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Abstract. — In the present paper, we study the anabelian geometry of mixed-characteristic
local fields by an algorithmic approach. We begin by discussing some generalities on log-
shells of mixed-characteristic local fields. One main topic of this discussion is the difference
between the log-shell and the ring of integers. This discussion concerning log-shells allows one
to establish mono-anabelian reconstruction algorithms for constructing some objects related
to the p-adic valuations. Next, we consider open homomorphisms between profinite groups of
MLF-type. This consideration leads us to a bi-anabelian result for absolutely unramified mixed-
characteristic local fields. Next, we establish some mono-anabelian reconstruction algorithms
related to each of absolutely abelian mixed-characteristic local fields, mixed-characteristic local
fields of degree one, and Galois-specifiable mixed-characteristic local fields. For instance, we
give a mono-anabelian reconstruction algorithm for constructing the Norm map with respect to
the finite extension determined by the uniquely determined minimal mixed-characteristic local
subfield. Finally, we apply various results of the present paper to prove some facts concerning
outer automorphisms of the absolute Galois groups of mixed-characteristic local fields that
arise from field automorphisms of the mixed-characteristic local fields.
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Introduction

In the present paper, we study the anabelian geometry of mixed-characteristic local
fields. More specifically, we continue our study [cf. [8], [2], [3]] of the mono-anabelian
geometry [cf., e.g., [8], Introduction; [8], Remark 1.9.8; [3], Introduction] of mixed-
characteristic local fields.

One central object of the study in the present paper is a mixed-characteristic local field,
i.e., an MLF. We shall refer to a finite extension of Qp, for some prime number p, as an
MLF [cf. [3], Definition 1.1]. If k is an MLF, then we shall write

• Ok ⊆ k for the ring of integers of k,

• mk ⊆ Ok for the maximal ideal of Ok,

• k
def
= Ok/mk for the residue field of Ok,

• pk
def
= char(k) for the residue characteristic of k,

• dk
def
= dimQpk

(k+), fk
def
= dimFpk

(k+) [cf. the discussion entitled “Rings” in §0],

• ek
def
= ](k×/(O×

k · pZ
k )) for the absolute ramification index of k,

• k(d=1) ⊆ k for the [uniquely determined] minimal MLF contained in k,

• εk
def
= 1 (respectively,

def
= 2) if pk 6= 2 (respectively, pk = 2),

• ak for the largest nonnegative integer such that k contains a pak
k -th root of unity, and

• ordk : k \{0} → Z for the [uniquely determined] pk-adic valuation normalized so that
ordk is surjective

[cf. the notational conventions introduced at the beginning of §1]. Moreover, for a positive
integer n, we use the notation “ζn” to denote a primitive n-th root of unity.

Another central object of the study in the present paper is a [profinite — cf. [3],
Proposition 3.3, (i)] group of MLF-type. We shall say that a group is of MLF-type if the
group is isomorphic, as an abstract group, to the absolute Galois group of an MLF [cf. [3],
Definition 3.1]. If G is a group of MLF-type, then, by applying various mono-anabelian
reconstruction algorithms [cf., e.g., [8], Introduction; [8], Remark 1.9.8] of [3], §3, to G,
we obtain

• a prime number p(G),

• positive integers d(G), f(G), and e(G),

• topological modules k×(G) and k+(G), and

• a monoid k×(G)

which “correspond” to

• the prime number pk,

• the positive integers dk, fk, and ek,

• the topological modules k× and k+ [cf. the discussion entitled “Rings” in §0], and

• the monoid k× [cf. the discussion entitled “Fields” in §0],
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respectively [cf. [3], Summary 3.15]. Moreover, by applying the mono-anabelian recon-
struction algorithms of Definition 2.4, (i), (ii), of the present paper to G, we obtain

• nonnegative integers ε(G) and a(G)

which “correspond” to

• the nonnegative integers εk and ak,

respectively [cf. Proposition 2.5, (i), of the present paper].
In §1, we discuss some generalities on log-shells of MLF’s. If k is an MLF, then we

shall refer to the compact open topological submodule

Ik
def
=

1

2pk

· logk(O×
k ) ⊆ k+

— where we write logk : O×
k → k+ for the pk-adic logarithm — of the topological module

k+ as the log-shell of k [cf. [8], Definition 5.4, (iii)]. As is well-known [cf., e.g., [3], Lemma
1.2, (vi)], the log-shell contains the compact open topological submodule (Ok)+ ⊆ k+ of
k+:

(Ok)+ ⊆ Ik.

One main topic of the study of §1 is the difference between (Ok)+ and Ik. In §1, we prove,
for instance, the following result [cf. Proposition 1.5; Lemma 1.8, (i); Proposition 1.10,
(i)].

THEOREM A. — Let k be an MLF. Then the following hold:

(i) The quotient

Ik/(Ok)+

is isomorphic, as an abstract module, to the module defined by
∞∏

ν=1

(Z+/pν
kZ+)⊕bk(ν)−δ(ν,ak)

— where we write

bk(ν)
def
=

(⌊εk · ek − 1

pν−1
k

⌋
− 2 ·

⌊εk · ek − 1

pν
k

⌋
+

⌊εk · ek − 1

pν+1
k

⌋)
· fk

and δ(i, j)
def
= 1 (respectively,

def
= 0) if i = j (respectively, i 6= j). In particular, the

isomorphism class of Ik/(Ok)+ depends only on pk, fk, ek, and ak

(ii) It holds that the submodule Ik ⊆ k+ coincides with the submodule (Ok)+ ⊆ k+ if
and only if one of the following three conditions is satisfied:

• The prime number pk is odd, and, moreover, the finite extension k/k(d=1) is
unramified.

• The field k is isomorphic to the field Q2.

• The field k is isomorphic to the field Q3(ζ3).

(iii) We shall define a nonnegative integer

νk
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as follows:

• If either pk ≥ 5 or k is not isomorphic to Qpk
(ζp

ak
k

), then

νk
def
= min{ ν ≥ 0 | εk · ek ≤ pν

k }.

• If pk ≤ 3, and k is isomorphic to Qpk
(ζp

ak
k

), then

νk
def
= min{ ν ≥ 0 | εk · ek ≤ pν+1

k } = min{ ν ≥ 1 | εk · ek ≤ pν
k } − 1.

Then the nonnegative integer νk is the smallest integer such that

pνk
k · Ik ⊆ (Ok)+ ⊆ Ik.

The various results of §1 may be regarded as “preparatory portions” for the establish-
ment of mono-anabelian reconstruction algorithms of §2.

In §2, we establish mono-anabelian reconstruction algorithms for constructing, from a
group G of MLF-type,

• a homomorphism of modules

ord�(G) : k×(G) −→ Z+

[cf. Definition 2.2] which “corresponds” [cf. Proposition 2.3] to the pk-adic valuation
ordk : k \ {0} → Z and

• a map of sets
ord�(G) : k+(G) \ {0} −→ Z

[cf. Definition 2.6, (ii)] which “corresponds” [cf. Proposition 2.7, (ii)] to the map ord
[I]
k : k\

{0} → Z of sets [cf. Definition 1.9, (ii)] that satisfies the following condition [cf. Propo-
sition 1.10, (ii)]: For each a ∈ k \ {0}, it holds that

ordk(a) ≤ ord
[I]
k (a) < ordk(a) + ek · (νk + 1)

[cf. Theorem A, (iii)], i.e., a sort of “pk-adic valuation with an indeterminacy” [cf. Re-
mark 1.10.1; also Remark 2.11.1].

Moreover, we also establish mono-anabelian reconstruction algorithms for constructing,
from a group G of MLF-type such that ε(G) ·e(G) = f(G)+a(G) [cf. also Remark 2.11.2],
topological submodules

mn(G) ⊆ O+(G) ⊆ k+(G)

[cf. Definition 2.9, (i), (ii)] — where n is a nonnegative integer — of k+(G) which “cor-
respond” [cf. Proposition 2.10] to the topological submodules mn

k ⊆ (Ok)+ ⊆ k+ of k+,
respectively.

In §3, we consider open homomorphisms between profinite groups of MLF-type. One
main application of the results of §3 is as follows [cf. Theorem 3.6, Corollary 3.7].

THEOREM B. — For each � ∈ {◦, •}, let G� be a profinite group of MLF-type. Let

α : G◦ −→ G•

be an open homomorphism. Then the following hold:



Anabelian Geometry of Mixed-characteristic Local Fields 5

(i) Suppose that d(G◦) ≤ d(G•) [which is the case if, for instance, d(G◦) = 1]. Then
α is an isomorphism.

(ii) Suppose that e(G◦) ≤ e(G•) [which is the case if, for instance, e(G◦) = 1]. Then
α is injective.

Theorem B leads us to the following bi-anabelian [cf., e.g., [8], Introduction; [8], Remark
1.9.8; [3], Introduction] result [cf. Corollary 3.8].

THEOREM C. — For each � ∈ {◦, •}, let k� be an MLF and k� an algebraic closure of

k�; write G�
def
= Gal(k�/k�). Suppose that ek◦ = 1. Then it holds that the field k◦ is

isomorphic to the field k• if and only if there exists a surjection G◦ � G•.

In §4, we discuss some mono-anabelian reconstruction algorithms related to absolutely
abelian MLF’s. We shall say that an MLF k is absolutely abelian if the finite extension
k/k(d=1) is Galois, and the Galois group is abelian [cf. Definition 4.2, (ii)]. In §4, we
establish, for instance, a mono-anabelian reconstruction algorithm for constructing, from
a group G of MLF-type, a homomorphism of topological modules

Nmabs(G)

[cf. Definition 4.7, (iii)] which “corresponds” [cf. Proposition 4.9, (i)] to the Norm map
Nmk/k(d=1) : k× → (k(d=1))× with respect to the finite extension k/k(d=1). This homomor-
phism Nmabs(G) allows one to define the notion of MLF-Galois label of G, i.e., the triple
consisting of the prime number p(G), the positive integer d(G), and the image of the
homomorphism Nmabs(G) [cf. Definition 4.10]. By applying the main theorems of [4] and
[13], we obtain the following result [cf. Theorem 4.11].

THEOREM D. — For each � ∈ {◦, •}, let G� be a group of MLF-type. Suppose that
{(p(G◦), a(G◦)), (p(G•), a(G•))} 6⊆ {(2, 1)}. Then it holds that the group G◦ is isomor-
phic to the group G• if and only if the MLF-Galois label of G◦ coincides with the
MLF-Galois label of G•.

Moreover, in §4, we also obtain the following bi-anabelian result [cf. Corollary 4.14].

THEOREM E. — For each � ∈ {◦, •}, let k� be an MLF and k� an algebraic closure of k�;

write G�
def
= Gal(k�/k�). Suppose that there exists a surjection G◦ � G• [which thus

implies that pk◦ = pk• — cf. Proposition 3.4, (iii)] compatible with the respective pk◦-
adic, i.e., pk•-adic, cyclotomic characters [which is the case if, for instance, the surjection
G◦ � G• is an isomorphism — cf. [3], Proposition 4.2, (iv)]. Then the following hold:

(i) The [uniquely determined] maximal absolutely abelian MLF contained in k◦ is
isomorphic to the [uniquely determined] maximal absolutely abelian MLF contained
in k•.

(ii) Suppose that k◦ is absolutely abelian. Then the field k◦ is isomorphic to the
field k•.
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Here, observe that Theorem E, (i), may be regarded as a refinement of the main
theorem of [6] [cf. Remark 4.14.1].

In §5, we discuss some mono-anabelian reconstruction algorithms related to MLF’s of
degree one, i.e., such that the integer “d(−)” is equal to one. For instance, we establish a
mono-anabelian reconstruction algorithm for constructing, from a group G of MLF-type
such that d(G) = 1 [cf. Remark 5.10.1], a structure of topological field on k×(G) [cf.
Definition 5.2] which “corresponds” [cf. Theorem 5.4, (i)] to the topological field structure
of k, i.e., on k×.

In §6, we discuss Galois-specifiable MLF’s. We shall say that an MLF k is Galois-
specifiable if k is Galois over k(d=1), and, moreover, the following condition is satisfied: If
L is an MLF such that the absolute Galois group of k is isomorphic to the absolute Galois
group of L, then the field k is isomorphic to the field L [cf. Definition 6.1]. We prove the
following result [cf. Theorem 5.9, (ii); Remark 5.9.1; Theorem 6.4; Remark 6.4.1].

THEOREM F. — Let k be an MLF. Consider the following five conditions:

(1) The MLF k is absolutely abelian [cf. Definition 4.2, (ii)].

(2) The MLF k is Galois-specifiable [cf. Definition 6.1].

(3) The MLF k is absolutely strictly radical [cf. Definition 5.6, (iii)].

(4) The MLF k is absolutely characteristic [cf. Definition 5.7].

(5) The MLF k is absolutely Galois [cf. Definition 4.2, (i)].

Then the following hold:

(i) The implications

(3)

⇓

(1) =⇒ (2) =⇒ (4) =⇒ (5)

hold.

(ii) Suppose that (pk, ak) 6= (2, 1). Then the equivalence

(1) ⇐⇒ (2)

holds.

(iii) There exists an MLF that violates the implication (4)⇒ (2) (respectively, (4)⇒
(3); (5)⇒ (4)).

Moreover, in the present paper, we observe that the condition for an MLF to be
absolutely abelian and the condition for an MLF to be Galois-specifiable may be considered
to be “group-theoretic” [cf. Remark 4.15.1, (i); Remark 6.14.1], but each of the condition
for an MLF to be absolutely strictly radical, the condition for an MLF to be absolutely
characteristic, and the condition for an MLF to be absolutely Galois should be considered
to be “not group-theoretic” [cf. ; Remark 5.9.2, (i); Remark 5.9.2, (ii); Remark 4.15.1,
(ii)].
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Let k be an MLF and k an algebraic closure of k. Write Gk
def
= Gal(k/k). Then let us

recall that we have a natural injection Aut(k) ↪→ Out(Gk) [cf., e.g., [3], Proposition 2.1].
By means of this injection, let us regard Aut(k) as a subgroup of Out(Gk):

Aut(k) ⊆ Out(Gk).

In §6, we also establish a mono-anabelian reconstruction algorithm for constructing, from
a group G of MLF-type that satisfies a certain condition [cf. Definition 6.9, (i)] “cor-
responding” [cf. Theorem 6.11] to the condition for an MLF to be Galois-specifiable, a
collection

Orbsqg(G)

[cf. Definition 6.9, (ii)] of subgroups of Out(G) which “corresponds” [cf. Theorem 6.13,
(ii)] to the Out(Gk)-orbit, i.e., by conjugation, of the subgroup Aut(k) ⊆ Out(Gk).

In §7 and §8, we discuss outer automorphisms of the absolute Galois groups of MLF’s
that arise from field automorphisms of the MLF’s. For instance, we prove the following
result [cf. Theorem 7.2, (i); Theorem 7.5; Corollary 8.7].

THEOREM G. — Let k be an MLF and k an algebraic closure of k. Write Gk
def
= Gal(k/k).

Then the following hold:

(i) Suppose that the MLF k is absolutely characteristic, and that pk is odd. Then
the subgroup

Aut(k) ⊆ Out(Gk)

is not normally terminal.

(ii) Write k(ab) ⊆ k for the [uniquely determined] maximal absolutely abelian MLF
contained in k. Suppose that a maximal intermediate field of k/k(ab) tamely ramified
over k(ab) does not coincide with k(d=1) [which is the case if, for instance, k(ab) 6= k(d=1)],
and that (pk, ak) 6= (2, 1). Let n be a nonnegative integer such that [k : k(ab)] ∈ pn

kZ and
A an abelian pk-group that satisfies the following two conditions:

(1) It holds that ]A = pn
k .

(2) The finite abelian group A is generated by at most (dk/p
n
k)− 1 elements.

Then there exists a subgroup of Out(Gk) isomorphic to A.

(iii) Suppose that pk is odd, and that

k = Qpk
(ζpk

, p
1/pk

k ).

Then the subgroup
Aut(k) ⊆ Out(Gk)

is neither normally terminal nor normal.

One motivation of studying Theorem G is as follows [cf. Remark 7.5.2]: Let k be an

MLF and k an algebraic closure of k. Write Gk
def
= Gal(k/k). Then, as is well-known [cf.,

e.g., the discussion given at the final portion of [12], Chapter VII, §5], in general, the
natural injection

Aut(k) ↪→ Out(Gk)
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is not surjective. Under this state of affairs, one may consider the following problem:

Problem: Is there a certain “suitable” characterization of the subgroup
Aut(k) ⊆ Out(Gk) of Out(Gk)?

[Here, let us observe that

the mono-anabelian reconstruction algorithm of “Orbsqg(G)” in the dis-
cussion preceding Theorem G may be regarded as a certain affirmative
solution to this problem, i.e., in the case where the MLF k is Galois-
specifiable.]

From the point of view of this problem, let us observe

the [easily verified] finiteness of the group Aut(k).

In particular, as one of possible solutions to the above problem, one may discuss the
following question:

(∗fin) Is the subgroup Aut(k) of Out(Gk) the uniquely determined maximal finite
subgroup of Out(Gk)? Put another way, is every element of Out(Gk) of finite order
contained in the subgroup Aut(k) of Out(Gk)?

Now let us observe that it is immediate that an affirmative answer to this question (∗fin)
implies an affirmative answer to the following question (∗char), hence also an affirmative
answer to the following question (∗nor):

(∗char) Is the subgroup Aut(k) of Out(Gk) characteristic?

(∗nor) Is the subgroup Aut(k) of Out(Gk) normal?

Then one may easily find that

• Theorem G, (i), is related to the question (∗nor),

• Theorem G, (ii) [cf. also the example in Remark 7.5.1], yields a negative answer to
the question (∗fin), and

• Theorem G, (iii), yields a negative answer to the question (∗nor), hence also negative
answers to the questions (∗fin) and (∗char).

This is one motivation of studying Theorem G.
Finally, in Remark 8.7.1, we recall some of the discussions of §8 from the point of view

of the notion of “link” [cf. [9], §2.7, (i)].

0. Notations and Conventions

Numbers. — If a ∈ Q is a rational number, then we shall write bac ∈ Z for the largest
integer such that bac ≤ a.

Sets. — If S is a finite set, then we shall write ]S for the cardinality of S. If G is a
group, and T is a set equipped with an action of G, then we shall write TG ⊆ T for the
subset of G-invariants of T .

Monoids. — In the present paper, every “monoid” is assumed to be commutative.
Let M be a [multiplicative] monoid. We shall write M× ⊆ M for the abelian group of
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invertible elements of M . We shall write Mgp for the groupification of M [i.e., the abelian
group given by the set of equivalence classes with respect to the relation ∼ on M ×M
defined by, for (a1, b1), (a2, b2) ∈ M ×M , (a1, b1) ∼ (a2, b2) if there exists an element
c ∈ M of M such that ca1b2 = ca2b1]. We shall write Mpf for the perfection of M [i.e.,
the monoid obtained by forming the injective limit of the injective system of monoids

· · · −→ M −→ M −→ · · ·

given by assigning to each positive integer n a copy of M , which we denote by In, and
to each two positive integers n, m such that n divides m the homomorphism In = M →
Im = M given by multiplication by m/n]. We shall write M~ def

= M∪{∗M}; we regard M~

as a monoid [that contains M as a submonoid] by setting ∗M · ∗M
def
= ∗M and a · ∗M

def
= ∗M

for every a ∈M .

Modules. — Let M be a module. If n is a positive integer, then we shall write
M [n] ⊆M for the submodule obtained by forming the kernel of the endomorphism of M

given by multiplication by n. We shall write Mtor
def
=

⋃
n≥1 M [n] ⊆M for the submodule

of torsion elements of M and

M∧ def
= lim←−

n

M/(n ·M)

— where the projective limit is taken over the positive integers n. [So if M is finitely
generated, then M∧ coincides with the profinite completion of M .]

Groups. — Let G be a group and H ⊆ G a subgroup of G. We shall write ZG(H) ⊆ G
for the centralizer of H in G [i.e., the subgroup consisting of g ∈ G such that gh = hg
for every h ∈ H] and NG(H) ⊆ G for the normalizer of H in G [i.e., the subgroup
consisting of g ∈ G such that gH = Hg]. We shall say that H is normally terminal in G
if NG(H) = H, or, alternatively, NG(H) ⊆ H.

Topological Groups. — If G is a topological group, then we shall write Gab for the
abelianization of G [i.e., the quotient of G by the closure of the commutator subgroup

of G], Gab-tor def
= (Gab)tor ⊆ Gab, and Gab/tor for the quotient of Gab by the closure of

Gab-tor ⊆ Gab. If H is a profinite group, and p is a prime number, then we shall write
H(p) for the maximal pro-p quotient of H.

Rings. — In the present paper, every “ring” is assumed to be unital, associative, and
commutative. Let R be a ring. Then we shall write R+ for the underlying additive
module of R and R× ⊆ R for the multiplicative group of units of R. If, moreover, R is a
Dedekind domain, then we shall write RB ⊆ R for the multiplicative monoid of nonzero
elements of R. [So if R is a Dedekind domain, then we have a natural inclusion R× ⊆ RB

of monoids.]

