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Abstract. — In the present paper, we study Frobenius-projective structures on projective
smooth curves in positive characteristic. The notion of Frobenius-projective structures may
be regarded as an analogue, in positive characteristic, of the notion of complex projective
structures in the classical theory of Riemann surfaces. By means of the notion of Frobenius-
projective structures, we obtain a relationship between a certain rational function, i.e., a
pseudo-coordinate, and a certain collection of data which may be regarded as an analogue, in
positive characteristic, of the notion of indigenous bundles in the classical theory of Riemann
surfaces, i.e., a Frobenius-indigenous structure. As an application of this relationship, we also
prove the existence of certain Frobenius-destabilized locally free coherent sheaves of rank two.
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Introduction

In the present paper, we study Frobenius-projective structures on projective smooth
curves in positive characteristic. Let p be a prime number, k an algebraically closed field
of characteristic p, g a nonnegative integer, and

X

a projective smooth curve over k of genus g. Throughout the present paper, let us fix a
positive integer

N.

2010 Mathematics Subject Classification. — 14H25.
Key words and phrases. — pseudo-coordinate, Frobenius-projective structure, Frobenius-indigenous
structure, Frobenius-destabilized bundle, p-adic Teichmüller theory.
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2 Yuichiro Hoshi

Write XF for the base change of X via the [not p-th if N 6= 1 but] pN -th power Frobenius
endomorphism of k and Φ: X → XF for the relative pN -th power Frobenius morphism
over k. Thus, by pulling back the “PGL2” on XF via Φ, we obtain a sheaf G of groups on
X. Then a Frobenius-projective structure of level N on X is defined to be a subsheaf of
the sheaf on X of étale morphisms over k to P1

k which forms a G-torsor, i.e., relative to the
natural action of G on the sheaf on X of morphisms over k to P1

k [cf. Definition 2.1]. One
may find easily that the notion of Frobenius-projective structures may be regarded as
an analogue, in positive characteristic, of the notion of complex projective structures [cf.,
e.g., [1], §2] in the classical theory of Riemann surfaces. The main result of the present
paper discusses a relationship between a certain rational function on X — i.e., a pseudo-
coordinate — and a certain pair of a P1-bundle P → XF over XF and a section of the
pull-back Φ∗P → X — i.e., a Frobenius-indigenous structure — obtained by considering
a Frobenius-projective structure.

A pseudo-coordinate of level N on X is defined to be a [necessarily generically étale]
morphism X → P1

k over k such that, for each closed point x ∈ X of X, the result of
the action of an element, that may depend on x, of the stalk Grtn of G at the generic
point of X on the morphism is étale at x [cf. Definition 1.3]. For instance, if p ∈ {2, 3},
then every generically étale morphism to P1

k over k is a pseudo-coordinate of level 1 [cf.
Proposition 1.8, (ii)]. Moreover, if p = 2, then, for a morphism to P1

k over k, it holds
that the morphism is a pseudo-tame rational function in the sense of [8] if and only if
the morphism is a pseudo-coordinate of level 2 [cf. Remark 1.3.2]. In [8], Y. Sugiyama
and S. Yasuda studied pseudo-tame rational functions in order to prove an analogue in
characteristic two of Belyi’s theorem. In the proof of their main theorem, i.e., Belyi’s
theorem in characteristic two, they proved that [if p = 2, then] X always admits a
pseudo-tame rational function [cf. [8], Corollary 3.8]. The main motivation of the study
of the present paper is in fact to understand, in more conceptual terms, the notion of
pseudo-tame defined in [8].

A Frobenius-indigenous structure of level N on X is defined to be a pair consisting
of a P1-bundle P → XF over XF and a section σ of the pull-back Φ∗P → X such
that the Kodaira-Spencer section of the connection ∇Φ∗P on Φ∗P [cf. Definition 3.2] at
σ [i.e., the global section of the invertible sheaf ωX/k ⊗OX

σ∗τΦ∗P/X on X obtained by
differentiating σ via the connection ∇Φ∗P — cf. Definition 3.3] is nowhere vanishing [cf.
Definition 3.4]. One may find easily that the notion of Frobenius-indigenous structures
may be regarded as an analogue, in positive characteristic, of the notion of indigenous
bundles [cf., e.g., [1], §2] in the classical theory of Riemann surfaces. If p 6= 2, and g ≥ 2,
then the notion of Frobenius-indigenous structures of level 1 is essentially the same as
the notion of dormant indigenous bundles studied in p-adic Teichmüller theory; moreover,
there is a certain direct relationship between Frobenius-indigenous structures of level N
and objects studied in p-adic Teichmüller theory even if N 6= 1 [cf. Remark 3.4.1].

The main result of the present paper is as follows [cf. Theorem 3.13].

THEOREM A. — Suppose that (p, N) 6= (2, 1). Then there exist bijections between the
following three sets:

(1) the set of Grtn-orbits of pseudo-coordinates of level N on X

(2) the set of Frobenius-projective structures of level N on X
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(3) the set of isomorphism classes of Frobenius-indigenous structures of level
N on X

Note that a result in the case where (p, N) = (2, 1) similar to Theorem A is discussed
in Corollary 5.7.

Theorem A has some applications. For instance, by applying Theorem A and a result
in p-adic Teichmüller theory, one may verify that if g ≥ 2, then X always admits a
pseudo-coordinate of level 1 [cf. Corollary 1.9; Corollary 4.9, (i)]. Moreover, Theorem A
yields a [fifth — cf. Remark 3.12.1] proof of the uniqueness of the isomorphism class of
dormant indigenous bundles on a projective smooth curve of genus ≥ 2 in characteristic
three [cf. Remark 3.4.1, (ii); Corollary 3.12].

Another application of Theorem A is as follows. Write FrX : X → X for the p-th power
Frobenius endomorphism of X. Then it is immediate [cf. Remark 4.2.3, Proposition 4.7]
that if g ≥ 2, then there exists a bijection between the set of (3) of Theorem A and the
set of P-equivalence [cf. Definition 4.1] classes of locally free coherent OX-modules E of
rank two which satisfy the following condition: If, for a nonnegative integer i, we write

Ei
def
=

i︷ ︸︸ ︷
Fr∗X ◦ · · · ◦ Fr∗X E ,

then

• the locally free coherent OX-module EN−1, hence also E , is stable, but

• there exist an invertible sheaf L on X of degree pN

2
·deg(E)+g−1 = 1

2
·deg(EN)+g−1

and a locally split injection L ↪→ EN of OX-modules. [In particular, the locally free
coherent OX-module EN is not semistable.]

Thus, by applying Theorem A and the above existence of pseudo-tame rational functions
proved in [8], we obtain the following application [cf. Remark 6.2.1].

THEOREM B. — Suppose that p = 2, and that g ≥ 2. Then there exists a locally free
coherent OX-module E of rank two such that

• the locally free coherent OX-module Fr∗XE, hence also E, is stable, but

• the locally free coherent OX-module Fr∗XFr∗XE admits an invertible subsheaf L ⊆
Fr∗XFr∗XE of degree 1

2
deg(Fr∗XFr∗XE) + g − 1, which thus implies that Fr∗XFr∗XE is not

semistable.
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1. Pseudo-coordinates

In the present §1, we introduce and discuss the notion of pseudo-coordinates on curves
[cf. Definition 1.3 below], which may be regarded as a generalization of the notion of
pseudo-tame rational functions studied in [8] [cf. Remark 1.3.2 below].

In the present §1, let p be a prime number, k an algebraically closed field of character-
istic p, g a nonnegative integer, and

X

a projective smooth curve over k of genus g. We shall write KX for the function field of
X. Throughout the present paper, let us fix a positive integer

N.

If “(−)” is an object over k, then we shall write “(−)F ” for the object over k obtained by
base changing “(−)” via the [not p-th if N 6= 1 but] pN -th power Frobenius endomorphism
of k. We shall write

W : XF −→ X

for the morphism obtained by base changing the pN -th power Frobenius endomorphism
of Spec(k) via the structure morphism X → Spec(k). Thus, the pN -th power Frobenius
endomorphism of X factors as the composite

X −→ XF W−→ X.

We shall write
Φ: X −→ XF

for the first arrow in this composite, i.e., the relative pN -th power Frobenius morphism
over k. Note that XF is a projective smooth curve over k of genus g, and Φ is a finite
flat morphism over k of degree pN .

