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Abstract. — In the present paper, we give a characterization of the supersingular divisors
[i.e., the zero loci of the Hasse invariants] of nilpotent admissible/ordinary indigenous bundles
on hyperbolic curves. By applying the characterization, we also obtain lists of the nilpotent in-
digenous bundles on certain hyperbolic curves. Moreover, we prove the hyperbolic ordinariness
of certain hyperbolic curves.
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Introduction

Let p be an odd prime number, k an algebraically closed field of characteristic p, (g, r)
a pair of nonnegative integers such that 2g − 2 + r > 0, and

(X, D)

a hyperbolic curve of type (g, r) over k — i.e., a pair consisting of a projective smooth
curve X of genus g over k and a reduced closed subscheme D ⊆ X of X of degree r
[cf. (1.a), (1.b)]. Write (XF , DF ) for the hyperbolic curve over k obtained by forming
the pull-back of (X, D) via the absolute Frobenius morphism of k; Φ: X → XF for the
relative Frobenius morphism of X/k; τ log, (τ log)F for the logarithmic tangent sheaves of
(X, D)/k, (XF , DF )/k, respectively [cf. (1.c)].
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Key words and phrases. — p-adic Teichmüller theory, nilpotent admissible indigenous bundle,
nilpotent ordinary indigenous bundle, supersingular divisor, hyperbolically ordinary.
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First, let us recall the notion of an indigenous bundle and some properties on an
indigenous bundle. We shall say that a pair

(π : P → X,∇P )

consisting of a P1-bundle π : P → X over X and a connection ∇P on P relative to
(X, D)/k is an indigenous bundle on (X, D)/k if the monodromy operator of ∇P at each
point on D ⊆ X is nilpotent, and, moreover, there exists a [unique — cf. [7], Chapter
I, Proposition 2.4] nonhorizontal section [i.e., the Hodge section] σ : X → P of π of
canonical height [cf. the discussion preceding [7], Chapter I, Definition 2.2] deg τ log/2
[cf. [7], Chapter I, Definition 2.2]. The notion of an indigenous bundle was introduced
and studied by R. C. Gunning [cf. [3], §2] and enables one to understand the theory of
uniformization of Riemann surfaces in a somewhat more algebraic setting.

Let (π : P → X,∇P ) be an indigenous bundle on (X, D)/k. Then the connection ∇P

on P determines a horizontal homomorphism [i.e., the p-curvature homomorphism]

P : Φ∗(τ log)F −→ π∗τP/X .

We shall say that the indigenous bundle (π : P → X,∇P ) is nilpotent (respectively,
admissible) if the square of P is zero (respectively, the dual of P is surjective) [cf. [7],
Chapter II, Definition 2.4]. Moreover, we shall refer to the composite

Φ∗(τ log)F P→ π∗τP/X � τ log

of the p-curvature homomorphism P and the surjection π∗τP/X � τ log determined by
the Hodge section of (π : P → X,∇P ) as the square Hasse invariant of (π : P → X,∇P )
[cf. [7], Chapter II, Proposition 2.6, (1)]. Then, by applying “H1” to the square Hasse
invariant, one may obtain a k-linear homomorphism H1(XF , (τ log)F ) → H1(X, τ log), i.e.,
the Frobenius on H1(X, τ log) induced by (π : P → X,∇P ) [cf. the discussion following [7],
Chapter II, Lemma 2.11]. We shall say that the indigenous bundle (π : P → X,∇P ) is
ordinary if the Frobenius on H1(X, τ log) induced by (π : P → X,∇P ) is an isomorphism
[cf. [7], Chapter II, Definition 3.1].

Nilpotent admissible/ordinary indigenous bundles play some important roles in the
theory of hyperbolically ordinary curves established by S. Mochizuki [cf. [7]]. Now let
us recall that, in [2], L. R. A. Finotti studied nilpotent ordinary indigenous bundles on
hyperbolic curves of type (2, 0) [cf. also [5], Remark 6.1.2]. Moreover, in [1], I. I. Bouw and
S. Wewers studied nilpotent ordinary indigenous bundles on hyperbolic curves of type
(0, 4) [cf. also Remark 4.7.1]. In the present paper, we study nilpotent admissible/ordinary
indigenous bundles.

Let (π : P → X,∇P ) be a nilpotent admissible indigenous bundle on (X, D)/k. Then
let us recall that, by the theory of hyperbolically ordinary curves, one may prove that there
exists an effective divisor E on X such that 2E coincides with the zero locus of the square
Hasse invariant of (π : P → X,∇P ) [cf. [7], Chapter II, Proposition 2.6, (3)]. We shall
refer to this effective divisor E on X as the supersingular divisor of (π : P → X,∇P ) [cf.
[7], Chapter II, Proposition 2.6, (3)]. The supersingular divisor is an important invariant
of a nilpotent admissible indigenous bundle. For instance, the isomorphism class of a
nilpotent admissible indigenous bundle is completely determined by the supersingular
divisor [cf. [7], Chapter II, Proposition 2.6, (4)].

In [5], the author of the present paper gave a characterization of the supersingular
divisors of nilpotent admissible/ordinary indigenous bundles in the case where (r, p) =
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(0, 3), i.e., on projective hyperbolic curves of characteristic three. The characterization of
[5] asserts that if (r, p) = (0, 3), then it holds that a given effective divisor on X coincides
with the supersingular divisor of a nilpotent admissible indigenous bundle on X if and
only if the divisor is reduced and may be obtained by forming the zero locus of a Cartier
eigenform [cf. [5], Definition A.8, (ii)] associated to a square-trivialized invertible sheaf
[cf. [5], Definition A.3] on X [cf. [5], Theorem B]. Moreover, in this case, it holds that
the nilpotent admissible indigenous bundle on X is ordinary if and only if either

• the underlying invertible sheaf of the square-trivialized invertible sheaf is trivial, and
the Jacobian variety of X is ordinary, or

• the underlying invertible sheaf of the square-trivialized invertible sheaf is nontrivial
[i.e., of order two], and the Prym variety associated to the underlying invertible sheaf is
ordinary

[cf. [5], Theorem B].
In the present paper, we give another characterization of the supersingular divisors of

nilpotent admissible/ordinary indigenous bundles on hyperbolic curves [in the case where
(r, p) is not necessarily equal to (0, 3)]. The main result of the present paper is as follows
[cf. Theorem 3.9, Theorem 3.10].

THEOREM A. — Let us apply the notational conventions introduced in §1. By abuse of
notation, write

C : Γ(X, (ωlog)⊗p+1(−D)) � Γ(XF , ((ωlog)F )⊗2(−DF ))

for the [necessarily surjective] k-linear homomorphism obtained by applying “Γ(XF ,−⊗O
XF

(ωlog)F )” to the Cartier operator associated to X/k and

d : Γ(X, (ωlog)⊗p(−D)) −→ Γ(X, (ωlog)⊗p+1(−D))

for the k-linear homomorphism determined by the exterior differentiation operator. Let

E

be an effective divisor on X. Then the following hold.

(i) It holds that the divisor E coincides with the supersingular divisor of a nilpo-
tent admissible indigenous bundle on (X, D)/k if and only if the following three con-
ditions are satisfied.

(1) The divisor E is of degree p> deg ωlog.

(2) The composite

Γ(X, (ωlog)⊗p+1(−D − E)) ↪→ Γ(X, (ωlog)⊗p+1(−D))
C
� Γ(XF , ((ωlog)F )⊗2(−DF ))

is surjective.

(3) The k-vector space Γ(X, (ωlog)⊗p+1(−D)) is not generated by the subspace

Γ(X, (ωlog)⊗p+1(−D − E)) ⊆ Γ(X, (ωlog)⊗p+1(−D))

and the image of the k-linear homomorphism

d : Γ(X, (ωlog)⊗p(−D)) −→ Γ(X, (ωlog)⊗p+1(−D)).
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(ii) It holds that the divisor E coincides with the supersingular divisor of a nilpo-
tent ordinary indigenous bundle on (X, D)/k if and only if the following three conditions
are satisfied.

(1) The divisor E is of degree p> deg ωlog.

(2′) The composite

Γ(X, (ωlog)⊗p+1(−D − 2E)) ↪→ Γ(X, (ωlog)⊗p+1(−D))
C
� Γ(XF , ((ωlog)F )⊗2(−DF ))

is surjective.

(3) The k-vector space Γ(X, (ωlog)⊗p+1(−D)) is not generated by the subspace

Γ(X, (ωlog)⊗p+1(−D − E)) ⊆ Γ(X, (ωlog)⊗p+1(−D))

and the image of the k-linear homomorphism

d : Γ(X, (ωlog)⊗p(−D)) −→ Γ(X, (ωlog)⊗p+1(−D)).

By applying Theorem A, we obtain the following result concerning nilpotent indigenous
bundles on certain hyperbolic curves [cf. Proposition 4.6, Proposition 5.2, Proposition 5.5,
Proposition 5.7].

THEOREM B. — The following hold.

(i) Suppose that (g, r, p) = (0, 4, 3). Then (X, D) has precisely three nilpotent
indigenous bundles. Moreover, every nilpotent indigenous bundle on (X, D)/k is ordi-
nary, hence also admissible. The supersingular divisor of a nilpotent [necessarily
admissible] indigenous bundle on (X, D)/k coincides with the reduced effective divisor
on X of degree two obtained by forming the fixed locus of one of the three nontrivial
nonspecial [cf. Definition 4.5] automorphisms of (X, D) over k.

(ii) Suppose that (g, r, p) = (1, 1, 3). Then (X, D) has precisely three nilpotent
indigenous bundles. Moreover, every nilpotent indigenous bundle on (X, D)/k is ordi-
nary, hence also admissible. The supersingular divisor of a nilpotent [necessarily
admissible] indigenous bundle on (X, D)/k coincides with the reduced effective divisor
on X of degree one determined by one of the three nontrivial 2-torsion points of the
elliptic curve determined by (X, D).

(iii) Suppose that (g, r, p) = (1, 1, 5). If the elliptic curve over k determined by (X, D)
is ordinary (respectively, supersingular), then (X, D) has precisely five (respectively,
four) nilpotent indigenous bundles. Moreover, every nilpotent indigenous bundle on
(X, D)/k is admissible. The supersingular divisor of a nilpotent [necessarily admissible]
indigenous bundle on (X, D)/k may be described explicitly [cf. Proposition 5.5, (iii)]. Fi-
nally, a nilpotent indigenous bundle on (X, D)/k is ordinary if and only if one of the
following two conditions is satisfied.

(1) The supersingular divisor of the nilpotent [necessarily admissible] indigenous
bundle coincides with the reduced effective divisor on X of degree two determined by two
of the three nontrivial 2-torsion points of the elliptic curve determined by (X, D).

(2) The elliptic curve determined by (X, D) is ordinary.
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(iv) Suppose that (g, r, p) = (1, 1, 7). Then (X, D) has at least one nilpotent ordi-
nary indigenous bundle whose supersingular divisor coincides with the reduced effec-
tive divisor on X of degree three determined by the three nontrivial 2-torsion points
of the elliptic curve determined by (X, D).

Here, let us recall the following basic question in p-adic Teichmüller theory discussed
in [8], Introduction, §2.1 [cf. [8], Introduction, §2.1, (1)].

Is every pointed stable curve hyperbolically ordinary [cf. [7], Chapter II,
Definition 3.3]?

In the present paper, we prove the following result concerning the above basic question
[cf. Corollary 4.7, Corollary 5.3, Corollary 5.8].

THEOREM C. — If
(g, r, p) ∈ {(0, 4, 3), (1, 1, 3), (1, 1, 7)},

then every hyperbolic curve of type (g, r) over a connected noetherian scheme of charac-
teristic p is hyperbolically ordinary.

Now we have the following remarks concerning Theorem C.

• A similar result to Theorem C in the case where

(g, r) = (0, 3)

is a consequence of [7], Chapter II, Theorem 2.3 [cf. Proposition 4.2 of the present paper
and the discussion at the beginning of §4, (4.a), of the present paper]. In §4, (4.a), of
the present paper, we give an alternative verification of this result by means of the main
result of the present paper.

• A similar result to Theorem C in the case where

(g, r, p) = (1, 1, 5)

has already been verified in [8] [cf. Remark 5.6.1 of the present paper]. In §5, (5.b), of
the present paper, we give an alternative verification of this result by means of the main
result of the present paper [cf. Corollary 5.6].

• A similar result to Theorem C in the case where

(g, r, p) = (2, 0, 3)

is the content of [5], Theorem D.

• Theorem C in the case where

(g, r, p) = (0, 4, 3)

“follows” from [1], Proposition 6.4. However, unfortunately, the proof of [1], Lemma 6.3
— which implies [1], Proposition 6.4 — contains an error [cf. Remark 4.7.1 of the present
paper].

Finally, in §A, we discuss the relationship between the zero loci of square Hasse in-
variants [cf. [7], Chapter II, Proposition 2.6, (1)] and the zero loci of canonical sections
discussed in [1], §3.
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1. Notational Conventions

In the present §1, we introduce some notational conventions applied in the present
paper.

(1.a). Throughout the present paper, let p be an odd prime number and k an algebraically
closed field of characteristic p. We shall write

p> def
=

p− 1

2
.

If “(−)” is either a scheme over k, a sheaf of modules on a scheme over k, or a section of
a sheaf of modules on a scheme over k, then we shall write “(−)F ” for the corresponding
object over k obtained by forming the pull-back of “(−)” via the absolute Frobenius
morphism of k.