Fields. — Let K be a field. Then we shall write µ(K)
def
= (K×)tor for the group of roots

of unity in K and K× = K×∪{0} for the underlying multiplicative monoid of K. [So we

have a natural isomorphism (K×)~ ∼→ K× of monoids that sends ∗K× 7→ 0]. If, moreover,
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K is algebraically closed and of characteristic zero, then we shall write

Λ(K)
def
= lim←−

n

µ(K)[n] = lim←−
n

K×[n]

— where the projective limits are taken over the positive integers n — and refer to
Λ(K) as the cyclotome associated to K. Thus, the cyclotome has a natural structure
of profinite, hence also topological, module and is isomorphic, as an abstract topological

module, to Ẑ+.

1. Generalities on Log-shells

In the present §1, let

k

be an MLF — i.e., a finite extension of Qp, for some prime number p [cf. [3], Definition
1.1] — and

k

an algebraic closure of k. We shall write

• Ok ⊆ k for the ring of integers of k,

• mk ⊆ Ok for the maximal ideal of Ok,

• k
def
= Ok/mk for the residue field of Ok,

• O≺n
k

def
= 1 + mn

k ⊆ O×
k [where n is a positive integer] for the n-th higher unit group

of Ok,

• O≺
k

def
= O≺1

k for the group of principal units of Ok,

• µk for the [uniquely determined] Haar measure on [the locally compact topological
module] k+ normalized so that µk((Ok)+) = 1,

• pk
def
= char(k) for the residue characteristic of k,

• dk
def
= dimQpk

(k+),

• fk
def
= dimFpk

(k+),

• ek
def
= ](k×/(O×

k · pZ
k )) for the absolute ramification index of k,

• logk : O×
k → k+ for the pk-adic logarithm,

• Ik
def
= (2pk)

−1 · logk(O×
k ) ⊆ k+ for the log-shell of k,

• Ok ⊆ k for the ring of integers of k,

• k for the residue field of Ok,

• Gk
def
= Gal(k/k),

• Ik ⊆ Gk for the inertia subgroup of Gk,

• Pk ⊆ Ik for the wild inertia subgroup of Gk, and

• Frobk ∈ Gal(k/k)
∼← Gk/Ik for the []k-th power] Frobenius element



Anabelian Geometry of Mixed-characteristic Local Fields 11

[cf. the notational conventions introduced in the discussions following [3], Definition 1.1,
and [3], Lemma 1.3]. We shall write, moreover,

• k(d=1) ⊆ k for the [uniquely determined] minimal MLF contained in k,

• e
[µ]
k = bek/(pk − 1)c,

• εk
def
= 1 (respectively,

def
= 2) if pk 6= 2 (respectively, pk = 2) [cf. [3], Lemma 1.3, (iii)],

• ak for the largest nonnegative integer such that k contains a pak
k -th root of unity [i.e.

the “a” in [3], Lemma 1.2, (i)],

• a
[δ]
k

def
= 0 (respectively,

def
= 1) if ak = 0 (respectively, ak 6= 0),

• I(n)
k

def
= (2pk)

−1 · logk(O≺n
k ) ⊆ Ik [where n is a positive integer], and

• ordk : k \{0} → Z for the [uniquely determined] pk-adic valuation normalized so that
ordk is surjective.

Finally, for each positive integer n, let

ζn ∈ k

be a primitive n-th root of unity.
In the present §1, we discuss some generalities on log-shells of MLF’s.

PROPOSITION 1.1. — The following hold:

(i) It holds that I(1)
k = Ik.

(ii) It holds that µk(Ik) = pεk·dk−fk−ak

k .

(iii) Let n be an integer such that n > e
[µ]
k . Then it holds that I(n)

k = mn−εk·ek
k .

(iv) If a
[δ]
k = 1, then it holds that (fk, ek) = (1, pak−1

k · (pk − 1)) if and only if k is
isomorphic to Qpk

(ζp
ak
k

).

(v) It holds that pak−1
k · (pk − 1) ≤ ek. If, moreover, a

[δ]
k = 1, then it holds that

ek ∈ pak−1
k · (pk − 1) · Z.

Proof. — Assertion (i) follows from [3], Lemma 1.2, (i), (ii), (v). Assertion (ii) is the
content of [3], Lemma 1.3, (iii). Assertion (iii) follows from [11], Chapter II, Proposition

5.5. Finally, since (fQpk
(ζ

p
ak
k

), eQpk
(ζ

p
ak
k

)) = (1, pak−1
k · (pk − 1)) if a

[δ]
k = 1 [cf. [11], Chapter

II, Proposition 7.13, (i)], assertions (iv), (v) follow immediately from the [easily verified]
fact that k always contains an MLF isomorphic to Qpk

(ζp
ak
k

). This completes the proof

of Proposition 1.1. �

LEMMA 1.2. — Let a ∈ k \ {0} be an element of k \ {0}. Then the integer ordk(a) ∈ Z
coincides with the uniquely determined integer n such that Frobn

k ∈ Gk/Ik coincides
with the image of a ∈ k\{0} by the composite of the injective homomorphism reck : k× ↪→
Gab

k of [3], Lemma 1.7, and the natural surjection Gab
k � Gk/Ik [cf. [3], Lemma 1.5, (i)].

Proof. — This assertion follows immediately from [3], Lemma 1.7, (1). �
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LEMMA 1.3. — The following hold:

(i) Suppose that a
[δ]
k = 1. Let ν be an integer such that 1 ≤ ν ≤ ak. Then it holds that

ζpν
k
∈ O≺e

[µ]
k /pν−1

k
k [cf. Proposition 1.1, (v)] but ζpν

k
6∈ O≺(e

[µ]
k /pν−1

k )+1

k .

(ii) Let n be a positive integer. Then the modules O≺n
k /O≺n+1

k , I(n)
k /I(n+1)

k are annihi-
lated by pk. In particular, these modules have respective natural structures of Fpk

-vector
spaces. Moreover, the Fpk

-vector space O≺n
k /O≺n+1

k is of dimension fk.

(iii) Let n be a positive integer. Then the pk-adic logarithm logk : O×
k → k+ determines

a surjection of Fpk
-vector spaces [cf. (ii)]

O≺n
k /O≺n+1

k � I(n)
k /I(n+1)

k .

(iv) In the situation of (iii), if the integer n is of the form “e
[µ]
k /pν−1

k ” for some
integer ν such that 1 ≤ ν ≤ ak, then the kernel of the surjection of (iii) is generated

by the image of ζpν
k
∈ O≺e

[µ]
k /pν−1

k
k [cf. (i)] [hence also of dimension one over Fpk

]. If the

integer n is not of the form “e
[µ]
k /pν−1

k ” for any integer ν such that 1 ≤ ν ≤ ak, then
the surjection of (iii) is an isomorphism.

Proof. — Assertion (i) follows immediately from Proposition 1.1, (iv), together with
[11], Chapter II, Proposition 7.13, (iv). Assertions (ii), (iii) follow from [11], Chapter II,

Proposition 3.10, together with the definition of “I(n)
k ”. Assertion (iv) follows immedi-

ately from assertion (i), together with [3], Lemma 1.2, (ii), (v). This completes the proof
of Lemma 1.3. �

DEFINITION 1.4.

(i) For each positive integer ν, we shall write

bk(ν)
def
=

(⌊εk · ek − 1

pν−1
k

⌋
− 2 ·

⌊εk · ek − 1

pν
k

⌋
+

⌊εk · ek − 1

pν+1
k

⌋)
· fk.

Moreover, we shall write

bk(0)
def
= ∞.

(ii) We shall write

Ik
def
=

∞∏
ν=1

(Z+/pν
kZ+)⊕bk(ν)−δ(ν,ak)

— where we write δ(i, j)
def
= 1 (respectively,

def
= 0) if i = j (respectively, i 6= j).

REMARK 1.4.1. — One verifies easily that the isomorphism class of the module Ik of
Definition 1.4, (ii), depends only on pk, fk, ek, and ak.

PROPOSITION 1.5. — The module Ik/(Ok)+ [cf. [3], Lemma 1.2, (vi)] is isomorphic, as
an abstract module, to the module Ik. In particular, the isomorphism class of Ik/(Ok)+

depends only on pk, fk, ek, and ak [cf. Remark 1.4.1].



Anabelian Geometry of Mixed-characteristic Local Fields 13

Proof. — If (εk, ek) = (1, 1), then Proposition 1.5 follows from Proposition 1.1, (ii),

(v). Thus, we may assume without loss of generality that (εk, ek) 6= (1, 1). If a
[δ]
k = 0,

then Proposition 1.5 follows immediately from [10], Theorem 2 [i.e., in the case where we
take the “(N, t)” of [10], Theorem 2, to be (εk · ek − 1, 0)], together with Proposition 1.1,

(iii); Lemma 1.3, (iv). If a
[δ]
k = 1, then Proposition 1.5 follows immediately from [10],

Theorem 3 [i.e., in the case where we take the “N” of [10], Theorem 3, to be εk · ek − 1],
together with Proposition 1.1, (iii); Lemma 1.3, (i), (iv). This completes the proof of
Proposition 1.5. �

REMARK 1.5.1. — One may give an alternative proof of Proposition 1.1, (ii), by applying
Proposition 1.5. Indeed, it follows from conditions (1) and (2) of [3], Lemma 1.3, (i), that
µk(Ik) = ](Ik/(Ok)+). On the other hand, it follows from Proposition 1.5 that

logpk

(
]
(
Ik/(Ok)+

))
= logpk

(]Ik)

=
∞∑

ν=1

(
ν ·

(
bk(ν)− δ(ν, ak)

))
=

⌊εk · ek − 1

p0
k

⌋
· fk − ak = εk · dk − fk − ak.

Thus, Proposition 1.1, (ii), holds.

LEMMA 1.6. — The following hold:

(i) The Fpk
-vector space (Ik/(Ok)+)⊗Z Fpk

is of dimension

εk · dk − fk − a
[δ]
k −

⌊εk · ek − 1

pk

⌋
· fk.

(ii) If pk = 2, then the Fpk
-vector space (Ik/(Ok)+)⊗Z Fpk

is of dimension dk − 1.

(iii) The Fpk
-vector space (Ik/(Ok)+)⊗Z Fpk

is of dimension < dk.

Proof. — First, we verify assertion (i). It follows from Proposition 1.5, together with
the definition of Ik, that the dimension under consideration is given by

∞∑
ν=1

(
bk(ν)− δ(ν, ak)

)
=

(⌊εk · ek − 1

p0
k

⌋
−

⌊εk · ek − 1

p1
k

⌋)
· fk − a

[δ]
k

= εk · dk − fk − a
[δ]
k −

⌊εk · ek − 1

pk

⌋
· fk.

This completes the proof of assertion (i). Assertion (ii) follows from assertion (i), together

with the [easily verified] fact that if pk = 2, then (εk, a
[δ]
k ) = (2, 1).

Finally, we verify assertion (iii). If pk is odd, then since εk = 1, fk ≥ 1, ek ≥ 1, and

a
[δ]
k ≥ 0, assertion (iii) follows from assertion (i). If pk = 2, then assertion (iii) follows from

assertion (ii). This completes the proof of assertion (iii), hence also of Lemma 1.6. �

COROLLARY 1.7. — It holds that

(Ok)+ 6⊆
1

2
· logk(O×

k ).
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Proof. — Since Ik is given by (2pk)
−1 · logk(O×

k ), it follows immediately from [3],
Lemma 1.2, (vi), that it holds that (Ok)+ is contained in 2−1 · logk(O×

k ) if and only if
dimFpk

((Ik/(Ok)+) ⊗Z Fpk
) is equal to dimFpk

(Ik ⊗Z Fpk
), i.e., dk. Thus, Corollary 1.7

follows from Lemma 1.6, (iii). This completes the proof of Corollary 1.7. �

LEMMA 1.8. — The following hold:

(i) The following four conditions are equivalent:

(1) The submodule Ik ⊆ k+ coincides with the submodule (Ok)+ ⊆ k+.

(2) There exists a(n) [necessarily nonpositive — cf. [3], Lemma 1.2, (vi)] integer ν
such that the submodule Ik ⊆ k+ coincides with the submodule pν

k · (Ok)+ ⊆ k+.

(3) It holds that εk · dk = fk + ak.

(4) One of the following three conditions is satisfied:

(a) It holds that (εk, ek) = (1, 1) [i.e., that the prime number pk is odd, and,
moreover, ek = 1].

(b) It holds that (pk, fk, ek) = (2, 1, 1) [i.e., that k is isomorphic to Q2].

(c) It holds that (pk, fk, ek, ak) = (3, 1, 2, 1) [i.e., that k is isomorphic to Q3(ζ3)
— cf. Proposition 1.1, (iv)].

(ii) Suppose that either (a) or (b) in (i) is satisfied. Then, for each nonnegative integer
ν, it holds that pν

k · Ik = mν
k.

(iii) Suppose that (c) in (i) is satisfied. Then, for each nonnegative integer ν, it holds
that pν

k · Ik = m2ν
k , pν−1

k ·m3
k = m2ν+1

k .

(iv) Suppose that (c) in (i) is satisfied. Write K
def
= k(ζ9) ⊆ k. Then the image of the

composite

O≺
K ↪→ O×

K

NmK/k→ O×
k

logk→ k+

— where we write NmK/k for the Norm map with respect to the finite extension K/k —
coincides with m3

k ⊆ k+.

Proof. — First, we verify assertion (i). The implication (1)⇒ (2) is immediate. More-
over, the equivalence (1)⇔ (3) follows from Proposition 1.1, (ii), and [3], Lemma 1.2, (vi).
One also verifies immediately the implication (4) ⇒ (3) by straightforward calculations
[cf. also Proposition 1.1, (v)].

Next, we verify the implication (2) ⇒ (1). Suppose that condition (2) is satisfied.
Then since (Ok)+ is a free Zpk

-module of rank dk, we conclude that the module Ik/(Ok)+

is a free Z/p−ν
k Z-module of rank dk. In particular, if ν 6= 0, then the Fpk

-vector space
(Ik/(Ok)+)⊗Z Fpk

is of dimension dk. Thus, it follows from Lemma 1.6, (iii), that ν = 0,
as desired. This completes the proof of the implication (2) ⇒ (1).

Finally, we verify the implication (3) ⇒ (4). Suppose that condition (3) is satisfied.
Then since pak−1

k · (pk − 1) ≤ ek [cf. Proposition 1.1, (v)], we obtain that

εk · fk · pak−1
k · (pk − 1) ≤ εk · dk = fk + ak.
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Now suppose that pk is odd, i.e., ≥ 3. Then we obtain that(
3ak−1 · (pk − 1)− 1

)
·fk ≤ ak.

Thus, one verifies easily that either (pk, fk, ak) = (3, 1, 1) or ak = 0. Now observe that it
follows from condition (3) that (pk, fk, ak) = (3, 1, 1) (respectively, ak = 0) implies that
(pk, fk, ek, ak) = (3, 1, 2, 1) (respectively, ek = 1), as desired. This completes the proof of
the implication (3) ⇒ (4) in the case where pk is odd.

Next, suppose that pk = 2. Then, by the above inequality εk ·fk ·pak−1
k ·(pk−1) ≤ fk+ak,

we obtain that

(2ak − 1) · fk ≤ ak,

which thus implies that ak = 1. In particular, it follows from condition (3) that 2dk =
fk + 1, i.e., fk · (2ek − 1) = 1. Thus, we conclude that (fk, ek) = (1, 1), as desired. This
completes the proof of the implication (3) ⇒ (4), hence also of assertion (i).

Assertions (ii), (iii) follow from the implication (4) ⇒ (1) of assertion (i). Finally,
we verify assertion (iv). Let us first observe that one verifies easily that the integer
“t” discussed in [14], Chapter V, §3, for the finite Galois extension K/k [that is totally
ramified and of degree 3] is equal to 2. Moreover, it follows from Proposition 1.1, (iv),
that fK = 1.

Now since “t” is equal to 2, it follows from the second equality of [14], Chapter V,
§3, Corollary 3, that NmK/k(O≺

K) contains O≺3
k , which thus implies [cf. [11], Chapter II,

Proposition 5.5] that

m3
k ⊆ logk

(
NmK/k(O≺

K)
)
.

Next, observe that since fK = 1, one verifies immediately from Lemma 1.3, (i), (ii), that
O≺

K is generated by O≺2
K ⊆ O≺

K and ζ9 ∈ O≺
K . Thus, it follows from [3], Lemma 1.2, (v),

that

logk

(
NmK/k(O≺

K)
)

= logk

(
NmK/k(O≺2

K )
)
.

Next, observe that since “t” is equal to 2, and fK = 1, it follows immediately from [14],
Chapter V, §3, Proposition 5, (iii), together with Lemma 1.3, (ii), that NmK/k(O≺2

K ) is
contained in O≺3

k , which thus implies [cf. [11], Chapter II, Proposition 5.5] that

logk

(
NmK/k(O≺2

K )
)
⊆ m3

k.

Thus, we conclude that m3
k = logk(NmK/k(O≺

K)), as desired. This completes the proof of
assertion (iv), hence also of Lemma 1.8. �

DEFINITION 1.9.

(i) We shall write

νk

for the nonnegative integer defined as follows [cf. also Remark 1.9.1 below]:

(1) Suppose that either (εk, ek) = (1, 1) or (pk, fk, ek, ak) ∈ {(2, 1, 1, 1), (3, 1, 2, 1)}.
Then

νk
def
= 0.
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(2) Suppose that the condition in (1) is not satisfied [which thus implies that
εk · ek − 1 6= 0], and that either pk ≥ 5 or k 6∼= Qpk

(ζp
ak
k

). Then

νk
def
= max

{
ν ≥ 0

∣∣∣ ⌊εk · ek − 1

pν−1
k

⌋
6= 0

}
.

(3) Suppose that the condition in (1) is not satisfied [which thus implies that

εk · ek − 1 6= 0], that pk ≤ 3, and that k ∼= Qpk
(ζp

ak
k

) [which thus implies that a
[δ]
k = 1].

Then

νk
def
= ak − 1,

or, alternatively [cf. the proof of Proposition 1.10, (i), below],

νk
def
= max

{
ν ≥ 0

∣∣∣ ⌊εk · ek − 1

pν−1
k

⌋
6= 0

}
− 1.

(ii) We shall write

ord
[I]
k : k \ {0} −→ Z

for the map of sets defined by

ord
[I]
k (a)

def
= −ek ·min{ ν ∈ Z | pν

k · a ∈ Ik }+ ek − 1.

REMARK 1.9.1. — One verifies easily that the nonnegative integer νk of Definition 1.9,
(i), may be defined as follows:

(a) If either pk ≥ 5 or k is not isomorphic to Qpk
(ζp

ak
k

), then

νk
def
= min{ ν ≥ 0 | εk · ek ≤ pν

k }.

(b) If pk ≤ 3, and k is isomorphic to Qpk
(ζp

ak
k

), then

νk
def
= min{ ν ≥ 0 | εk · ek ≤ pν+1

k } = min{ ν ≥ 1 | εk · ek ≤ pν
k } − 1.

PROPOSITION 1.10. — The following hold:

(i) The nonnegative integer νk is the smallest integer such that

pνk
k · Ik ⊆ (Ok)+ ⊆ Ik.

(ii) For each a ∈ k \ {0}, it holds that

ordk(a) ≤ ord
[I]
k (a) < ordk(a) + ek · (νk + 1).

Proof. — First, we verify assertion (i). Assertion (i) in the case where the condi-
tion in (1) of Definition 1.9, (i), is satisfied follows from the implication (4) ⇒ (1) of
Lemma 1.8, (i). Thus, we may assume without loss of generality that the condition in
(1) of Definition 1.9, (i), is not satisfied. [In particular, it holds that εk · ek − 1 6= 0.]

Write

νI
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for the smallest integer such that pνI
k · Ik ⊆ (Ok)+ ⊆ Ik and

νb
def
= max{ ν ≥ 0 | bk(ν) 6= 0 }.

Then it is immediate from Proposition 1.5 that

νI = max{ ν ≥ 0 | bk(ν)− δ(ν, ak) 6= 0 }.
In particular, we obtain the following two assertions:

(a) If bk(νb) 6= δ(νb, ak), then it holds that νI = νb.

(b) If bk(νb) = δ(νb, ak) [or, alternative, νb = ak ≥ 1 and bk(νb) = 1], and bk(νb−1) 6= 0,
then it holds that νI = νb − 1.

Moreover, let us observe that it follows immediately from the definition of bk(ν) that

νb = max
{

ν ≥ 0
∣∣∣ ⌊εk · ek − 1

pν−1
k

⌋
6= 0

}
.

Now we verify assertion (i) in the case where the condition in (2) of Definition 1.9, (i),
is satisfied. Suppose that the condition in (2) of Definition 1.9, (i), is satisfied. Assume,
moreover, that bk(νb) = δ(νb, ak) [which thus implies — cf. the above assertion (b) —
that νb = ak ≥ 1 and bk(νb) = 1]. Then one verifies immediately that

νb = ak ≥ 1, fk = 1, pνb−1
k ≤ εk · ek − 1 < 2 · pνb−1

k .

In particular, since pak−1
k · (pk − 1) ≤ ek [cf. Proposition 1.1, (v)], we obtain that

εk · pak−1
k · (pk − 1)− 1 < 2 · pak−1

k ,

which thus implies that
εk · (pk − 1)− p1−ak

k < 2.

Thus, since ak ≥ 1, we obtain that pk ≤ 3.
Next, let us observe that since ak ≥ 1, fk = 1, and pk ≤ 3, it follows immediately from

the condition in (2) of Definition 1.9, (i), together with Proposition 1.1, (iv), (v), that

2 · pak−1
k · (pk − 1) ≤ ek.