DEFINITION 1.1. — We shall write
P

for the sheaf of sets on X that assigns, to an open subscheme U ⊆ X, the set of morphisms
from U to P1

k over k,
Pgét ⊆ P

for the subsheaf of P that assigns, to an open subscheme U ⊆ X, the set of generically
étale morphisms from U to P1

k over k, and

P ét ⊆ Pgét

for the subsheaf of Pgét that assigns, to an open subscheme U ⊆ X, the set of étale
morphisms from U to P1

k over k.

REMARK 1.1.1. — One verifies easily that both P and Pgét are [isomorphic to] constant
sheaves.

REMARK 1.1.2. — One verifies easily that P may be naturally identified with the sheaf
of sets on X that assigns, to an open subscheme U ⊆ X, the set of sections of the trivial
P1-bundle P1

U → U .
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DEFINITION 1.2.

(i) Let S be a scheme. Then we shall write

PGL2,S

for the sheaf of groups on S that assigns, to an open subscheme T ⊆ S, the group
AutT (P1

T ) of automorphisms over T of the trivial P1-bundle P1
T → T .

(ii) We shall write

G def
= Φ−1PGL2,XF

and
Grtn

for the group obtained by forming the stalk of G at the generic point of X [i.e., the
“PGL2” for the function field of XF ].

REMARK 1.2.1.

(i) It follows immediately from Remark 1.1.2 that G naturally acts, via Φ, on P .
Moreover, one verifies easily that the subsheaves P ét ⊆ Pgét ⊆ P of P are preserved by
this action of G on P .

(ii) It follows from Remark 1.1.1 that the actions of G on P , Pgét of (i) determine
actions of Grtn on P(X), Pgét(X), respectively.

DEFINITION 1.3. — We shall say that a global section f ∈ Pgét(X) of Pgét is a pseudo-
coordinate of level N if, for each closed point x ∈ X of X, there exist an open subscheme
U ⊆ X of X and an element g ∈ Grtn of Grtn such that x ∈ U , and, moreover, the
restriction g(f)|U ∈ Pgét(U) to U of the result g(f) ∈ Pgét(X) of the action of g ∈ Grtn

on f ∈ Pgét(X) [cf. Remark 1.2.1, (ii)] is contained in the subset P ét(U) ⊆ Pgét(U) of
Pgét(U).

We shall write
pcdN(X) ⊆ Pgét(X)

for the subset of pseudo-coordinates of level N .

REMARK 1.3.1. — One verifies easily that if a global section of Pgét is a pseudo-coordinate
of level N , then every element of the Grtn-orbit (⊆ Pgét(X)) of the global section is a
pseudo-coordinate of level N .

REMARK 1.3.2. — Suppose that (p, N) = (2, 2). Then one verifies easily that, for a
global section f ∈ Pgét(X) of Pgét, it holds that f ∈ Pgét(X) is a pseudo-coordinate of
level N in the sense of Definition 1.3 if and only if f ∈ Pgét(X) [i.e., the generically étale
morphism f : X → P1

k over k] is pseudo-tame in the sense of [8], Definition 2.1 [cf. also
[8], Remark 2.6].
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DEFINITION 1.4. — Let f ∈ Pgét(X) be a global section of Pgét and x ∈ X a closed

point of X. Let us identify A
def
= k[[t]] with the completion ÔX,x of OX,x by means of a

fixed isomorphism A
∼→ ÔX,x over k. Write F ∈ OX,x for the image in OX,x of a fixed

uniformizer of the discrete valuation ring OP1
k,f(x) and

F =
∑
i≥1

ait
i ∈ A

for the expansion of F in A. [Thus, the positive integer

indx(f)
def
= deg(F ) = min{ i ∈ Z≥1 | ai 6= 0 }

coincides with the ramification index of the dominant morphism f : X → P1
k at x ∈ X.]

Then we shall write

ind6∈pN

x (f)
def
= min{ i ∈ Z≥1 | ai 6= 0 and i 6∈ pNZ }

and

ind6∈pN

x (f)

for the uniquely determined positive integer such that 1 ≤ ind6∈pN

x (f) ≤ pN − 1, and,

moreover, ind6∈pN

x (f)− ind6∈pN

x (f) ∈ pNZ.
Note that one verifies easily that since f is a global section of Pgét, it holds that

ind6∈pN

x (f) <∞. Moreover, one also verifies easily that both ind 6∈pN

x (f) and ind6∈pN

x (f) do

not depend on the choices of the fixed isomorphism A
∼→ ÔX,x and the fixed uniformizer

of OP1
k,f(x).

LEMMA 1.5. — Let f ∈ Pgét(X) be a global section of Pgét and x ∈ X a closed point of
X. Then the following hold.

(i) There exists an element g ∈ Grtn of Grtn such that

indx(g(f)) = ind6∈pN

x (f)

[which thus implies that indx(g(f)) = ind6∈pN

x (g(f))].

(ii) Suppose that indx(f) = ind6∈pN

x (f). Then there exist elements g+, g− ∈ Grtn of Grtn

such that

indx(g+(f)) = ind6∈pN

x (f), indx(g−(f)) = pN − ind6∈pN

x (f)

[which thus implies that indx(g+(f)) = ind6∈pN

x (g+(f)), indx(g−(f)) = pN−ind6∈pN

x (g−(f))].

Proof. — Let us identify the scheme Proj(k[u, v]) with P1
k by means of a fixed isomor-

phism Proj(k[u, v])
∼→ P1

k over k. Thus, the global section f ∈ Pgét(X) determines and is
determined by an element F ∈ KX \Kp

X of KX \Kp
X [i.e., the image of u/v ∈ k(u/v) in

KX via f ]. To verify Lemma 1.5, we may assume without loss of generality, by replacing
f by the composite of f and a suitable element of Autk(P1

k), that the image of x ∈ X via
f is the point “(u, v) = (0, 1)”, i.e., that F ∈ OX,x \ O×X,x.

We verify assertion (i). Write r for the uniquely determined nonnegative integer such

that rpN < ind6∈pN

x (f) < (r + 1)pN . Then it is immediate that there exists an element
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a ∈ OX,x of OX,x such that F −apN ∈ mrpN+1
X,x . Thus, if we take g ∈ Grtn to be an element

which maps F to F − apN
, e.g.,

g = “

(
1 −apN

0 1

)
” ∈ Grtn,

then g satisfies the condition of assertion (i). This completes the proof of assertion (i).
Next, we verify assertion (ii). Let π ∈ OX,x be a uniformizer of OX,x. Write r+ for the

uniquely determined nonnegative integer such that r+pN = ind 6∈pN

x (f) − ind6∈pN

x (f) and

r−
def
= r+ + 1. Then if we take g+, g− ∈ Grtn to be elements which map F to F/πr+pN

,

πr−pN
/F , e.g.,

g+ = “

(
1 0

0 πr+pN

)
” ∈ Grtn, g− = “

(
0 πr−pN

1 0

)
” ∈ Grtn,

then g+, g− satisfy the conditions of assertion (ii), respectively. This completes the proof
of assertion (ii), hence also of Lemma 1.5. �

LEMMA 1.6. — Let f ∈ Pgét(X) be a global section of Pgét and x ∈ X a closed point of X.

Suppose that ind6∈pN

x (f) 6∈ {1, pN − 1}. Then, for each g ∈ Grtn, the result g(f) ∈ Pgét(X)
of the action of g ∈ Grtn on f ∈ Pgét(X) is not étale at x.

Proof. — Let us first observe that it follows immediately from Lemma 1.5, (i), (ii),
that we may assume without loss of generality, by replacing f by the result of the action
of a suitable element of Grtn on f , that

(a) indx(f) = d0
def
= ind 6∈pN

x (f) (6∈ {1, pN − 1}).

Let us identify A
def
= k[[t]] with the completion ÔX,x of OX,x by means of a fixed

isomorphism A
∼→ ÔX,x over k. Then it is immediate that, to verify Lemma 1.6, it

suffices to verify that

(∗1): for each g ∈ Grtn, the composite of the natural morphism Spec(A)→
X with g(f) : X → P1

k is not formally étale.