(1.b). Throughout the present paper, let (g, r) be a pair of nonnegative integers such
that 2g − 2 + r > 0 and

(X, D)

a hyperbolic curve of type (g, r) over k, i.e., a pair consisting of a projective smooth curve
X of genus g over k and a reduced closed subscheme D ⊆ X of X of degree r. We shall
write

ω

for the cotangent sheaf of X/k,

τ

for the tangent sheaf of X/k, and

Φ: X −→ XF

for the relative Frobenius morphism of X/k. In particular, the sheaves ωF , τF [cf. (1.a)]
may be naturally identified with the cotangent sheaf, tangent sheaf of XF /k, respectively.

(1.c). It is immediate that the pair (X, D) of (1.b) naturally determines a log smooth
[cf. [6], (3.3)] fine log scheme [cf. [6], (2.3)] over k [cf. [6], Example (2.5)]. We shall write

ωlog

for the cotangent sheaf of the resulting log scheme over k [cf. [6], (1.7)] and

τ log def
= HomOX

(ωlog,OX)
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for the tangent sheaf of the resulting log scheme over k. Note that it follows immediately
from the various definitions involved that the natural morphism from the resulting log
scheme to X determines isomorphisms of OX-modules

ω(D)
∼−→ ωlog, τ(−D)

∼−→ τ log.

We shall write

d : OX −→ ω

for the exterior differentiation operator. By abuse of notation, we shall write

d : OX −→ ωlog

for the exterior differentiation operator obtained by forming the composite of d and the
natural inclusion ω ↪→ ωlog. Note that since (X, D) is hyperbolic, it holds that the
invertible sheaf ωlog on X is ample, i.e., that deg ωlog (= 2g − 2 + r) is positive.

(1.d). If L is an invertible sheaf on X, then, by mapping the p-th power of each local
section l of L to the pull-back, via Φ, of the local section lF of LF determined by the
local section l of L, we have an isomorphism of OX-modules

L⊗p ∼−→ Φ∗LF .

Let us always identify L⊗p with Φ∗LF by means of this isomorphism.

(1.e). If E is a locally free coherent OXF -module, then it is immediate that the k-linear
homomorphism

Φ∗E = OX ⊗Φ−1O
XF

Φ−1E
d⊗ idΦ−1E−→ ωlog ⊗Φ−1O

XF
Φ−1E = ωlog ⊗OX

Φ∗E

is a connection on Φ∗E [relative to (X, D)/k]. We shall write

dE

for this connection on Φ∗E .

(1.f). By applying [6], Theorem (4.12), to the log smooth fine log scheme over k deter-
mined by the pair (X, D) (respectively, the scheme X), we obtain an exact sequence of
OXF -modules

0 −→ OXF −→ Φ∗OX
Φ∗d−→ Φ∗ω

log Clog

−→ (ωlog)F −→ 0

(respectively, 0 −→ OXF −→ Φ∗OX
Φ∗d−→ Φ∗ω

C−→ ωF −→ 0).

We shall refer to the fourth arrow

C log : Φ∗ω
log −→ (ωlog)F (respectively, C : Φ∗ω −→ ωF )

as the Cartier operator associated to (X, D)/k (respectively, X/k).
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(1.g). We shall write

T def
= Φ∗(τ log)F .

Thus, if E is a locally free coherent OX-module, then the sheaf (τ log)F ⊗O
XF

Φ∗E may be
naturally identified with Φ∗(T ⊗OX

E). Moreover, we have a connection on T [cf. (1.e)]

∇T
def
= d(τ log)F : T −→ ωlog ⊗OX

T .

(1.h). We shall write
Mg,[r]

for the moduli stack of hyperbolic curves of type (g, r) over k;

(Xg,[r],Dg,[r])

for the universal hyperbolic curve over Mg,[r];

Ng,[r]

for the moduli stack of smooth nilcurves [cf. the discussion preceding [8], Introduction,
Theorem 0.1] of type (g, r) over k, i.e., the moduli stack of hyperbolic curves of type (g, r)
over k equipped with nilpotent [cf. [7], Chapter II, Definition 2.4] indigenous bundles [cf.
[7], Chapter I, Definition 2.2];

N adm
g,[r] ⊆ Ng,[r]

for the admissible locus of Ng,[r], i.e., the [necessarily open] substack which parametrizes
hyperbolic curves of type (g, r) over k equipped with nilpotent admissible [cf. [7], Chapter
II, Definition 2.4] indigenous bundles;

N ord
g,[r] ⊆ N adm

g,[r]

for the ordinary locus of Ng,[r], i.e., the [necessarily open] substack which parametrizes
hyperbolic curves of type (g, r) over k equipped with nilpotent ordinary [cf. [7], Chapter
II, Definition 3.1] indigenous bundles;

Mg,r −→ Mg,[r]

for the connected finite étale Galois covering [whose Galois group is isomorphic to Sr]
which trivializes the étale local system on Mg,[r] obtained by considering “ordering on
the r marked points”;

(Xg,r,Dg,r)
def
= (Xg,[r],Dg,[r])×Mg,[r]

Mg,r;

N ord
g,r

def
= N ord

g,[r]×Mg,[r]
Mg,r ⊆ N adm

g,r
def
= N adm

g,[r] ×Mg,[r]
Mg,r ⊆ Ng,r

def
= Ng,[r]×Mg,[r]

Mg,r.

Then the following three facts were proved in [7], Chapter II.

(i) The forgetful morphism of stacks

Ng,[r] −→ Mg,[r]

is finite flat of degree p3g−3+r [cf. [7], Chapter II, Theorem 2.3].

(ii) The open substack
N adm

g,[r] ⊆ Ng,[r]

coincides with the smooth locus of the structure morphism Ng,[r] → Spec(k) [cf. [7],
Chapter II, Corollary 2.16].



The Supersingular Divisors 9

(iii) The open substack

N ord
g,[r] ⊆ Ng,[r]

coincides with the étale locus of the forgetful morphism of stacks

Ng,[r] −→ Mg,[r]

[cf. [7], Chapter II, Proposition 2.12; [7], Chapter II, Theorem 2.13].

2. Review of FL-bundles

In [7], Chapter II, §1, S. Mochizuki studied the notion of an FL-bundle [cf. [7], Chapter
II, Definition 1.3; Definition 2.2 of the present paper], which defines a section of the torsor
[i.e., under H1(XF , (τ log)F )] of “mod p2 liftings” of (XF , DF ). In the present §2, let us
review some portions of the theory of FL-bundles of [7], Chapter II, §1, from the point of
view of the present paper.

Let us start our discussion with the exact sequence of OXF -modules of §1, (1.f),

0 −→ OXF −→ Φ∗OX
Φ∗d−→ Φ∗ω

log Clog

−→ (ωlog)F −→ 0.

Thus, by applying “H1(XF ,−⊗O
XF

(τ log)F ), we obtain a sequence of k-vector spaces

H1(XF , (τ log)F ) −→ H1(X, T )
∇T−→ H1(X, ωlog ⊗OX

T ).

The following lemma discusses the first de Rham cohomology

H1
DR(X, T )

def
= H1

DR(X, (T ,∇T ))

of (T ,∇T ), i.e., the first hypercohomology of the complex

· · · −→ 0 −→ T ∇T−→ ωlog ⊗OX
T −→ 0 −→ · · · .

LEMMA 2.1. — In the above sequence

H1(XF , (τ log)F ) −→ H1(X, T )
∇T−→ H1(X, ωlog ⊗OX

T ),

the following hold.

(i) It holds that

Γ(X, T ) = Γ(X, ωlog ⊗OX
T ) = {0}.

(ii) The image of the composite of the two arrows is zero.

(iii) The first arrow is injective.

(iv) The kernel of the second arrow is naturally isomorphic to H1
DR(X, T ), i.e.,

H1
DR(X, T )

∼−→ Ker
(
H1(X, T ) → H1(X, ωlog ⊗OX

T )
)
.

(v) The sequence under consideration determines a sequence of injections

H1(XF , (τ log)F ) ↪→ H1
DR(X, T ) ↪→ H1(X, T ).

(vi) The cokernel of the first arrow of (v) is naturally isomorphic to k = Γ(XF ,OXF ),
hence also of dimension one.
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Proof. — Assertions (i), (ii) are immediate. Next, we verify assertion (iii). It is immedi-
ate that the kernel of the first arrow may be identified with a subspace of Γ(X, ωlog⊗OX

T ).
Thus, assertion (iii) follows from assertion (i). This completes the proof of assertion (iii).
Next, let us observe that, by considering the spectral sequence that arises from the
“stupid filtration” of the complex ∇T : T → ωlog⊗OX

T , one may conclude that assertion
(iv) follows from assertion (i). Assertion (v) follows formally from assertions (ii), (iii),
(iv). Finally, we verify assertion (vi). It follows immediately from assertion (iv) that the
cokernel under consideration may be identified with the cokernel of the homomorphism
Γ(X, ωlog ⊗OX

T ) → Γ(XF ,OXF ) induced by the Cartier operator C log. Thus, assertion
(vi) follows from assertion (i). This completes the proof of assertion (vi), hence also of
Lemma 2.1. �

DEFINITION 2.2. — Let (E ,∇E) be a pair consisting of a coherent OX-module E and a
connection ∇E on E relative to (X, D)/k. Then we shall say that (E ,∇E) is an FL-bundle
on (X, D)/k [cf. [7], Chapter II, Definition 1.3] if (E ,∇E) admits a structure of extension

0 −→ (T ,∇T ) −→ (E ,∇E) −→ (OX , d) −→ 0

whose extension class ∈ H1
DR(X, T ) is not contained in the subspace H1(XF , (τ log)F ) ⊆

H1
DR(X, T ) [cf. Lemma 2.1, (v)].

DEFINITION 2.3. — We shall say that an FL-bundle is indigenous if the projectivization
of the FL-bundle is an indigenous bundle on (X, D)/k [cf. [7], Chapter I, Definition 2.2].

The following proposition follows immediately from [7], Chapter II, Corollary 1.6.

PROPOSITION 2.4. — Let (E ,∇E) be an FL-bundle on (X, D)/k. Then the horizontal
invertible subsheaf “(T ,∇T )” of (E ,∇E) in the extension of Definition 2.2 is the unique
maximal horizontal invertible subsheaf of (E ,∇E).

DEFINITION 2.5. — Let (E ,∇E) be an FL-bundle on (X, D)/k. Then we shall refer to
the unique maximal horizontal invertible subsheaf of (E ,∇E) [cf. Proposition 2.4] as the
conjugate filtration of (E ,∇E).

LEMMA 2.6. — Let (E ,∇E) be an FL-bundle on (X, D)/k. Then the monodromy
operator of ∇E at each point on D ⊆ X [cf., e.g., the discussion at the beginning of [1],
§2.2] is nilpotent.

Proof. — This follows from the existence of a structure of extension as in Definition 2.2,
together with the [easily verified] fact that the monodromy operator of the connection
∇T (respectively, d) on T (respectively, OX) at each point on D ⊆ X is zero. �
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LEMMA 2.7. — Let (Y,DY ) → (X, D) be a finite flat tamely ramified covering between
hyperbolic curves over k and (E ,∇E) an FL-bundle on (X, D)/k. Then it holds that
(E ,∇E) is indigenous if and only if the FL-bundle (Y → X)∗(E ,∇E) on (Y,DY )/k
obtained by pulling back (E ,∇E) via Y → X is indigenous.

Proof. — Write (P,∇P ) and (Q,∇Q) for the respective projectivizations of (E ,∇E) and
(Y → X)∗(E ,∇E). The necessity follows from [7], Chapter I, Proposition 2.3. To verify
the sufficiency, suppose that (Q,∇Q) is indigenous. Then it follows immediately from
the uniqueness discussed in [7], Chapter I, Proposition 2.4, that the Hodge section [cf.
[7], Chapter I, Proposition 2.4] of the indigenous bundle (Q,∇Q) descends to a section
of P → X. Moreover, since the covering (Y,DY ) → (X, D) is tamely ramified, it follows
immediately from the various definitions involved that the resulting section of P → X
is of canonical height − deg ωlog/2 [cf. the discussion preceding [7], Chapter I, Definition
2.2]. Thus, in light of Lemma 2.6, we conclude that (P,∇P ) is an indigenous bundle on
(X, D)/k, as desired. �

LEMMA 2.8. — Let (Y,DY ) → (X, D) be a finite flat tamely ramified covering between
hyperbolic curves over k and (P,∇P ) an indigenous bundle on (X, D)/k. Then it holds
that (P,∇P ) is nilpotent (respectively, admissible) [cf. [7], Chapter II, Definition 2.4]
if and only if the indigenous bundle (Y → X)∗(P,∇P ) on (Y,DY )/k obtained by pulling
back (P,∇P ) via Y → X is nilpotent (respectively, admissible).

Proof. — This follows immediately from the [easily verified] fact that the p-curvature
homomorphisms of indigenous bundles are compatible with the pull-back via a finite flat
tamely ramified covering between hyperbolic curves. �

One of the main results of the theory of FL-bundles is as follows [cf. [7], Chapter II,
Proposition 2.5].

THEOREM 2.9. — The following hold.

(i) Let (E ,∇E) be an FL-bundle on (X, D)/k. Suppose that (E ,∇E) is indige-
nous. Then the indigenous bundle on (X, D)/k obtained by forming the projectivization
of (E ,∇E) is nilpotent and admissible.