In particular, since εk · ek − 1 < 2 · pνb−1
k , we obtain that

2 · εk · pak−1
k · (pk − 1)− 1 < 2 · pak−1

k ,

which thus implies that
2 · εk · (pk − 1)− p1−ak

k < 2.

Thus, since ak ≥ 1, we obtain a contradiction. In particular, we obtain that bk(νb) 6=
δ(νb, ak), which thus implies [cf. the above assertion (a)] assertion (i) in the case where the
condition in (2) of Definition 1.9, (i), is satisfied. This completes the proof of assertion
(i) in the case where the condition in (2) of Definition 1.9, (i), is satisfied.

Finally, we verify assertion (i) in the case where the condition in (3) of Definition 1.9,
(i), is satisfied. Suppose that the condition in (3) of Definition 1.9, (i), is satisfied. Then

since k is isomorphic to Qpk
(ζp

ak
k

), and a
[δ]
k = 1, it follows from Proposition 1.1, (iv), that

ek = pak−1
k · (pk − 1). In particular, since pk ≤ 3, we obtain that⌊εk · ek − 1

pak
k

⌋
=

⌊εk · pak−1
k · (pk − 1)− 1

pak
k

⌋
=

⌊
εk −

εk

pk

− 1

pak
k

⌋
= 0,
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⌊εk · ek − 1

pak−1
k

⌋
=

⌊εk · pak−1
k · (pk − 1)− 1

pak−1
k

⌋
=

⌊
εk · pk − εk −

1

pak−1
k

⌋
= 1,

⌊εk · ek − 1

pak−2
k

⌋
=

⌊εk · pak−1
k · (pk − 1)− 1

pak−2
k

⌋
=

⌊
εk · p2

k − εk · pk −
1

pak−2
k

⌋
≥ 3.

Thus, since fk = 1 [cf. Proposition 1.1, (iv)], we conclude that

νb = ak ≥ 1, bk(νb) = δ(νb, ak), bk(νb − 1) 6= 0.

In particular, assertion (i) in the case where the condition in (3) of Definition 1.9, (i),
is satisfied follows from the above assertion (b). This completes the proof of assertion
(i) in the case where the condition in (3) of Definition 1.9, (i), is satisfied, hence also of
assertion (i).

Next, we verify assertion (ii). Write N
def
= −min{ ν ∈ Z | pν

k · a ∈ Ik }. Then it follows
from the definition of N that p−N

k · a ∈ Ik but p−N−1
k · a 6∈ Ik. Thus, it follows from

assertion (i) that pνk−N
k · a ∈ pνk

k · Ik ⊆ (Ok)+ but p−N−1
k · a 6∈ (Ok)+. In particular, we

obtain that ordk(p
νk−N
k · a) ≥ 0 and ordk(p

−N−1
k · a) < 0, which thus implies that

ek · (N − νk) ≤ ordk(a) < ek · (N + 1).

Thus, it follows from the definition of ord
[I]
k (a) that

ord
[I]
k (a)− ek + 1− ek · νk ≤ ordk(a) ≤ ord

[I]
k (a).

This completes the proof of assertion (ii), hence also of Proposition 1.10. �

REMARK 1.10.1. — By Proposition 1.10, (ii), one may regard the map ord
[I]
k : k\{0} → Z

of Definition 1.9, (ii), as a sort of “pk-adic valuation with an indeterminacy”.

2. Reconstruction Algorithms Related to Valuations

In the present §2, we maintain the notational conventions introduced at the beginning
of §1. In particular, we have been given an MLF

k.

Moreover, let
G

be a [profinite — cf. [3], Proposition 3.3, (i)] group of MLF-type [cf. [3], Definition 3.1].
Thus, by applying the various group-theoretic reconstruction algorithms [cf. [8], Remark
1.9.8] of [3], §3, and [3], §4, to the group G of MLF-type, we obtain

• a prime number p(G),

• positive integers d(G), f(G), and e(G),

• subgroups P (G) ⊆ I(G) ⊆ G of G,

• an element Frob(G) ∈ G/I(G) of G/I(G),

• topological monoids O≺(G) ⊆ O×(G) ⊆ OB(G) ⊆ k×(G)
rec(G)
↪→ Gab,



Anabelian Geometry of Mixed-characteristic Local Fields 19

• monoids k×(G) ⊆ k×(G) and k×(G),

• topological modules I(G) ⊆ k+(G),

• a measure µ(G) on k+(G),

• G-monoids O×(G) ⊆ OB(G) ⊆ k×(G) ⊆ k×(G) and k×(G) ⊆ k×(G),

• a G-module k+(G),

• a G-module µ(G), and

• a topological G-module Λ(G)

[cf. [3], Summary 3.15; [3], Summary 4.3].
In the present §2, we establish group-theoretic reconstruction algorithms for construct-

ing, from the group G of MLF-type, a homomorphism of modules

ord�(G) : k×(G) −→ Z+

which “corresponds” to the pk-adic valuation ordk : k\{0} → Z [cf. Definition 2.2, Propo-
sition 2.3 below] and a map of sets

ord�(G) : k+(G) \ {0} −→ Z

which “corresponds” to the map ord
[I]
k : k \ {0} → Z of sets of Definition 1.9, (ii) [cf.

Definition 2.6, (ii); Proposition 2.7, (ii), below], i.e., a sort of “pk-adic valuation with
an indeterminacy” [cf. Remark 1.10.1]. Moreover, we also establish group-theoretic re-
construction algorithms for constructing, from a group of MLF-type that satisfies an
additional condition, topological submodules

“mn(−) ⊆ O+(−) ⊆ k+(−)”

— where n is a nonnegative integer — of “k+(−)” which “correspond” to the topological
submodules mn

k ⊆ (Ok)+ ⊆ k+ of k+, respectively [cf. Definition 2.9, (i), (ii); Proposi-
tion 2.10 below].

LEMMA 2.1. — The module k×(G)/O×(G) is torsion-free and generated by Frob(G) ∈
k×(G)/O×(G).

Proof. — This assertion follows — in light of [3], Proposition 3.6; [3], Proposition 3.9;
[3], Proposition 3.11, (i) — from [3], Lemma 1.5, (i) and [3], Lemma 1.7, (1). �

DEFINITION 2.2. — We shall write

ord�(G) : k×(G) −→ Z

for the map defined as follows [cf. [2], Theorem 1.4, (7)]: For each a ∈ k×(G), write
ord�(G)(a) ∈ Z for the uniquely determined [cf. Lemma 2.1] integer n such that the
image of a ∈ k×(G) in k×(G)/O×(G) coincides with Frob(G)n ∈ k×(G)/O×(G).

One verifies immediately that this map is, in fact, a homomorphism k×(G) → Z+ of
modules.
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PROPOSITION 2.3. — The vertical isomorphism k×
∼→ k×(Gk) in the diagram of [3],

Proposition 3.11, (i), fits into a commutative diagram of modules

k×
ordk−−−→ Z+

o
y ∥∥∥

k×(Gk)
ord�(Gk)−−−−−→ Z+.

Proof. — This assertion follows — in light of [3], Proposition 3.6; [3], Proposition 3.9;
[3], Proposition 3.11, (i) — from Lemma 1.2. �

REMARK 2.3.1. — Let us observe that one verifies immediately from Proposition 2.3 that

• the open subsets of the topological module k×(G) (⊆ k×(G)) and,

• for each positive integer n, the subsets of k×(G)

{ a ∈ k×(G) | ord�(G)(a) ≥ n } ∪ {∗k×(G)} ⊆ k×(G)

generate a topology on the underlying set of the monoid k×(G) by means of which one
may regard k×(G) as a topological monoid. Moreover, one also verifies immediately from

Proposition 2.3 that the isomorphism k×
∼→ k×(Gk) of [3], Proposition 3.11, (ii), is an

isomorphism of topological monoids.

DEFINITION 2.4.

(i) We shall write

ε(G)
def
=

{
1 if p(G) 6= 2
2 if p(G) = 2

[cf. [3], Definition 3.13].

(ii) We shall write

a(G)
def
= logp(G)

(
]
((

k×(G)tor

)(p(G))
))

[cf. [3], Lemma 1.2, (i); [3], Proposition 3.11, (i)].

(iii) Let ν be a positive integer. Then we shall write

b(G, ν)
def
=

(⌊ε(G) · e(G)− 1

p(G)ν−1

⌋
− 2 ·

⌊ε(G) · e(G)− 1

p(G)ν

⌋
+

⌊ε(G) · e(G)− 1

p(G)ν+1

⌋)
· f(G).

(iv) We shall write

I(G)
def
=

∞∏
ν=1

(
Z+/p(G)νZ+

)⊕b(G,ν)−δ(ν,a(G))

— where we write δ(i, j)
def
= 1 (respectively,

def
= 0) if i = j (respectively, i 6= j).
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PROPOSITION 2.5. — The following hold:

(i) It holds that

εk = ε(Gk), ak = a(Gk).

(ii) The module Ik/(Ok)+ is isomorphic, as an abstract module, to the module I(Gk).

Proof. — Assertion (i) follows from [3], Proposition 3.6, and [3], Proposition 3.11, (i).
Assertion (ii) follows — in light of assertion (i); [3], Proposition 3.6 — from Proposi-
tion 1.5. This completes the proof of Proposition 2.5. �

DEFINITION 2.6.

(i) We shall write

ν(G)

for the nonnegative integer defined as follows:

(1) If either p(G) ≥ 5 or (f(G), e(G)) 6= (1, p(G)a(G)−1 · (p(G)− 1)), then

ν(G)
def
= min{ ν ≥ 0 | ε(G) · e(G) ≤ p(G)ν }.

(2) If p(G) ≤ 3 and (f(G), e(G)) = (1, p(G)a(G)−1 · (p(G)− 1)), then

ν(G)
def
= min{ ν ≥ 0 | ε(G) · e(G) ≤ p(G)ν+1 }.

(ii) We shall write

ord�(G) : k+(G) \ {0} −→ Z
for the map of sets defined by

ord�(G)(a)
def
= −e(G) ·min{ ν ∈ Z | p(G)ν · a ∈ I(G) }+ e(G)− 1.

PROPOSITION 2.7. — The following hold:

(i) It holds that

νk = ν(Gk).

(ii) The vertical isomorphism k+
∼→ k+(Gk) in the diagram of [3], Proposition 3.11,

(iv), fits into a commutative diagram of sets

k+ \ {0}
ord

[I]
k−−−→ Z

o
y ∥∥∥

k+(Gk) \ {0}
ord�(Gk)−−−−−→ Z.

(iii) For each a ∈ k \ {0}, it holds that

ordk(a) ≤ ord�(Gk)(a) < ordk(a) + e(Gk) ·
(
ν(Gk) + 1

)
.
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Proof. — Assertion (i) follows from Proposition 2.5, (i), and [3], Proposition 3.6, to-
gether with Proposition 1.1, (iv) [cf. also Remark 1.9.1]. Assertion (ii) follows from [3],
Proposition 3.6, and [3], Proposition 3.11, (iv). Assertion (iii) follows — in light of as-
sertions (i), (ii); [3], Proposition 3.6 — from Proposition 1.10, (ii). This completes the
proof of Proposition 2.7. �

LEMMA 2.8. — The following two conditions are equivalent:

(i) It holds that ε(G) · d(G) = f(G) + a(G).

(ii) One of the following three conditions is satisfied:

(1) It holds that (ε(G), e(G)) = (1, 1).

(2) It holds that (p(G), f(G), e(G)) = (2, 1, 1).

(3) It holds that (p(G), f(G), e(G), a(G)) = (3, 1, 2, 1).

Proof. — This assertion follows — in light of Proposition 2.5, (i); [3], Proposition 3.6
— from the equivalence (3)⇔ (4) of Lemma 1.8, (i). �

DEFINITION 2.9. — Suppose that ε(G) · d(G) = f(G) + a(G).

(i) We shall write

O+(G)
def
= I(G) ⊆ k+(G).

(ii) Let n be a nonnegative integer. Then we shall define a topological submodule

mn(G) ⊆ O+(G)

of O+(G) as follows:

(1) Suppose that either (ε(G), e(G)) = (1, 1) or (p(G), f(G), e(G)) = (2, 1, 1) [cf.
Lemma 2.8]. Then we shall write

mn(G)
def
= p(G)n · O+(G) ⊆ O+(G).

(2) Suppose that (p(G), f(G), e(G), a(G)) = (3, 1, 2, 1) [cf. Lemma 2.8]. If n is even,
then we shall write

mn(G)
def
= p(G)n/2 · O+(G).

If n is odd, then we shall write

mn(G)
def
= p(G)(n−3)/2 · Im

(
O≺(H) ↪→ O×(H)→ O×(G)→ k+(G)

)
— where we write H ⊆ G for the kernel of the natural action of G on µ(G)[9] (⊆ µ(G));
the first arrow “↪→” is the natural inclusion; the second arrow “→” is the homomorphism
induced by the homomorphism Hab → Gab determined by the inclusion H ↪→ G; the
third arrow “→” is the natural homomorphism.
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PROPOSITION 2.10. — Suppose that εk ·ek = fk+ak, or, alternatively [cf. Proposition 2.5,
(i); [3], Proposition 3.6], that ε(Gk) · e(Gk) = f(Gk) + a(Gk). Let n be a nonnegative

integer. Then the vertical isomorphism k+
∼→ k+(Gk) in the diagram of [3], Proposition

3.11, (iv), fits into a commutative diagram of topological modules

mn
k

⊆−−−→ (Ok)+
⊆−−−→ k+

o
y o

y o
y

mn(Gk)
⊆−−−→ O+(Gk)

⊆−−−→ k+(Gk)

— where the horizontal arrows are the natural inclusions, and the vertical arrows are
isomorphisms.

Proof. — This assertion follows — in light of Proposition 2.5, (i); [3], Lemma 1.7,
(2); [3], Proposition 3.6; [3], Proposition 3.11, (i), (iv) — from Lemma 1.8, (i), (ii), (iii),
(iv). �

Some of the group-theoretic reconstruction algorithms discussed in the present §2 may
be summarized as follows.

SUMMARY 2.11.

(i) There exist group-theoretic reconstruction algorithms [cf. [8], Remark 1.9.8]
for constructing, from a group G of MLF-type,

• nonnegative integers ε(G), a(G), and ν(G) [cf. Definition 2.4, (i), (ii); Defini-
tion 2.6, (i)],

• a module I(G) [cf. Definition 2.4, (iv)],

• a homomorphism ord�(G) : k×(G)→ Z+ of modules [cf. Definition 2.2], and

• a map ord�(G) : k+(G) \ {0} → Z of sets [cf. Definition 2.6, (ii)]

which “correspond” to

• the nonnegative integers εk, ak, and νk [cf. Proposition 2.5, (i); Proposition 2.7,
(i)],

• the quotient of Ik by (Ok)+ [cf. Proposition 2.5, (ii)],

• the pk-adic valuation ordk : k \ {0} → Z [cf. Proposition 2.3], and

• the “pk-adic valuation with an indeterminacy” [cf. Remark 1.10.1] ord
[I]
k : k\{0} →

Z [cf. Proposition 2.7, (ii)],

respectively.

(ii) There exist group-theoretic reconstruction algorithms for constructing, from
a group G of MLF-type such that ε(G) · d(G) = f(G) + a(G),

• a topological submodule O+(G) ⊆ k+(G) of k+(G) [cf. Definition 2.9, (i)] and,

• for each nonnegative integer n, a topological submodule mn(G) ⊆ O+(G) of O+(G)
[cf. Definition 2.9, (ii)]
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which “correspond” to

• the topological submodule (Ok)+ ⊆ k+ of k+ [cf. Proposition 2.10] and,

• for each nonnegative integer n, the topological submodule mn
k ⊆ (Ok)+ of (Ok)+

[cf. Proposition 2.10],

respectively.

REMARK 2.11.1. — Let us recall that, as asserted in Summary 2.11, (i), we have estab-
lished [cf. Definition 2.6, (ii)] a group-theoretic reconstruction algorithm for construct-
ing, from a group G of MLF-type, a map ord�(G) : k+(G) \ {0} → Z of sets which

“corresponds” to the “pk-adic valuation with an indeterminacy” ord
[I]
k : k \ {0} → Z [cf.

Remark 1.10.1].
Here, let us also recall that, as discussed in [3], Remark 4.3.1, (i) [cf. also [3], Re-

mark 4.3.2], it is impossible to establish a group-theoretic reconstruction algorithm for
constructing, from a group G of MLF-type, a topology on the module k+(G) which “cor-
responds” to the pk-adic topology on the module k+. In particular, it is impossible to
establish a group-theoretic reconstruction algorithm for constructing, from an arbitrary
group G of MLF-type, a map k+(G)\{0} → Z of sets which “corresponds” to the pk-adic
valuation k \ {0} → Z [i.e., without any indeterminacy].

REMARK 2.11.2. — Let us recall that, as asserted in Summary 2.11, (ii), we have estab-
lished [cf. Definition 2.9, (i)] a group-theoretic reconstruction algorithm for constructing,
from a group G of MLF-type such that ε(G) · d(G) = f(G) + a(G), a topological sub-
module O+(G) ⊆ k+(G) of k+(G) which “corresponds” to the topological submodule
(Ok)+ ⊆ k+ of k+.

Here, let us also recall that, as discussed in [3], Remark 4.3.1, (iii) [cf. also [2], Re-
mark 1.4.3], it is impossible to establish a group-theoretic reconstruction algorithm for
constructing, from an arbitrary group G of MLF-type, such a topological submodule of
k+(G).

REMARK 2.11.3. — Let us recall that, as asserted in [3], Summary 3.15, and Sum-
mary 2.11, (i), we have established [cf. [3], Definition 3.10, (vi); Definition 2.4, (iv)]
group-theoretic reconstruction algorithms for constructing, from a group G of MLF-type,
modules I(G) and I(G) which “correspond” to the log-shell Ik and the quotient Ik/(Ok)+,
respectively.

Here, let us also recall that, as discussed in [3], Remark 4.3.1, (iii) [cf. also [2], Re-
mark 1.4.3], it is impossible to establish a group-theoretic reconstruction algorithm for
constructing, from an arbitrary group G of MLF-type, a surjection I(G) � I(G) which
“corresponds” to the natural surjection Ik � Ik/(Ok)+.
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3. Open Homomorphisms Between Profinite Groups of MLF-type

In the present §3, we maintain the notational conventions introduced at the beginnings
of §1 and §2. In particular, we have been given a group of MLF-type

G.

In the present §3, we consider open homomorphisms between profinite groups of MLF-
type. As a consequence of the results in the present §3, we prove that every open homo-
morphism between profinite groups of MLF-type such that the positive integer “e(−)”
[cf. the notational conventions introduced at the beginning of §2] of the domain is equal
to the positive integer “e(−)” of the codomain is injective [cf. Corollary 3.7 below].

LEMMA 3.1. — The following hold:

(i) The topological module (G(p(G)))ab/tor is a free Zp(G)-module of rank d(G) + 1.

Moreover, the kernel of the natural surjection (G(p(G)))ab � (G(p(G)))ab/tor is cyclic.

(ii) The closed subgroup I(G)/P (G) ⊆ G/P (G) of G/P (G) coincides with the kernel
of the natural surjection G/P (G) � (G/P (G))ab/tor.

(iii) It holds that

f(G) = logp(G)

(
1 + ]

((
G/P (G)

)ab-tor
))

.

Proof. — Assertion (i) follows immediately — in light of [3], Proposition 3.6; the
isomorphism in the final display of [3], Lemma 1.7, (1) — from [3], Lemma 1.2, (i).
Assertions (ii), (iii) follow immediately — in light of [3], Proposition 3.6; [3], Proposition
3.9 — from [3], Lemma 1.5, (i), (ii), (iii). This completes the proof of Lemma 3.1. �

DEFINITION 3.2. — Let J be a profinite group. Then we shall say that a closed subgroup
N ⊆ J of J is quasi-normal [i.e., in J ] if N is normal in an open subgroup of J that
contains N .

REMARK 3.2.1. — Let J be a profinite group and N ⊆ J a quasi-normal closed subgroup
of J . Then one verifies easily that, for each closed subgroup J1 ⊆ J of J , the closed
subgroup N ∩ J1 ⊆ J1 of J1 is quasi-normal.

LEMMA 3.3. — Let J ⊆ G be a nontrivial closed subgroup of G. Then the following
hold:

(i) Suppose that J is quasi-normal in G. Then one of the following three conditions
is satisfied [cf. also Remark 3.3.1 below]:

(1) The image of J in G(p(G)) is open.

(2) The maximal pro-p(G) quotient J (p(G)) is not topologically finitely gener-
ated.

(3) There is no nontrivial pro-p(G) quotient of J .
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(ii) Suppose that J is quasi-normal in G. Then there exists an open subgroup of J
that has a nontrivial pro-p(G) quotient.

(iii) Suppose that the maximal pro-p(G) quotient J (p(G)) is not procyclic. Then there
exists an open subgroup H ⊆ G of G such that J ⊆ H, and, moreover, the image of J in
(H(p(G)))ab/tor is nontrivial [hence also infinite].

(iv) Suppose that J is quasi-normal in G. Then the following two conditions are
equivalent:

(a) There is a nontrivial pro-p(G) quotient of J .

(b) There exists an open subgroup H ⊆ G of G such that J ⊆ H, and, moreover,
the image of J in (H(p(G)))ab/tor is nontrivial [hence also infinite].

Proof. — First, we verify assertion (i). Let us first observe that, to verify assertion
(i), it suffices to verify that if J satisfies neither condition (1) nor condition (3), then J
satisfies condition (2). Suppose that J satisfies neither condition (1) nor condition (3).

