [20], Definition 5.1] if and only if
the image of the restriction of the action Π→ Aut(∆Π) by conjugation to
the closed subgroup Π×Π/∆Π

IΠ ⊆ Π is contained in the subgroup of inner
automorphisms of ∆Π.

(iii) Note that, by [the proof of] [12], Corollary 2.8, in the situation of (ii), one may
establish a functorial “group-theoretic” algorithm for reconstructing, from Π, the dual
semi-graph of the special fiber of the stable model of C ×k k over the ring of integers of
k.

REMARK 3.8.2. — Let us discuss the p-adic criterion for good reduction of curves proved
by F. Andreatta, A. Iovita, and M. Kim in [1] from the point of view of the present paper:

(i) In [1], F. Andreatta, A. Iovita, and M. Kim proved a p-adic criterion for good
reduction of curves. Here, let us recall [1], Theorem 1.9, briefly from the point of view of
the present paper:

In the notational conventions introduced at the beginning of §3 of the
present paper, by considering [neutral tannakian] categories of certain
finite-dimensional unipotent representations of the profinite group ∆X over
Qp, one may define, for each positive integer n, a finite-dimensional rep-
resentation E ét

n of ΠX over Qp. Let b ∈ X(k) be a k-rational point of X.
Then, by restricting the representation E ét

n to the splitting [well-defined up
to ∆X-conjugation] of the natural surjection ΠX � Gk induced by b, one
obtains, for each positive integer n, a finite-dimensional representation E ét

n,b

of Gk over Qp. Then [1], Theorem 1.9, asserts that X has good reduction
if and only if the representation E ét

n,b of Gk is crystalline for every positive
integer n.

(ii) The p-adic criterion of (i) [is interesting even in a certain point of view of anabelian
geometry but] should be considered to be not “group-theoretic” [i.e., to be not useful in
pro-p absolute anabelian geometry] by the following two reasons:
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(1) The issue of whether or not a given finite-dimensional representation of Gk

over Qp is crystalline is not “group-theoretic”. Indeed, it follows immediately from the
discussion of [7], Remark 3.3.1, that there exist a prime number l, an l-adic local field L,
an automorphism α of the absolute Galois group GL of L, and a crystalline representation

ρ : GL → GLn(Ql) such that the composite GL

α
∼→ GL

ρ→ GLn(Ql) is not crystalline.

(2) It is not clear that the issue of whether or not a given splitting of the natural
surjection ΠX � Gk arises from a k-rational point of X is “group-theoretic”. Note that
it follows from [5], Theorem A, that there exist a prime number l, an l-adic local field
L, a proper hyperbolic curve C over L, and a splitting of the natural surjection from the
geometrically pro-l étale fundamental group of C onto the absolute Galois group of L
which does not arise from an L-rational point of C.

(iii) As a consequence of the discussion of (ii), the p-adic criterion of (i) does not, at
least in the immediate literal sense, imply the following assertion:

(3) In the situation of Corollary 3.8, it holds that X◦ has good reduction if and only
if X• has good reduction.

Note that it is not clear to the author at the time of writing whether or not the above
assertion (3) is valid [without ordinary assumption].

(iv) In an attempt to apply the p-adic criterion of (i) to the study of assertion (3), in
order to avoid the problem arising from the fact that the issue of whether or not a given
finite-dimensional representation of Gk over Qp is crystalline is not “group-theoretic” [i.e.,
(1) of the discussion of (ii)], one may consider the following assumption:

(4) In the situation of Corollary 3.8, if we write p
def
= p◦ = p• [cf. Corollary 3.8, (i)]

and αG : Gal(k◦/k◦)
∼→ Gal(k•/k•) — where k◦, k• are respective appropriate algebraic

closures of k◦, k• — for the isomorphism induced by α [cf. Theorem 3.7, (ii)], then, for
every finite extension k′• of k• in k• and every crystalline representation ρ : Gal(k•/k

′
•)→

GLn(Qp) of Gal(k•/k
′
•), the composite Gal(k◦/k

′
◦)

αG
∼→ Gal(k•/k

′
•)

ρ→ GLn(Qp) — where we

write k′◦ for the finite extension of k◦ in k◦ corresponding, via αG, to k′• — is a crystalline
representation of Gal(k◦/k

′
◦).

On the other hand, it follows immediately from a similar argument to the argument
applied in the proof of [7], Theorem, that assumption (4) implies that the isomorphism

αG arises from an isomorphism of fields k•
∼→ k◦ which restricts to an isomorphism of

fields k•
∼→ k◦. In particular, it follows immediately from [11], Theorem A, that α arises

from an isomorphism of schemes X◦
∼→ X•, which thus implies the equivalence discussed

in assertion (3). That is to say, assertion (3) under assumption (4) may be verified without
the p-adic criterion of (i).
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[5] Y. Hoshi, Existence of nongeometric pro-p Galois sections of hyperbolic curves, Publ. Res. Inst.
Math. Sci. 46 (2010), no. 4, 829–848.

[6] Y. Hoshi and S. Mochizuki, On the combinatorial anabelian geometry of nodally nondegenerate
outer representations, Hiroshima Math. J. 41 (2011), no. 3, 275–342.

[7] Y. Hoshi, A note on the geometricity of open homomorphisms between the absolute Galois groups
of p-adic local fields, Kodai Math. J. 36 (2013), no. 2, 284–298.

[8] Y. Hoshi, Mono-anabelian reconstruction of number fields, RIMS Preprint 1819 (March 2015).
[9] J. S. Milne, Etale cohomology, Princeton Mathematical Series, 33. Princeton University Press,

Princeton, N.J., 1980.
[10] S. Mochizuki, The profinite Grothendieck conjecture for closed hyperbolic curves over number fields,

J. Math. Sci. Univ. Tokyo 3 (1996), no. 3, 571–627.
[11] S. Mochizuki, The local pro-p anabelian geometry of curves, Invent. Math. 138 (1999), no. 2, 319–

423.
[12] S. Mochizuki, A combinatorial version of the Grothendieck conjecture, Tohoku Math. J. (2) 59

(2007), no. 3, 455–479.
[13] S. Mochizuki, Topics in absolute anabelian geometry I: generalities, J. Math. Sci. Univ. Tokyo 19

(2012), no. 2, 139–242.
[14] S. Mochizuki, Inter-universal Teichmuller theory I: Construction of Hodge theaters, RIMS Preprint

1756 (August 2012).
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