(ii) Let (π : P → X,∇P ) be a nilpotent admissible indigenous bundle on (X, D)/k.
Write τP/X for the relative tangent sheaf of P/X and P : T → π∗τP/X for the p-curvature
homomorphism of (P,∇P ). Then the pair consisting of the kernel Ker(P∨) of the dual
P∨ of P and the connection on Ker(P∨) induced by ∇P is an indigenous FL-bundle
on (X, D)/k.

(iii) The constructions of (i) and (ii) determine a bijection between the set of iso-
morphism classes of indigenous FL-bundles on (X, D)/k and the set of isomorphism
classes of nilpotent admissible indigenous bundles on (X, D)/k.

Proof. — Let us first recall that if r is even [cf. the remark at the beginning of the
discussion entitled “The Definition of the Verschiebung” in [7], Chapter II, §2], then these
assertions follow immediately from [7], Chapter II, Proposition 2.5 [cf. also the proof of
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[7], Chapter II, Proposition 2.5]. Next, let us observe that it is immediate that there
exists a finite flat tamely ramified Galois covering (Y,DY ) → (X, D) between hyperbolic
curves over k such that “r” for (Y,DY ) [i.e., the degree of the reduced closed subscheme
DY ⊆ Y ] is even, which thus implies that Theorem 2.9 for (Y,DY ) holds.

Assertion (i) follows from assertion (i) for (Y, DY ), together with Lemma 2.8. Next,
we verify assertion (ii). Let us first observe that it follows immediately from a similar
argument to the argument applied in the proof of [7], Chapter II, Proposition 2.5, that
the pair under consideration is an FL-bundle. Moreover, it follows from assertion (ii) for
(Y,DY ), together with Lemma 2.7, that the pair under consideration is also indigenous.
This completes the proof of assertion (ii). Assertion (iii) follows immediately from the
various definitions involved. This completes the proof of Theorem 2.9. �

3. A Characterization of Supersingular Divisors

In the present §3, we give a characterization of the supersingular divisors of nilpotent
admissible/ordinary indigenous bundles [cf. Theorem 3.9, Theorem 3.10, Corollary 3.12
below].

DEFINITION 3.1. — We shall say that an effective divisor on X is of NA-type (respectively,
of NO-type) relative to (X, D)/k if there exists a nilpotent admissible (respectively, nilpo-
tent ordinary — cf. [7], Chapter II, Definition 3.1) indigenous bundle on (X, D)/k whose
supersingular divisor [cf. [7], Chapter II, Proposition 2.6, (3)] coincides with the effective
divisor.

The following fact is well-known [cf. [7], Chapter II, Proposition 2.6, (2), (3); Proposi-
tion A.4 of the present paper].

PROPOSITION 3.2. — Let E be an effective divisor on X of NA-type relative to (X, D)/k.
Then the following hold.

(i) The divisor E is of degree p> deg ωlog.

(ii) The divisor E is reduced.

(iii) It holds that E ∩D = ∅.

Since a nilpotent ordinary indigenous bundle is admissible [cf. [7], Chapter II, Propo-
sition 3.2], the following proposition holds.

PROPOSITION 3.3. — If an effective divisor on X is of NO-type relative to (X, D)/k,
then the divisor is of NA-type relative to (X, D)/k.

Let

(E ,∇E)
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be an FL-bundle on (X, D)/k. Write

C ⊆ E
for the conjugate filtration of (E ,∇E) [cf. Definition 2.5] and fix horizontal isomorphisms

T ∼−→ C, OX
∼−→ E/C.

Let us identify T , OX with C, E/C by means of these horizontal isomorphisms, respec-
tively.

Let E be an effective divisor on X of degree < − deg T = p deg ωlog. Then the natural
inclusion OX(−E) ↪→ OX determines an exact sequence of OX-modules

0 −→ T −→ T (E) −→ T (E)|E −→ 0,

which thus determines an exact sequence of k-vector spaces

0 −→ Γ(E, T (E)|E) −→ H1(X, T ) −→ H1(X, T (E)) −→ 0.

Let us regard Γ(E, T (E)|E) as a subspace of H1(X, T ), i.e.,

Γ(E, T (E)|E) ⊆ H1(X, T ),

by means of the second arrow of this sequence.

DEFINITION 3.4. — We shall say that E is liftable with respect to (E ,∇E) if the natural
inclusion OX(−E) ↪→ OX lifts to a [necessarily injective] homomorphism OX(−E) ↪→ E
of OX-modules [relative to the natural surjection E � E/C = OX ].

Thus, it is immediate from the definition of the term “liftable”, together with the above
exact sequence of k-vector spaces

0 −→ Γ(E, T (E)|E) −→ H1(X, T ) −→ H1(X, T (E)) −→ 0,

that the following lemma holds.

LEMMA 3.5. — The following two conditions are equivalent.

(1) The effective divisor E is liftable with respect to (E ,∇E).

(2) The FL-bundle (E ,∇E) has a structure of extension as in Definition 2.2 whose
extension class ∈ H1

DR(X, T ) (⊆ H1(X, T )) [cf. Lemma 2.1, (v)] is contained in the
subspace Γ(E, T (E)|E) ⊆ H1(X, T ).

LEMMA 3.6. — If E is liftable with respect to (E ,∇E), then it holds that p> deg ωlog ≤
deg E.

Proof. — Since E is liftable with respect to (E ,∇E), the natural inclusion OX(−E) ↪→
OX lifts to a homomorphism OX(−E) ↪→ E . Now we may assume without loss of gener-
ality, by replacing E by a suitable effective subdivisor of E, that the lifting OX(−E) ↪→ E
is locally split. Then since det E ∼= T , it holds that E/OX(−E) ∼= T (E).

Let us consider the homomorphism of OX-modules obtained by forming the composite

OX(−E) ↪→ E ∇E→ ωlog ⊗OX
E � ωlog ⊗OX

(E/OX(−E)) ∼= ωlog ⊗OX
T (E).
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Then it follows immediately from Proposition 2.4 that this composite is injective. Thus,
we obtain that

− deg E = degOX(−E) ≤ deg(ωlog ⊗OX
T (E)) = (1− p) deg ωlog + deg E,

which thus implies the desired inequality. This completes the proof of Lemma 3.6. �

PROPOSITION 3.7. — The following two conditions are equivalent.

(1) The FL-bundle (E ,∇E) is indigenous.

(2) There exists an effective divisor on X of degree p> deg ωlog which is liftable with
respect to (E ,∇E).

Moreover, in this case, the effective divisor of (2) coincides with the supersingular
divisor of the nilpotent admissible indigenous bundle on (X, D)/k obtained by
forming the projectivization of (E ,∇E) [cf. Theorem 2.9, (i)].

Proof. — First, we verify the implication (1)⇒ (2). Suppose that (E ,∇E) is indigenous.
Write L ⊆ E for the Hodge filtration of (E ,∇E) [i.e., the invertible subsheaf which defines
the Hodge section of the indigenous bundle obtained by forming the projectivization of
(E ,∇E)]. Then it follows immediately from the definition of an indigenous bundle that
the homomorphism of OX-modules obtained by forming the composite

L ↪→ E ∇E→ ωlog ⊗OX
E � ωlog ⊗OX

(E/L)

is an isomorphism. In particular, since (E/L) ⊗OX
L ∼= det E ∼= T , it holds that

degL = −p> deg ωlog, and that the homomorphism of OX-modules obtained by form-
ing the composite

L ↪→ E � E/C = OX

is thus injective [cf. also Proposition 2.4]. Thus, there exists an effective divisor F on X of
degree − degL = p> deg ωlog such that the injection L ↪→ OX determines an isomorphism
L ∼→ OX(−F ). In particular, condition (2) is satisfied. This completes the proof of the
implication (1) ⇒ (2).

Next, we verify the implication (2) ⇒ (1). Suppose that E is of degree p> deg ωlog and
liftable with respect to (E ,∇E). Since E is liftable with respect to (E ,∇E), the natural
inclusion OX(−E) ↪→ OX lifts to a homomorphism OX(−E) ↪→ E . Let us observe that
it follows immediately from Lemma 3.6 that this lifting OX(−E) ↪→ E is locally split.
Moreover, since det E ∼= T , it holds that E/OX(−E) ∼= T (E).

Consider the homomorphism of OX-modules obtained by forming the composite

OX(−E) ↪→ E ∇E→ ωlog ⊗OX
E � ωlog ⊗OX

(E/OX(−E)) ∼= ωlog ⊗OX
T (E).

Since E is of degree p> deg ωlog, and this composite is injective [cf. Proposition 2.4], this
composite is in fact an isomorphism, which thus implies that (E ,∇E) is indigenous [cf.
also Lemma 2.6]. This completes the proof of the implication (2) ⇒ (1).

The final assertion follows immediately from the proof of the implication (1) ⇒ (2),
together with a similar argument to the argument applied in the verification of [5], Propo-
sition B.4 [cf. also Proposition A.3, (iv), and Lemma A.10, (i), of the present paper]. This
completes the proof of Proposition 3.7. �
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PROPOSITION 3.8. — It holds that E is of NA-type relative to (X, D)/k if and only if
the following three conditions are satisfied.

(1) It holds that deg E = p> deg ωlog.

(2) It holds that H1(XF , (τ log)F ) ∩ Γ(E, T (E)|E) = {0}.
(3) It holds that H1

DR(X, T ) ∩ Γ(E, T (E)|E) 6= {0}.
Proof. — First, we verify the sufficiency. Take a nonzero element c ∈ H1

DR(X, T ) ∩
Γ(E, T (E)|E) [cf. condition (3)]. Then it follows from condition (2) that c 6∈ H1(XF , (τ log)F ).
In particular, the class c determines an FL-bundle on (X, D)/k. Thus, it follows, in light
of Lemma 3.5, from the implication (2) ⇒ (1) of Proposition 3.7, together with condition
(1), that the projectivization of the FL-bundle is a(n) [necessarily nilpotent admissible
— cf. Theorem 2.9, (i)] indigenous bundle on (X, D)/k. Moreover, it follows from the
final assertion of Proposition 3.7 that the supersingular divisor of the nilpotent admis-
sible indigenous bundle coincides with E. Thus, the divisor E is of NA-type relative to
(X, D)/k. This completes the proof of the sufficiency.

Finally, we verify the necessity. Suppose that (E ,∇E) is indigenous, and that E co-
incides with the supersingular divisor of the nilpotent admissible indigenous bundle on
(X, D)/k determined by (E ,∇E) [cf. Theorem 2.9, (i), (iii)]. Then it follows from Propo-
sition 3.2, (i), that condition (1) is satisfied. Now let us observe that it follows from the
definition of an FL-bundle that the conjugate filtration C ⊆ E of (E ,∇E), together with
the identifications C = T , E/C = OX , determines an extension class cE ∈ H1(X, T ) such
that cE 6∈ H1(XF , (τ log)F ), cE ∈ H1

DR(X, T ). Moreover, let us observe that it follows,
in light of Lemma 3.5, from the implication (1) ⇒ (2) of Proposition 3.7 and the final
assertion of Proposition 3.7 that cE ∈ Γ(E, T (E)|E) [which thus implies that condition
(3) is satisfied]. Thus, to complete the verification of the necessity, it suffices to verify
condition (2), i.e., H1(XF , (τ log)F ) ∩ Γ(E, T (E)|E) = {0}.

Assume that there exists a nonzero element a ∈ H1(XF , (τ log)F )∩Γ(E, T (E)|E). Then
it is immediate that cE + a 6∈ H1(XF , (τ log)F ), cE + a ∈ H1

DR(X, T ), and cE + a ∈
Γ(E, T (E)|E). Thus, it follows immediately, in light of Lemma 3.5, from the implication
(2)⇒ (1) of Proposition 3.7 and the final assertion of Proposition 3.7 that the class cE+a ∈
H1(X, T ) determines an FL-bundle (E ′,∇E ′) on (X, D)/k such that the projectivization of
(E ′,∇E ′) is a(n) [necessarily nilpotent admissible — cf. Theorem 2.9, (i)] indigenous bundle
whose supersingular divisor coincides with E. In particular, it follow from [7], Chapter
II, Proposition 2.6, (4), together with Theorem 2.9, (iii), that (E ,∇E) is isomorphic
to (E ′,∇′

E). On the other hand, it follows immediately from Proposition 2.4 that this
isomorphism restricts to an isomorphism between the respective conjugate filtrations of E
and E ′, which thus implies that cE+a ∈ H1(X, T ) is a k-multiple of cE — in contradiction
to the fact that a ∈ H1(XF , (τ log)F ) \ {0} and cE 6∈ H1(XF , (τ log)F ). This completes the
proof of the necessity, hence also of Proposition 3.8. �

It follows from the definitions of the two subspaces

H1
DR(X, T ), Γ(E, T (E)|E) ⊆ H1(X, T )

[cf. also Lemma 2.1, (iv)] that condition (2) (respectively, (3)) of the statement of Propo-
sition 3.8 is equivalent to the condition that

Ker
(
H1(XF , (τ log)F ) ↪→ H1(X, T ) � H1(X, T (E))

)
= {0}
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(respectively, Ker
(
H1(X, T ) → H1(X, ωlog ⊗OX

T )⊕H1(X, T (E))
)
6= {0}).

Thus, in light of Proposition 3.2 and Proposition 3.3, by applying the Serre duality,
together with [7], Chapter II, Lemma 2.11, we obtain the following theorem, which is one
of the main results of the present paper.