To verify that J satisfies condition (2), let us observe that since J does not satisfy
condition (3), there exists a normal open subgroup N ⊆ G of G such that J/(J∩N) has a
quotient that is a p(G)-group. Thus, by considering the composite J ↪→ J ·N � (J ·N)/N

[that determines an isomorphism J/(J ∩N)
∼→ (J ·N)/N ], we conclude that the image of

J in (J ·N)(p(G)) is nontrivial. Next, since J does not satisfy condition (1), the image of J
in (J ·N)(p(G)) is not open. Thus, it follows immediately — in light of [3], Proposition 3.6
— from [7], Theorem 1.7, (ii) [cf. also Remark 3.2.1], that the image of J in (J ·N)(p(G))

is not topologically finitely generated, which thus implies that J satisfies condition (2), as
desired. This completes the proof of assertion (i).

Assertion (ii) follows immediately — in light of [3], Proposition 3.6 — from [1], Lemma
2.3. Next, we verify assertion (iii). Let us first observe that, by our assumption, there
exists a normal open subgroup N ⊆ G of G such that J/(J ∩ N) has a quotient that

is a noncyclic p(G)-group. Write H
def
= J · N ⊆ G. Now let us recall the easily verified

fact that, for a given p(G)-group, it holds that the p(G)-group is cyclic if and only if the
abelianization of the p(G)-group is cyclic. Thus, by considering the composite J ↪→ H �
H/N [that determines an isomorphism J/(J∩N)

∼→ H/N ], we conclude immediately that
the image Im(J) ⊆ (H(p(G)))ab of J in (H(p(G)))ab is not cyclic. In particular, it follows
immediately from Lemma 3.1, (i), that the image of Im(J) ⊆ (H(p(G)))ab in (H(p(G)))ab/tor

is nontrivial. This completes the proof of assertion (iii).
Finally, we verify assertion (iv). The implication (b) ⇒ (a) is immediate. Next, we

verify the implication (a) ⇒ (b). Suppose that the condition (a) is satisfied. If condition
(1) of assertion (i) is satisfied, then the condition (b) is immediate. On the other hand,
if condition (2) of assertion (i) is satisfied, then the condition (b) follows from assertion
(iii). This completes the proof of assertion (iv), hence also of Lemma 3.3. �

REMARK 3.3.1. — Let us give an example that satisfies each of the three conditions in
Lemma 3.3, (i):

(i) One verifies easily that G itself satisfies condition (1) of Lemma 3.3, (i), i.e., that
condition (1) of Lemma 3.3, (i), in the case where we take the “J” to be G is always
satisfied.



Anabelian Geometry of Mixed-characteristic Local Fields 27

(ii) Next, let us verify that condition (2) of Lemma 3.3, (i), in the case where we take
the “J” to be the normal closed subgroup P (G) ⊆ G of G is always satisfied. Indeed,
this follows from [12], Proposition 7.5.1, together with [3], Proposition 3.6.

(iii) Finally, one verifies easily that condition (3) of Lemma 3.3, (i), in the case where
we take the “J” to be the kernel of the natural surjection G � G(p(G)) is always satisfied
[cf. also [3], Lemma 1.5, (i)].

PROPOSITION 3.4. — For each � ∈ {◦, •}, let G� be a profinite group of MLF-type.
Let

α : G◦ −→ G•

be an open homomorphism. Then the following hold:

(i) The open homomorphism α fits into a commutative diagram of profinite groups

P (G◦)
⊆−−−→ I(G◦)

⊆−−−→ G◦y y α

y
P (G•)

⊆−−−→ I(G•)
⊆−−−→ G•

— where the horizontal arrows are the natural inclusions, and the vertical arrows are
open. If, moreover, α is surjective, then the vertical arrows are surjective.

(ii) In the resulting [cf. (i)] commutative diagram of profinite groups

G◦ −−−→ G◦/P (G◦) −−−→ G◦/I(G◦)y y y
G• −−−→ G•/P (G•) −−−→ G•/I(G•)

— where the horizontal arrows are the natural surjections — the middle and right-hand
vertical arrows are open injections. In particular, if, moreover, α is surjective, then
the middle and right-hand vertical arrows are isomorphisms.

(iii) It holds that

p(G◦) = p(G•), d(G◦) ≥ d(G•), f(G◦) ∈ f(G•)Z, e(G◦) ≥ e(G•).

If, moreover, α is surjective, then

f(G◦) = f(G•).

(iv) The right-hand vertical arrow of the diagram of (ii) maps Frob(G◦) ∈ G◦/I(G◦)
to Frob(G•)

f(G◦)/f(G•) ∈ G•/I(G•) [cf. (iii)]. In particular, if, moreover, α is surjective,
then the right-hand vertical arrow of the diagram of (ii) maps Frob(G◦) ∈ G◦/I(G◦) to
Frob(G•) ∈ G•/I(G•) [cf. (iii)].

Proof. — Let us first observe that it follows immediately from [3], Proposition 3.6,
and [3], Proposition 3.9, that, to verify Proposition 3.4, we may assume without loss of
generality, by replacing G• by the image of α [which is of MLF-type — cf. the discussion
following [3], Proposition 3.3], that α is surjective.

First, we verify assertions (i), (ii). The assertion that α restricts to a surjection
P (G◦) � P (G•), as well as the assertion that the resulting homomorphism G◦/P (G◦)→
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G•/P (G•) is an isomorphism, follows immediately — in light of [3], Proposition 3.6 —
from [7], Proposition 3.4. In particular, the assertion that α restricts to a surjection
I(G◦) � I(G•), as well as the assertion that the resulting homomorphism G◦/I(G◦) →
G•/I(G•) is an isomorphism, follows immediately from Lemma 3.1, (ii). This completes
the proofs of assertions (i), (ii).

Next, we verify assertion (iii). Let us first observe that the surjection α induces a

surjection G
ab/tor
◦ /(p(G•)·Gab/tor

◦ ) � G
ab/tor
• /(p(G•)·Gab/tor

• ). Thus, it holds that p(G◦) =
p(G•) and d(G◦) ≥ d(G•). In particular, it follows — in light of assertion (ii) — from
Lemma 3.1, (iii), that f(G◦) = f(G•), which thus implies that e(G◦) ≥ e(G•). This
completes the proof of assertion (iii). Assertion (iv) follows from assertions (ii), (iii).
This completes the proof of Proposition 3.4. �

PROPOSITION 3.5. — In the situation of Proposition 3.4, write H• ⊆ G• for the image
of α [which is of MLF-type — cf. the discussion following [3], Proposition 3.3]:

α : G◦ � H• ↪→ G•.

Then the following hold:

(i) The open homomorphism α determines a commutative diagram of topological
monoids

O≺(G◦)
⊆−−−→ O×(G◦)

⊆−−−→ OB(G◦)
⊆−−−→ k×(G◦)

rec(G◦)−−−−→ Gab
◦y y y y y

O≺(H•)
⊆−−−→ O×(H•)

⊆−−−→ OB(H•)
⊆−−−→ k×(H•)

rec(H•)−−−−→ Hab
•x x x x x

O≺(G•)
⊆−−−→ O×(G•)

⊆−−−→ OB(G•)
⊆−−−→ k×(G•)

rec(G•)−−−−→ Gab
•

— where the horizontal arrows are the natural inclusions, the upper vertical arrows are the
surjections induced by α, and the lower vertical arrows are the injections determined
by the transfer map [i.e., with respect to H• ⊆ G•] [cf. [3], Lemma 1.7, (3)].

(ii) The left-hand upper and left-hand lower squares of the diagram of (i) determine
homomorphisms of modules

k×(G◦)
∼→ k×(H•) ←↩ k×(G•)

— where the first arrow is an isomorphism, and the second arrow is injective.
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(iii) The vertical open homomorphisms O×(G◦) � O×(H•)←↩ O×(G•) in the diagram
of (i) fit into a commutative diagram of topological modules

O×(G◦) −−−→ I(G◦)
⊆−−−→ k+(G◦)y y y

O×(H•) −−−→ I(H•)
⊆−−−→ k+(H•)x x x

O×(G•) −−−→ I(G•)
⊆−−−→ k+(G•)

— where the horizontal arrows are the natural homomorphisms, the upper vertical arrows
are surjective, and the lower vertical arrows are injective.

Proof. — These assertions follow immediately from Proposition 3.4, (i), (iii), (iv). �

REMARK 3.5.1. — It follows immediately from Proposition 3.4, (iv), that the vertical
surjection k×(G◦) � k×(H•) in the diagram of Proposition 3.5, (i) fits into a commutative
diagram of modules

k×(G◦)
ord�(G◦)−−−−−→ Z+y ∥∥∥

k×(H•)
ord�(H•)−−−−−→ Z+

[cf. Definition 2.2].

THEOREM 3.6. — For each � ∈ {◦, •}, let G� be a profinite group of MLF-type. Let

α : G◦ −→ G•

be an open homomorphism. Suppose that d(G◦) ≤ d(G•) [which is the case if, for
instance, d(G◦) = 1]. Then α is an isomorphism.

Proof. — Since d(G◦) ≤ d(G•), by applying Proposition 3.4, (iii), to the natural surjec-
tion G◦ � α(G◦) and the natural inclusion α(G◦) ↪→ G• [note that α(G◦) is of MLF-type
— cf. the discussion following [3], Proposition 3.3], we obtain that d(α(G◦)) = d(G•). On
the other hand, it follows from [3], Proposition 3.6, that this equality implies the equality
α(G◦) = G•, i.e., that α is surjective.

Now assume that α is not injective, i.e., that J
def
= Ker(α) is nontrivial. Let us

first observe that since J is contained in P (G◦) [cf. Proposition 3.4, (ii)], the profi-
nite group J is pro-p(G◦), which thus implies that J does not satisfy condition (3) of
Lemma 3.3, (i). Thus, it follows from Lemma 3.3, (iv), that there exists an open sub-
group H◦ ⊆ G◦ of G◦ such that J ⊆ H◦ [i.e., H◦ = α−1(α(H◦))], and, moreover, the

image of J in (H
(p(G◦))
◦ )ab/tor is nontrivial. In particular, since d(H◦) = d(G◦) · [G◦ :

H◦] ≤ d(G•) · [G◦ : H◦] = d(G•) · [G• : α(H◦)] = d(α(H◦)) [cf. [3], Proposition 3.6], we
may assume without loss of generality, by replacing (G◦, G•) by (H◦, α(H◦)), that the im-

age of J in (G
(p(G◦))
◦ )ab/tor is nontrivial. On the other hand, this implies that the surjection
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(G
(p(G◦))
◦ )ab/tor � (G

(p(G◦))
• )ab/tor = (G

(p(G•))
• )ab/tor [cf. Proposition 3.4, (iii)] induced by α

is not injective. Thus, it follows immediately from Lemma 3.1, (i), that d(G◦) > d(G•)
— in contradiction to our assumption that d(G◦) ≤ d(G•). This completes the proof of
Theorem 3.6. �

COROLLARY 3.7. — For each � ∈ {◦, •}, let G� be a profinite group of MLF-type.
Let

α : G◦ −→ G•

be an open homomorphism. Suppose that e(G◦) ≤ e(G•) [which is the case if, for in-
stance, e(G◦) = 1]. Then α is injective.

Proof. — Since e(G◦) ≤ e(G•), by applying Proposition 3.4, (iii), to the natural surjec-
tion G◦ � α(G◦) and the natural inclusion α(G◦) ↪→ G• [note that α(G◦) is of MLF-type
— cf. the discussion following [3], Proposition 3.3], we obtain that e(G◦) = e(α(G◦)).
Thus, to verify Corollary 3.7, we may assume without loss of generality, by replacing G•
by α(G◦), that α is surjective, and that e(G◦) = e(G•). Then since α is surjective, and
e(G◦) = e(G•), it follows immediately from Proposition 3.4, (iii), that d(G◦) = d(G•).
Thus, it follows from Theorem 3.6 that α is an isomorphism, as desired. This completes
the proof of Corollary 3.7. �

COROLLARY 3.8. — For each � ∈ {◦, •}, let k� be an MLF and k� an algebraic closure

of k�; write G�
def
= Gal(k�/k�). Suppose that ek◦ = 1. Then the following three conditions

are equivalent:

(1) The field k◦ is isomorphic to the field k•.

(2) There exists a surjection G◦ � G•.

(3) The group G◦ is isomorphic to the group G•.

Proof. — The implication (1) ⇒ (2) is immediate. The implication (2) ⇒ (3) follows
— in light of [3], Proposition 3.6 — from Corollary 3.7. Finally, since [we have assumed
that] ek◦ = 1, the implication (3)⇒ (1) follows immediately from [3], Proposition 3.6 [cf.
also [3], Lemma 1.5, (i)]. This completes the proof of Corollary 3.8. �

4. Reconstruction Algorithms Related to Absolutely Abelian MLF’s

In the present §4, we maintain the notational conventions introduced at the beginnings
of §1 and §2. In the present §4, we discuss some group-theoretic reconstruction algorithms
[cf. [8], Remark 1.9.8] related to absolutely abelian [cf. Definition 4.2, (ii), below] MLF’s.
We establish, for instance, a group-theoretic reconstruction algorithm for constructing,
from a group of MLF-type, a homomorphism which “corresponds” to the Norm map
Nmk/k(d=1) : k× → (k(d=1))× with respect to the finite extension k/k(d=1) [cf. Definition 4.7,
(iii); Proposition 4.9, (i), below], which leads us to the notion of MLF-Galois label [cf.
Definition 4.10, Theorem 4.11 below]. Finally, as a consequence of the group-theoretic
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reconstruction algorithms, we also obtain a refinement of the main theorem of [6] [cf.
Corollary 4.14, (i); Remark 4.14.1 below].

LEMMA 4.1. — The following hold:

(i) The natural homomorphisms

Zpk
−→ EndZpk

(
Λ(k)(pk)

)
, Qpk

−→ EndQpk

(
Λ(k)(pk) ⊗Zpk

Qpk

)
are isomorphisms of topological algebras. Moreover, these isomorphisms restrict to
isomorphisms of topological groups

Z×
pk

∼−→ AutZpk

(
Λ(k)(pk)

)
, Q×

pk

∼−→ AutQpk

(
Λ(k)(pk) ⊗Zpk

Qpk

)
,

respectively.
We shall write

χpk-cyc : Gk −→ Z×
pk

for the composite of the natural action Gk → AutZpk
(Λ(k)(pk)) and the above isomorphism

AutZpk
(Λ(k)(pk))

∼← Z×
pk

, i.e., the pk-adic cyclotomic character.

(ii) Let Qpk
be an algebraic closure of Qpk

. Then the homomorphism Gab
k → Z×

pk

determined by the pk-adic cyclotomic character χpk-cyc : Gk → Z×
pk

[cf. (i)] coincides with
the composite

Gab
k → Gal(k/k(d=1))ab ∼→ Gal(Qpk

/Qpk
)ab

rec∧Qpk
∼← (Q×

pk
)∧ = Z×

pk
×p

bZ
k � Z×

pk

∼→ Z×
pk

— where the first arrow “→” is the homomorphism induced by the natural inclusion Gk ↪→
Gal(k/k(d=1)); the second arrow “

∼→” is the isomorphism induced by an isomorphism

Qpk

∼→ k of fields [that necessarily restricts to an isomorphism Qpk

∼→ k(d=1) of fields];
the third arrow rec∧Qpk

is the isomorphism in the final display of [3], Lemma 1.7, (1) [in

the case where we take the “k” of [3], Lemma 1.7, to be Qpk
]; the fourth arrow “�” is

the first projection; the fifth arrow “
∼→” is the isomorphism given by “a 7→ a−1”.

(iii) The composite of the Norm map Nmk/k(d=1) : k× → (k(d=1))× with respect to the

finite extension k/k(d=1) and the isomorphism (k(d=1))×
∼→ Q×

pk
induced by the [uniquely

determined] isomorphism k(d=1) ∼→ Qpk
of fields coincides with the homomorphism k× →

Q×
pk

given by

k× 3 a 7→ χpk-cyc

(
reck(a)

)−1 · pfk·ordk(a)
k ∈ Q×

pk

[cf. [3], Lemma 1.7].

Proof. — Assertion (i) follows from the [easily verified] fact that the Zpk
-module

Λ(k)(pk) is free of rank one. Assertion (ii) follows immediately from the well-known
[cf., e.g., [15], Chapter III, §A.4, Corollary] fact that the pk-adic cyclotomic character
in the case where we take the “k” to be the MLF Qpk

coincides with the “Lubin-Tate
character χLT

σ,π” [cf. the notational convention introduced in [1], Definition 1.2, (ii)] in the
case where we take the “E” (respectively, “σ”; “π”) of [1], Definition 1.2, (ii), to be Qpk

(respectively, the identity automorphism of Qpk
; pk ∈ OQpk

= Zpk
). Assertion (iii) follows

immediately from assertion (ii) and [3], Lemma 1.7, (1), (2). This completes the proof of
Lemma 4.1. �
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DEFINITION 4.2.

(i) We shall say that the MLF k is absolutely Galois if k is Galois over k(d=1).

(ii) We shall say that the MLF k is absolutely abelian if k is absolutely Galois, and,
moreover, the Galois group Gal(k/k(d=1)) is abelian.

(iii) We shall write k(ab) ⊆ k for the [uniquely determined] maximal absolutely abelian
MLF contained in k.

(iv) We shall write

d
(ab)
k

def
= dk(ab) , e

(ab)
k

def
= ek(ab)

for the “dk”, “ek” in the case where we take the “k” to be k(ab) of (iii), respectively.

LEMMA 4.3. — Let K be an intermediate field of the finite extension k/k(ab). Then the
following hold:

(i) It holds that K(ab) = k(ab).

(ii) There is no nontrivial intermediate field of the finite extension k/k(ab), hence
also of K/k(ab), that is unramified over k(ab).

Proof. — Assertion (i) follows from the definition of “(−)(ab)”. Assertion (ii) follows
immediately from the [easily verified] fact that every intermediate field of k/k(ab) unram-
ified over k(ab) is absolutely abelian [cf. [3], Lemma 1.5, (i)]. This completes the proof of
Lemma 4.3. �

LEMMA 4.4. — The following hold:

(i) It holds that

d
(ab)
k = e

(ab)
k · fk, d

(ab)
k =

[
(k(d=1))× : Nmk/k(d=1)(k×)

]
.

(ii) The following three conditions are equivalent:

(1) The MLF k is absolutely abelian.

(2) It holds that dk = d
(ab)
k .

(3) It holds that ek = e
(ab)
k .

Proof. — First, we verify assertion (i). The equality d
(ab)
k = e

(ab)
k · fk follows from

Lemma 4.3, (ii), together with [3], Lemma 1.2, (iii). The equality d
(ab)
k = [(k(d=1))× :

Nmk/k(d=1)(k×)] follows immediately from [3], Lemma 1.7, (1), (2). This completes the
proof of assertion (i). Assertion (ii) follows immediately from assertion (i), together with
[3], Lemma 1.2, (iii). This completes the proof of Lemma 4.4. �

Recall the group of MLF-type
G

introduced at the beginning of §2.
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DEFINITION 4.5.

(i) We shall write

Λ(G)(p(G))

for the maximal pro-p(G) quotient of the cyclotome Λ(G) associated to G. Note that since
Λ(G)(p(G)) has a natural structure of free Zp(G)-module of rank one [cf. [3], Proposition
4.2, (iv)], the perfection (

Λ(G)(p(G))
)pf

of Λ(G)(p(G)) has a natural structure of Qp(G)-vector space of dimension one.

(ii) We shall write

Zp(G)
def
= End

(
Λ(G)(p(G))

)
for the topological algebra of endomorphisms of the topological module Λ(G)(p(G)).

(iii) We shall write

Qp(G)
def
= End

((
Λ(G)(p(G))

)pf
)

for the algebra of endomorphisms of the perfection (Λ(G)(p(G)))pf . Thus, we have a natural
inclusion

Zp(G) ↪→ Qp(G).

By considering the topology induced by the topology of Zp(G) [cf. (ii)], we regard Qp(G)
as a topological algebra.

LEMMA 4.6. — The following hold:

(i) The natural homomorphism

Zp(G) −→ Zp(G)

[i.e., obtained by the natural Zp(G)-module structure of Λ(G)p(G)] is an isomorphism
of topological algebra. Moreover, this isomorphism determines an isomorphism of
topological algebra

Qp(G)
∼−→ Qp(G).

(ii) We have natural identifications

Zp(G)× = Aut
(
Λ(G)p(G)

)
⊆ Qp(G)× = Aut

((
Λ(G)p(G)

)pf
)

[cf. (i)].

Proof. — These assertions follow immediately — in light of [3], Proposition 3.6; [3],
Proposition 4.2, (iv) — from Lemma 4.1, (i). �

DEFINITION 4.7.

(i) We shall write
χp-cyc(G) : G −→ Zp(G)×

for the natural action of G on Λ(G)p(G) [cf. Lemma 4.6, (ii)].
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(ii) We shall write
p∈(G) ∈ Qp(G)×

for the automorphism of (Λ(G)p(G))pf given by multiplication by p(G) [cf. Lemma 4.6,
(ii)].

(iii) We shall write
Nmabs(G) : k×(G) −→ Qp(G)×

for the homomorphism of topological modules defined by

k×(G) 3 a 7→ χp-cyc(G)
(
rec(G)(a)

)−1 · p∈(G)f(G)·ord�(G)(a) ∈ Qp(G)×

[cf. Definition 2.2].