Let g ∈ Grtn be an element of Grtn. Next, let us identify the scheme Proj(k[u, v]) with

P1
k by means of a fixed isomorphism Proj(k[u, v])

∼→ P1
k over k. Write K for the field of

fractions of A and

Proj(k[u, v]) ←− Spec(A); (u, v) 7→ (fu, fv)

— where fu, fv ∈ A — for the composite of the natural morphism Spec(A) → X with

f : X → P1
k. Thus, there exist ag, bg, cg, dg ∈ k[[tp

N
]] = ApN ⊆ A [which thus implies

that deg(ag), deg(bg), deg(cg), deg(dg) ∈ pNZ] such that agdg − bgcg 6= 0, and, moreover,
the composite of the natural morphism Spec(A)→ X with g(f) : X → P1

k coincides with
the morphism determined by the composite

Proj(k[u, v]) ←− Proj(K[u, v]) ←− Proj(K[u, v]) ←− Spec(K)
(u, v) 7→ (u, v)

(u, v) 7→ (agu + bgv, cgu + dgv)
(u, v) 7→ (fu, fv).
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Next, let us observe that, to verify (∗1), we may assume without loss of generality, by
replacing f by the composite of f and a suitable element of Autk(P1

k), that the image of
x ∈ X via f is the point “(u, v) = (0, 1)”, i.e., that [cf. (a)]

(b) deg(fu) = d0, and fv = 1. [Recall that 2 ≤ d0 ≤ pN − 2 — cf. (a).]

Next, let us observe that, to verify (∗1), we may assume without loss of generality, by
replacing g by the product of g and a suitable element of Autk(P1

k), that the image of
x ∈ X via g(f) is the point “(u, v) = (0, 1)”, i.e., that [cf. (b)]

(c) if write

F
def
=

agfu + bg

cgfu + dg

∈ K,

then F ∈ A, and, moreover, deg(F ) ≥ 1.

Thus, it is immediate that, to verify (∗1), it suffices to verify that

(∗2): deg(F ) 6= 1.

Next, let us observe that, to verify (∗2), we may assume without loss of generality, by
replacing (ag, bg, cg, dg) by t−min{deg(ag),deg(bg),deg(cg),deg(dg)} · (ag, bg, cg, dg), that

(d) 0 ∈ {deg(ag), deg(bg), deg(cg), deg(dg)}.
Here, let us verify that

(e) deg(bg) ≥ pN .

Indeed, if deg(bg) = 0, then it follows from (b) that deg(agfu+bg) = 0, which thus implies
that deg(F ) ≤ 0 — in contradiction to (c). This completes the proof of (e).

Next, suppose that deg(dg) = 0. Then it follows from (b) that deg(cgfu + dg) = 0.
In particular, it follows from (b) and (e) that deg(F ) = deg(agfu + bg) ≥ 2, as desired.
Thus, to verify (∗2), we may assume without loss of generality that

(f) deg(dg) ≥ pN .

Next, let us verify that

(g) deg(ag) ≥ pN .

Indeed, if deg(ag) = 0, then it follows from (b) and (e) that deg(agfu + bg) = d0. In
particular, it follows from (c) that 1 ≤ deg(F ) = d0 − deg(cgfu + dg), which thus implies
that deg(cgfu+dg) ≤ d0−1. Assume that deg(cg) = 0; then it follows from (b) and (f) that
deg(cgfu + dg) = d0 — in contradiction to the above inequality deg(cgfu + dg) ≤ d0 − 1.
Assume that deg(cg) ≥ pN ; then it follows from (f) that deg(cgfu + dg) ≥ pN — in
contradiction to the above inequality deg(cgfu + dg) ≤ d0 − 1. This completes the proof
of (g).

It follows from (d), (e), (f), (g) that deg(cg) = 0. Thus, it follows from (b) and (f) that
deg(cgfu + dg) = d0 ≤ pN − 2. In particular, since deg(agfu + bg) ≥ pN [cf. (e), (g)], it
holds that deg(F ) ≥ 2, as desired. This completes the proof of Lemma 1.6. �

PROPOSITION 1.7. — Let f ∈ Pgét(X) be a global section of Pgét. Then it holds that f
is a pseudo-coordinate of level N if and only if, for each closed point x ∈ X of X, it
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holds that

ind6∈pN

x (f) ∈ {1, pN − 1}.

Proof. — The sufficiency follows immediately from Lemma 1.5, (i), (ii). The necessity
follows immediately from Lemma 1.6. �

PROPOSITION 1.8. — Suppose that p ∈ {2, 3}, and that N = 1. Then the following hold:

(i) It holds that ](Pgét(X)/Grtn) = 1.

(ii) It holds that Pgét(X) = pcdN(X).

Proof. — First, we verify assertion (i). Let F ∈ KX be an element of KX such that
ordx(F ) = 1 for some closed point x ∈ X of X. [It is immediate that such an F ∈ KX

always exists.] Then one verifies easily that {F i}p−1
i=0 forms a basis of the vector space

KX over Kp
X . Thus, it is immediate that, to verify assertion (i), it suffices to verify the

following assertion:

For each a0, . . . , ap−1 ∈ Kp
X such that (a1, . . . , ap−1) 6= (0, . . . , 0), there

exist a, b, c, d ∈ Kp
X such that

a0 + a1F + · · ·+ ap−1F
p−1 =

aF + b

cF + d
, ad− bc 6= 0.

On the other hand, since p ∈ {2, 3}, this assertion may be easily verified. This completes
the proof of assertion (i). Assertion (ii) follows from Proposition 1.7. This completes the
proof of Proposition 1.8. �

REMARK 1.8.1. — Proposition 1.8 in the case where p 6∈ {2, 3} does not hold as follows:

(i) Let us discuss Proposition 1.8, (i), in the case where p 6∈ {2, 3}. Suppose that we
are in the situation of the first paragraph of the proof of Lemma 1.5. Suppose, moreover,
that the element F ∈ KX satisfies that ordx(F ) = 1. [It is immediate that such a pair
“(f, x)” always exists.] Then it follows immediately from Lemma 1.6 that [if p 6= 3, then]
F ∈ KX is not contained in the PGL2(K

p
X)-orbit of F 2 ∈ KX . One verifies easily from

this observation that Proposition 1.8, (i), in the case where p 6∈ {2, 3} does not hold.

(ii) Let us discuss Proposition 1.8, (ii), in the case where p 6∈ {2, 3}. Suppose that
we are in the situation of the discussion of (i). Then it follows from Proposition 1.7
that [if p 6∈ {2, 3}, then] F 2 ∈ KX \ Kp

X determines a global section of Pgét which is
not a pseudo-coordinate of level N . In particular, Proposition 1.8, (ii), in the case where
p 6∈ {2, 3} does not hold.

COROLLARY 1.9. — Suppose that p ∈ {2, 3}, and that N = 1. Then ](pcdN(X)/Grtn) =
1.

Proof. — This assertion follows from Proposition 1.8, (i), (ii). �
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2. Frobenius-projective Structures

In the present §2, we introduce and discuss the notion of Frobenius-projective structures
on curves [cf. Definition 2.1 below]. Moreover, we also discuss a relationship between
Frobenius-projective structures and pseudo-coordinates [cf. Proposition 2.7 below]. In
the present §2, we maintain the notational conventions introduced at the beginning of §1.

DEFINITION 2.1. — We shall say that a subsheaf S ⊆ P ét of P ét is a Frobenius-projective
structure of level N on X if S is preserved by the action of G on P ét [cf. Remark 1.2.1,
(i)], and, moreover, the sheaf S forms, by the resulting action of G on S, a G-torsor on
X.

We shall write
FpsN(X)

for the set of Frobenius-projective structures of level N on X.

REMARK 2.1.1.

(i) One may find easily that the notion of Frobenius-projective structures may be
regarded as an analogue, in positive characteristic, of the notion of complex projective
structures [cf., e.g., [1], §2] in the classical theory of Riemann surfaces.

(ii) One may also find another algebraic analogue of the notion of complex projective
structures in [5], i.e., the notion of Schwarz structures defined in [5], Chapter I, Definition
1.2.

(iii) As discussed in Proposition 3.11 below, a Frobenius-projective structure is related
to a Frobenius-indigenous structure [cf. Definition 3.4 below]. On the other hand, a
suitable Schwarz structure is related to an indigenous bundle [cf. [5], Chapter I, Corollary
2.9].