THEOREM 3.9. — In the notational conventions introduced in §1, by abuse of notation,
write

C : Γ(X, (ωlog)⊗p+1(−D)) � Γ(XF , ((ωlog)F )⊗2(−DF ))

for the [necessarily surjective] k-linear homomorphism obtained by applying “Γ(XF ,−⊗O
XF

(ωlog)F )” to the Cartier operator associated to X/k and

d : Γ(X, (ωlog)⊗p(−D)) −→ Γ(X, (ωlog)⊗p+1(−D))

for the k-linear homomorphism determined by the exterior differentiation operator. Let

E

be an effective divisor on X. Then it holds that the divisor E is of NA-type relative to
(X, D)/k if and only if the following three conditions are satisfied.

(1) The divisor E is of degree p> deg ωlog.

(2) The composite

Γ(X, (ωlog)⊗p+1(−D − E)) ↪→ Γ(X, (ωlog)⊗p+1(−D))
C
� Γ(XF , ((ωlog)F )⊗2(−DF ))

is surjective.

(3) The k-vector space Γ(X, (ωlog)⊗p+1(−D)) is not generated by the subspace

Γ(X, (ωlog)⊗p+1(−D − E)) ⊆ Γ(X, (ωlog)⊗p+1(−D))

and the image of the k-linear homomorphism

d : Γ(X, (ωlog)⊗p(−D)) −→ Γ(X, (ωlog)⊗p+1(−D)).

Moreover, we also obtain the following theorem, which is one of the main results of the
present paper.

THEOREM 3.10. — In the situation of Theorem 3.9, let

E

be an effective divisor on X. Then it holds that the divisor E is of NO-type relative to
(X, D)/k if and only if the following three conditions are satisfied.

(1) The divisor E is of degree p> deg ωlog.

(2′) The composite

Γ(X, (ωlog)⊗p+1(−D − 2E)) ↪→ Γ(X, (ωlog)⊗p+1(−D))
C
� Γ(XF , ((ωlog)F )⊗2(−DF ))

is surjective [or, alternatively, an isomorphism — cf. Remark 3.10.1, (i), (iii), below].

(3) The k-vector space Γ(X, (ωlog)⊗p+1(−D)) is not generated by the subspace

Γ(X, (ωlog)⊗p+1(−D − E)) ⊆ Γ(X, (ωlog)⊗p+1(−D))
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and the image of the k-linear homomorphism

d : Γ(X, (ωlog)⊗p(−D)) −→ Γ(X, (ωlog)⊗p+1(−D)).

Proof. — First, to verify the sufficiency, suppose that three conditions (1), (2′), (3)
are satisfied. Then since [it is immediate that] condition (2′) implies condition (2) in
the statement of Theorem 3.9, it follows from Theorem 3.9 that E is of NA-type. In
particular, the divisor 2E coincides with the zero locus of the square Hasse invariant
[cf. [7], Chapter II, Proposition 2.6, (1)] of a nilpotent admissible indigenous bundle on
(X, D)/k. Thus, it follows from condition (2′), together with [7], Chapter II, Proposition
2.12, that the nilpotent admissible indigenous bundle is ordinary, which thus implies that
E is of NO-type. This completes the proof of the sufficiency.

Finally, to verify the necessity, suppose that E is of NO-type. Let us observe that
it follows from Proposition 3.3 and Theorem 3.9 that, to verify the necessity, it suffices
to verify that condition (2′) is satisfied. Next, let us recall that since E is of NO-type,
the divisor 2E coincides with the zero locus of the square Hasse invariant of a nilpotent
ordinary indigenous bundle on (X, D)/k. Thus, it follows from [7], Chapter II, Proposition
2.12, that condition (2′) is satisfied. This completes the proof of the necessity, hence also
of Theorem 3.10. �

REMARK 3.10.1. — In Theorem 3.9 and Theorem 3.10, we consider the two k-linear
homomorphisms

C : Γ(X, (ωlog)⊗p+1(−D)) � Γ(XF , ((ωlog)F )⊗2(−DF )),

d : Γ(X, (ωlog)⊗p(−D)) → Γ(X, (ωlog)⊗p+1(−D))

and the two subspaces

Γ(X, (ωlog)⊗p+1(−D − 2E)) ⊆ Γ(X, (ωlog)⊗p+1(−D − E)) ⊆ Γ(X, (ωlog)⊗p+1(−D)).

Let us first observe that it follows from the Riemann-Roch formula that

(i) the domain, codomain of the k-linear homomorphism

C : Γ(X, (ωlog)⊗p+1(−D)) � Γ(XF , ((ωlog)F )⊗2(−DF ))

are of dimension

1− g + (p + 1) deg ωlog − r = (2p + 1) · g − (2p + 1) + pr,

dimMg,[r] = 3g − 3 + r,

respectively,

(ii) the domain, codomain of the k-linear homomorphism

d : Γ(X, (ωlog)⊗p(−D)) −→ Γ(X, (ωlog)⊗p+1(−D))

are of dimension

1− g + p deg ωlog − r = (2p− 1) · g − (2p− 1) + (p− 1) · r,

1− g + (p + 1) deg ωlog − r = (2p + 1) · g − (2p + 1) + pr,

respectively, and
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(iii) if condition (1) of the statement of Theorem 3.9 is satisfied, then the subspaces

Γ(X, (ωlog)⊗p+1(−D − 2E)) ⊆ Γ(X, (ωlog)⊗p+1(−D − E)) ⊆ Γ(X, (ωlog)⊗p+1(−D))

of Γ(X, (ωlog)⊗p+1(−D)) are of dimension

dimMg,[r] = 3g − 3 + r,

1− g + (p> + 2) deg ωlog − r = (2p> + 3) · g − (2p> + 3) + (p> + 1) · r,
respectively.

Next, let us recall that it follows immediately from the various definitions involved [cf.
also the discussion preceding Lemma 2.1] that

(iv) the image of the composite

Γ(X, (ωlog)⊗p(−D))
d→ Γ(X, (ωlog)⊗p+1(−D))

C
� Γ(XF , ((ωlog)F )⊗2(−DF ))

is zero, and

(v) the kernel of the k-linear homomorphism

d : Γ(X, (ωlog)⊗p(−D)) −→ Γ(X, (ωlog)⊗p+1(−D))

is of dimension

dimk H1(XF ,OXF ) = g.

Finally, let us observe that it follows from Lemma 2.1, (vi), that

(vi) the cokernel of the k-linear homomorphism

d : Γ(X, (ωlog)⊗p(−D)) −→ Γ(X, (ωlog)⊗p+1(−D))

is of dimension

1 + dimk Γ(XF , ((ωlog)F )⊗2(−DF )) = 3g − 2 + r.

DEFINITION 3.11. — Suppose that we are in the situation of Theorem 3.9.

(i) We shall write

V(X,D)
def
= Coker

(
d : Γ(X, (ωlog)⊗p(−D)) → Γ(X, (ωlog)⊗p+1(−D))

)
.

(ii) We shall write

V(X,D)[2E] ⊆ V(X,D)[E] ⊆ V(X,D)

for the subspaces of V(X,D) determined by the subspaces

Γ(X, (ωlog)⊗p+1(−D − 2E)) ⊆ Γ(X, (ωlog)⊗p+1(−D − E)) ⊆ Γ(X, (ωlog)⊗p+1(−D)),

respectively.

(iii) We shall write

C : V(X,D) � Γ(XF , ((ωlog)F )⊗2(−DF ))

for the surjective k-linear homomorphism determined by the homomorphism C in the
statement of Theorem 3.9 [cf. Remark 3.10.1, (iv)].
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It follows from Remark 3.10.1, (vi), that the kernel of the surjective k-linear homomor-
phism of Definition 3.11, (iii),

C : V(X,D) � Γ(XF , ((ωlog)F )⊗2(−DF ))

is of dimension one. Thus, the following corollary follows immediately from Theorem 3.9
and Theorem 3.10, together with Remark 3.10.1, (i), (iii).

COROLLARY 3.12. — In the situation of Theorem 3.9, let E be an effective divisor on
X of degree p> deg ωlog. Then the following hold.

(i) It holds that E is of NA-type relative to (X, D)/k if and only if the composite

V(X,D)[E] ↪→ V(X,D)

C
� Γ(XF , ((ωlog)F )⊗2(−DF ))

is an isomorphism, i.e., the subspace V(X,D)[E] ⊆ V(X,D) determines a splitting of
C : V(X,D) � Γ(XF , ((ωlog)F )⊗2(−DF )).

(ii) It holds that E is of NO-type relative to (X, D)/k if and only if the two composites

V(X,D)[E] ↪→ V(X,D)

C
� Γ(XF , ((ωlog)F )⊗2(−DF )),

V(X,D)[2E] ↪→ V(X,D)

C
� Γ(XF , ((ωlog)F )⊗2(−DF ))

are isomorphisms, i.e., the subspaces V(X,D)[E], V(X,D)[2E] ⊆ V(X,D) determine split-
tings of C : V(X,D) � Γ(XF , ((ωlog)F )⊗2(−DF )), respectively.

4. Explicit Computations in Cases of Genus Zero

In the present §4, we apply the characterization of Corollary 3.12 to some hyperbolic
curves of genus zero.

In the present §4, suppose that

g = 0,

which thus implies that

deg ωlog = r − 2.

Thus, there exists a function t ∈ Γ(X \D,O×
X) which determines an isomorphism over k

Spec
(
k
[
t,

1

t
,

1

t− 1
,

1

t− a1

, . . . ,
1

t− ar−3

])
∼−→ X \D

for some distinct r− 3 elements a1, . . . , ar−3 ∈ k \ {0, 1} of k \ {0, 1}. Let us identify the
left-hand side with the right-hand side by means of this isomorphism. We shall write

f0(t)
def
= t · (t− 1) · (t− a1) · · · (t− ar−3) ∈ Γ(X \D,O×

X)

and

ω0 ∈ Γ(X, ωlog)

for the unique global section of ωlog whose restriction to X \D is given by

dt

f0(t)
=

dt

t · (t− 1) · (t− a1) · · · (t− ar−3)
∈ Γ(X \D, ωlog).
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Write, moreover, for each integer d,

k[t]≤d def
= { f(t) ∈ k[t] | deg f(t) ≤ d }.

Then it follows immediately from the definitions of the sheaves (ωlog)⊗p(−D), (ωlog)⊗p+1(−D),
and ((ωlog)F )⊗2(−DF ) and the homomorphisms d and C that there exist isomorphisms
of k-vector spaces

k[t]≤p(r−2)−r ∼−→ Γ(X, (ωlog)⊗p(−D))

g(t) 7→ g(t)dt⊗ ω⊗p−1
0 ,

k[t]≤p(r−2)−2 ∼−→ Γ(X, (ωlog)⊗p+1(−D))
f(t) 7→ f(t)dt⊗ ω⊗p

0 ,

k[tF ]≤r−4 ∼−→ Γ(X, ((ωlog)F )⊗2(−DF ))
h(tF ) 7→ h(tF )dtF ⊗ ωF

0 ,

and that the sequence of k-vector spaces

Γ(X, (ωlog)⊗p(−D))
d−→ Γ(X, (ωlog)⊗p+1(−D))

C−→ Γ(X, ((ωlog)F )⊗2(−DF ))

corresponds, relative to the above isomorphisms, to the sequence of k-vector spaces

k[t]≤p(r−2)−r −→ k[t]≤p(r−2)−2 −→ k[tF ]≤r−4

g(t) 7→ d

dt
(g(t) · f0(t))

f(t) 7→ − dp−1

dtp−1
f(t)

∣∣∣
tp=tF

.

Next, let
e1, . . . , ep>(r−2) ∈ k \ {0, 1, a1, . . . , ar−3}

be distinct p>(r − 2) (= p> deg ωlog) elements of k \ {0, 1, a1, . . . , ar−3}. Write [ej] for
the principal divisor defined by the closed point of X corresponding to ej ∈ k [where
j ∈ {1, . . . , p>(r − 2)}],

E =

p>(r−2)∑
i=1

[ei]

for the [necessarily reduced effective] divisor on X of degree p>(r − 2) (= p> deg ωlog)
determined by the ei’s, and

fE(t)
def
= (t− e1) · · · (t− ep>(r−2)) ∈ Γ(X \ (D ∪ E),O×

X).

Then it follows immediately from the definitions of the sheaves (ωlog)⊗p+1(−D − 2E),
(ωlog)⊗p+1(−D − E), and (ωlog)⊗p+1(−D) that the subspaces

Γ(X, (ωlog)⊗p+1(−D − 2E)) ⊆ Γ(X, (ωlog)⊗p+1(−D − E)) ⊆ Γ(X, (ωlog)⊗p+1(−D))

correspond, relative to the above isomorphism

k[t]≤p(r−2)−2 ∼−→ Γ(X, (ωlog)⊗p+1(−D)),

to the subspaces

fE(t)2 · k[t]≤r−4 def
= { f(t) · fE(t)2 ∈ k[t]≤p(r−2)−2 | f(t) ∈ k[t]≤r−4 }

⊆ fE(t) · k[t]≤(p>+1)(r−2)−2 def
= { f(t) · fE(t) ∈ k[t]≤p(r−2)−2 | f(t) ∈ k[t]≤(p>+1)(r−2)−2 }

⊆ k[t]≤p(r−2)−2,
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respectively. Thus, by Corollary 3.12, we obtain the following proposition.