(iv) We shall write

d(ab)(G)
def
=

[
Qp(G)× : Im

(
Nmabs(G)

)]
, e(ab)(G)

def
= d(ab)(G)/f(G).

DEFINITION 4.8. — We shall say that G is of AAMLF-type if d(G) = d(ab)(G). [Here,
“AAMLF” is to be understood as an abbreviation for “absolutely abelian mixed-characteristic
local field” — cf. Proposition 4.9, (iii), below.]

PROPOSITION 4.9. — The following hold:

(i) Write Nmk/k(d=1) : k× → (k(d=1))× for the Norm map with respect to the finite

extension k/k(d=1). Then the vertical isomorphism k×
∼→ k×(Gk) in the diagram of [3],

Proposition 3.11, (i), fits into a commutative diagram of topological modules

k×
Nm

k/k(d=1)

−−−−−−−→ (k(d=1))×

o
y o

y
k×(Gk)

Nmabs(Gk)−−−−−−→ Qp(Gk)
×

— where the right-hand vertical arrow is the composite of the isomorphism (k(d=1))×
∼→

Q×
p(Gk) induced by the [uniquely determined] isomorphism k(d=1) ∼→ Qp(Gk) of fields and

the isomorphism Q×
pk

= Q×
p(Gk)

∼→ Qp(Gk)
× [cf. [3], Proposition 3.6] determined by the

isomorphism of Lemma 4.6, (i).

(ii) It holds that

d
(ab)
k = d(ab)(Gk), e

(ab)
k = e(ab)(Gk).

(iii) It holds that the MLF k is absolutely abelian if and only if the group Gk is of
AAMLF-type.

Proof. — Assertion (i) follows — in light of Proposition 2.3; [3], Proposition 3.6; [3],
Proposition 3.11, (i); [3], Proposition 4.2, (iv) — from Lemma 4.1, (iii). Assertion (ii)
follows immediately from Lemma 4.4, (i), together with assertion (i) and [3], Proposition
3.6. Assertion (iii) follows from Lemma 4.4, (ii), together with assertion (ii) and [3],
Proposition 3.6. This completes the proof of Proposition 4.9. �
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REMARK 4.9.1. — Let H ⊆ G be an open subgroup of G. Then one verifies immedi-
ately from Proposition 4.9, (i), together with [3], Lemma 1.7, (2), that the diagram of
topological modules

k(H)×
Nmabs(H)−−−−−−→ Qp(H)×y ∥∥∥

k(G)×
Nmabs(G)−−−−−→ Qp(G)×

— where the left-hand vertical arrow is the homomorphism induced by the homomor-
phism Hab → Gab determined by the inclusion H ↪→ G, and the right-hand vertical arrow
is the composite of the isomorphisms Q×

p(G)

∼→ Qp(G)×, Q×
p(H)

∼→ Qp(H)× determined by

the isomorphism of Lemma 4.6, (i) [cf. also [3], Proposition 3.6] — commutes.

REMARK 4.9.2. — Suppose that G is of AAMLF-type. Then a profinite group iso-

morphic to G may be constructed as follows: Let G̃ be a group of MLF-type such that

(p(G̃), d(G̃)) = (p(G), 1). [Note that one verifies easily from [3], Proposition 3.6, that this

condition (p(G̃), d(G̃)) = (p(G), 1) completely determines the isomorphism class of the

group G̃.] Write J ⊆ G̃ab for the closure, i.e, in G̃ab, of the inverse image (⊆ k×(G̃) ⊆ G̃ab)

of Im(Nmabs(G)) ⊆ Qp(G)× by Nmabs(G̃) : k×(G̃)→ Qp(G̃)× — relative to the composite

of the isomorphisms Q×
p(G)

∼→ Qp(G)×, Q×
p( eG)

∼→ Qp(G̃)× determined by the isomorphism

of Lemma 4.6, (i). Then it follows immediately from Remark 4.9.1 that G is isomorphic,

as an abstract profinite group, to the inverse image of J ⊆ G̃ab in G̃.

DEFINITION 4.10. — We shall refer to the collection of data(
p(G), d(G), Im

(
(Nmabs)(G)

)
⊆ Qp(G)×

∼← Q×
p(G)

)
[cf. Lemma 4.6, (i)] consisting of the prime number p(G), the positive integer d(G), and
the open subgroup Im((Nmabs)(G)) ⊆ Q×

p(G) of Q×
p(G) as the MLF-Galois label of G.

THEOREM 4.11. — For each � ∈ {◦, •}, let G� be a group of MLF-type. Suppose that
one of the following two conditions is satisfied:

(1) It holds that {(p(G◦), a(G◦)), (p(G•), a(G•))} 6⊆ {(2, 1)} [cf. Definition 2.4, (ii)].

(2) Either G◦ or G• is of AAMLF-type.

Then it holds that the group G◦ is isomorphic to the group G• if and only if the MLF-
Galois label of G◦ coincides with the MLF-Galois label of G•.

Proof. — The necessity is immediate. Next, we verify the sufficiency in the case where
condition (1) is satisfied. Suppose that condition (1) is satisfied, and that the MLF-Galois
label of G◦ coincides with the MLF-Galois label of G•. Then since Im(Nmabs(G◦)) =
Im(Nmabs(G•)), one verifies immediately from Proposition 2.5, (i); Proposition 4.9, (i);
[3], Lemma 1.7, (1), (2); [3], Proposition 3.6, that (2, 1) 6∈ {(p(G◦), a(G◦)), (p(G•), a(G•))}.
Thus, since the MLF-Galois label of G◦ coincides with the MLF-Galois label of G•, it
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follows immediately — in light of Proposition 2.5, (i); Proposition 4.9, (i); [3], Proposi-
tion 3.6 — from the main theorems of [4] and [13], together with [3], Lemma 1.7, (1),
(2), that G◦ is isomorphic to G•, as desired. This completes the proof of the sufficiency
in the case where condition (1) is satisfied

Finally, we verify the sufficiency in the case where condition (2) is satisfied. Sup-
pose that G◦ is of AAMLF-type, and that the MLF-Galois label of G◦ coincides with
the MLF-Galois label of G•. Then since Im(Nmabs(G◦)) = Im(Nmabs(G•)), we obtain
that d(ab)(G◦) = d(ab)(G•). In particular, since G◦ is of AAMLF-type, the equality
d(G◦) = d(G•) implies that G• is of AAMLF-type. Thus, since the MLF-Galois label of
G◦ coincides with the MLF-Galois label of G•, it follows immediately from Remark 4.9.2
that G◦ is isomorphic to G•, as desired. This completes the proof of the sufficiency in
the case where condition (2) is satisfied, hence also of Theorem 4.11. �

REMARK 4.11.1.

(i) Let us recall that the main theorem of [1] asserts that, roughly speaking, the Hodge-
Tate-ness of pk-adic representations of the group Gk of MLF-type is closely related to the
ring structures of the fields k ⊆ k.

(ii) Let us also recall that, as discussed in [3], Proposition 4.2, (iv), the pk-adic
cyclotomic character may be “reconstructed” from just the group structure of the group
Gk of MLF-type.

Next, let us recall that Theorem 4.11 asserts that — under a mild assumption on
“(pk, ak)” — the isomorphism class of the group Gk is completely determined by the MLF-
Galois label of Gk. Now observe that the main component of the notion of MLF-Galois
label is the third component, i.e., the image of the Norm map to (k(d=1))×. Moreover,
recall that, as discussed in Lemma 4.1, (iii), roughly speaking, the Norm map to (k(d=1))×

may be essentially described by the pk-adic cyclotomic character.
Thus, one may conclude that, roughly speaking, the pk-adic cyclotomic character is

closely related to the group structure of the group Gk of MLF-type.

(iii) It follows from the observations of (i), (ii), together with [3], Remark 4.3.3, that,
in summary,

Hodge-Tate representations is closely related to arithmetic holomorphic
structures [cf. [9], §2.7, (vii)] of MLF’s,

and, moreover,

the cyclotomic character [that is one of Hodge-Tate representations] is
closely related to mono-analytic structures [cf. [9], §2.7, (vii)] of MLF’s.

Hodge-Tate representations ⇐⇒ arithmetic holomorphic structures of MLF’s
=⇒: the main theorem of [1]
⇐=: immediate

cyclotomic characters ⇐⇒ mono-analytic structures of MLF’s
=⇒: Lemma 4.1, (iii), and Theorem 4.11
⇐=: [3], Proposition 4.2, (iv)
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DEFINITION 4.12. — For each � ∈ {◦, •}, let G� be a group of MLF-type. Let α : G◦ →
G• be a homomorphism. Then we shall say that α is cyclotomically compatible if p(G◦) =
p(G•), and, moreover, the diagram

G◦
χp-cyc(G◦)−−−−−−→ Zp(G◦)

×

α

y o
y

G•
χp-cyc(G•)−−−−−−→ Zp(G•)

×

— where the right-hand vertical arrow is the composite of the isomorphisms Z×
p(G◦)

∼→
Zp(G◦)

×, Z×
p(G•)

∼→ Zp(G•)
× determined by the isomorphism of Lemma 4.6, (i) — com-

mutes.

REMARK 4.12.1. — Let us recall that it follows immediately from the various definitions
involved that every open injection between profinite groups of MLF-type induces a natural
isomorphism between the cyclotomes “Λ(−)” [cf. [3], Definition 4.1, (i), (ii), (iii)]. In
particular, every open injection between profinite groups of MLF-type is cyclotomically
compatible.

REMARK 4.12.2. — Let l be a prime number such that l 6= p(G). Then, in the situation
of Definition 4.7, (i), by considering the natural action on the maximal pro-l quotient
of the cyclotome Λ(G) [i.e., as opposed to the natural action on Λ(G)p(G) discussed in
Definition 4.7, (i)], one may define the notion of “l-adic cyclotomic character” of G [i.e.,
as opposed to the “p(G)-adic cyclotomic character” χp-cyc(G) defined in Definition 4.7,
(i)].

Now let us observe that it follows immediately — in light of [3], Proposition 3.6; [3],
Proposition 4.2, (iv) — from Proposition 3.4, (iii), (iv), and [3], Lemma 1.5, (i), (ii), (iii),
that every open homomorphism between profinite groups of MLF-type is compatible with
the respective “l-adic cyclotomic characters”, i.e., a similar diagram to the diagram of
Definition 4.12 commutes.

THEOREM 4.13. — For each � ∈ {◦, •}, let G� be a profinite group of MLF-type. Let

α : G◦ −→ G•

be an open homomorphism. Then the following hold:

(i) If α is cyclotomically compatible and surjective, then the surjection k×(G◦) �
k×(G•) induced by α [cf. Proposition 3.5, (i)] fits into a commutative diagram of topo-
logical modules

k×(G◦)
Nmabs(G◦)−−−−−−→ Qp(G◦)

×y ∥∥∥
k×(G•)

Nmabs(G•)−−−−−−→ Qp(G•)
×
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— where the right-hand vertical arrow is the composite of the isomorphisms Q×
p(G◦)

∼→
Qp(G◦)

×, Q×
p(G•)

∼→ Qp(G•)
× determined by the isomorphism of Lemma 4.6, (i) [cf. also

Proposition 3.4, (iii)]. Moreover, it holds that

d(ab)(G◦) = d(ab)(G•), e(ab)(G◦) = e(ab)(G•).

(ii) If G◦ is of AAMLF-type, then the following two conditions are equivalent:

(1) The homomorphism α is injective.

(2) The homomorphism α is cyclotomically compatible.

(iii) In the situation of (ii), if, moreover, (1) and (2) of (ii) are satisfied, then the
group G• is of AAMLF-type.

Proof. — First, we verify assertion (i). The first assertion, hence also the equality
d(ab)(G◦) = d(ab)(G•), follows immediately from Proposition 3.4, (iii), and Remark 3.5.1.
Thus, the equality e(ab)(G◦) = e(ab)(G•) follows from Proposition 3.4, (iii). This completes
the proof of assertion (i).

Next, we verify assertion (ii). The implication (1) ⇒ (2) was already discussed in
Remark 4.12.1. We verify the implication (2) ⇒ (1). Suppose that condition (2) is
satisfied. Let us first observe that it follows from Remark 4.12.1 that, to verify the
implication (2) ⇒ (1), we may assume without loss of generality, by replacing G• by the
image of α [which is of MLF-type — cf. the discussion following [3], Proposition 3.3],
that α is surjective. Thus, since [we have assumed that] d(G◦) = d(ab)(G◦), it follows
from assertion (i), together with the [easily verified] inequality d(ab)(G•) ≤ d(G•), that
d(G◦) ≤ d(G•). In particular, it follows from Theorem 3.6 that α is an isomorphism, as
desired. This completes the proof of the implication (2) ⇒ (1), hence also of assertion
(ii).

Assertion (iii) follows — in light of Proposition 4.9, (iii) — from the [easily verified]
fact that an MLF contained in an absolutely abelian MLF is absolutely abelian. This
completes the proof of Theorem 4.13. �

COROLLARY 4.14. — For each � ∈ {◦, •}, let k� be an MLF and k� an algebraic closure

of k�; write G�
def
= Gal(k�/k�). Then the following hold:

(i) Suppose that there exists a cyclotomically compatible surjection G◦ � G•.

Then the field k
(ab)
◦ is isomorphic to the field k

(ab)
• .

(ii) Suppose that k◦ is absolutely abelian. Then the following three conditions are
equivalent:

(1) The field k◦ is isomorphic to the field k•.

(2) There exists a cyclotomically compatible surjection G◦ � G•.

(3) The group G◦ is isomorphic to the group G•.

Proof. — Assertion (i) follows immediately — in light of Proposition 4.9, (i) — from
Theorem 4.13, (i), and [3], Lemma 1.7, (1), (2). Next, we verify assertion (ii). The
implication (1) ⇒ (2) is immediate. The implication (2) ⇒ (3) follows — in light of
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Proposition 4.9, (iii) — from Theorem 4.13, (ii). Finally, we verify the implication (3)⇒
(1). Suppose that condition (3) is satisfied. Then it follows from Proposition 4.9, (iii),
that k• is absolutely abelian. Thus, the implication (3) ⇒ (1) follows from assertion (i).
This completes the proof of the implication (3) ⇒ (1), hence also of assertion (ii). �

REMARK 4.14.1. — The main theorem of [6] is equivalent to Corollary 4.14, (i), in the case
where the surjection “G◦ � G•” is an isomorphism. Now let us recall that it is immediate
that every isomorphism between groups of MLF-type is cyclotomically compatible. Thus,
Corollary 4.14, (i), may be regarded as a refinement of the main theorem of [6].

Some of the group-theoretic reconstruction algorithms discussed in the present §4 may
be summarized as follows.

SUMMARY 4.15.

(i) There exist group-theoretic reconstruction algorithms [cf. [8], Remark 1.9.8]
for constructing, from a group G of MLF-type,

• topological rings Zp(G) ⊆ Qp(G) [cf. Definition 4.5, (ii), (iii)],

• a homomorphism Nmabs(G) : k×(G)→ Qp(G)× of topological modules [cf. Defini-
tion 4.7, (iii)], and

• integers d(ab)(G) and e(ab)(G) [cf. Definition 4.7, (iv)]

which “correspond” to

• the topological rings Zpk
⊆ Qpk

[cf. Lemma 4.6, (i)],

• the Norm map Nmk/k(d=1) : k× → (k(d=1))× with respect to the finite extension

k/k(d=1) [cf. Proposition 4.9, (i)], and

• the integers d
(ab)
k and e

(ab)
k [cf. Proposition 4.9, (ii)],

respectively.

(ii) There exists a group-theoretic condition for a group of MLF-type [cf. Def-
inition 4.8] which “corresponds” to the condition for an MLF to be absolutely abelian
[cf. Proposition 4.9, (iii)].

REMARK 4.15.1.

(i) By Summary 4.15, (ii), one may conclude that

the condition for an MLF to be absolutely abelian may be considered to
be “group-theoretic”.

(ii) On the other hand, it follows from example (1) given in [4], §2 [i.e., “L1” and “L3”
in (1) of [4], §2], that there exist an absolutely Galois MLF k◦ and an MLF k• that is not
absolutely Galois such that the absolute Galois group of k◦ is isomorphic, as an abstract
profinite group, to the absolute Galois group of k•. By this fact, one may conclude that
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the condition for an MLF to be absolutely Galois should be considered to
be “not group-theoretic”.

5. Reconstruction Algorithms Related to MLF’s of Degree One

In the present §5, we maintain the notational conventions introduced at the beginnings
of §1 and §2. In particular, we have been given a group of MLF-type

G.

In the present §5, suppose that

d(G) = 1.

In the present §5, we establish some group-theoretic reconstruction algorithms [cf. [8],
Remark 1.9.8] related to MLF’s of degree one, i.e., such that the integer “d(−)” [cf. the
notational conventions introduced at the beginning of §1] is equal to one. As a conse-
quence of the group-theoretic reconstruction algorithms, we also prove [cf. Theorem 5.9,
(ii), below] that every absolutely strictly radical [cf. Definition 5.6, (iii), below] MLF is
absolutely characteristic [cf. Definition 5.7 below].

LEMMA 5.1. — The homomorphism

Nmabs(G) : k×(G) −→ Qp(G)×

[cf. Definition 4.7, (iii)] is an isomorphism of topological modules.

Proof. — Since [we have assumed that] d(G) = 1, this assertion follows from Proposi-
tion 4.9, (i). �

DEFINITION 5.2. — Consider the isomorphism k×(G)
∼→ Qp(G)× of topological monoids

[cf. Remark 2.3.1] determined by the isomorphism k×(G)
∼→ Qp(G)× of Lemma 5.1 [cf.

the discussion entitled “Fields” in §0]. Then, by means of the topological field structure
of Qp(G), i.e., on Qp(G)×, together with this isomorphism, one may define a structure of
topological field on k×(G). We shall write

k(G)

for the resulting topological field. Thus, we have a tautological isomorphism of topological
fields

k(G)
∼−→ Qp(G)

and natural identifications

k(G)× = k×(G), k(G)× = k×(G).

REMARK 5.2.1. — One verifies immediately that the topological field k(G) is isomorphic,
as an abstract topological field, to the topological field Qp(G) [cf. also Lemma 4.6, (i)].
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DEFINITION 5.3. — Let H y M be an MLFB-pair [cf. [3], Definition 5.3] such that
d(H) = 1 [cf. [3], Remark 5,4,1]. Thus, the Kummer poly-isomorphism κ(H y M) : (H y
M)

∼→ (H y MB(H) = OB(H)) [cf. [3], Definition 5.8; [3], Definition 7.4] associated
to H y M consists of a single isomorphism [cf. [3], Definition 5.5] [i.e., as opposite to
just a poly-isomorphism]. Then, by means of the topological field structure of k(H), i.e.,

on k×(H), of Definition 5.2, together with the isomorphism ((Mgp)H)~ ∼→ (k×(H)H)~ =
k×(H) [cf. [3], Proposition 5.7, (i)] induced by the Kummer poly-isomorphism κ(H y M)
[consisting of a single isomorphism], one may define a structure of topological field on
((Mgp)H)~. We shall write

k(H y M)

for the resulting topological field. Thus, we have tautological isomorphisms of topological
fields

k(H y M)
∼−→ k(H)

∼−→ Qp(H)

and natural identifications

k(H y M)× =
(
(Mgp)H

)~
, k(H y M)× = (Mgp)H .

REMARK 5.3.1. — One verifies immediately that, in the situation of Definition 5.3, the
topological field k(H y M) is isomorphic, as an abstract topological field, to the topo-
logical field Qp(H) [cf. also Lemma 4.6, (i)].

REMARK 5.3.2. — Let us recall the “étale-like” MLFB-pair G y OB(G) [cf. [3], Definition
5.8]. Then one verifies immediately from the various definitions involved that we have a
natural identification

k(G) = k(G y OB(G)).

Recall the MLF
k

introduced at the beginning of §1.

THEOREM 5.4. — Suppose that dk = 1, which thus implies that d(Gk) = 1 [cf. [3],
Proposition 3.6]. Then the following hold:

(i) The homomorphism

reck : k× ↪→ Gab
k

of [3], Lemma 1.7, determines an isomorphism of topological fields

k
∼−→ k(Gk).

(ii) By applying the reconstruction algorithm of Definition 5.3 to the model MLFB-
pair Gk y OB

k
[cf. [3], Definition 5.2], we obtain a topological field k(Gk y OB

k
) whose

underlying set may be identified with the underlying set of k. Then the topological field
structure of k on the underlying set of k coincides, relative to this identification, with
the topological field structure of k(Gk y OB

k
) on the underlying set of k.
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Proof. — These assertions follow immediately from Proposition 4.9, (i). �

COROLLARY 5.5. — The image of the natural homomorphism Aut(G) → Aut(Gab) is
trivial.

Proof. — Let α be an automorphism of G. Now let us observe that since the subset
k×(G) ⊆ Gab of Gab is dense [cf. [3], Lemma 1.7, (1); [3], Proposition 3.11, (i)], to verify
Corollary 5.5, it suffices to verify that the automorphism k×(α) of k×(G) induced by α is
the identity automorphism. On the other hand, since k×(α) extends to an automorphism
of the topological field k(G), and the topological field k(G) is isomorphic, as an abstract
topological field, to the topological field Qpk

[cf. Remark 5.2.1; [3], Proposition 3.6], we
conclude that k×(α) is the identity automorphism, as desired. This completes the proof
of Corollary 5.5. �

DEFINITION 5.6.