LEMMA 2.2. — Let S ⊆ P ét be a Frobenius-projective structure of level N on X.
Then the following hold:

(i) Let U , V ⊆ X be open subschemes of X, fU ∈ S(U), and fV ∈ S(V ). Then the
global section of Pgét determined by fU ∈ S(U) [cf. Remark 1.1.1] is contained in the
Grtn-orbit of the global section of Pgét determined by fV ∈ S(V ).

(ii) The global section of Pgét determined by a local section of S is a pseudo-
coordinate of level N .

Proof. — Since X is irreducible, assertion (i) follows from the fact that S is a G-torsor.
Assertion (ii) follows from assertion (i), together with the fact that S is contained in
P ét. �

DEFINITION 2.3. — Let S ⊆ P ét be a Frobenius-projective structure of level N on X.
Then it follows from Lemma 2.2, (i), (ii), that S determines a Grtn-orbit of pseudo-
coordinates of level N . We shall refer to this Grtn-orbit as the pseudo-coordinate-orbit of
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level N associated to S. Thus, we obtain a map

FpsN(X) −→ pcdN(X)/Grtn.

LEMMA 2.4. — Suppose that (p, N) 6= (2, 1). Let U ⊆ X be an open subscheme of X,
f ∈ P ét(U), and g ∈ Grtn. Then it holds that the result g(f) ∈ Pgét(U) of the action of
g ∈ Grtn on f ∈ P ét(U) ⊆ Pgét(U) [cf. Remark 1.1.1; Remark 1.2.1, (i)] is contained
in the subset P ét(U) ⊆ Pgét(U) if and only if g ∈ Grtn is contained in the subgroup
G(U) ⊆ Grtn.

Proof. — The sufficiency follows from Remark 1.2.1, (i). To verify the necessity, sup-
pose that g 6∈ G(U). Let x ∈ X be a closed point of X such that x ∈ U , and, moreover,

g 6∈ PGL2(OX,x) [if we regard g as an element of PGL2(KX)]. Let us identify A
def
= k[[t]]

with the completion ÔX,x of OX,x by means of a fixed isomorphism A
∼→ ÔX,x over k.

Then it is immediate that, to verify the necessity, it suffices to verify that

(∗1): the composite of the natural morphism Spec(A)→ X with g(f) : X →
P1

k is not formally étale.

Next, let us identify the scheme Proj(k[u, v]) with P1
k by means of a fixed isomorphism

Proj(k[u, v])
∼→ P1

k over k. Write K for the field of fractions of A and

Proj(k[u, v]) ←− Spec(A); (u, v) 7→ (fu, fv)

— where fu, fv ∈ A — for the composite of the natural morphism Spec(A) → X with

f : X → P1
k. Thus, there exist ag, bg, cg, dg ∈ k[[tp

N
]] = ApN ⊆ A [which thus implies

that deg(ag), deg(bg), deg(cg), deg(dg) ∈ pNZ] such that agdg − bgcg 6= 0, and, moreover,
the composite of the natural morphism Spec(A)→ X with g(f) : X → P1

k coincides with
the morphism determined by the composite

Proj(k[u, v]) ←− Proj(K[u, v]) ←− Proj(K[u, v]) ←− Spec(K)
(u, v) 7→ (u, v)

(u, v) 7→ (agu + bgv, cgu + dgv)
(u, v) 7→ (fu, fv).

Now let us observe that, to verify (∗1), we may assume without loss of generality, by
replacing (ag, bg, cg, dg) by t−min{deg(ag),deg(bg),deg(cg),deg(dg)} · (ag, bg, cg, dg), that

(a) 0 ∈ {deg(ag), deg(bg), deg(cg), deg(dg)}.
Moreover, let us observe that since g 6∈ PGL2(OX,x), it holds that

(b) deg(agdg − bgcg) ≥ pN .

Next, let us observe that, to verify (∗1), we may assume without loss of generality, by
replacing f by the composite of f and a suitable element of Autk(P1

k), that the image of
x ∈ X via f is the point “(u, v) = (0, 1)”, i.e., that

(c) deg(fu) = 1 [cf. our assumption that f ∈ P ét(U)], and fv = 1.

Moreover, let us observe that, to verify (∗1), we may assume without loss of generality,
by replacing g by the product of g and a suitable element of Autk(P1

k), that the image of
x ∈ X via g(f) is the point “(u, v) = (0, 1)”, i.e., that [cf. (c)]
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(d) if write

F
def
=

agfu + bg

cgfu + dg

∈ K,

then F ∈ A, and, moreover, deg(F ) ≥ 1.

Thus, it is immediate that, to verify (∗1), it suffices to verify that

(∗2): deg(F ) 6= 1.

Here, let us verify that

(e) deg(bg) ≥ pN .

Indeed, if deg(bg) = 0, then it follows from (c) that deg(agfu +bg) = 0, which thus implies
that deg(F ) ≤ 0 — in contradiction to (d). This completes the proof of (e).

Next, suppose that deg(dg) = 0. Then it follows from (b) and (e) that deg(ag) ≥ pN .
On the other hand, since deg(dg) = 0, it follows from (c) that deg(cgfu + dg) = 0. In
particular, it follows from (e) that deg(F ) = deg(agfu + bg) ≥ pN ≥ 2, as desired. Thus,
to verify (∗2), we may assume without loss of generality that

(f) deg(dg) ≥ pN .

Next, let us verify that

(g) deg(ag) ≥ pN .

Indeed, if deg(ag) = 0, then it follows from (c) and (e) that deg(agfu + bg) = 1. In
particular, it follows from (c) and (f) that deg(F ) = 1 − deg(cgfu + dg) ≤ 1 − 1 = 0 —
in contradiction to (d). This completes the proof of (g).

It follows from (a), (e), (f), (g) that deg(cg) = 0. Thus, it follows from (c) and
(f) that deg(cgfu + dg) = 1. In particular, it follows from (e) and (g) that deg(F ) =
deg(agfu + bg)− 1 ≥ pN − 1. Now since [we have assumed that] (p, N) 6= (2, 1), it holds
that pN − 1 ≥ 2, as desired. This completes the proof of Lemma 2.4. �

REMARK 2.4.1. — The necessity of Lemma 2.4 in the case where (p, N) = (2, 1) does
not hold. Indeed, suppose that we are in the situation of the first paragraph of the proof
of Lemma 1.5. Suppose, moreover, that the element F ∈ KX satisfies that ordx(F ) = 1,
which thus implies that f ∈ P ét(U) for some open subscheme U ⊆ X of X such that
x ∈ U . [It is immediate that such a pair “(f, x)” always exists.] Let us consider the
element g ∈ Grtn of Grtn determined by the matrix(

F 2 F 2

1 F 2

)
∈ GL2(K

2
X).

Then since the determinant of this matrix is F 4 − F 2 6∈ O×X,x, it holds that g ∈ Grtn is
not contained in G(V ) ⊆ Grtn for every open subscheme V ⊆ X of X such that x ∈ V .
On the other hand, since

F · F 2 + F 2

F · 1 + F 2
= F,

the result g(f) of the action of g on f is given by f , which thus implies that g(f) ∈ P ét(U).
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LEMMA 2.5. — Suppose that (p, N) 6= (2, 1). Let f ∈ Pgét(X) be a pseudo-coordinate
of level N . Then the following hold:

(i) Write Sf ⊆ P ét for the subsheaf of P ét that assigns, to an open subscheme U ⊆ X,
the subset of P ét(U) obtained by forming the intersection of P ét(U) and the Grtn-orbit
(⊆ Pgét(U)) of f |U [cf. Remark 1.1.1; Remark 1.2.1, (i)]:

Sf (U)
def
= P ét(U) ∩ (Grtn · f |U).

Then the subsheaf Sf is a Frobenius-projective structure of level N on X.

(ii) Let g ∈ Pgét(X) be a global section of Pgét which is contained in the Grtn-orbit
of f ∈ Pgét(X). [So g is a pseudo-coordinate of level N — cf. Remark 1.3.1.] Then
Sf = Sg [cf. (i)].

Proof. — Assertion (i) follows immediately from Lemma 2.4, together with the def-
inition of a pseudo-coordinate of level N . Assertion (ii) follows immediately from the
definition of “Sf”. �

DEFINITION 2.6. — Suppose that (p, N) 6= (2, 1). Let f ∈ Pgét(X) be a pseudo-
coordinate of level N . Then it follows from Lemma 2.5, (i), that f determines a Frobenius-
projective structure of level N on X. We shall refer to this Frobenius-projective structure
of level N as the Frobenius-projective structure of level Nassociated to f . Thus, we obtain
a map

pcdN(X)/Grtn −→ FpsN(X)

[cf. Lemma 2.5, (ii)].