PROPOSITION 4.1. — It holds that E is of NA-type (respectively, of NO-type) relative
to (X, D)/k if and only if the following two conditions (1), (2) (respectively, (1), (2′)) are
satisfied.

(1) The k-linear homomorphism

fE(t) · k[t]≤(p>+1)(r−2)−2 −→ k[tF ]≤r−4

fE(t) · f(t) 7→ − dp−1

dtp−1
(fE(t) · f(t))

∣∣∣
tp=tF

is surjective.

(2) The k-vector space k[t]≤p(r−2)−2 is not generated by the subspace

fE(t) · k[t]≤(p>+1)(r−2)−2 ⊆ k[t]≤p(r−2)−2

and the image of the k-linear homomorphism

k[t]≤p(r−2)−r −→ k[t]≤p(r−2)−2

g(t) 7→ d

dt
(g(t) · f0(t)).

(2′) The subspace

fE(t) · k[t]≤(p>+1)(r−2)−2 ⊆ k[t]≤p(r−2)−2

is contained in the subspace of k[t]≤p(r−2)−2 generated by the subspace

fE(t)2 · k[t]≤r−4 ⊆ k[t]≤p(r−2)−2

and the image of the k-linear homomorphism

k[t]≤p(r−2)−r −→ k[t]≤p(r−2)−2

g(t) 7→ d

dt
(g(t) · f0(t)).

(4.a). In the present (4.a), suppose that

(g, r) = (0, 3),

which thus implies that

deg ωlog = 1.

In this situation, it follows from §1, (1.h), (i), (iii), that

• the hyperbolic curve (X, D) over k has a unique nilpotent indigenous bundle, and

• the unique nilpotent indigenous bundle is ordinary.

Thus, since the projectivization of the relative first de Rham cohomology — equipped with
the Gauss-Manin connection — of the Legendre family of elliptic curves over X \D forms
a nilpotent ordinary indigenous bundle on (X, D)/k [cf., e.g., the discussion preceding [7],
Proposition 3.5], one may conclude that the supersingular divisor of the unique nilpotent
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ordinary indigenous bundle on (X, D)/k coincides with the divisor determined by the
Hasse polynomial

χHss(t)
def
=

p>∑
i=0

(
p>

i

)2

· ti.

In summary, in this situation, we already obtained the following assertion.

PROPOSITION 4.2. — There exists a precisely one divisor of NA-type — relative
to (X, D)/k — on X. The divisor of NA-type is of NO-type relative to (X, D)/k and
obtained by forming the zero locus of the Hasse polynomial χHss(t).

In the remainder of (4.a), let us verify the assertion that

the zero locus of χHss(t) satisfies conditions (1), (2′) of Proposition 4.1,

which thus gives an alternative verification of the assertion that

the zero locus of χHss(t) is of NO-type [hence also of NA-type] relative to
(X, D)/k

by means of the characterization of Corollary 3.12.
To verify the assertion that the zero locus of χHss(t) satisfies conditions (1), (2′) of

Proposition 4.1, let us first observe that since r − 4 < 0, it holds that

k[tF ]≤r−4 = {0}, fE(t)2 · k[t]≤r−4 = {0}.

In particular, condition (1) of Proposition 4.1 is always satisfied, and, moreover, condition
(2′) of Proposition 4.1 is equivalent to the following assertion.

(†1): The subspace

χHss(t) · k[t]≤p>−1 ⊆ k[t]≤p−2

is contained in the image of the k-linear homomorphism

k[t]≤p−3 −→ k[t]≤p−2

g(t) 7→ d

dt
(g(t) · t · (t− 1)).

Next, to verify the assertion (†1), for each f(t) ∈ k[t]≤p−2, let us write∫
f(t)dt ∈ k[t]≤p−1

for the unique element of k[t]≤p−1 such that

d

dt

∫
f(t)dt = f(t) and

∫
f(t)dt

∣∣∣
t=0

= 0,

i.e., the unique “indefinite integral” of degree ≤ p − 1 whose constant of integration is
zero. Then it is immediate that, to verify the assertion (†1), it suffices to verify the
following assertion.

(†2): For each 0 ≤ n ≤ p> − 1, it holds that

∫
tn · χHss(t)dt

∣∣∣
t=1

= 0.
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Next, to verify the assertion (†2), for each 0 ≤ n1, n2 ≤ p>−1 such that n1+n2 ≤ p>−1,
let us write

I(n1, n2)
def
=

∫
tn1 ·

( n2︷ ︸︸ ︷∫
· · ·

∫
χHss(t)

n2︷ ︸︸ ︷
dt · · · dt

)
dt

∣∣∣
t=1

.

Thus, the assertion (†2) is equivalent to the assertion that I(n, 0) = 0 for each 0 ≤
n ≤ p> − 1. In particular, to verify the assertion (†2), it suffices to verify the following
assertion.

(†3): For each 0 ≤ n1, n2 ≤ p> − 1 such that n1 + n2 ≤ p> − 1, it holds
that I(n1, n2) = 0.

Let us observe that, for each 0 ≤ n ≤ p> − 1, since

n+1︷ ︸︸ ︷∫
· · ·

∫
χHss(t)

n+1︷ ︸︸ ︷
dt · · · dt =

p>∑
i=0

(
p>

i

)2

· 1

(i + 1) · · · (i + n + 1)
· ti+n+1

=
1

(p> + 1) · · · (p> + n + 1)
·

p>∑
i=0

(
p>

i

)
·
(

p> + n + 1

i + n + 1

)
· ti+n+1,

it follows from “Vandermonde’s convolution” that

I(0, n) =
1

(p> + 1) · · · (p> + n + 1)
·

p>∑
i=0

(
p>

i

)
·
(

p> + n + 1

i + n + 1

)

=
1

(p> + 1) · · · (p> + n + 1)
·
(

p> + p> + n + 1

p>

)
=

1

(p> + 1) · · · (p> + n + 1)
·
(

p + n

p>

)
= 0.

This completes the proof of the fact that I(n1, n2) = 0 if n1 = 0. Thus, the assertion (†3)
follows from induction on n1, together with the equality

I(n1, n2) = tn1|t=1 · I(0, n2)− n1 · I(n1 − 1, n2 + 1)

obtained by “partial integration”. This completes the proof of the assertion that the zero
locus of χHss(t) satisfies conditions (1), (2′) of Proposition 4.1.

(4.b). In the present (4.b), suppose that

(g, r, p) = (0, 4, 3),

which thus implies that

p> = 1, deg ωlog = 2.

Write

a
def
= a1 ∈ k \ {0, 1}.

[So f0(t) = t · (t− 1) · (t− a).] Then, by Proposition 4.1, we obtain the following lemma.
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LEMMA 4.3. — It holds that E is of NO-type relative to (X, D)/k if and only if the
following two conditions are satisfied.

(1) The k-linear homomorphism

fE(t) · k[t]≤2 −→ k[tF ]≤0

fE(t) · f(t) 7→ − d2

dt2
(fE(t) · f(t))

is surjective.

(2) The subspace

fE(t) · k[t]≤2 ⊆ k[t]≤4

is contained in the subspace of k[t]≤4 generated by the subspace

fE(t)2 · k[t]≤0 ⊆ k[t]≤4

and the image of the k-linear homomorphism

k[t]≤2 −→ k[t]≤4

g(t) 7→ d

dt
(g(t) · f0(t)).

Here, let us recall the following well-known [cf., e.g., [4], Proposition 3.2, and its proof]
fact concerning automorphisms of (X, D) over k.

PROPOSITION 4.4. — The following hold.

(i) The homomorphism of groups

AutM0,4(X0,4,D0,4) −→ Autk(X, D)

obtained by considering restrictions, relative to some choice of an ordering on the 4
marked points of (X, D), is injective.

(ii) The group AutM0,4(X0,4,D0,4) is isomorphic to Z/2× Z/2.

(iii) The three [cf. (ii)] nontrivial automorphisms of (X, D) contained in the image of
the injective [cf. (i)] homomorphism of (i) are the three automorphisms determined by the
following three automorphisms of X \D over k.

σ0 : t 7→ t− a

t− 1
, σ1 : t 7→ a

t
, σ∞ : t 7→ a · t− 1

t− a
.

In particular, the image of the injective homomorphism of (i) does not depend on the
choice of an ordering on the 4 marked points of (X, D).

DEFINITION 4.5. — We shall refer to an automorphism of the hyperbolic curve (X, D)
over k which is contained in the image of the homomorphism of Proposition 4.4, (i) [cf.
also the final assertion of Proposition 4.4, (iii)], as a nonspecial automorphism of (X, D).

Let σ be a nontrivial nonspecial automorphism of (X, D). Now I claim that
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the reduced effective divisor on X of degree 2 (= p> deg ωlog) obtained by
forming the fixed locus of σ is of NO-type relative to (X, D)/k.

To verify this claim, let us take “E” of the discussion preceding Proposition 4.1 to be the
reduced effective divisor on X obtained by forming the fixed locus of σ.

First, let us observe that it follows from Proposition 4.4, (iii), that we may assume
without loss of generality, by applying a suitable change of coordinate, that the automor-
phism σ is the automorphism determined by σ1 of Proposition 4.4, (iii). Thus, we obtain
that

fE(t) = t2 − a.

Since

− d2

dt2
fE(t) = − d2

dt2
(t2 − a) = 1,

it holds that E satisfies condition (1) of Lemma 4.3. Next, to verify the assertion that E
satisfies condition (2) of Lemma 4.3, let us observe that the following equalities hold.

fE(t) =
1

a

(
fE(t)2 +

d

dt

(
(t + 1) · (t + a) · f0(t)

))
,

t · fE(t) =
d

dt
(t · f0(t)),

t2 · fE(t) = 2 · fE(t)2 +
d

dt

(
(t + 1) · (t + a) · f0(t)

)
.

Thus, we conclude that E satisfies condition (2) of Lemma 4.3. In particular, it follows
from Lemma 4.3 that E is of NO-type relative to (X, D)/k, as desired. This completes
the proof of the above claim.

Next, let us recall that it follows immediately from §1, (1.h), (i), that the hyperbolic
curve (X, D) over k has at most 3 (= p3g−3+r) nilpotent indigenous bundles. Thus, the
above claim, together with §1, (1.h), (i), (iii), leads us to the following list of the nilpotent
indigenous bundles on (X, D)/k.

PROPOSITION 4.6. — The following hold.

(i) The hyperbolic curve (X, D) over k has precisely three nilpotent indigenous
bundles.

(ii) Every nilpotent indigenous bundle on (X, D)/k is ordinary, hence also admis-
sible.

(iii) The supersingular divisor of a nilpotent [necessarily admissible — cf. (ii)]
indigenous bundle on (X, D)/k coincides with the reduced effective divisor obtained by
forming the fixed locus of one of the three nontrivial nonspecial automorphisms of
(X, D) over k.

REMARK 4.6.1. — By Proposition 4.6, (i), (ii), the following assertion holds.

Every sufficiently general hyperbolic curve of type (0, 4) over k has precisely
three nilpotent ordinary indigenous bundles.

On the other hand, this assertion has already been verified [cf. [8], Chapter V, Corollary
1.3, (3)].
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The following corollary follows from Proposition 4.6, (i), (ii), together with [7], Chapter
II, Proposition 3.4.

COROLLARY 4.7. — Every hyperbolic curve of type (0, 4) over a connected noetherian
scheme of characteristic 3 is hyperbolically ordinary [cf. [7], Chapter II, Definition
3.3].

REMARK 4.7.1. — In the present Remark 4.7.1, let us discuss §6.2 of [1]. In the remainder
of the present Remark 4.7.1, suppose that we are in the situation of §1, (1.h). [In
particular, the field “k” is not necessarily of characteristic three.]

(i) [1], Lemma 6.3, asserts that the forgetful morphism N0,4 →M0,4 of stacks admits
a splitting. Thus, since [it has already been verified that] N0,4 is smooth over k, it follows
from §1, (1.h), (i), (iii), that the restriction of the morphism N0,4 → M0,4 of stacks to
the ordinary locus N ord

0,4 ⊆ N0,4 is surjective [cf. [1], Proposition 6.4], and, moreover, the
stack N0,4 is not connected [cf. [1], Corollary 6.5]. In particular, one may conclude that
Corollary 4.7 holds [even if p > 3].

(ii) In the first and second paragraphs of the proof of [1], Lemma 6.3, the authors of
[1] claimed that

there exists a nonzero vector (u0, . . . , up−1) in the field kλ
def
= k(λ) of ratio-

nal functions in λ over k such that the recursion (6.5) of [1], i.e.,

λ · (i + 1)2 · ui+1 = (1 + λ) · (i2 + i + 1) · ui − i2 · ui−1 (i ∈ {0, . . . , p− 1})

— where we write u−1
def
= up

def
= 0 — holds.

However, this assertion is false in general. Indeed, if we are in the situation in which
p = 3, then the above recursion is equivalent to the equality1 + λ −λ 0

1 0 λ
0 −1 1 + λ

 ·

u0

u1

u2

 =

0
0
0

 .

On the other hand, the determinant of the left-hand matrix is equal to −λ · (1 + λ) 6= 0.
Thus, there is no nonzero vector (u0, u1, u2) in kλ which satisfies the recursion (6.5) of
[1]. [Note that, in the fourth paragraph of the proof of [1], Lemma 6.3, it is asserted that
the vi’s also satisfy the recursion (6.5) of [1]. However, the author of the present paper
cannot find any reason which implies that the vi’s satisfy the recursion (6.5) of [1].]