(i) We shall refer to a collection of data

(n; m; r1, . . . , rm; a1, . . . , am)

consisting of

• positive integers n, m, r1, . . . , rm such that n ∈
⋂m

i=1 riZ and

• elements a1, . . . , am ∈ k× of k×

as a strictly radical data for k.

(ii) Let K ⊆ k be a finite extension of k. Then we shall say that the finite extension
K/k is strictly radical if there exists a strictly radical data (n; m; r1, . . . , rm; a1, . . . , am)
for k such that

K = k(ζn, a
1/r1

1 , . . . , a1/rm
m ) ⊆ k.

(iii) We shall say that the MLF k is absolutely strictly radical if the finite extension
k/k(d=1) is strictly radical.

REMARK 5.6.1. — One verifies easily that a strictly radical extension is Galois. In par-
ticular, an absolutely strictly radical MLF is absolutely Galois [cf. Definition 4.2, (i)].

DEFINITION 5.7. — We shall say that the MLF k is absolutely characteristic if the open
subgroup Gk ⊆ Gal(k/k(d=1)) of Gal(k/k(d=1)) is characteristic [cf. Remark 5.7.1 below].

REMARK 5.7.1. — One verifies immediately that the issue of whether or not the MLF
k satisfies the condition that the open subgroup Gk ⊆ Gal(k/k(d=1)) of Gal(k/k(d=1)) is
characteristic [cf. Definition 5.7] does not depend on the choice of k, i.e., depends only on
k.
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REMARK 5.7.2.

(i) Let us recall that since G is topologically finitely generated [cf., e.g., [3], Lemma
1.4, (i)], one verifies easily that the topology of the profinite group G admits a basis of
characteristic open subgroups.

(ii) It follows from (i) that there exists a finite extension K ⊆ k of k such that the
MLF K is absolutely characteristic.

DEFINITION 5.8.

(i) Let H y M be an MLFB-pair such that d(H) = 1 and (n; m; r1, . . . , rm; a1, . . . , am)
a strictly radical data for the MLF k(H y M) of Definition 5.3 [cf. also Remark 5.3.1].
Then we shall write

(H y M)(n; m; r1, . . . , rm; a1, . . . , am) ⊆ H

for the uniquely determined maximal subgroup of H which acts trivially on the subset of
Mgp {

a ∈Mgp | an = 1 or ari = ai for some i ∈ {1, . . . ,m}
}
.

(ii) Let (n; m; r1, . . . , rm; a1, . . . , am) be a strictly radical data for the MLF k(G) of
Definition 5.2 [cf. also Remark 5.2.1]. Then we shall write

G(n; m; r1, . . . , rm; a1, . . . , am)
def
= (G y OB(G))(n; m; r1, . . . , rm; a1, . . . , am) ⊆ G

[cf. Remark 5.3.2].

THEOREM 5.9. — The following hold:

(i) Suppose that dk = 1, which thus implies that d(Gk) = 1 [cf. [3], Proposition

3.6]. Let (n; m; r1, . . . , rm; a1, . . . , am) be a strictly radical data for k
∼→ k(Gk) [cf.

Theorem 5.4, (i)]. Then it holds that

Gk(n; m; r1, . . . , rm; a1, . . . , am) = Gal
(
k/k(ζn, a

1/r1

1 , . . . , a1/rm
m )

)
— i.e., as subgroups of Gk.

(ii) Every absolutely strictly radical MLF is absolutely characteristic [cf. also
Remark 5.9.1 below].

Proof. — Assertion (i) follows immediately from the various definitions involved. As-
sertion (ii) follows immediately from assertion (i) and Corollary 5.5. This completes the
proof of Theorem 5.9. �

REMARK 5.9.1. — Note that there exists an absolutely characteristic MLF that is not
absolutely strictly radical. Indeed, let us observe that one verifies immediately from
Kummer theory that if k is absolutely strictly radical, then the Galois group Gal(k/k(d=1))
[cf. Remark 5.6.1] has a structure of extension of an abelian group by an abelian group.
Thus, it follows from Remark 5.7.2, (i), that if every absolutely characteristic MLF is
absolutely strictly radical, then we conclude that the absolute Galois group Gal(k/k(d=1))
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has a structure of extension of an abelian group by an abelian group — in contradiction to
some well-known group-theoretic properties [cf., e.g., [12], Theorem 7.5.12] of the group
Gal(k/k(d=1)).

REMARK 5.9.2.

(i) It follows from example (1) given in [4], §2 [i.e., “L1” and “L3” in (1) of [4], §2],
that there exist an absolutely strictly radical MLF k◦ and an MLF k• that is not absolutely
strictly radical [cf. Remark 5.6.1] such that the absolute Galois group of k◦ is isomorphic,
as an abstract profinite group, to the absolute Galois group of k•. By this fact, one may
conclude that

the condition for an MLF to be absolutely strictly radical should be con-
sidered to be “not group-theoretic”.

(ii) It follows from example (1) given in [4], §2 [i.e., “L1” and “L3” in (1) of [4],
§2], that there exist an absolutely characteristic MLF k◦ [cf. Theorem 5.9, (ii)] and an
MLF k• that is not absolutely characteristic such that the absolute Galois group of k◦ is
isomorphic, as an abstract profinite group, to the absolute Galois group of k•. By this
fact, one may conclude that

the condition for an MLF to be absolutely characteristic should be consid-
ered to be “not group-theoretic”.

REMARK 5.9.3.

(i) Let us first observe the following “tautological” assertion in the anabelian geometry
of absolutely characteristic MLF’s:

For each � ∈ {◦, •}, let k� be an absolutely characteristic MLF and k� an

algebraic closure of k�; write G�
def
= Gal(k�/k�). Then the following two

conditions are equivalent:

(1) The field k◦ is isomorphic to the field k•.

(2) There exists an isomorphism G◦
∼→ G• compatible with the re-

spective natural outer actions of Gal(k◦/k
(d=1)
◦ ), Gal(k•/k

(d=1)
• ) [i.e., by

conjugation] relative to some isomorphism Gal(k◦/k
(d=1)
◦ )

∼→ Gal(k•/k
(d=1)
• ).

[This assertion follows immediately from the definition of the notion of absolutely char-
acteristic MLF — cf. also [3], Proposition 3.6.]

(ii) It follows from Theorem 5.9, (ii), that one may apply the “tautological” assertion
of (i) to absolutely strictly radical MLF’s.

(iii) Finally, let us observe that it follows from example (1) given in [4], §2 [i.e., “L1”
and “L2” in (1) of [4], §2], that there exist absolutely strictly radical MLF’s k◦, k• such
that the field k◦ is not isomorphic to the field k•, but the absolute Galois group of k◦ is
isomorphic, as an abstract profinite group, to the absolute Galois group of k•. Thus, we
conclude from Theorem 5.9, (ii), that, in the “tautological” assertion of (i), one cannot
replace condition (2) by the following condition:
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(2′) There exists an isomorphism G◦
∼→ G•.

REMARK 5.9.4. — Let us recall the following three well-known facts in anabelian geom-
etry:

(1) One verifies easily that an immediate consequence of the Neukirch-Uchida theorem
[cf. the main theorem of [16]] is that every normal open subgroup of the absolute Galois
group of the field of rational numbers is characteristic.

(2) It follows immediately from [7], Corollary 3.7, that it holds that the natural
injection Aut(k) ↪→ Out(Gk) [cf., e.g., [3], Proposition 2.1] is bijective if and only if each
member of the filtration on Gk given by the higher ramification groups in the upper
numbering is characteristic.

(3) Suppose that dk = 1. Then it follows immediately from the equivalence of (2)
[cf. also the argument in Remark 6.4.1, (ii), below] that the natural injection Aut(k) ↪→
Out(Gk) [cf., e.g., [3], Proposition 2.1] is bijective if and only if every normal open sub-
group of Gk is characteristic. [Note that this equivalence also follows from [5], Theorem
A.]

By these facts, one may find the importance of discussing the issue of whether or not a
given closed subgroup of the absolute Galois group of a field is characteristic in the study
of anabelian geometry. This observation is one of motivations of studying Theorem 5.9,
(ii).

Some of the group-theoretic reconstruction algorithms discussed in the present §5 may
be summarized as follows.

SUMMARY 5.10. — There exist group-theoretic reconstruction algorithms [cf. [8],
Remark 1.9.8] for constructing, from a group G of MLF-type such that d(G) = 1,

• a structure of topological field on k×(G) [cf. Definition 5.2] and

• subgroups of G [cf. Definition 5.8, (ii)]

which “correspond” to

• the topological field structure of k on k× [cf. Theorem 5.4, (i)] and

• the open subgroups of Gk corresponding to the absolutely strictly radical MLF’s con-
tained in k [cf. Theorem 5.9, (i)],

respectively.

REMARK 5.10.1. — Let us recall that, as asserted in Summary 5.10, we have established
[cf. Definition 5.2] a group-theoretic reconstruction algorithm for constructing, from a
group G of MLF-type such that d(G) = 1, a structure of topological field on k×(G) which
“corresponds” to the topological field structure of k, i.e., on k×.

Here, let us also recall that, as discussed in [2], Remark 1.4.1, (ii), it is impossible to
establish a group-theoretic reconstruction algorithm for constructing, from an arbitrary
group G of MLF-type, such a structure of topological field on k×(G).
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6. Reconstruction Algorithms Related to Galois-specifiable MLF’s

In the present §6, we maintain the notational conventions introduced at the begin-
nings of §1 and §2. In the present §6, we consider Galois-specifiable [cf. Definition 6.1
below] MLF’s. Moreover, we also establish some group-theoretic reconstruction algorithms
[cf. [8], Remark 1.9.8] related to Galois-specifiable MLF’s. For instance, we establish a
group-theoretic reconstruction algorithm for constructing, from a group of MLF-type that
satisfies a certain condition, a collection of subgroups of the outer automorphism group of
the group of MLF-type which “corresponds” to the Out(Gk)-orbit, i.e., by conjugation, of
the subgroup of Out(Gk) determined by the field automorphisms of k [cf. Definition 6.9,
(ii); Theorem 6.13, (ii), below].

DEFINITION 6.1. — We shall say that the MLF k is Galois-specifiable if the MLF k
is absolutely Galois [cf. Definition 4.2, (i)], and, moreover, the following condition is
satisfied: If L is an MLF such that there exist an algebraic closure L of L and an
isomorphism Gk

∼→ Gal(L/L) of groups, then the field k is isomorphic, as an abstract
field, to the field L [cf. Remark 6.1.1 below].

REMARK 6.1.1. — One verifies immediately that the issue of whether or not the MLF k
satisfies the condition in Definition 6.1 does not depend on the choice of k, i.e., depends
only on k.

REMARK 6.1.2. — Suppose that (pk, ak) 6= (2, 1). Then it follows immediately — in light
of Proposition 2.5, (i); Proposition 4.9, (i); [3], Proposition 3.6 — from Theorem 4.11,
together with [3], Lemma 1.7, (1), (2), that it holds that the MLF k is Galois-specifiable
if and only if the following condition is satisfied: If K ⊆ k is a finite extension of k(d=1)

such that dk = dK , and, moreover, k(ab) = K(ab) [cf. Definition 4.2, (iii)], i.e., as subfields
of k, then k = K, i.e., as subfields of k.

PROPOSITION 6.2. — Suppose that the MLF k is Galois-specifiable. Let K be an
intermediate field of the finite extension k/k(ab) tamely ramified over k(ab). Then the
MLF K is Galois-specifiable.

Proof. — Let L be an MLF, L an algebraic closure of L, and α : GK
def
= Gal(k/K)

∼→
GL

def
= Gal(L/L) an isomorphism of groups. Thus, it follows from [3], Proposition 3.6,

that

(1) (pK , eK) = (pL, eL).

Write Lk ⊆ L for the finite extension of L which corresponds to the open subgroup

α(Gk) ⊆ GL of GL. [So we have a natural identification GLk

def
= Gal(L/Lk) = α(Gk).]

Then since [we have assumed that] k is Galois-specifiable, we conclude that

(2) the field k is isomorphic to the field Lk.

Next, observe that, by applying Corollary 4.14, (i), to the isomorphism α, we obtain that
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(3) the field K(ab), i.e., k(ab) [cf. Lemma 4.3, (i)], is isomorphic to the field L(ab).

Now I claim the following assertion:

(∗): Suppose that K is the [uniquely determined] maximal MLF contained
in k tamely ramified over k(ab). Then the field K is isomorphic to the field
L.

To this end, suppose that K is the [uniquely determined] maximal MLF contained in
k tamely ramified over k(ab). In particular, it follows from Lemma 4.3, (ii), that the
intermediate field K of k/k(ab) is the uniquely determined intermediate field of k/k(ab)

such that ek/eK is a power of pK , and, moreover, eK/ek(ab) is prime to pK . Thus, it
follows immediately from (1), (2), and (3) that the intermediate field L of Lk/L

(ab) is
the uniquely determined intermediate field of Lk/L

(ab) such that eLk
/eL is a power of pL,

and, moreover, eL/eL(ab) is prime to pL. In particular, by (2) and (3), we conclude that
the field K is isomorphic to the field L, as desired. This completes the proof of the above
claim (∗).

Next, observe that it follows immediately from the above claim (∗) that, to com-
plete the verification of Proposition 6.2, we may assume without loss of generality, by
replacing k by the [uniquely determined] maximal MLF contained in k tamely rami-
fied over k(ab), that k is tamely ramified over k(ab). Then one verifies immediately from
Lemma 4.3, (ii), and [3], Lemma 1.5, (ii), that the intermediate field K (respectively,
L) of k/k(ab) (respectively, Lk/L

(ab)) is the uniquely determined intermediate field M of
k/k(ab) (respectively, Lk/L

(ab)) such that eM = eK (respectively, eM = eL). Thus, by (1),
(2), and (3), we conclude that the field K is isomorphic to the field L, as desired. This
completes the proof of Proposition 6.2. �

LEMMA 6.3. — Suppose that k is Galois over k(ab). Let K ⊆ k be a finite unramified
[necessarily Galois] extension of k(ab). Note that it follows immediately from Lemma 4.3,

(ii), that we have a natural isomorphism Gal(k·K/k(ab))
∼→ Gal(k/k(ab))×Gal(K/k(ab)).

Let φ : Gal(K/k(ab)) → Gal(k/k(ab)) be a homomorphism of groups. Write L for the
intermediate field of the finite Galois extension k · K/k(ab) which corresponds, relative

to the above natural isomorphism Gal(k · K/k(ab))
∼→ Gal(k/k(ab)) × Gal(K/k(ab)), to

the graph (⊆ Gal(k/k(ab)) × Gal(K/k(ab))) of the homomorphism φ. Then the equalities
dL = dk, L(ab) = k(ab) hold.

Proof. — The equality dL = dk follows from the fact that the graph (⊆ Gal(k/k(ab))×
Gal(K/k(ab))) of the homomorphism φ is isomorphic, as an abstract group, to the group
Gal(K/k(ab)).

To verify the equality L(ab) = k(ab), assume that L(ab) 6= k(ab), i.e., that the extension
L(ab)/k(ab) is not of degree one. Then since the intermediate field L corresponds to the

graph of φ, one verifies immediately from the natural isomorphism Gal(k · K/k(ab))
∼→

Gal(k/k(ab))×Gal(K/k(ab)) that the extension L(ab) ·K/K is not of degree one, which thus
implies that the extension k ∩ (L(ab) ·K)/k(ab) is not of degree one. On the other hand,
one verifies easily [cf. the proof of Lemma 4.3, (ii)] that the MLF L(ab) · K, hence also
the MLF k ∩ (L(ab) ·K), is absolutely abelian [cf. Definition 4.2, (ii)]. Thus, we obtain a
contradiction [cf. Lemma 4.3, (i)]. This completes the proof of the equality L(ab) = k(ab),
hence also of Lemma 6.3. �
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THEOREM 6.4. — Consider the following four conditions:

(1) The MLF k is absolutely abelian [cf. Definition 4.2, (ii)].

(2) The MLF k is Galois-specifiable.

(3) The MLF k is absolutely characteristic [cf. Definition 5.7].

(4) The MLF k is absolutely Galois [cf. Definition 4.2, (i)].

Then the following hold:

(i) The implications
(1) =⇒ (2) =⇒ (3) =⇒ (4)

hold [cf. also Remark 6.4.1 below].

(ii) Suppose that (pk, ak) 6= (2, 1). Then the equivalence

(1) ⇐⇒ (2)

holds.

Proof. — First, we verify assertion (i). The first implication in assertion (i) follows
immediately from Corollary 4.14, (ii). The second and third implications in assertion
(i) follow immediately from the various definitions involved. This completes the proof of
assertion (i).

Next, we verify assertion (ii). By assertion (i), to verify assertion (ii), it suffices to
verify the implication (2) ⇒ (1). Suppose that k is Galois-specifiable. To verify that k
is absolutely abelian, let A ⊆ Gal(k/k(ab)) be a cyclic subgroup of Gal(k/k(ab)). Then it
follows from [3], Lemma 1.5, (i), that there exist a finite unramified [necessarily Galois]

extension K ⊆ k of k(ab) and an isomorphism φ : Gal(K/k(ab))
∼→ A (⊆ Gal(k/k(ab)))

of groups. Thus, it follows from Lemma 6.3 that the graph of φ determines an MLF
L ⊆ k · K such that dL = dk, and, moreover, L(ab) = k(ab). On the other hand, since
[we have assumed that] k is Galois-specifiable, it follows from Remark 6.1.2 that k = L,
i.e., that the homomorphism φ, hence also the subgroup A, is trivial. In particular, we
conclude that every cyclic subgroup of Gal(k/k(ab)), hence also the group Gal(k/k(ab))
itself, is trivial, as desired. This completes the proof of assertion (ii), hence also of
Theorem 6.4. �

REMARK 6.4.1. — Suppose that we are in the situation of Theorem 6.4.

(i) In general, the implication (3) ⇒ (2) does not hold. Indeed, for an odd prime

number pk, the MLF Qpk
(ζpk

, p
1/pk

k ) is absolutely characteristic [cf. Theorem 5.9, (ii)] but
not Galois-specifiable [cf. example (1) given in [4], §2].

(ii) In general, the implication (4) ⇒ (3) does not hold. Indeed, let us first observe
that it is immediate that the implication (4)⇒ (3) is equivalent to the following assertion:

Every normal open subgroup of Gk(d=1)
def
= Gal(k/k(d=1)) is characteristic.

Thus, since every normal closed subgroup of Gk(d=1) may be obtained as the intersection
of the normal open subgroups of Gk(d=1) that contain the normal closed subgroup, if
the implication (4) ⇒ (3) holds, then we conclude that every normal closed subgroup
of Gk(d=1) is characteristic. In particular, if the implication (4) ⇒ (3) holds, then it
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follows from [7], Corollary 3.7, that every outer automorphism of Gk(d=1) arises from an
automorphism of the field k(d=1), i.e., that Out(Gk(d=1)) = {1}. But this contradicts the
conclusion of the discussion given at the final portion of [12], Chapter VII, §5, if pk is
odd.

DEFINITION 6.5. — Recall that the natural homomorphism Aut(k)→ Out(Gk) is injec-
tive [cf., e.g., [3], Proposition 2.1]. By means of this injection, let us regard Aut(k) as a
[necessarily finite] subgroup of Out(Gk):

Aut(k) ⊆ Out(Gk).

Then we shall write
OrbAut(k)

for the set of Out(Gk)-conjugates of the subgroup Aut(k) ⊆ Out(Gk), i.e., the Out(Gk)-
orbit of the subgroup Aut(k) ⊆ Out(Gk).

Recall the group of MLF-type
G

introduced at the beginning of §2.

DEFINITION 6.6. — Let Γ ⊆ Out(G) be a finite subgroup of the outer automorphism
group Out(G) of G.

(i) We shall write

G
out
o Γ ⊆ Aut(G)

for the inverse image of Γ ⊆ Out(G) by the natural surjection Aut(G) � Out(G). Thus,

since G may be identified with Inn(G) ⊆ Aut(G) by the natural isomorphism G
∼→ Inn(G)

[cf. [3], Lemma 1.8, (i)], the group G
out
o Γ has a natural structure of extension of Γ by G:

1 −→ G −→ G
out
o Γ −→ Γ −→ 1.

By means of the second arrow of this exact sequence, let us always regard G as a subgroup

of G
out
o Γ:

G ⊆ G
out
o Γ.

(ii) We shall say that the finite subgroup Γ is quasi-geometric if the group G
out
o Γ is

of MLF-type.

(iii) We shall say that the finite subgroup Γ is strictly quasi-geometric if Γ is quasi-

geometric, and, moreover, the equality d(G
out
o Γ) = 1 holds.

LEMMA 6.7. — Let Γ ⊆ Out(G) be a quasi-geometric subgroup of Out(G). Then the
following hold:

(i) Every subgroup of Γ is a quasi-geometric subgroup of Out(G).
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(ii) The natural inclusion k×(G
out
o Γ) ↪→ k×(G) — i.e., determined by the transfer

map with respect to G ⊆ G
out
o Γ [cf. [3], Lemma 1.7, (3)] — and the natural action of Γ

on k×(G) determine an isomorphism k×(G
out
o Γ)

∼→ k×(G)Γ.

(iii) It holds that d(G) ∈ ]ΓZ.

(iv) It holds that Γ is strictly quasi-geometric if and only if ]Γ = d(G).