PROPOSITION 2.7. — Suppose that (p, N) 6= (2, 1). Then the assignments of Defini-
tion 2.3 and Definition 2.6 determine a bijection

FpsN(X)
∼−→ pcdN(X)/Grtn.

Proof. — This assertion follows immediately from the constructions of Lemma 2.2 and
Lemma 2.5. �

REMARK 2.7.1. — If (p, N) = (2, 1), then, as discussed in Corollary 5.7, (ii), below, the
map

FpsN(X) −→ pcdN(X)/Grtn

of Definition 2.3 is surjective but not injective.

COROLLARY 2.8. — Suppose that (p, N) = (3, 1). Then ]FpsN(X) = 1.

Proof. — This assertion follows from Proposition 2.7, together with Corollary 1.9. �
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3. Frobenius-indigenous Structures

In the present §3, we introduce and discuss the notion of Frobenius-indigenous struc-
tures on curves [cf. Definition 3.4 below], which may be regarded as a generalization of
the notion of dormant indigenous bundles studied in [6] [cf. Remark 3.4.1, (ii), below].
Moreover, we also discuss a relationship between Frobenius-indigenous structures and
Frobenius-projective structures [cf. Proposition 3.11 below].

In the present §3, we maintain the notational conventions introduced at the beginning
of §1. Moreover, if U ⊆ X is an open subscheme of X, and i ∈ {1, 2}, then write
JU ⊆ OU×kU for the ideal of OU×kU which defines the diagonal morphism with respect to
U/k, U(1) ⊆ U×k U for the closed subscheme of U×k U defined by the ideal J 2

U ⊆ OU×kU ,
and pri : U(1) → U for the i-th projection morphism.

We use the notation “ω” (respectively, “τ”) to denote the relative cotangent (respectively,
tangent) sheaf. Thus, it holds that ωU/k = JU/J 2

U and τU/k = HomOU
(JU/J 2

U ,OU).

LEMMA 3.1. — Let U ⊆ X be an open subscheme of X. Then the natural morphism

U ×UF U −→ U ×k U

is a closed immersion whose image contains the closed subscheme U(1) ⊆ U ×k U .

Proof. — This assertion follows from a straightforward computation. �

DEFINITION 3.2. — Let U ⊆ X be an open subscheme of X and S an object over UF .
Then it follows from Lemma 3.1 that we have a natural identification of pr∗1Φ

∗S with
pr∗2Φ

∗S over U(1). We shall write
∇Φ∗S

for the connection on Φ∗S relative to U/k obtained by forming this identification.

DEFINITION 3.3. — Let U ⊆ X be an open subscheme of X, P → U a P1-bundle over U ,
∇ a connection on P relative to U/k, and σ a section of P → U . Then, by considering the
difference between pr∗1σ and pr∗2σ relative to ∇, we have a global section of the invertible
sheaf on U

ωU/k ⊗OU
σ∗τP/U .

We shall refer to this global section as the Kodaira-Spencer section of ∇ at σ.

DEFINITION 3.4. — We shall say that a pair (P → XF , σ) consisting of a P1-bundle
P → XF over XF and a section σ of the pull-back Φ∗P → X is a Frobenius-indigenous
structure of level N on X if the Kodaira-Spencer section of the connection ∇Φ∗P at σ is
nowhere vanishing.

For two Frobenius-indigenous structures I1 = (P1 → XF , σ1), I2 = (P2 → XF , σ2) of
level N on X, we shall say that I1 is isomorphic to I2 if there exists an isomorphism
P1

∼→ P2 over XF compatible with σ1 and σ2.
We shall write

FisN(X)

for the set of isomorphism classes of Frobenius-indigenous structures of level N on X.
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REMARK 3.4.1. — Suppose that p 6= 2, and that g ≥ 2.

(i) Write ΠN+1 for the VF-pattern of pure tone N + 1 [cf. [6], Chapter IV, Definition
2.6]. Then it is immediate that there is a certain direct relationship between Frobenius-
indigenous structures of level N and objects parametrized by the stack “X” defined in
[6], Chapter III, §1.3, in the case where we take the VF-pattern “Π” to be ΠN+1. In the
notation of [6], Chapter III, §1, by taking the VF-pattern “Π” to be ΠN+1 and the triple
“(p, g, r)” to be (p, g, 0), we have natural functors

X −→ W −→ RΠN+1(0),ΠN+1(−1)
g,0 −→ Mg,0.

Then one verifies easily that if the classifying morphism Spec(k)→Mg,0 of the projective
smooth curve X over k factors through the stack X [relative to the above functors], then
there exists a Frobenius-indigenous structure of level N on X.

(ii) Suppose, moreover, that N = 1. Then one verifies easily that the notion of
Frobenius-indigenous structures of level N in the sense of Definition 3.4 is essentially the
same as the notion of dormant indigenous bundles in the sense of [5], Chapter I, Definition
2.2; [6], Chapter II, Definition 1.1.

LEMMA 3.5. — Let (P → XF , σ) be a Frobenius-indigenous structure of level N
on X, E a locally free coherent OXF -module of rank two whose projectivization P(E) is
isomorphic to P over XF , and Φ∗E � Q a surjection of OX-modules onto an invertible
sheaf Q on X which defines, relative to an isomorphism of P with P(E) over XF , the
section σ. Write L for the kernel of the surjection Φ∗E � Q. Then it holds that 2 ·
deg(Q) = pN · deg(E)− 2g + 2, hence also that 2 · deg(L) = pN · deg(E) + 2g − 2.

Proof. — This assertion follows immediately from our assumption that the Kodaira-
Spencer section of the connection ∇Φ∗P at σ is nowhere vanishing, i.e., that the homo-
morphism of OX-modules obtained by forming the composite

L ↪→ Φ∗E ∇Φ∗E→ ωX/k ⊗OX
Φ∗E � ωX/k ⊗OX

Q

is an isomorphism. �

LEMMA 3.6. — Suppose that g ≥ 2. Let P → XF be a P1-bundle over XF and σ1, σ2

sections of Φ∗P → X. Then if both (P → XF , σ1) and (P → XF , σ2) are Frobenius-
indigenous structures of level N on X, then σ1 = σ2.

Proof. — Let E be a locally free coherent OXF -module of rank two whose projectiviza-
tion P(E) is isomorphic to P over XF . Let us fix an isomorphism of P with P(E) over
XF . For each i ∈ {1, 2}, let Φ∗E � Qi be a surjection of OX-modules onto an invertible

sheaf Qi on X which defines, relative to the fixed isomorphism P
∼→ P(E), the section σi.

Write Li for the kernel of the surjection Φ∗E � Qi. Then since [we have assumed that]
g ≥ 2, it follows from Lemma 3.5 that deg(Qi) < deg(Lj) for each i, j ∈ {1, 2}, which
thus implies that L1 = L2, as desired. This completes the proof of Lemma 3.6. �
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LEMMA 3.7. — Let S ⊆ P ét be a Frobenius-projective structure of level N on X.
Thus, the sheaf Φ∗S is a PGL2,XF -torsor on XF . Write PS → XF for the P1-bundle
associated to the PGL2,XF -torsor Φ∗S [i.e., the quotient of Φ∗S ×XF P1

XF by the diagonal
action of PGL2,XF ]. For each local section s of Φ∗S, write σs for the local section of the
trivial P1-bundle P1

X → X [cf. Remark 1.1.2]. Then the pair consisting of

• the P1-bundle PS → XF over XF

and

• the section of Φ∗PS → X determined by the various pairs “(s, σs)” — where “s”
ranges over the local sections of Φ∗S —

is a Frobenius-indigenous structure of level N on X.

Proof. — This assertion follows immediately from the fact that S is contained in P ét.
�

DEFINITION 3.8. — Let S ⊆ P ét be a Frobenius-projective structure of level N on X.
Then it follows from Lemma 3.7 that S determines a Frobenius-indigenous structure of
level N on X. We shall refer to this Frobenius-indigenous structure of level N as the
Frobenius-indigenous structure of level N associated to S. Thus, we obtain a map

FpsN(X) −→ FisN(X).