(iii) As a consequence of the discussion of (ii), the proof given in [1] of [1], Lemma 6.3
— hence also of [1], Proposition 6.4; [1], Corollary 6.5 — must be considered incomplete.

(iv) On the other hand, by a straightforward computation of a similar recursion to
the recursion (6.5) of [1] which arises from the differential operator Lλ,β of (6.3) of [1],
one can verify the validity of [1], Lemma 6.3, at least in the case where p = 3, which thus
implies [cf. the discussion of (i)] [1], Proposition 6.4, in the case where p = 3 and [1],
Corollary 6.5, in the case where p = 3. In particular, one may conclude that Corollary 4.7
of the present paper may also be deduced from the consideration of §6.2 of [1].
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(v) However, after pointing out the error discussed in (ii) to the authors of [1], the
author of the present paper was informed by I. I. Bouw [who is one of the authors of [1]]
that she could verify that [1], Lemma 6.3, in the case where p ∈ {11, 13} is in fact false
by a straightforward computation of a similar recursion to the recursion (6.5) of [1] which
arises from the differential operator Lλ,β of (6.3) of [1].

5. Explicit Computations in Cases of Once-punctured Elliptic Curves

In the present §5, we apply the characterizations of Theorem 3.9 and Theorem 3.10 to
some once-punctured elliptic curves.

In the present §5, suppose that

(g, r) = (1, 1),

which thus implies that

deg ωlog = 1.

Thus, there exist functions s, t ∈ Γ(X \D,OX) which determine an isomorphism over k

Spec(k[s, t]/(s2 − t · (t− 1) · (t− a))
∼−→ X \D

for some element a ∈ k \ {0, 1} of k \ {0, 1}. Let us identify the left-hand side with the
right-hand side by means of this isomorphism. We shall write

f0(t)
def
= t · (t− 1) · (t− a) ∈ Γ(X \D,OX),

f ′0(t)
def
=

d

dt
f0(t) = 3t2 − 2(1 + a)t + a,

U
def
= Spec

(
k
[
s,

1

s
, t

]
/(s2 − f0(t))

)
⊆ X \D

for the largest open subscheme of X \ D on which the function s ∈ Γ(X \ D,OX) is
invertible, and

ω0 ∈ Γ(X, ω) = Γ(X, ωlog)

for the unique global section of ω (⊆ ωlog) whose restriction to U ⊆ X is given by

dt

s
∈ Γ(U, ωlog).

Write, moreover, for each integer d,

k[s, t]≤d def
=

{
f(s, t) =

∑
i,j

ci,j · si · tj ∈ k[s, t]
∣∣∣ ci,j = 0 if 3i + 2j > d

}
and

V ≤d ⊆ k
[
s,

1

s
, t

]
/(s2 − f0(t))

for the subspace obtained by forming the image of k[s, t]≤d ⊆ k[s, t]. [Thus, the equality

dimk V ≤d =

 d if d ≥ 1
1 if d = 0
0 if d ≤ −1
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holds.] Then it follows immediately from the definitions of the sheaves (ωlog)⊗p(−D),
(ωlog)⊗p+1(−D), and ((ωlog)F )⊗2(−DF ) and the homomorphisms d and C that there exist
isomorphisms of k-vector spaces

V ≤p−1 ∼−→ Γ(X, (ωlog)⊗p(−D))
g(s, t) 7→ g(s, t) · ω⊗p

0 ,

V ≤p ∼−→ Γ(X, (ωlog)⊗p+1(−D))

f(s, t) 7→ f(s, t) · ω⊗p+1
0 ,

V ≤0 ∼−→ Γ(X, ((ωlog)F )⊗2(−DF ))
c 7→ c · (ωF

0 )⊗2,

and that the sequence of k-vector spaces

Γ(X, (ωlog)⊗p(−D))
d−→ Γ(X, (ωlog)⊗p+1(−D))

C−→ Γ(X, ((ωlog)F )⊗2(−DF ))

corresponds, relative to the above isomorphisms, to the sequence of k-vector spaces

V ≤p−1 −→ V ≤p −→ V ≤0

g(s, t) 7→ s · d

dt
g(s, t)

(
=

1

sp
· f0(t)

p>+1 · d

dt
g(s, t)

)
f(s, t) 7→ − dp−1

dtp−1
(f(s, t) · f0(t)

p>
).

Note that the first arrow of this sequence coincides with the homomorphism given by

V ≤p−1 −→ V ≤p

tn 7→ n · tn−1 · s

tn · s 7→ Gn(t)
def
= n · tn−1 · f0(t) + tn · f ′0(t)

2
.

Thus, we obtain the following lemma.

LEMMA 5.1. — Let E be a reduced effective divisor on X of degree p> (= p> deg ωlog).
Then it holds that E satisfies condition (3) of Theorem 3.9 [i.e., condition (3) of Theo-
rem 3.10] if and only if the k-vector space V ≤p is not generated by the subspace of V ≤p

corresponding, relative to the above isomorphism

V ≤p ∼−→ Γ(X, (ωlog)⊗p+1(−D)),

to the subspace

Γ(X, (ωlog)⊗p+1(−D − E)) ⊆ Γ(X, (ωlog)⊗p+1(−D))

and

tn · s (0 ≤ n ≤ p> − 1), Gm(t) (0 ≤ m ≤ p> − 2).
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(5.a). In the present (5.a), suppose that

(g, r, p) = (1, 1, 3),

which thus implies that
p> = 1.

Let us first consider the principal divisor [i.e., the reduced effective divisor of degree
1 = p> deg ωlog] on X defined by a closed point of X \D which is not a 2-torsion point of
the elliptic curve over k determined by (X, D). It is immediate that such a closed point
of X \D is defined by the maximal ideal

(s− c2, t− c1) ⊆ k[s, t]/(s2 − f0(t))

for some pair (c1, c2) of elements of k such that f0(c1) 6= 0 and c2
2 = f0(c1). Write

E(c1,c2) ⊆ X

for the principal divisor defined by this closed point. Then it follows immediately from
the definitions of the sheaves (ωlog)⊗4(−D−E(c1,c2)) and (ωlog)⊗4(−D) that the subspace

Γ(X, (ωlog)⊗4(−D − E(c1,c2))) ⊆ Γ(X, (ωlog)⊗4(−D))

corresponds, relative to the isomorphism

V ≤3 ∼−→ Γ(X, (ωlog)⊗4(−D))

discussed above, to the subspace

〈t− c1, s− c2〉 ⊆ V ≤3.

Thus, since [it is immediate from the fact that c2 6= 0 that] the subspace 〈t− c1, s− c2〉
and

s

generate V ≤3, it follows from Lemma 5.1 that E(c1,c2) does not satisfy condition (3) of
Theorem 3.9. Thus, it follows from Theorem 3.9 that E(c1,c2) is not of NA-type relative
to (X, D)/k.

Next, let us consider the principal divisor [i.e., the reduced effective divisor of degree
1 = p> deg ωlog] on X defined by a closed point of X \D which is a [necessarily nontrivial]
2-torsion point of the elliptic curve over k determined by (X, D). Let c ∈ k be a solution
of the equation “f0(t) = 0”, i.e., an element of {0, 1, a}. In the remainder of (5.a), write

E ⊆ X

for the principal divisor defined by the maximal ideal

(s, t− c) ⊆ k[s, t]/(s2 − f0(t)).

Now I claim that

the reduced effective divisor E on X of degree 1 (= p> deg ωlog) is of
NO-type relative to (X, D)/k.

To verify this claim, let us first observe that we may assume without loss of generality, by
applying a suitable change of coordinate, that c = 0. Then it follows immediately from
the definitions of the sheaves (ωlog)⊗4(−D − 2E), (ωlog)⊗4(−D − E), and (ωlog)⊗4(−D)
that the subspaces

Γ(X, (ωlog)⊗4(−D − 2E)) ⊆ Γ(X, (ωlog)⊗4(−D − E)) ⊆ Γ(X, (ωlog)⊗4(−D))
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correspond, relative to the isomorphism

V ≤3 ∼−→ Γ(X, (ωlog)⊗4(−D))

discussed above, to the subspaces

〈t〉 ⊆ 〈t, s〉 ⊆ V ≤3.

Since

− d2

dt2
(t · f0(t)) = − d2

dt2
(t2 · (t− 1) · (t− a)) = a 6= 0,

it holds that E satisfies condition (2′) of Theorem 3.10. Moreover, since [it is immediate
that] the subspace of V ≤3 generated by 〈t, s〉 and

s

is of dimension ≤ 2 (< 3), it follows from Lemma 5.1 that E satisfies condition (3)
of Theorem 3.10. Thus, it follows from Theorem 3.10 that E is of NO-type relative to
(X, D)/k, as desired. This completes the proof of the above claim.

Next, let us recall that it follows immediately from §1, (1.h), (i), that the hyperbolic
curve (X, D) over k has at most 3 (= p3g−3+r) nilpotent indigenous bundles. Thus, the
above claim, together with §1, (1.h), (i), (iii), leads us to the following list of the nilpotent
indigenous bundles on (X, D)/k.

PROPOSITION 5.2. — The following hold.

(i) The hyperbolic curve (X, D) over k has precisely three nilpotent indigenous
bundles.

(ii) Every nilpotent indigenous bundle on (X, D)/k is ordinary, hence also admis-
sible.

(iii) The supersingular divisor of a nilpotent [necessarily admissible — cf. (ii)]
indigenous bundle on (X, D)/k coincides with the reduced effective divisor on X of degree
one determined by one of the three nontrivial 2-torsion points of the elliptic curve
determined by (X, D).

REMARK 5.2.1. — By Proposition 5.2, (i), (ii), the following assertion holds.

Every sufficiently general hyperbolic curve of type (1, 1) over k has precisely
three nilpotent ordinary indigenous bundles.

On the other hand, this assertion has already been verified [cf. [8], Chapter V, Corollary
1.3, (3)].

The following corollary follows from Proposition 5.2, (i), (ii), together with [7], Chapter
II, Proposition 3.4.

COROLLARY 5.3. — Every hyperbolic curve of type (1, 1) over a connected noetherian
scheme of characteristic 3 is hyperbolically ordinary.
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Let us observe that it follows from Proposition 5.2, (ii), that

N ord
1,[1] = N adm

1,[1] = N1,[1].

Next, let us recall that the morphism of stacks

X1,[1] −→ M1,[1]

forms a family of elliptic curves over M1,[1] whose identity section is given by D1,[1] ⊆
X1,[1]. For each positive integer n, we shall write

X1,[1][n] −→ M1,[1]

for the kernel of the endomorphism of X1,[1] over M1,[1] obtained by multiplication by
n. [So X1,[1][1] = D1,[1].] Then it follows from Proposition 5.2, (iii), that, by considering
supersingular divisors, we obtain a dominant morphism of stacks

N ord
1,[1] = N adm

1,[1] = N1,[1] −→ X1,[1][2] \ D1,[1]

over M1,[1] [i.e., the “(1, [1])-version” of the Hasse defect morphism — cf. [5], Definition
C.1]. Thus, both N ord

1,[1] = N adm
1,[1] = N1,[1] and X1,[1][2] \ D1,[1] are finite étale and of degree

three over M1,[1] [cf. §1, (1.h), (i), (iii)], we obtain the following result.

COROLLARY 5.4. — There exists a natural isomorphism of stacks

N ord
1,[1] = N adm

1,[1] = N1,[1]
∼−→ X1,[1][2] \ D1,[1]

over M1,[1].

(5.b). In the present (5.b), suppose that

(g, r, p) = (1, 1, 5),

which thus implies that
p> = 2.

Let c1, c2 ∈ k be two distinct solutions of the equation “f0(t) = 0”, i.e., two distinct
elements of {0, 1, a}. Write

E1 ⊆ X

for the reduced effective divisor of degree 2 (= p> deg ωlog) defined by the ideal

(s, (t− c1) · (t− c2)) ⊆ k[s, t]/(s2 − f0(t)).

Now I claim that the following assertion holds.

(†1): The reduced effective divisor E1 on X of degree 2 (= p> deg ωlog) is
of NO-type relative to (X, D)/k.

To verify the assertion (†1), let us first observe that we may assume without loss of
generality, by applying a suitable change of coordinate, that (c1, c2) = (0, 1). Then it
follows immediately from the definitions of the sheaves (ωlog)⊗6(−D−2E1), (ωlog)⊗6(−D−
E1), and (ωlog)⊗6(−D) that the subspaces

Γ(X, (ωlog)⊗6(−D − 2E1)) ⊆ Γ(X, (ωlog)⊗6(−D − E1)) ⊆ Γ(X, (ωlog)⊗6(−D))

correspond, relative to the isomorphism

V ≤5 ∼−→ Γ(X, (ωlog)⊗6(−D))
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discussed above, to the subspaces

〈t · (t− 1)〉 ⊆ 〈s, t · (t− 1), t · s〉 ⊆ V ≤5.

Since

− d4

dt4
(t · (t− 1) · f0(t)

2) = − d4

dt4
(t3 · (t− 1)3 · (t− a)2) = 3 · a · (a− 1) 6= 0,

it holds that E1 satisfies condition (2′) of Theorem 3.10. Moreover, since [it is immediate
that] the subspace of V ≤5 generated by 〈s, t · (t− 1), t · s〉 and

s, G0(t) = 3 · f ′0(t), t · s
is of dimension ≤ 4 (< 5), it follows from Lemma 5.1 that E1 satisfies condition (3)
of Theorem 3.10. Thus, it follows from Theorem 3.10 that E1 is of NO-type relative to
(X, D)/k, as desired. This completes the proof of the above assertion (†1).