Proof. — Assertion (i) follows from the discussion following [3], Proposition 3.3. As-
sertion (ii) follows immediately from [3], Proposition 3.11, (i). Assertions (iii), (iv) follow
immediately from [3], Proposition 3.6. This completes the proof of Lemma 6.7. �

PROPOSITION 6.8. — The subgroup Aut(k) ⊆ Out(Gk) is quasi-geometric. If, more-
over, the MLF k is absolutely Galois, then the subgroup Aut(k) ⊆ Out(Gk) is strictly
quasi-geometric.

Proof. — This assertion follows immediately from the various definitions involved. �

DEFINITION 6.9.

(i) We shall say that G is of GSMLF-type if the following two conditions are satisfied:

(1) There exists a strictly quasi-geometric subgroup of Out(G).

(2) For each strictly quasi-geometric subgroup Γ ⊆ Out(G) of Out(G) and each

open subgroup H ⊆ G
out
o Γ of G

out
o Γ, if H is isomorphic, as an abstract group, to G,

then H = G, i.e., as subgroups of G
out
o Γ.

[Here, “GSMLF” is to be understood as an abbreviation for “Galois-specifiable mixed-
characteristic local field” — cf. Theorem 6.11 below.]

(ii) Suppose that G is of GSMLF-type. Then we shall write

Orbsqg(G)

for the set of strictly quasi-geometric subgroups of Out(G).

LEMMA 6.10. — Let Qpk
be an algebraic closure of k(d=1). Let us fix an isomorphism

ι : k
∼→ Qpk

of fields. Write kι
def
= ι(k) ⊆ Qpk

for the finite extension of k(d=1) obtained

by forming the image of k ⊆ k by ι. Let Γ ⊆ Out(Gk) be a strictly quasi-geometric
subgroup of the outer automorphism group Out(Gk) of the group Gk of MLF-type. Then
the following hold:

(i) There exists an isomorphism α : Gk

out
o Γ

∼→ Gal(Qpk
/k(d=1)) of groups.

(ii) Suppose either that the MLF k is Galois-specifiable, or that the group Gk is of
GSMLF-type. Then the isomorphism α of (i) restricts to an isomorphism between the

subgroup Gk ⊆ Gk

out
o Γ with the subgroup Gal(Qpk

/kι) ⊆ Gal(Qpk
/k(d=1)).
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Proof. — Assertion (i) follows immediately from the definition of the notion of strictly
quasi-geometric subgroup [cf. also [3], Proposition 3.6].

Next, we verify assertion (ii) in the case where the MLF k is Galois-specifiable. Suppose
that k is Galois-specifiable. Write K ⊆ Qpk

for the finite extension of k(d=1) which

corresponds to the open subgroup α(Gk) ⊆ Gal(Qpk
/k(d=1)) of Gal(Qpk

/k(d=1)). [So we

have a natural identification Gal(Qpk
/K) = α(Gk).] Thus, since k is Galois-specifiable,

we conclude that k is isomorphic, as an abstract field, to K. In particular, since k is
absolutely Galois, we conclude that kι = K, i.e., as subfields of Qpk

, as desired. This
completes the proof of assertion (ii) in the case where the MLF k is Galois-specifiable.

Finally, we verify assertion (ii) in the case where the group Gk is of GSMLF-type. Sup-
pose that Gk is of GSMLF-type. Let us first observe that it is immediate that the group
Gk is isomorphic, as an abstract group, to the group Gal(Qpk

/kι) ⊆ Gal(Qpk
/k(d=1)),

hence also to the group α−1(Gal(Qpk
/kι)) ⊆ Gk

out
o Γ. Thus, since Gk is of GSMLF-type,

we conclude that Gk = α−1(Gal(Qpk
/kι)), i.e., as subgroups of Gk

out
o Γ, as desired. This

completes the proof of assertion (ii) in the case where the group Gk is of GSMLF-type,
hence also of Lemma 6.10. �

THEOREM 6.11. — It holds that the MLF k is Galois-specifiable if and only if the
group Gk is of GSMLF-type.

Proof. — First, we verify the necessity. Suppose that the MLF k is Galois-specifiable.
To verify that the group Gk is of GSMLF-type, let Γ ⊆ Out(Gk) be a strictly quasi-

geometric subgroup of Out(Gk) [cf. Proposition 6.8] and H ⊆ Gk

out
o Γ an open subgroup

of Gk

out
o Γ such that H is isomorphic, as an abstract group, to Gk. Now suppose

that we are in the situation of Lemma 6.10. Thus, we have an isomorphism α : Gk

out
o

Γ
∼→ Gal(Qpk

/k(d=1)) of groups [cf. Lemma 6.10, (i)] that restricts to an isomorphism

Gk
∼→ Gal(Qpk

/kι) [cf. Lemma 6.10, (ii)]. Write K ⊆ Qpk
for the finite extension of k(d=1)

which corresponds to the open subgroup α(H) ⊆ Gal(Qpk
/k(d=1)) of Gal(Qpk

/k(d=1)). [So

we have a natural identification Gal(Qpk
/K) = α(H).] Thus, since H is isomorphic to

both Gk and Gal(Qpk
/K), and k is Galois-specifiable, we conclude that k is isomorphic, as

an abstract field, to K. In particular, since k is absolutely Galois, it holds that kι = K,
i.e., as subfields of Qpk

, which thus implies that α(Gk) = α(H), i.e., as subgroups of

Gal(Qpk
/k(d=1)), as desired. This completes the proof of the necessity.

Next, we verify the sufficiency. Suppose that the group Gk is of GSMLF-type. To
verify that the MLF k is Galois-specifiable, let L be an MLF and L an algebraic closure
of L such that Gk is isomorphic, as an abstract group, to Gal(L/L). Now take a strictly
quasi-geometric subgroup Γ ⊆ Out(Gk) of Out(Gk) [cf. condition (1) of Definition 6.9,
(i)], and suppose that we are in the situation of Lemma 6.10. Thus, we have an iso-

morphism α : Gk

out
o Γ

∼→ Gal(Qpk
/k(d=1)) of groups [cf. Lemma 6.10, (i)] that restricts

to an isomorphism Gk
∼→ Gal(Qpk

/kι) [cf. Lemma 6.10, (ii)] — which thus implies that
the MLF kι, hence also the MLF k, is absolutely Galois. Then let us observe that it
follows from [3], Proposition 3.6, that L is isomorphic, as an abstract field, to Qpk

. Let

us identify L with Qpk
by means of some fixed isomorphism of L with Qpk

. Then since Gk
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is isomorphic to Gal(L/L) = Gal(Qpk
/L), and Gk is of GSMLF-type, we conclude that

Gk = α−1(Gal(Qpk
/L)), i.e., as subgroups of Gk

out
o Γ, which thus implies that kι = L,

i.e., as subfields of Qpk
. Thus, the field k is isomorphic to the field L, as desired. This

completes the proof of the sufficiency, hence also of Theorem 6.11. �

COROLLARY 6.12. — The following hold:

(i) If the group G is of AAMLF-type [cf. Definition 4.8], then G is of GSMLF-
type.

(ii) Suppose that (p(G), a(G)) 6= (2, 1) [cf. Definition 2.4, (ii)]. Then if the group G
is of GSMLF-type, then G is of AAMLF-type.

Proof. — These assertions follow — in light of Proposition 2.5, (i), and [3], Proposition
3.6 — from Theorem 6.4, (i), (ii), together with Proposition 4.9, (iii), and Theorem 6.11.

�

THEOREM 6.13. — Suppose that the MLF k is Galois-specifiable, which thus implies
that the group Gk is of GSMLF-type [cf. Theorem 6.11]. Then the following hold:

(i) Let Γ1, Γ2 ⊆ Out(Gk) be strictly quasi-geometric subgroups of Out(Gk). Then
Γ1 is an Out(Gk)-conjugate of Γ2.

(ii) It holds that
OrbAut(k) = Orbsqg(Gk).

Proof. — First, we verify assertion (i). Let α : Gk

out
o Γ1

∼→ Gk

out
o Γ2 be an isomorphism

of groups [cf. Lemma 6.10, (i)]. Then since the group Gk is of GSMLF-type, it is immediate
that the isomorphism α restricts to an automorphism of Gk. Moreover, one verifies
immediately from the various definitions involved that Γ1 is the conjugate, by the outer
automorphism of Gk determined by the resulting automorphism of Gk, of Γ2. This
completes the proof of assertion (i).

Assertion (ii) follows from assertion (i) and Proposition 6.8. This completes the proof
of Theorem 6.13. �

REMARK 6.13.1. — Note that, in general, a similar assertion to Theorem 6.13, (i), for [the
absolute Galois group of] an absolutely characteristic MLF does not hold [cf. Remark 8.6.1,
(ii), below].

Some of the group-theoretic reconstruction algorithms discussed in the present §6 may
be summarized as follows.

SUMMARY 6.14.

(i) There exists a group-theoretic condition for a group of MLF-type [cf. Defini-
tion 6.9, (i)] which “corresponds” to the condition for an MLF to be Galois-specifiable
[cf. Theorem 6.11].
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(ii) There exists a group-theoretic reconstruction algorithm [cf. [8], Remark
1.9.8] for constructing, from a group G of MLF-type that satisfies the condition of
(i), a collection Orbsqg(G) of subgroups of Out(G) [cf. Definition 6.9, (ii)] which “corre-
sponds” to the Out(Gk)-orbit OrbAut(k), i.e., by conjugation, of the subgroup Aut(k) ⊆
Out(Gk) [cf. Theorem 6.13, (ii)].

REMARK 6.14.1. — By Summary 6.14, (i), one may conclude that

the condition for an MLF to be Galois-specifiable may be considered to be
“group-theoretic”.

7. On Outer Automorphisms Arising from Field Automorphisms I

In the present §7, we maintain the notational conventions introduced at the beginnings
of §1 and §2. In particular, we have a natural open injection

Gk ↪→ Gk(d=1)
def
= Gal(k/k(d=1)).

In the present §7, we discuss outer automorphisms of the absolute Galois groups of
MLF’s that arise from field automorphisms of the MLF’s. We prove that if the MLF k is
absolutely characteristic, and that pk is odd, then the subgroup of the outer automorphism
group of Gk determined by the field automorphisms of k is not normally terminal [cf.
Theorem 7.2, (i), below]. Moreover, we also prove that, under some conditions, the
outer automorphism group of Gk has “many” finite abelian subgroups [cf. Theorem 7.5,
Remark 7.5.1, below].

LEMMA 7.1. — Let H ⊆ G be a characteristic open subgroup of the group G of MLF-
type. Thus, we have, by considering restrictions, a natural homomorphism

Aut(G) −→ Aut(H).

Then the following hold:

(i) The homomorphism Aut(G) → Aut(H) is injective. In particular, we also have
an injection Aut(G)/Inn(H) ↪→ Out(H). Let us regard Aut(G), Aut(G)/Inn(H) as
subgroups of Aut(H), Out(H) by means of these injections, respectively:

Aut(G) ⊆ Aut(H), Aut(G)/Inn(H) ⊆ Out(H).

(ii) The natural homomorphisms G � Inn(G) ↪→ Aut(G) determine an isomorphism

G/H
∼−→ Inn(G)/Inn(H).

Let us identify G/H with Inn(G)/Inn(H) by means of this isomorphism:

G/H = Inn(G)/Inn(H)
(
⊆ Aut(G)/Inn(H) ⊆ Out(H)

)
.

Thus, we have a natural exact sequence

1 −→ G/H −→ Aut(G)/Inn(H) −→ Out(G) −→ 1.

(iii) It holds that
NOut(H)(G/H) = Aut(G)/Inn(H).
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(iv) Recall the exact sequence

1 −→ G/H −→ Aut(G)/Inn(H) −→ Out(G) −→ 1

of (ii). Then the composite

Aut(G)/Inn(H) −→ Aut(G/H) −→ Out(G/H)

— where the first arrow is the action by conjugation via the second arrow of the above
exact sequence, and the second arrow is the natural surjection — coincides with the
composite

Aut(G)/Inn(H) −→ Out(G) −→ Out(G/H)

— where the first arrow is the third arrow of the above exact sequence, and the second
arrow is the natural homomorphism.

Proof. — First, we verify assertion (i). Let us first observe that it follows from [3],
Lemma 1.8, (ii), that the action of G on H by conjugation is faithful. Since [it is immediate
that] the resulting injection G ↪→ Aut(H) is Aut(G)-equivariant, assertion (i) holds.
This completes the proof of assertion (i). Assertion (ii) follows from [3], Lemma 1.8,
(i). Assertions (iii), (iv) follow immediately from the various definitions involved. This
completes the proof of Lemma 7.1. �

THEOREM 7.2. — Suppose that the MLF k is absolutely characteristic [cf. Defini-
tion 5.7]. Then the following hold:

(i) Suppose, moreover, that pk is odd. Then the subgroup Aut(k) ⊆ Out(Gk) of
Out(Gk) is not normally terminal.

(ii) It holds that the MLF k is absolutely abelian [cf. Definition 4.2, (ii)] if and
only if

NOut(Gk)

(
Aut(k)

)
= ZOut(Gk)

(
Aut(k)

)
.

Proof. — Since the open subgroup Gk ⊆ Gk(d=1) of Gk(d=1) is characteristic, by applying
Lemma 7.1, (ii), (iii) [in the case where we take the “H ⊆ G” of Lemma 7.1 to be
Gk ⊆ Gk(d=1) ], we obtain an exact sequence

1 −→ Aut(k) −→ NOut(Gk)

(
Aut(k)

)
−→ Out(Gk(d=1)) −→ 1.

Now we verify assertion (i). Since pk is odd, it follows from the discussion given at
the final portion of [12], Chapter VII, §5, that Out(Gk(d=1)) is nontrivial. Thus, by the
above exact sequence, we conclude that the subgroup Aut(k) ⊆ Out(Gk) is not normally
terminal, as desired. This completes the proof of assertion (i).

Next, we verify assertion (ii). The sufficiency is immediate. Let us verify the necessity.
Suppose that the MLF k is absolutely abelian. Let us first observe that it is immediate
that, to verify the necessity, it suffices to verify that the action of NOut(Gk)(Aut(k)) on
Aut(k) by conjugation is trivial. On the other hand, since k is absolutely abelian, it
follows immediately from Lemma 7.1, (iv), that this action factors through the natural
homomorphism Out(Gk(d=1))→ Out(Gab

k(d=1)) (= Aut(Gab
k(d=1))). Thus, the desired trivial-

ity follows from Corollary 5.5. This completes the proof of assertion (ii), hence also of
Theorem 7.2. �
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REMARK 7.2.1.

(i) Let us observe that it follows immediately from Corollary 5.5 that if dk = 1, then
the image of the natural homomorphism

Aut(k) −→ Aut(k+)

coincides with the image of the composite

Out(Gk) −→ Aut
(
k+(Gk)

) ∼←− Aut(k+)

— where the second arrow is the isomorphism obtained by conjugation by the vertical
isomorphism k+

∼→ k+(Gk) in the diagram of [3], Proposition 3.11, (iv).

(ii) On the other hand, in general, the image of the natural homomorphism

Aut(k) −→ Aut(k+)

does not coincide with the image of the composite

Out(Gk) −→ Aut
(
k+(Gk)

) ∼←− Aut(k+).

Indeed, suppose that k is absolutely characteristic, and that the image of the natural
homomorphism Out(Gk(d=1)) → Out(Gk(d=1)/Gk) is nontrivial, which thus implies [cf.
Lemma 7.1, (iv); also the exact sequence in the proof of Theorem 7.2] that the normal
subgroup Aut(k) ⊆ NOut(Gk)(Aut(k)) is not a direct summand. [Note that it follows im-
mediately from the discussion given at the final portion of [12], Chapter VII, §5, together
with Remark 5.7.2, (i), that such a “k” exists.] Next, observe that since Aut(k) is con-
tained in NOut(Gk)(Aut(k)), it is immediate that, to verify the desired assertion, it suffices
to verify that the image of the natural homomorphism

Aut(k) −→ Aut(k+)

does not coincide with the image of the composite

NOut(Gk)

(
Aut(k)

)
↪→ Out(Gk) → Aut

(
k+(Gk)

) ∼← Aut(k+).

On the other hand, since the natural homomorphism Aut(k) → Aut(k+) is injective, if
these images coincide, then one verifies immediately that the normal subgroup Aut(k) ⊆
NOut(Gk)(Aut(k)) is a direct summand — in contradiction to our assumption on k.

REMARK 7.2.2. — The consideration in Remark 7.2.1, (ii), leads us to, for instance, the
following assertion:

If dk = 2 [which thus implies that k is absolutely abelian], and pk−1 6∈ 4Z,
then the subgroup Aut(k) ⊆ NOut(Gk)(Aut(k)) (= ZOut(Gk)(Aut(k)) — cf.
Theorem 7.2, (ii)) is a direct summand.

Indeed, let us first observe that it follows from elementary field theory that the action
of the [unique] nontrivial element of Aut(k) on the Qpk

-vector space k+(Gk) (
∼← k+ —

cf. [3], Proposition 3.11, (iv)) of dimension dk = 2 has two eigenvalues 1, −1. Write
V1, V−1 ⊆ k+(Gk) for the eigenspaces that corresponds to the eigenvalues 1, −1, re-
spectively. [So we have k+(Gk) = V1 ⊕ V−1.] Then one verifies easily that the action of
NOut(Gk)(Aut(k)) on k+(Gk) preserves each of the subspaces V1, V−1 ⊆ k+(Gk). Thus, we
have a homomorphism

NOut(Gk)

(
Aut(k)

)
−→ AutQpk

(V−1) = Q×
pk

.
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Now let us observe that it follows from our assumption that pk − 1 6∈ 4Z, together with
[3], Lemma 1.2, (i) [cf. also Proposition 1.1, (v), if pk = 2], that there exists a surjection
Q×

pk
� (Z/2Z)+ of modules such that the composite {±1} ↪→ Q×

pk
� (Z/2Z)+ is an

isomorphism. Thus, by considering the composite

Aut(k) ↪→ NOut(Gk)

(
Aut(k)

)
→ AutQpk

(V−1) = Q×
pk

� (Z/2Z)+,

we conclude that the subgroup Aut(k) ⊆ NOut(Gk)(Aut(k)) is a direct summand, as de-
sired.

LEMMA 7.3. — Suppose that (pk, ak) 6= (2, 1). Write Nm∧
k/k(d=1) : (k×)∧ → ((k(d=1))×)∧

for the [necessarily open] homomorphism of abelian profinite groups induced by the Norm
map Nmk/k(d=1) : k× → (k(d=1))×. Then the following hold:

(i) The image of the [uniquely determined] pro-pk-Sylow subgroup of the abelian profi-
nite group (k×)∧ by Nm∧

k/k(d=1) is a free Zpk
-module of rank two.

(ii) There exists a pro-pk closed subgroup M ⊆ Ker(Nm∧
k/k(d=1)) of the kernel of

Nm∧
k/k(d=1) such that M is a free Zpk

-module of rank dk −1, and, moreover, the natural

inclusion M ↪→ (k×)∧ is a split injection.

Proof. — First, we verify assertion (i). Write (k×)∧(pk), ((k(d=1))×)∧(pk) for the
[uniquely determined] pro-pk-Sylow subgroups of the abelian profinite groups (k×)∧,
((k(d=1))×)∧, respectively. Let us observe that it follows immediately from [3], Lemma 1.2,
(i), that, to verify assertion (i), it suffices to verify that the image Nm∧

k/k(d=1)((k×)∧(pk)) ⊆
((k(d=1))×)∧(pk) is torsion-free. Thus, if pk is odd, then since [one verifies easily from
Proposition 1.1, (v), that] ((k(d=1))×)∧(pk) is torsion-free, assertion (i) holds.

Suppose that pk = 2. Then let us observe that since ((k(d=1))×)tor = {±1} [cf. Propo-
sition 1.1, (v); [3], Lemma 1.2, (i)], it follows immediately from Lemma 4.1, (iii), that, to
verify assertion (i) in the case where pk = 2, it suffices to verify that the image of the iner-
tia subgroup Ik ⊆ Gk by χpk-cyc : Gk → Z×

pk
[cf. Lemma 4.1, (i)] does not contain−1 ∈ Z×

pk
.

On the other hand, since [we have assumed that] (pk, ak) 6= (2, 1), this follows immedi-
ately from the [easily verified] injectivity of the composite {±1} ↪→ Z×

pk
� (Z/4Z)×. This

completes the proof of assertion (i) in the case where pk = 2, hence also of assertion (i).
Assertion (ii) follows immediately from assertion (i), together with [3], Lemma 1.2, (i).

This completes the proof of Lemma 7.3. �

LEMMA 7.4. — Suppose that (pk, ak) 6= (2, 1). Then there exists a Galois extension
k∞ ⊆ k of k such that Gal(k∞/k) is a free Zpk

-module of rank dk − 1, and, moreover,
the [uniquely determined] maximal intermediate field of k∞/k(d=1) abelian over k(d=1)

coincides with k(ab) [cf. Definition 4.2, (iii)].