LEMMA 3.9. — Let (P → XF , σ) be a Frobenius-indigenous structure of level N
on X. Then the following hold:

(i) Let U ⊆ X be an open subscheme of X such that the restriction P |UF is isomor-

phic to the trivial P1-bundle over UF and ιU : P |UF
∼→ P1

k ×k UF an isomorphism over
UF . Write fU,ιU ∈ P(U) for the section of P obtained by forming the composite

U
σ|U−→ (Φ∗P )|U

Φ∗ιU
∼−→ P1

k ×k U
pr1−→ P1

k.

Then fU,ιU ∈ P ét(U).

(ii) The collection of sections fU,ιU ∈ P ét(U) [cf. (i)] — where (U, ιU) ranges over the
pairs as in (i) — determines a Frobenius-projective structure of level N on X.

Proof. — Assertion (i) follows from our assumption that the Kodaira-Spencer section
of the connection ∇Φ∗P at σ is nowhere vanishing. Assertion (ii) follows immediately
from assertion (i). �

DEFINITION 3.10. — Let I be a Frobenius-indigenous structure of level N on X. Then
it follows from Lemma 3.9, (ii), that I determines a Frobenius-projective structure of
level N on X. We shall refer to this Frobenius-projective structure of level N as the
Frobenius-projective structure of level N associated to I. Thus, we obtain a map

FisN(X) −→ FpsN(X).
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PROPOSITION 3.11. — The assignments of Definition 3.8 and Definition 3.10 determine
a bijection

FpsN(X)
∼−→ FisN(X).

Proof. — This assertion follows immediately from the constructions of Lemma 3.7 and
Lemma 3.9. �

REMARK 3.11.1. — Proposition 3.11 may be regarded as an analogue, in positive char-
acteristic, of [1], Theorem 3.

COROLLARY 3.12. — Suppose that (p, N) = (3, 1). Then ]FisN(X) = 1.

Proof. — This assertion follows from Proposition 3.11, together with Corollary 2.8. �

REMARK 3.12.1. — Suppose that g ≥ 2. Then it follows from Remark 3.4.1, (ii), that
the conclusion of Corollary 3.12 is equivalent to the following assertion:

(∗): If p = 3, then the set of isomorphism classes of dormant indigenous
bundles on X is of cardinality one.

Now let us recall that we already have four proofs of the assertion (∗) as follows:

(1) the proof essentially obtained by the theory of molecules established by S. Mochizuki
[cf. [2], Remark 2.1.1]

(2) the proof essentially obtained by the formula of the number of isomorphism classes
of dormant indigenous bundles on a sufficiently general curve established by Y. Wak-
abayashi [cf. the proof of [2], Theorem 2.1]

(3) the proof obtained by an explicit local computation of the p-curvatures of indigenous
bundles in characteristic three established by the author of the present paper [cf. [2],
Remark 3.1.1]

(4) the proof obtained by the uniqueness of the isomorphism class of dormant opers
of rank p− 1 established by the author of the present paper [cf. [3], Theorem A]

Thus, we conclude that the proof of the assertion (∗) given in the proof of Corollary 3.12,
i.e.,

(5) the proof essentially obtained by the uniqueness of the Grtn-orbit of generically
étale rational functions in the case where (p, N) = (3, 1) [cf. Proposition 1.8, (i)],

may be regarded as the fifth proof of the assertion (∗).

THEOREM 3.13. — Suppose that (p, N) 6= (2, 1). Then there exist bijections

pcdN(X)/Grtn
∼−→ FpsN(X)

∼−→ FisN(X).

Proof. — This assertion follows from Proposition 2.7 and Proposition 3.11. �
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4. Relationship Between Certain Frobenius-destabilized Bundles

In the present §4, we discuss a relationship between Frobenius-indigenous structures
and certain Frobenius-destabilized bundles over XF [cf. Proposition 4.7 below].

In the present §4, we maintain the notational conventions introduced at the beginnings
of §1 and §3. Write, moreover,

Xf

for the “XF ” in the case where N = 1 and

φ : X −→ Xf

for the “Φ” in the case where N = 1. Thus, the morphism Φ: X → XF factors as the
composite

X
φ−→ Xf −→ XF .

We shall write
Φf→F : Xf −→ XF

for the second arrow in this composite [i.e., the “Φ” in the case where we take the pair
“(X, N)” to be (Xf , N − 1)].

In the present §4, suppose, moreover, that

g ≥ 2.

DEFINITION 4.1. — Let S be a scheme and E1, E2 two OS-modules. Then we shall say
that E1 is P-equivalent to E2 if there exist an invertible sheaf L on S and an isomorphism
E1 ⊗OS

L ∼→ E2 of OS-modules. We shall write

E1 ∼P E2
if E1 is P-equivalent to E2.

DEFINITION 4.2. — Let d be a positive integer and E a locally free coherent OXF -module
of rank two. Then we shall say that E is (N, d)-Frobenius-destabilized if the following
conditions are satisfied:

(1) The locally free coherent OXf -module Φ∗
f→FE of rank two is stable. [In particular,

the locally free coherent OXF -module E of rank two is stable.]

(2) There exist an invertible sheaf L on X of degree pN

2
·deg(E)+ d and a locally split

injection L ↪→ Φ∗E of OX-modules. [In particular, the locally free coherent OX-module
Φ∗E = φ∗Φ∗

f→FE of rank two is not semistable.] Note that one verifies easily that the

quotient, which is an invertible sheaf on X, of Φ∗E by L is of degree pN

2
· deg(E) − d =

deg(L)− 2d.

We shall write
FdsN(X)

for the set of P-equivalence classes [cf. Remark 4.2.1 below] of (N, g − 1)-Frobenius-
destabilized locally free coherent OXF -modules of rank two.
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REMARK 4.2.1. — Let E1, E2 be locally free coherent OXF -modules of rank two. Suppose
that E1 ∼P E2. Then one verifies easily that it holds that E1 is (N, g − 1)-Frobenius-
destabilized if and only if E2 is (N, g − 1)-Frobenius-destabilized.

REMARK 4.2.2.

(i) Let E be a locally free coherent OXF -module of rank two. Then one verifies easily
that it holds that E is (N, g− 1)-Frobenius-destabilized if and only if Φ∗

f→FE is (1, g− 1)-
Frobenius-destabilized.

(ii) Let P → XF be a P1-bundle over X and σ a section of Φ∗P → X. Then one
verifies easily that it holds that (P → XF , σ) is a Frobenius-indigenous structure of level
N on X if and only if (Φ∗

f→F P → Xf , σ) is a Frobenius-indigenous structure of level 1 on
X.

REMARK 4.2.3. — Write FrX : X → X for the p-th power Frobenius endomorphism of
X. Then one verifies easily that the assignment “E 7→ W∗E” determines a bijection of the
set FdsN(X) with the set of P-equivalence classes of locally free coherent OX-modules F
of rank two which satisfy the following condition: If, for a nonnegative integer i, we write

Fi
def
=

i︷ ︸︸ ︷
Fr∗X ◦ · · · ◦ Fr∗X F ,

then

• the locally free coherent OX-module FN−1, hence also F , is stable, but

• there exist an invertible sheaf L on X of degree pN

2
·deg(F)+g−1 = 1

2
·deg(FN)+g−1

and a locally split injection L ↪→ FN of OX-modules. [In particular, the locally free
coherent OX-module FN is not semistable.]

LEMMA 4.3. — Let E be an (N, g − 1)-Frobenius-destabilized locally free coherent
OXF -module of rank two. Write P(E) → XF for the projectivization of E. Then there
exists a [uniquely determined — cf. Lemma 3.6] section σ of Φ∗P(E)→ X such that the
pair (P(E)→ XF , σ) is a Frobenius-indigenous structure of level N on X.