Next, let c ∈ k be a solution of the equation “f ′0(t) = 0”. [So the equality

c2 + (1 + a) · c + 2a = 0

holds.] Write
E2 ⊆ X

for the reduced effective divisor of degree 2 (= p> deg ωlog) defined by the ideal

(t− c) ⊆ k[s, t]/(s2 − f0(t)).

Now I claim that the following assertion holds.

(†2): The reduced effective divisor E2 on X of degree 2 (= p> deg ωlog) is
of NA-type relative to (X, D)/k.

To verify the assertion (†2), let us first observe that it follows immediately from the
definitions of the sheaves (ωlog)⊗6(−D − E2) and (ωlog)⊗6(−D) that the subspace

Γ(X, (ωlog)⊗6(−D − E2)) ⊆ Γ(X, (ωlog)⊗6(−D))

corresponds, relative to the isomorphism

V ≤5 ∼−→ Γ(X, (ωlog)⊗6(−D))

discussed above, to the subspace

〈t− c, (t− c)2, (t− c) · s〉 ⊆ V ≤5.

Here, let us observe that it holds that

− d4

dt4
((t− c) · f0(t)

2) = − d4

dt4
((t− c) · t2 · (t− 1)2 · (t− a)2)

= 3 · a · (1 + a)− c · (a2 − a + 1).

If a2 − a + 1 = 0 [which thus implies that a is a primitive sixth root of unity], then it is
immediate that 3 · a · (1 + a) − c · (a2 − a + 1) 6= 0. Moreover, if a2 − a + 1 6= 0, and
3 · a · (1 + a)− c · (a2 − a + 1) = 0, then the equality c2 + (1 + a) · c + 2a = 0 implies that

a2 · (a− 1)2 = 0

— in contradiction to the fact that a 6∈ {0, 1}. Thus, we conclude that

− d4

dt4
((t− c) · f0(t)

2) 6= 0

— which thus implies that E2 satisfies condition (2) of Theorem 3.9.



The Supersingular Divisors 33

Next, let us observe that it is immediate that if c′ ∈ k is not a solution of the equation
“f ′0(t) = 0”, then t − c′ ∈ V ≤5 is not contained in the subspace of V ≤5 generated by
〈t− c, (t− c)2, (t− c) · s〉 and

s, G0(t) = 3 · f ′0(t), t · s.

In particular, it follows from Lemma 5.1 that E2 satisfies condition (3) of Theorem 3.9.
Thus, it follows from Theorem 3.9 that E2 is of NA-type relative to (X, D)/k, as desired.
This completes the proof of the above assertion (†2).

Next, I claim that the following assertion holds.

(†3): If, moreover, the elliptic curve over k determined by (X, D) is super-
singular [i.e., the equality a2−a+1 = 0 holds — cf. the Hasse polynomial
“χHss(t)” discussed in §4, (4.a), in the case where p = 5], then the divisor
E2 is not of NO-type relative to (X, D)/k.

To verify the assertion (†3), suppose that the equality a2 − a + 1 = 0 holds. Then it is
immediate that the equation “f ′0(t) = 0” has a multiple root, which thus implies that

f ′0(t) = 3 · (t− c)2.

Next, let us observe that it follows immediately from the definitions of the sheaves
(ωlog)⊗6(−D − 2E2) and (ωlog)⊗6(−D) that the subspace

Γ(X, (ωlog)⊗6(−D − 2E2)) ⊆ Γ(X, (ωlog)⊗6(−D))

corresponds, relative to the isomorphism

V ≤5 ∼−→ Γ(X, (ωlog)⊗6(−D))

discussed above, to the subspace

〈(t− c)2〉 ⊆ V ≤5.

Thus, since G0(t) (= 3 · f ′0(t) = −(t− c)2) is contained in the image of d, hence also the
kernel of C [cf. Remark 3.10.1, (iv)], it holds that E2 does not satisfy condition (2′) of
Theorem 3.10. Thus, it follows from Theorem 3.10 that E2 is not of NO-type relative to
(X, D)/k, as desired. This completes the proof of the above assertion (†3).

By the assertions (†1), (†2), and (†3), we obtain the following list of the nilpotent
indigenous bundles on (X, D)/k.

PROPOSITION 5.5. — Write A for the elliptic curve over k determined by (X, D). Then
the following hold.

(i) If A is ordinary (respectively, supersingular), then the hyperbolic curve (X, D)
over k has precisely five (respectively, four) nilpotent indigenous bundles.

(ii) Every nilpotent indigenous bundle on (X, D)/k is admissible.

(iii) The supersingular divisor of a nilpotent [necessarily admissible — cf. (ii)]
indigenous bundle on (X, D)/k coincides with the reduced effective divisor on X of degree
two determined by either

(a) two of the three nontrivial 2-torsion points of A or
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(b) one of the solutions of the equation “f ′0(t) = 0”. [Note that if A is ordinary
(respectively, supersingular), then the equation “f ′0(t) = 0” has exactly two (respectively,
one) solution(s).]

(iv) It holds that a nilpotent [necessarily admissible — cf. (ii)] indigenous bundle on
(X, D)/k is ordinary if and only if one of the following two conditions is satisfied.

(1) The supersingular divisor of the nilpotent indigenous bundle is given by (a) of
(iii).

(2) The elliptic curve A is ordinary.

(v) If A is ordinary (respectively, supersingular), then (X, D) has precisely five
(respectively, three) nilpotent ordinary indigenous bundles.

Proof. — First, we verify Proposition 5.5 in the case where A is ordinary. Suppose
that A is ordinary. Then it follows from the assertions (†1) and (†2) that the hyperbolic
curve (X, D) has at least five nilpotent admissible indigenous bundles. Thus, it follows
immediately from §1, (1.h), (i), that assertion (i) — hence also assertions (ii), (iii) [cf. the
assertions (†1) and (†2)] — holds. Moreover, it follows immediately from §1, (1.h), (iii),
that every nilpotent indigenous bundle is ordinary, which thus implies that assertions (iv),
(v) hold. This completes the proof of Proposition 5.5 in the case where A is ordinary.

Next, we verify Proposition 5.5 in the case where A is supersingular. Suppose that A is
supersingular. Then it follows from the assertions (†1) and (†2) that the hyperbolic curve
(X, D) has at least four nilpotent admissible indigenous bundles. Moreover, it follows
from the assertion (†3) that one of the four nilpotent admissible indigenous bundles is
not ordinary. Thus, it follows immediately from §1, (1.h), (i), (iii), that assertion (i) —
hence also assertions (ii), (iii) [cf. the assertions (†1) and (†2)] — holds. Moreover, it
follows immediately from the assertions (†1) and (†3) that assertions (iv), (v) hold. This
completes the proof of Proposition 5.5 in the case where A is supersingular, hence also of
Proposition 5.5. �

REMARK 5.5.1. — By Proposition 5.5, (v), the following assertion holds.

Every sufficiently general hyperbolic curve of type (1, 1) over k has precisely
five nilpotent ordinary indigenous bundles.

On the other hand, this assertion has already been verified [cf. [8], Chapter V, Corollary
1.3, (3)].

The following corollary follows from Proposition 5.5, (v), together with [7], Chapter II,
Proposition 3.4 [cf. Remark 5.6.1 below].

COROLLARY 5.6. — Every hyperbolic curve of type (1, 1) over a connected noetherian
scheme of characteristic 5 is hyperbolically ordinary.

REMARK 5.6.1. — Note that Corollary 5.6 has already been verified in the second remark
of [8], Chapter IV, §1.3.
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(5.c). In the present (5.c), suppose that

(g, r, p) = (1, 1, 7),

which thus implies that
p> = 3.

Write
E ⊆ X

for the reduced effective divisor of degree 3 (= p> deg ωlog) defined by the ideal

(s) ⊆ k[s, t]/(s2 − f0(t)).

Now I claim that

the reduced effective divisor E on X of degree 3 (= p> deg ωlog) is of
NO-type relative to (X, D)/k.

To verify this claim, let us first observe that it follows immediately from the definitions of
the sheaves (ωlog)⊗8(−D− 2E), (ωlog)⊗8(−D−E), and (ωlog)⊗8(−D) that the subspaces

Γ(X, (ωlog)⊗8(−D − 2E)) ⊆ Γ(X, (ωlog)⊗8(−D − E)) ⊆ Γ(X, (ωlog)⊗8(−D))

correspond, relative to the isomorphism

V ≤7 ∼−→ Γ(X, (ωlog)⊗8(−D))

discussed above, to the subspaces

〈f0(t)〉 ⊆ 〈s, t · s, f0(t), t2 · s〉 ⊆ V ≤7.

Since

− d6

dt6
(f0(t) · f0(t)

3) = − d6

dt6
(t4 · (t− 1)4 · (t− a)4) = −a2 · (a− 1)2 6= 0,

it holds that E satisfies condition (2′) of Theorem 3.10. Moreover, since [it is immediate
that] the subspace of V ≤7 generated by 〈s, t · s, f0(t), t2 · s〉 and

s, G0(t) = 4 · f ′0(t), t · s, G1(t) = f0(t) + 4 · t · f ′0(t), t2 · s
is of dimension ≤ 6 (< 7), it follows from Lemma 5.1 that E satisfies condition (3)
of Theorem 3.10. Thus, it follows from Theorem 3.10 that E is of NO-type relative to
(X, D)/k, as desired. This completes the proof of the above claim.

By the above claim, we obtain the following proposition.

PROPOSITION 5.7. — The hyperbolic curve (X, D) over k has a nilpotent ordinary
indigenous bundle whose supersingular divisor coincides with the reduced effective
divisor on X of degree three determined by the three nontrivial 2-torsion points of the
elliptic curve determined by (X, D).

The following corollary follows from Proposition 5.7, together with [7], Chapter II,
Proposition 3.4.

COROLLARY 5.8. — Every hyperbolic curve of type (1, 1) over a connected noetherian
scheme of characteristic 7 is hyperbolically ordinary.
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Appendix A. Canonical Sections and Square Hasse Invariants

In the present §A, we apply the notational conventions introduced in §1. In the present
§A, we discuss the relationship between the zero loci of square Hasse invariants [cf. [7],
Chapter II, Proposition 2.6, (1)] and the zero loci of canonical sections discussed in [1],
§3. Moreover, we also verify that the application of the discussions of [1], §3, leads us
to the relationship [cf. Proposition A.3 below] between the zero loci of square Hasse
invariants, generalized supersingular divisors [cf. Definition A.2, (iii), below], and spiked
loci [cf. Definition A.2, (iv), below].

DEFINITION A.1. — We shall say that an indigenous bundle on (X, D)/k is active [cf.
[8], Chapter II, Definition 1.1] if the p-curvature homomorphism of the indigenous bundle
is a nonzero homomorphism.

DEFINITION A.2. — Let (P,∇P ) be a nilpotent active indigenous bundle on (X, D)/k.

(i) We shall write

EsH

for the divisor on X obtained by forming the zero locus of the square Hasse invariant of
(P,∇P ).

(ii) Since (P,∇P ) is nilpotent and active, there exists a unique horizontal section of
P → X. We shall refer to this unique horizontal section of P → X as the conjugate
section of (P,∇P ).

(iii) We shall write

Egss

for the divisor on X obtained by pulling back the conjugate section via the Hodge sec-
tion of (P,∇P ) [cf. [7], Chapter I, Proposition 2.4] and refer to Egss as the generalized
supersingular divisor of (P,∇P ).

(iv) We shall write

Espk

for the divisor on X obtained by forming the zero locus of the p-curvature homomorphism
of (P,∇P ) and refer to Espk as the spiked locus of (P,∇P ) [cf. [8], Chapter II, Definition
3.1]. Thus, it follows from the various definitions involved that (P,∇P ) is admissible if
and only if Espk = ∅.

The purpose of the present §A is to verify the following proposition.

PROPOSITION A.3. — Let (P,∇P ) be a nilpotent active indigenous bundle on (X, D)/k.
Then the following hold.

(i) The divisor Egss is reduced. Moreover, it holds that Egss ∩D = ∅.
(ii) It holds that Espk ∩D = ∅. Moreover, there exists a divisor Espk on X such that

Espk = pEspk.
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(iii) It holds that 2Egss ≤ EsH, that Espk ≤ EsH, and that 2 deg Egss + deg Espk =
deg EsH.

(iv) If (P,∇P ) is admissible, then the divisor Egss coincides with the supersingular
divisor of (P,∇P ).

REMARK A.3.1. — Suppose that we are in the situation of Proposition A.3.

(i) Suppose that Egss ∩ Espk = ∅. Then it follows immediately from Proposition A.3,
(iii), that EsH = 2Egss +Espk. In particular, it follows from Proposition A.3, (i), (ii), that
the order of EsH at each closed point of X is ∈ {2} ∪ pZ.

(ii) Now let us recall that the content of [1], Proposition 3.6, (iv), is essentially the
same as the equality Egss ∩ Espk = ∅.