Proof. — Let us first observe that it follows from Remark 4.2.2, (i), (ii), that we may
assume without loss of generality, by replacing E by Φ∗

f→FE , that N = 1. Let L ⊆ Φ∗E
be as in condition (2) of Definition 4.2. Then it is immediate that, to verify Lemma 4.3,
it suffices to verify that the homomorphism of OX-modules obtained by forming the
composite

L ↪→ Φ∗E ∇Φ∗E→ ωX/k ⊗OX
Φ∗E � ωX/k ⊗OX

Q
— where we write Q for the invertible sheaf on X obtained by forming the quotient of
Φ∗E by L — is an isomorphism. Thus, since deg(L) = deg(ωX/k) + deg(Q) [cf. condition
(2) of Definition 4.2], one verifies easily that, to verify Lemma 4.3, it suffices to verify
that the image of the above composite is nonzero, i.e., that the submodule L ⊆ Φ∗E is not
horizontal [with respect to the connection ∇Φ∗E ]. On the other hand, if the submodule
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L ⊆ Φ∗E is horizontal, then since N = 1, we obtain [cf., e.g., [4], Theorem 5.1] an
invertible sheaf F on XF of degree 1

p
· deg(L) and a locally split injection F ↪→ E of

OXF -modules; thus, since 2 ·deg(F) = 2
p
·deg(L) = deg(E)+ 2g−2

p
> deg(E) [cf. condition

(2) of Definition 4.2], and E is stable [cf. condition (1) of Definition 4.2], we obtain a
contradiction. This completes the proof Lemma 4.3. �

DEFINITION 4.4. — Let E be an (N, g − 1)-Frobenius-destabilized locally free coherent
OXF -module of rank two. Then it follows from Lemma 4.3 that E determines a Frobenius-
indigenous structure of level N on X. We shall refer to this Frobenius-indigenous struc-
ture of level N as the Frobenius-indigenous structure of level N associated to E . Thus,
we obtain a map

FdsN(X) −→ FisN(X).

LEMMA 4.5. — Let (P → XF , σ) be a Frobenius-indigenous structure of level N
on X and E a locally free coherent OXF -module of rank two whose projectivization is
isomorphic to P over XF . Then E is (N, g − 1)-Frobenius-destabilized.

Proof. — Let us first observe that it follows from Remark 4.2.2, (i), (ii), that we may
assume without loss of generality, by replacing P by Φ∗

f→F P , that N = 1. Let Φ∗E � Q
be a surjection of OX-modules onto an invertible sheaf Q on X which defines, relative to
an isomorphism of P with the projectivization of E over XF , the section σ. Write L for
the kernel of the surjection Φ∗E � Q. Then since 2 · deg(L) = p · deg(E) + 2g − 2 [cf.
Lemma 3.5], we conclude that condition (2) of Definition 4.2 holds.

Assume that condition (1) of Definition 4.2 does not hold, i.e., that there exist an
invertible sheaf F on XF and a locally split injection F ↪→ E of OXF -modules such that
2 · deg(F) ≥ deg(E), which thus implies that 2 · deg(Φ∗E/Φ∗F) < deg(Φ∗E). Then since

2 · deg(Φ∗E/Φ∗F) < deg(Φ∗E) = p · deg(E) < 2 · deg(L)

[cf. Lemma 3.5], we obtain that L ⊆ Φ∗F , which thus implies that L = Φ∗F . In
particular, the invertible subsheaf L ⊆ Φ∗E of Φ∗E is horizontal. On the other hand,
since [we have assumed that] the Kodaira-Spencer section of the connection ∇Φ∗P at σ is
nowhere vanishing, we obtain a contradiction. This completes the proof of Lemma 4.5. �

REMARK 4.5.1. — The contents of Lemma 4.3 and Lemma 4.5 may be considered to be
essentially contained in [7], Proposition 4.2.

DEFINITION 4.6. — Let I be a Frobenius-indigenous structure of level N on X. Then it
follows from Lemma 4.5 that I determines a P-equivalence class of (N, g− 1)-Frobenius-
destabilized locally free coherent OXF -modules of rank two. We shall refer to this P-
equivalence class as the (N, g − 1)-Frobenius-destabilized class associated to I. Thus, we
obtain a map

FisN(X) −→ FdsN(X).
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PROPOSITION 4.7. — The assignments of Definition 4.4 and Definition 4.6 determine a
bijection

FdsN(X)
∼−→ FisN(X).

Proof. — This assertion follows immediately from the constructions of Lemma 4.3 and
Lemma 4.5. �

COROLLARY 4.8. — Suppose that (p, N) 6= (2, 1), and that g ≥ 2. Then there exist
bijections

pcdN(X)/Grtn
∼−→ FpsN(X)

∼−→ FisN(X)
∼−→ FdsN(X).

Proof. — This assertion follows from Theorem 3.13 and Proposition 4.7. �

COROLLARY 4.9. — Suppose that p 6= 2, that g ≥ 2, and that N = 1. Then the following
hold:

(i) The four sets

pcdN(X)/Grtn, FpsN(X), FisN(X), FdsN(X)

are nonempty.

(ii) There exists a nonempty open subscheme of the coarse moduli space of projective
smooth curves over k of genus g such that if the curve X is parametrized by the open
subscheme, then it holds that

](pcdN(X)/Grtn) = ]FpsN(X) = ]FisN(X) = ]FdsN(X)

=
pg−1

22g−1
·

p−1∑
θ=1

sin
(π · θ

p

)2−2g

=
(−p)g−1

2
·

∑
ζp=1, ζ 6=1

ζg−1 · (1− ζ)2−2g.

Proof. — First, we verify assertion (i). Let us first observe that it follows from Corol-
lary 4.8 that, to verify assertion (i), it suffices to verify that FisN(X) 6= ∅. On the
other hand, this follows immediately, in light of Remark 3.4.1, (ii), from [6], Chapter II,
Theorem 2.8. This completes the proof of assertion (i).

Assertion (ii) follows immediately, in light of Remark 3.4.1, (ii), and Corollary 4.8, from
[9], Theorem A [cf. also the discussion given in the second paragraph of the proof of [2],
Theorem 2.1]. This completes the proof of assertion (ii), hence also of Corollary 4.9. �

REMARK 4.9.1. — Note that a result in the case where p = 2 similar to Corollary 4.9
will be discussed in Corollary 5.7, (iii), below.

COROLLARY 4.10. — Suppose that p 6= 2, and that g ≥ 2. Then there exists a nonempty
open subscheme of the coarse moduli space of projective smooth curves over k of genus g
such that if the curve X is parametrized by the open subscheme, then the four sets

pcdN(X)/Grtn, FpsN(X), FisN(X), FdsN(X)

are nonempty.
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Proof. — Let us first observe that it follows immediately, in light of Corollary 4.8, from
Remark 3.4.1, (i), that, to verify Corollary 4.10, it suffices to verify that the image of
the composite “X → Mg,0” of the displayed functors of Remark 3.4.1, (i), contains a
nonempty open substack ofMg,0. In particular, it follows immediately from the various
definitions involved that, to verify Corollary 4.10, it suffices to verify that the image of

the natural functor from the VF-stack NΠN+1

g,0 of pure tone N + 1 [cf. [6], Chapter IV,

Definition 2.6] toMg,0 contains a nonempty open substack ofMg,0. On the other hand,
this follows immediately from [6], Chapter IV, Remark following Theorem 2.9, together
with [6], Chapter III, Lemma 1.8. This competes the proof of Corollary 4.10. �

5. Frobenius-indigenous Structures of Level One in Characteristic Two

In the present §5, we discuss Frobenius-indigenous structures of level one in character-
istic two [cf. Proposition 5.6, Corollary 5.7 below]. In the present §5, we maintain the
notational conventions introduced at the beginnings of §1 and §3. Suppose, moreover,
that

(p, N) = (2, 1).

DEFINITION 5.1. — Let L be an invertible sheaf on X. Then we shall write

πL : Φ∗Φ∗L � L
for the [necessarily surjective] homomorphism of OX-modules obtained by considering
restrictions.

LEMMA 5.2. — Let L be an invertible sheaf on X. Write P → XF for the P1-bundle
over XF determined by the locally free coherent OXF -module Φ∗L of rank two and σ for
the section of Φ∗P → X determined by πL. Then the pair (P → XF , σ) is a Frobenius-
indigenous structure of level N on X.

Proof. — This assertion follows immediately from an explicit local computation of the
Kodaira-Spencer section of ∇Φ∗P at σ. �

DEFINITION 5.3. — Let L be an invertible sheaf on X. Then it follows from Lemma 5.2
that L determines a Frobenius-indigenous structure of level N on X. We shall write

I(L)

for this Frobenius-indigenous structure of level N .