(iii) However, this equality Egss∩Espk = ∅ does not hold in general. Indeed, let us first
observe that, by (i), this equality implies that the order of EsH at each closed point of X
is ∈ {2}∪ pZ. Now let us recall the global section “ω” discussed in the second paragraph
of [5], Remark 4.2.1, (i). [Note that “(g, r, p)” for the situation of [5], Remark 4.2.1, (i),
is given by (5, 0, 3).] Then it follows from [5], Proposition 3.2, and [5], Proposition 4.1,
that the zero locus of the square of this ω is the “EsH” of a nilpotent active indigenous
bundle. On the other hand, it is immediate that the zero locus of the square of this ω is
of order ∈ {0, 8} at each closed point. In particular, one may conclude that the equality
Egss ∩Espk = ∅ does not hold in general. [Note that, at the time of writing, the author of
the present paper was not able to follow the proof of [1], Proposition 3.6, (iv).]

The following proposition, which seem to be well-known to experts, follows immediately
from Proposition A.3, (i), (iv).

PROPOSITION A.4. — The supersingular divisor of a nilpotent admissible indigenous
bundle on (X, D)/k is reduced and does not intersect the closed subscheme D.

Since [we have assumed that] p ≥ 3, the following proposition follows immediately from
Proposition A.3.

PROPOSITION A.5. — Let (P,∇P ) be a nilpotent active indigenous bundle on (X, D)/k.
Then the following four conditions are equivalent.

(1) The indigenous bundle (P,∇P ) is admissible.

(2) There exists a reduced divisor EsH on X such that EsH = 2EsH.

(3) For each closed point x ∈ X of X, the order of EsH at x is ∈ {0, 2}.
(4) For each closed point x ∈ X of X, the order of EsH at x is ≤ 2.

In the remainder of the present §A, let us prove Proposition A.3 by means of the
discussions of [1], §3. In the present §A, for a closed point x ∈ X of X and a positive
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integer d, we shall write

xd

for the natural closed immersion from the [unique] closed subscheme of X of length d
whose underlying set consists of x into X. [So x1 is the natural closed immersion from
the reduced closed subscheme of X determined by x ∈ X into X.]

Let (P,∇P ) be a nilpotent active indigenous bundle on (X, D)/k. Let us first observe
that, to verify Proposition A.3, we may assume without loss of generality, by replacing
(X, D) by a suitable connected finite flat tamely ramified covering of (X, D), that r is
even. Then it follows from [7], Chapter I, Proposition 2.6, that there exists an indigenous
vector bundle [cf. [7], Chapter I, Definition 2.2]

(E ,∇E)

which determines the indigenous bundle (P,∇P ). That is to say,

• E is a locally free coherent OX-module of rank two, and

• ∇E is a connection on E relative to (X, D)/k

such that

• the determinant of (E ,∇E) is isomorphic to (OX , d) [cf. the discussion preceding [7],
Chapter I, Definition 2.2], and, moreover,

• the projectivization of (E ,∇E) is isomorphic to (P,∇P ).

Write

H ⊆ E
for the Hodge filtration of (E ,∇E) [i.e., the invertible subsheaf which defines the Hodge
section of (P,∇P )]. Thus, it follows from the definition of an indigenous bundle that the
homomorphism of OX-modules obtained by forming the composite

H ↪→ E ∇E→ ωlog ⊗OX
E � ωlog ⊗OX

(E/H)

is an isomorphism. In particular, since det E ∼= OX , we have the following lemma.

LEMMA A.6. — It holds that

HomOX
(H, E/H) ∼= τ log, H⊗2 ∼= ωlog.

Next, write

P : T −→ EndOX
(E)

for the p-curvature homomorphism of (E ,∇E). Let us recall that, in this situation, the
square Hasse invariant of (P,∇P ) is defined as the composite

T P−→ EndOX
(E) −→ HomOX

(H, E/H) ∼= τ log

[cf. Lemma A.6]. Thus, by the definition, we have the following lemma.
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LEMMA A.7. — The following hold.

(i) The divisor EsH [cf. Definition A.2, (i)] is of degree (p− 1) deg ωlog.

(ii) For a closed point x ∈ X of X and a positive integer d, the following two conditions
are equivalent.

(1) It holds that ordxEsH ≥ d.

(2) For each local section ∂ of T at x, the endomorphism x∗dP(∂) of x∗dE preserves
the submodule x∗dH ⊆ x∗dE.

Next, write

C ⊆ E
for the conjugate filtration of (E ,∇E) [i.e., the invertible subsheaf which defines the conju-
gate section of (P,∇P ) — cf. Definition A.2, (ii) — or, equivalently, the unique maximal
horizontal invertible subsheaf of (E ,∇E)] and

∇C, ∇Q

for the connections on

C, Q def
= E/C

induced by ∇E , respectively.

LEMMA A.8. — The following hold.

(i) The respective p-curvature homomorphisms of (C,∇C), (Q,∇Q) are zero. More-
over, the respective monodromy operators at each point on D ⊆ X of (C,∇C), (Q,∇Q)
are zero.

(ii) It holds that

(C,∇C)⊗ (Q,∇Q) ∼= (OX , d).

Proof. — Assertion (i) follows from our assumption that the p-curvature homomor-
phism (respectively, monodromy operator at each point on D ⊆ X) of (P,∇P ) is nilpotent.
Assertion (ii) follows from the fact that det(E ,∇E) ∼= (OX , d). �

In this situation, the canonical section of (E ,∇E) introduced in the discussion preceding
[1], Lemma 3.4, may be defined as follows.

DEFINITION A.9. — We shall refer to the composite

H ↪→ E � Q

as the canonical section of (E ,∇E) [cf. the discussion preceding [1], Lemma 3.4].

Thus, we have the following lemma.
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LEMMA A.10. — The following hold.

(i) The divisor on X obtained by forming the zero locus of the canonical section co-
incides with the generalized supersingular divisor Egss of (P,∇P ) [cf. Definition A.2,
(iii)].

(ii) For a closed point x ∈ X of X, the following two conditions are equivalent.

(1) It holds that ordxEgss ≥ 1.

(2) It holds that x∗1H = x∗1C.
Proof. — Let us first observe that it follows immediately from the definition of Egss

that, for a closed point x ∈ X of X and a positive integer d, the following three conditions
are equivalent.

(a) It holds that ordxEgss ≥ d.

(b) The pull-back of the Hodge section via xd coincides with the pull-back of the
conjugate section via xd.

(c) It holds that x∗dH = x∗dC.

Next, let us observe that it follows from the definition of the canonical section that, for
a closed point x ∈ X of X and a positive integer d, the above condition (c) is equivalent
to the following condition.

(d) The zero locus of the canonical section is of order ≥ d at x.

Finally, observe that the equivalence (a) ⇔ (d) implies assertion (i), and that the equiv-
alence (a) ⇔ (c) implies assertion (ii). This completes the proof of Lemma A.10. �

It follows from Lemma A.8, (i), that the p-curvature homomorphism P of (E ,∇E)
factors through the subsheaf HomOX

(Q, C) ⊆ EndOX
(E), i.e.,

P : T −→ HomOX
(Q, C) ∼= C⊗2

[cf. Lemma A.8, (ii)]. In this situation, the spiked locus Espk of (P,∇P ) [cf. Definition A.2,
(iv)] is defined as the zero locus of the resulting homomorphism P : T → C⊗2. Thus, by
definition, we have the following lemma.

LEMMA A.11. — The following hold.

(i) The p-curvature homomorphism determines an isomorphism of OX-modules

T (Espk)
∼−→ C⊗2.

(ii) For a closed point x ∈ X of X and a positive integer d, the following two conditions
are equivalent.

(1) It holds that ordxEspk ≥ d.

(2) For each local section ∂ of T at x, the image of the endomorphism x∗dP(∂) of
x∗dE is zero.

By [1], §3, together with Lemma A.10, (i), we obtain the following lemma.
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LEMMA A.12. — The following hold.

(i) The divisor Egss is of degree ((p− 1) deg ωlog − deg Espk)/2.

(ii) The divisor Egss is reduced.

(iii) It holds that Egss ∩D = ∅.
(iv) It holds that Espk ∩D = ∅.
(v) There exists a divisor Espk on X such that Espk = pEspk.

Proof. — Assertion (i) follows from Lemma A.6; Lemma A.8, (ii); Lemma A.11, (i).
Assertion (ii) is the content of the first assertion of [1], Lemma 3.4. Assertion (iii) is the
content of the second assertion of [1], Lemma 3.4. Assertion (iv) is the content of [1],
Proposition 3.6, (i). Assertion (v) is the content of [1], Proposition 3.6, (iii). �

In the remainder of the present §A, let us give a proof of Proposition A.3. Assertion (i)
of Proposition A.3 follows from Lemma A.12, (ii), (iii). Assertion (ii) of Proposition A.3
follows from Lemma A.12, (iv), (v).

Next, we verify assertion (iii) of Proposition A.3.

LEMMA A.13. — The following hold.

(i) It holds that Espk ≤ EsH.

(ii) It holds that Egss ≤ EsH.

Proof. — Assertion (i) follows from Lemma A.7, (ii), and Lemma A.11, (ii). Next, we
verify assertion (ii). Let x ∈ X be a closed point of X which is contained in the support
of Egss. Now let us observe that it follows from Lemma A.12, (ii), that, to verify assertion
(ii), it suffices to verify that x is contained in the support of EsH.

If x is contained in the support of Espk, then it follows from assertion (i) that x is con-
tained in the support of EsH, as desired. Thus, we may assume without loss of generality
that x is not contained in the support of the divisor Espk, hence also [cf. Lemma A.12,
(iii)] the divisor Espk + D. Then it follows from the definition of Espk, together with
Lemma A.8, (i), that, for each local generator ∂ of T at x, the kernel of the endomor-
phism x∗1P(∂) of x∗1E coincides with the subspace x∗1C ⊆ x∗1E . In particular, it follows
from Lemma A.10, (ii), that, for each local section ∂ of T at x, the image of the restric-
tion of the endomorphism x∗1P(∂) of x∗1E to the subspace x∗1H ⊆ x∗1E is zero. Thus, it
follows from Lemma A.7, (ii), that x is contained in the support of EsH, as desired. This
completes the proof of assertion (ii), hence also of Lemma A.13. �

It follows immediately, in light of Lemma A.7, (i), and Lemma A.12, (i), (iii), from
Lemma A.13 that, to complete the verification of assertion (iii) of Proposition A.3, it
suffices to verify that 2Egss ≤ EsH. To this end, let us take a closed point x ∈ X of
X which is contained in the support of Egss [which thus implies that x is not contained
in the support of the divisor D — cf. Lemma A.12, (iii)]. Thus, since ordxEgss = 1 [cf.
Lemma A.12, (ii)], to verify that 2Egss ≤ EsH, it suffices to verify that ordxEsH ≥ 2.

To verify that ordxEsH ≥ 2, let us fix respective local generators eH eC, ∂ of H, C, T
at x. Now let us observe that since the p-curvature homomorphism of ∇Q is zero [cf.
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Lemma A.8, (i)], there exists a local generator eQ of Q at x such that ∇Q(eQ) = 0. Write,

moreover, eE
def
= ∇E(∂)(eH) for the local section of E at x obtained by forming the image

of eH via ∇E(∂). Thus, it follows from the definition of an indigenous bundle that the
pair (eH, eE) forms a basis of E at x.

LEMMA A.14. — Write

• fQ for the local section of OX at x such that the image of eH via the natural surjection
E � Q coincides with fQ · eQ,

• fC for the local section of OX at x such that the image P(∂)(eH) of eH via P(∂)
coincides with fC · eC [cf. the discussion preceding Lemma A.11], and

• fH, fE for the local sections of OX at x such that

P(∂)(eH) = fC · eC = fH · eH + fE · eE .
[Thus, it is immediate that the equalities

ordxEgss = ordxfQ, ordxEsH = ordxfE

hold.] Then the following hold.

(i) It holds that ordxfQ = 1.

(ii) It holds that ordxfC ≥ ordxfQ.

(iii) It holds that ordxfE ≥ 1.

(iv) It holds that ordxfH ≥ 1.

(v) It holds that ordxfE ≥ 2.

Proof. — Assertion (i) follows from Lemma A.12, (ii). Assertion (ii) follows from
the discussion preceding Lemma A.11. Assertion (iii) follows from Lemma A.13, (ii).
Assertion (iv) follows from assertions (i), (ii), (iii), together with the equality fC · eC =
fH · eH + fE · eE in the statement of Lemma A.14.

Finally, we verify assertion (v). Let us observe that since [we have assumed that]
∇Q(eQ) = 0, the image of eH in Q is given by fQ · eQ, and the natural surjection E � Q
is horizontal, it holds that the image of eE = ∇E(∂)(eH) in Q coincides with ∂fQ · eQ.
Thus, by considering the image of “fC · eC = fH · eH + fE · eE” in Q, we obtain that

0 = fH · fQ · eQ + fE · ∂fQ · eQ.

Next, let us observe that since ordxfQ = 1 [cf. assertion (i)], it holds that ordx∂fQ = 0.
Thus, it follows from assertions (i), (iv), that

ordxfE = ordx(fH · fQ) ≥ 2,

as desired. This completes the proof of assertion (v), hence also of Lemma A.14. �

It follows from Lemma A.14, (v), that ordxEsH ≥ 2, as desired. This completes the
proof of assertion (iii) of Proposition A.3. Assertion (iv) of Proposition A.3 follows
immediately from assertion (iii) of Proposition A.3 [cf. also [7], Chapter II, Proposition
2.6, (3)]. This completes the proof of Proposition A.3.
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