LEMMA 5.4. — Let L be an invertible sheaf on X. Then the following hold:

(i) It holds that deg(Φ∗Φ∗L) = 2 · deg(L) + 2g − 2.

(ii) It holds that deg(Φ∗L) = deg(L) + g − 1.
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Proof. — Assertion (i) follows from Lemma 3.5 and Lemma 5.2. Assertion (ii) follows
from assertion (i). �

LEMMA 5.5. — Let L1, L2 be invertible sheaves on X. Then the following conditions are
equivalent:

(1) It holds that Φ∗L1 ∼P Φ∗L2.

(2) It holds that deg(L1)− deg(L2) is even.

Proof. — The implication (1) ⇒ (2) follows immediately from Lemma 5.4, (ii). Next,
we verify the implication (2) ⇒ (1). Suppose that condition (2) is satisfied. Then one
verifies easily that there exists an invertible sheaf F on XF such that L1

∼= L2⊗OX
Φ∗F ,

which thus implies that Φ∗L1
∼= Φ∗L2 ⊗O

XF
F . In particular, condition (1) is satisfied.

This completes the proof of the implication (2) ⇒ (1), hence also of Lemma 5.5. �

PROPOSITION 5.6. — The following hold:

(i) Let L1, L2 be invertible sheaves on X. Then if I(L1) is isomorphic to I(L2),
then deg(L1)− deg(L2) is even.

(ii) Suppose that g ≥ 2. Then, in the situation of (i), if deg(L1) − deg(L2) is even,
then I(L1) is isomorphic to I(L2).

(iii) Suppose that g ≥ 2. Let Lodd, Leven be invertible sheaves on X of degree
odd, even, respectively. Write [I(Lodd)], [I(Leven)] for the isomorphism classes of the
Frobenius-indigenous structures I(Lodd), I(Leven) of level N on X, respectively. [So
[I(Lodd)] 6= [I(Leven)] by (i).] Then it holds that

FisN(X) = {[I(Lodd)], [I(Leven)]}.

Proof. — Assertion (i) follows from Lemma 5.5. Assertion (ii) follows immediately
from Lemma 5.5, together with Lemma 3.6.

Finally, we verify assertion (iii). Let us first observe that it follows from assertion (ii)
that, to verify assertion (iii), it suffices to verify the following assertion:

(∗): Let I = (P → XF , σ) be a Frobenius-indigenous structure of level
N on X. Then there exists an invertible sheaf L on X such that I is
isomorphic to I(L).

To this end, take a locally free coherent OXF -module E of rank two whose projectivization
P(E) is isomorphic to P over XF . Write Φ∗E � L for the quotient which defines,
relative to an isomorphism of P with P(E) over XF , the section σ. Then it follows from
a similar argument to the argument applied in the proof of [3], Lemma 2.2, that the
homomorphism E → Φ∗L of OXF -modules determined by the surjection Φ∗E � L is an
isomorphism. Thus, it follows immediately from Lemma 3.6 that I is isomorphic to I(L).
This completes the proof of assertion (iii), hence also of Proposition 5.6. �

COROLLARY 5.7. — Suppose that (p, N) = (2, 1). Then the following hold:
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(i) It holds that

1 = ](pcdN(X)/Grtn) < 2 ≤ ]FpsN(X) = ]FisN(X).

(ii) The map
FpsN(X) −→ pcdN(X)/Grtn

of Definition 2.3 is surjective but not injective.

(iii) Suppose that g ≥ 2. Then it holds that

1 = ](pcdN(X)/Grtn) < 2 = ]FpsN(X) = ]FisN(X) = ]FdsN(X).

Proof. — Assertion (i) follows from Corollary 1.9, Proposition 3.11, and Proposi-
tion 5.6, (i). Assertion (ii) follows from assertion (i). Assertion (iii) follows from Propo-
sition 4.7 and Proposition 5.6, (iii), together with assertion (i). �

6. Applications of a Result of Sugiyama and Yasuda

In the present §6, we discuss applications of a result of Y. Sugiyama and S. Yasuda
obtained in [8]. In the present §6, let us apply the notational conventions introduced at
the beginnings of §1 and §4.

Let us recall that one important result obtained in [8] is as follows.

THEOREM 6.1. — Suppose that (p, N) = (2, 2). Then there exists a pseudo-coordinate
of level N on X.

Proof. — This assertion is the content of [8], Corollary 3.8 [cf. also Remark 1.3.2 of
the present paper]. �

REMARK 6.1.1. — Suppose that (p, N) = (2, 2). Let us recall that, for each f , g ∈
KX \ Kp

X , the “mysterious” element “a(f, g)” was defined in [8], Definition 2.7, and
played an important role in the proof of [8], Corollary 3.8. This “mysterious” element
satisfies the following three conditions:

• If f is contained in the Grtn-orbit of g, then a(f, h) = a(g, h) [cf. [8], Proposition 2.9,
(4)].

• It holds that a(f, g) = 0 if and only if f is contained in the Grtn-orbit of g [cf. [8],
Proposition 2.10].

• It holds that a(f, g) = a(f, h) + a(h, g) [cf. [8], Proposition 2.8; [8], Proposition 2.9,
(1)].

These three properties are reminiscent of the following three properties of the Schwarzian
derivative

θ2(f, g)
def
=

2 · f (1) · f (3) − 3 · (f (2))2

2 · (f (1))2
(where f (n) def

=
dnf

dgn
)

[cf., e.g., [1], §4] for local projective coordinates f , g on a Riemann surface in the classical
theory of Riemann surfaces:
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• If f is contained in the PGL2(C)-orbit of g, then θ2(f, h) = θ2(g, h).

• It holds that θ2(f, g) = 0 if and only if f is contained in the PGL2(C)-orbit of g.

• It holds that θ2(f, g) · (dg)⊗2 = θ2(f, h) · (dh)⊗2 + θ2(h, g) · (dg)⊗2.

Thus, the author of the present paper considers that, in the context of the present
paper, this “mysterious” element “a(f, g)” defined in [8] should be regarded as a certain
analogue in characteristic two of the Schwarzian derivative in the classical theory of
Riemann surfaces. This observation was in fact a starting point of the study of the
present paper.

COROLLARY 6.2. — Suppose that (p, N) = (2, 2). Then there exist

• a Frobenius-projective structure of level N on X

and

• a Frobenius-indigenous structure of level N on X.

If, moreover, g ≥ 2, then there exists

• an (N, g − 1)-Frobenius-destabilized locally free coherent OXF -module of rank
two.

Proof. — The first assertion follows from Theorem 6.1, together with Theorem 3.13.
The final assertion follows from Theorem 6.1, together with Corollary 4.8. �

REMARK 6.2.1. — Suppose that p = 2, and that g ≥ 2. Then it follows, in light of
Remark 4.2.3, from Corollary 6.2 that there exists a locally free coherent OX-module E
of rank two such that

• the locally free coherent OX-module Fr∗XE , hence also E , is stable, but

• the locally free coherent OX-module Fr∗XFr∗XE admits an invertible subsheaf L ⊆
Fr∗XFr∗XE of degree 1

2
deg(Fr∗XFr∗XE) + g − 1, which thus implies that Fr∗XFr∗XE is not

semistable.

COROLLARY 6.3. — Suppose that (p, N) = (2, 2), and that g ≥ 2. Let L be an invertible
sheaf on X. Suppose, moreover, that L is of degree odd (respectively, even) if g is even
(respectively, odd). Then there exists a stable locally free coherent OXF -module E of
rank two such that φ∗L ∼P Φ∗

f→FE.

Proof. — Let E be an (N, g − 1)-Frobenius-destabilized locally free coherent OXF -
module of rank two [cf. Corollary 6.2]. Then it follows from Lemma 4.3, together with
Remark 4.2.2, (ii), that there exists a [uniquely determined — cf. Lemma 3.6] section σ of

the P1-bundle Φ∗P(E) = φ∗P(Φ∗
f→FE)→ X such that the pair I def

= (P(Φ∗
f→FE)→ Xf , σ)

is a Frobenius-indigenous structure of level 1 on X. Here, let us observe that one verifies
easily that deg(Φ∗

f→FE) is even. Thus, it follows from Proposition 5.6, (iii), together with
Lemma 5.4, (ii), that I is isomorphic to I(L), which thus implies that Φ∗

f→FE ∼P φ∗L,
as desired. This completes the proof of Corollary 6.3. �
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