Proof. — Let us first observe that one verifies immediately from [3], Lemma 1.7,
(1), (2), that, to verify Lemma 7.4, it suffices to verify that there exists a surjection
φ : (k×)∧ � ((Zpk

)+)⊕dk−1 of profinite groups such that if we write Nm∧
k/k(d=1) : (k×)∧ →

((k(d=1))×)∧ for the homomorphism induced by the Norm map Nmk/k(d=1) : k× → (k(d=1))×,
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then the equality Nm∧
k/k(d=1)((k×)∧) = Nm∧

k/k(d=1)(Ker(φ)) holds. On the other hand, this

follows immediately from Lemma 7.3, (ii). This completes the proof of Lemma 7.4. �

THEOREM 7.5. — Suppose that a maximal intermediate field of k/k(ab) tamely ram-
ified over k(ab) does not coincide with k(d=1) ⊆ k [which is the case if, for instance,

d
(ab)
k 6= 1], and that (pk, ak) 6= (2, 1). Let n be a nonnegative integer such that [k : k(ab)] ∈

pn
kZ and A an abelian pk-group that satisfies the following two conditions:

(1) It holds that ]A = pn
k .

(2) The finite abelian group A is generated by at most (dk/p
n
k)− 1 elements.

Then there exists a subgroup of Out(Gk) isomorphic to A.

Proof. — Let K1 be a maximal intermediate field of k/k(ab) tamely ramified over k(ab).
Thus, it follows from Lemma 4.3, (ii), that the positive integer dk/dK1 is a power of pk and
≥ pn

k . Then since [we have assumed that] dK1 ≥ 2, it follows immediately from Lemma 7.4
that there exists a finite Galois extension K2 ⊆ k of K1 such that dk = pn

k · dK2 [i.e., that

dk/dK1 = pn
k · dK2/dK1 ], and, moreover, K

(ab)
2 = K

(ab)
1 (= k(ab) — cf. Lemma 4.3, (i)).

Thus, it follows immediately — in light of condition (2) — from Lemma 7.4 that there
exists a finite Galois extension K3 ⊆ k of K2 such that Gal(K3/K2) is isomorphic to A —
which thus implies [cf. condition (1)] that dK3 = dK2 ·]A = dK2 ·pn

k = dk — and, moreover,

K
(ab)
3 = K

(ab)
2 (= k(ab)). In particular, since [we have assumed that] (pk, ak) 6= (2, 1), it

follows immediately — in light of Proposition 2.5, (i); Proposition 4.9, (i); [3], Proposition
3.6 — from Theorem 4.11, together with [3], Lemma 1.7, (1), (2), that Gk is isomorphic, as

an abstract group, to GK3

def
= Gal(k/K3). Thus, by considering the image of the composite

of the natural injection Gal(K3/K2) ↪→ (Aut(K3) ↪→) Out(GK3) and the isomorphism

Out(GK3)
∼→ Out(Gk) obtained by conjugation by some isomorphism GK3

∼→ Gk, we
obtain a subgroup of Out(Gk) isomorphic to A, as desired. This completes the proof of
Theorem 7.5. �

REMARK 7.5.1. — One concrete application of Theorem 7.5 is as follows: Suppose that

pk is odd. Let n be a positive integer. Suppose, moreover, that k = Qpk
(ζpn

k
, p

1/pn
k

k ). Then
one verifies immediately that

k(ab) = Qpk
(ζpn

k
), dk = p2n−1

k · (pk − 1), d
(ab)
k = pn−1

k · (pk − 1).

Thus, it follows from Theorem 7.5 that, for positive integers d, r1, . . . , rd such that r1 +
· · · + rd = n, there exists a subgroup of the group Out(Gk) isomorphic to the abelian
pk-group

Z/pr1
k Z× · · · × Z/prd

k Z
[cf. the easily verified inequalities d ≤ n < dk/p

n
k ].

Note that this observation in the case where n = 2 was already given in example (2)
given in [4], §2.
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REMARK 7.5.2. — One of motivations of studying Theorem 6.13, Theorem 7.2, and
Theorem 7.5 is as follows:

(i) The Neukirch-Uchida theorem [cf. the main theorem of [16]] asserts that

(†NF) every outer isomorphism of profinite groups between the absolute Galois
groups of number fields [i.e., finite extensions of Q] arises from a uniquely determined
isomorphism between the number fields,

which thus implies that

(‡NF) the isomorphism class, i.e., as an abstract profinite group, of the absolute
Galois group of a number field completely determines the isomorphism class, i.e., as an
abstract field, of the number field.

On the other hand, it is well-known [cf., e.g., [3], Theorem 2.2] that neither the assertion
(†NF) for MLF’s nor the assertion (‡NF) for MLF’s holds. More precisely, for instance, if
p is odd, then

(†MLF) there exists an outer automorphism of the absolute Galois group of Qp that
is nontrivial, hence also does not arise from any automorphism of the field Qp [cf., e.g.,
the discussion given at the final portion of [12], Chapter VII, §5],

and, moreover,

(‡MLF) there exist two MLF’s k◦, k• such that the field k◦ is not isomorphic to k•,
but the absolute Galois group of k◦ is isomorphic to the absolute Galois group of k• [cf.,
e.g., [17], §2, Theorem, (i)].

(ii) The assertion (†MLF) in (i) thus asserts that, in general [e.g., in the case where we
take the “k” to be Qp, for some odd prime number p], the natural injection

Aut(k) ↪→ Out(Gk)

[cf., e.g., [3], Proposition 2.1] is not bijective. Under this state of affairs, one may consider
the following problem:

Problem: Is there a certain “suitable” characterization of the subgroup
Aut(k) ⊆ Out(Gk) of Out(Gk)?

Here, let us observe that

Theorem 6.13, (ii), may be regarded as a certain affirmative solution to
this problem, i.e., in the case where the MLF k is Galois-specifiable [cf.
Definition 6.1].

(iii) From the point of view of the problem in (ii), let us observe

the [easily verified] finiteness of the group Aut(k).

In particular, as one of possible solutions to the problem in (ii), one may discuss the
following question:

(∗fin) Is the subgroup Aut(k) of Out(Gk) the uniquely determined maximal finite
subgroup of Out(Gk)? Put another way, is every element of Out(Gk) of finite order
contained in the subgroup Aut(k) of Out(Gk)?
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Now let us observe that it is immediate that an affirmative answer to this question (∗fin)
implies an affirmative answer to the following question (∗char), hence also an affirmative
answer to the following question (∗nor):

(∗char) Is the subgroup Aut(k) of Out(Gk) characteristic?

(∗nor) Is the subgroup Aut(k) of Out(Gk) normal?

an affir. sol. to (∗fin) =⇒ an affir. sol. to (∗char) =⇒ an affir. sol. to (∗nor)

(iv) Now let us observe that

Theorem 7.2 is related to the question (∗nor) in (iii),

and that

Theorem 7.5 [cf. also the example in Remark 7.5.1] yields a negative answer
to the question (∗fin) in (iii).

(v) In §8, we will give a negative answer to the question (∗nor) in (iii), hence also
[cf. the discussion of (iii)] negative answers to the questions (∗fin) and (∗char) in (iii) [cf.
Corollary 8.7 below].

8. On Outer Automorphisms Arising from Field Automorphisms II

In the present §8, we maintain the notational conventions introduced at the beginnings
of §1 and §2. In particular, we have been given a group of MLF-type

G.

Let l be a prime number. Suppose, moreover, that

(a) k×(G)[l] 6= {1},
(b) d(G)/d(ab)(G) = l [cf. Definition 4.7, (iv)], and, moreover,

(c) d(ab)(G) 6∈ lZ.

In the present §8, we give a negative answer to the question (∗nor) in Remark 7.5.2, (iii)
[cf. Corollary 8.7 below].

LEMMA 8.1. — Let Γ ⊆ Out(G) be a quasi-geometric [cf. Definition 6.6, (ii)] subgroup
of order l. Then the following hold:

(i) The group G
out
o Γ [cf. Definition 6.6, (i)] is of AAMLF-type [cf. Definition 4.8]

whose MLF-Galois label [cf. Definition 4.10] coincides with(
p(G), d(ab)(G), Im

(
(Nmabs)(G)

))
[cf. Definition 4.7, (iii)].

(ii) The isomorphism class of the group G
out
o Γ does not depend on the choice of Γ,

i.e., depends only on (G, l).

(iii) It holds that e(G
out
o Γ) = e(G)/l, and that k×(G

out
o Γ)[l] 6= {1}.
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(iv) There exists a uniquely determined F×l -torsor

T ⊆ k×(G
out
o Γ)⊗Z Fl

in the vector space k×(G
out
o Γ)⊗Z Fl over Fl that satisfies the following condition: Write

S ⊆ k×(G) for the subset of k×(G) consisting of elements γ ∈ k×(G) (⊇ k×(G)G
out
o Γ =

k×(G
out
o Γ) — cf. [3], Proposition 4.2, (i)) of k×(G) such that the l-th power γl is

contained in k×(G
out
o Γ) and, moreover, a lifting of an element of T , i.e., relative to

the natural surjection k×(G
out
o Γ) � k×(G

out
o Γ)⊗Z Fl. Then the subset S is nonempty,

and, oreover, for every element γ ∈ S of S, the subgroup G ⊆ G
out
o Γ of G

out
o Γ coincides

with the stabilizer, with respect to the natural action of G
out
o Γ on k×(G), of γ ∈ S.

Proof. — First, we verify assertion (i). Let us first observe that it follows from [3],

Proposition 3.6, that p(G
out
o Γ) = p(G) and d(G

out
o Γ) = d(G)/l = d(ab)(G) [cf. the

condition (b) at the beginning of the present §8]. Thus, to verify assertion (i), it suffices

to verify that Im(Nmabs(G)) = Im(Nmabs(G
out
o Γ)). To this end, let us observe that

it follows from Remark 4.9.1 that Im(Nmabs(G)) ⊆ Im(Nmabs(G
out
o Γ)), and, moreover,

[Im(Nmabs(G
out
o Γ)) : Im(Nmabs(G))] ∈ {1, l}. Thus, it follows from the condition (c)

at the beginning of the present §8 that Im(Nmabs(G)) = Im(Nmabs(G
out
o Γ)), as desired.

This completes the proof of assertion (i).
Assertion (ii) follows from assertion (i) and Theorem 4.11. Next, we verify assertion

(iii). The first assertion of assertion (iii) follows immediately — in light of Proposi-
tion 4.9, (iii); [3], Proposition 3.6 — from assertion (i) and Lemma 4.3, (ii). Next, let us
observe that it follows immediately from [3], Proposition 4.2, (i), that, to verify the sec-

ond assertion of assertion (iii), it suffices to verify that the homomorphism G
out
o Γ→ F×l

determined by the natural action of G
out
o Γ on k×(G)[l] is trivial. On the other hand, it

follows from the condition (a) at the beginning of the present §8, together with [3], Propo-

sition 4.2, (i), that the restriction to G ⊆ G
out
o Γ of the homomorphism G

out
o Γ→ F×l is

trivial. Thus, the desired triviality follows from our assumption that Γ is of order l. This
completes the proof of assertion (iii). Finally, since Γ is of order l, assertion (iv) follows
immediately — in light of [3], Proposition 4.2, (i) — from Kummer theory, together with
assertion (iii). This completes the proof of Lemma 8.1. �

REMARK 8.1.1. — Suppose that pk is odd. Let

a ∈ Q×
pk
\ (Q×

pk
)pk .

Suppose, moreover, that

k = Qpk
(ζpk

, a1/pk).

Then, by the easily verified equality (Q×
pk

)pk = Q×
pk
∩ (Qpk

(ζpk
)×)pk , one verifies immedi-

ately that

k(ab) = Qpk
(ζpk

), dk = pk · (pk − 1), d
(ab)
k = pk − 1
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[cf. Definition 4.2, (iii), (iv)]. Thus, it follows from Proposition 4.9, (ii); [3], Proposition
3.6; [3], Proposition 3.11, (i), that the group Gk of MLF-type satisfies the three conditions
(a), (b), and (c) at the beginning of the present §8 in the case where we take the prime
number “l” to be pk. Moreover, in this case, by Lemma 6.7, (i), and Proposition 6.8, the
subgroup

Gal
(
k/Qpk

(ζpk
)
)
⊆

(
Aut(k) = Gal(k/Qpk

) ⊆
)

Out(Gk)

yields an example of a quasi-geometric subgroup of Out(Gk) of order pk, i.e., as discussed
in Lemma 8.1.

DEFINITION 8.2. — Let Γ ⊆ Out(G) be a quasi-geometric subgroup of order l.

(i) We shall write

T (Γ) ⊆ k×(G
out
o Γ)⊗Z Fl

for the uniquely determined F×l -torsor “T” of Lemma 8.1, (iv).

(ii) We shall refer to an element of the subset “S” of Lemma 8.1, (iv), as a Kummer
generator for Γ. Note that it follows from Lemma 8.1, (iv), that every Kummer generator
for Γ is contained in k×(G) (= k×(G)G ⊆ k×(G)).

(iii) We shall say that Γ is of unit-Kummer type if the image of the F×l -torsor T (Γ) ⊆
k×(G

out
o Γ)⊗Z Fl of (i) by the homomorphism

k×(G
out
o Γ)⊗Z Fl −→ (Fl)+

induced by ord�(G
out
o Γ) [cf. Definition 2.2] is {0} [or, alternatively 6= (Fl)+ \ {0}].

(iv) Let Γst ⊆ Out(G) be a strictly quasi-geometric [cf. Definition 6.6, (iii)] subgroup
that contains Γ. Then we shall say that Γ is of Γst-Kummer type if there exists a Kummer

generator γ ∈ k×(G) for Γ such that the l-th power γl ∈ k×(G) is contained in k×(G
out
o

Γst) (⊆ k×(G
out
o Γ)).

REMARK 8.2.1. — One verifies immediately from [3], Proposition 4.2, (i), together with
the various definitions involved, that, in the situation of Definition 8.2, (iv), the following
two conditions are equivalent:

(1) The quasi-geometric subgroup Γ is of Γst-Kummer type.

(2) There exists an element a ∈ k(G
out
o Γst) of the MLF k(G

out
o Γst) [cf. Definition 5.2,

Remark 5.2.1] such that the subgroup G ⊆ G
out
o Γst of G

out
o Γst coincides with the

intersection

(G
out
o Γ) ∩ (G

out
o Γst)(l; 1; l; a)

of the subgroup G
out
o Γ ⊆ G

out
o Γst and the subgroup (G

out
o Γst)(l; 1; l; a) ⊆ G

out
o Γst

of Definition 5.8, (ii), by the strictly radical data [cf. Definition 5.6, (i)] (l; 1; l; a) for

k(G
out
o Γst).
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REMARK 8.2.2. — Suppose that we are in the situation of Remark 8.1.1. Then one
verifies immediately from the various definitions involved that the following hold:

(i) The F×pk
-torsor

T
(
Gal

(
k/Qpk

(ζpk
)
))
⊆ k×

(
Gk

out
o Gal

(
k/Qpk

(ζpk
)
))
⊗Z Fpk

∼← Qpk
(ζpk

)× ⊗Z Fpk

[cf. [3], Proposition 3.11, (i)] is given by the F×pk
-torsor obtained by forming the F×pk

-orbit
of the image of a ∈ Q×

pk
⊆ Qpk

(ζpk
)× in Qpk

(ζpk
)× ⊗Z Fpk

.

(ii) The element a1/pk ∈ k×
∼→ k×(Gk) [cf. [3], Proposition 3.11, (i)] is a Kummer

generator for the quasi-geometric subgroup Gal(k/Qpk
(ζpk

)) of order pk.

(iii) It holds that the quasi-geometric subgroup Gal(k/Qpk
(ζpk

)) of order pk is of
unit-Kummer type if and only if a ∈ Z×

pk
· (Q×

pk
)pk .

(iv) Let us observe that, by Proposition 6.8, the subgroup(
Gal

(
k/Qpk

(ζpk
)
)
⊆

)
Aut(k) = Gal(k/Qpk

) ⊆ Out(Gk)

yields an example of a strictly quasi-geometric subgroup of Out(Gk) that contains the
quasi-geometric subgroup Gal(k/Qpk

(ζpk
)) of order pk, i.e., as discussed in Definition 8.2,

(iv). Moreover, in this case, since [we have assumed that] a ∈ Q×
pk

(= (k×)Aut(k)), the
quasi-geometric subgroup Gal(k/Qpk

(ζpk
)) of order pk is of Aut(k)-Kummer type.

LEMMA 8.3. — Let Γ, Σ ⊆ Out(G) be quasi-geometric subgroups of order l. Suppose
that Γ is not of unit-Kummer type. Let γ ∈ k×(G) be a Kummer generator for Γ.
Then the following hold:

(i) It holds that γ 6∈ k×(G
out
o Σ).

(ii) Suppose that γl ∈ k×(G
out
o Σ). Then γ is a Kummer generator for Σ.

(iii) Suppose that γl ∈ k×(G
out
o Σ). Then the quasi-geometric subgroup Σ is not of

unit-Kummer type.

Proof. — First, we verify assertion (i). Let us first observe that since Γ is of order l and
not of unit-Kummer type, it follows immediately from Proposition 2.3 that ord�(G)(γ) 6∈
lZ. On the other hand, since Σ is of order l, it follows immediately from Proposition 2.3

and Lemma 8.1, (iii), that ord�(G)(k×(G
out
o Σ)) = lZ. Thus, assertion (i) holds. This

completes the proof of assertion (i).

Next, since k×(G
out
o Σ)[l] 6= {1} [cf. Lemma 8.1, (iii)], and Σ is of order l, assertion

(ii) follows immediately — in light of [3], Proposition 4.2, (i) — from assertion (i) and
Kummer theory. Finally, since ord�(G)(γ) 6∈ lZ [cf. the proof of assertion (i)], and Σ is of
order l, assertion (iii) follows immediately — in light of Proposition 2.3 — from assertion
(ii) and Lemma 8.1, (iii). This completes the proof of Lemma 8.3. �

LEMMA 8.4. — Let Γst ⊆ Out(G) be a strictly quasi-geometric subgroup of Out(G).
Then the following hold:
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(i) The group Γst has a uniquely determined l-Sylow subgroup. Moreover, the
l-Sylow subgroup is of order l.

(ii) Let Σ ⊆ Out(G) be a subgroup of Out(G) such that Σ ⊆ NOut(G)(Γst). Then it
holds that

k×(G
out
o Γst) ⊆ k×(G)Σ.

(iii) In the situation of (ii), suppose, moreover, that Σ is quasi-geometric. Then it
holds that

k×(G
out
o Γst) ⊆ k×(G

out
o Σ).

Proof. — First, we verify assertion (i). Let us first observe that it follows from the
conditions (b), (c) at the beginning of the present §8, together with Lemma 6.7, (iv), that
each l-Sylow subgroup of Γst is of order l. Let Γ1, Γ2 ⊆ Γst be l-Sylow subgroups of Γst

[which thus implies that ]Γ1 = ]Γ2 = l]. Then since both Γ1 and Γ2 are quasi-geometric

[cf. Lemma 6.7, (i)], it follows immediately from Lemma 8.1, (i), that G
out
o Γ1 = G

out
o Γ2,

i.e., as subgroups of G
out
o Γst. In particular, we obtain that Γ1 = Γ2, i.e., as subgroups

of Out(G), as desired. This completes the proof of assertion (i).

Next, since Γst is strictly quasi-geometric [which thus implies that d(G
out
o Γst) = 1],

assertion (ii) follows immediately from Corollary 5.5. Finally, assertion (iii) follows from
assertion (ii), together with Lemma 6.7, (ii). This completes the proof of Lemma 8.4. �

THEOREM 8.5. — Let Γst ⊆ Out(G) be a strictly quasi-geometric subgroup of Out(G)
and Σ ⊆ Out(G) a quasi-geometric subgroup of order l. Write Γ ⊆ Γst for the uniquely
determined l-Sylow subgroup of Γst [cf. Lemma 8.4, (i)]. Suppose that the following three
conditions are satisfied:

(1) The subgroup Σ ⊆ Out(G) normalizes the subgroup Γst ⊆ Out(G).

(2) The quasi-geometric subgroup Γ is of Γst-Kummer type.

(3) The quasi-geometric subgroup Γ is not of unit-Kummer type.

Then the quasi-geometric subgroup Σ is not of unit-Kummer type.

Proof. — It follows from Lemma 8.4, (iii), and condition (1) that k×(G
out
o Γst) ⊆

k×(G
out
o Σ). Now observe that since Γ is of Γst-Kummer type [cf. condition (2)], there

exists a Kummer generator γ ∈ k×(G) for Γ such that γl ∈ k×(G
out
o Γst), which thus

implies [cf. the above inclusion k×(G
out
o Γst) ⊆ k×(G

out
o Σ)] that γl ∈ k×(G

out
o Σ). Thus,

since Γ is not of unit-Kummer type [cf. condition (3)], it follows from Lemma 8.3, (iii), that
Σ is not of unit-Kummer type, as desired. This completes the proof of Theorem 8.5. �

COROLLARY 8.6. — Suppose that pk is odd. For each � ∈ {◦, •}, let

a� ∈ Q×
pk
\ (Q×

pk
)pk ;

write
k�

def
= Qpk

(ζpk
, a

1/pk

� ), G�
def
= Gal(k�/k�)
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— where k� is an algebraic closure of k�. [So it follows from Theorem 4.11, together
with Remark 8.1.1 — cf. also Proposition 4.9, (i); [3], Proposition 3.6 — that the group
G◦ is isomorphic, as an abstract group, to G•.] Write

Φ: Out(G◦)
∼−→ Out(G•)

for the isomorphism obtained by conjugation by some fixed isomorphism G◦
∼→ G• of

groups. Suppose that a◦ ∈ Z×
pk

[e.g., a◦ = pk + 1] but a• 6∈ Z×
pk

[e.g., a• = pk]. Then it
holds that

Φ
(
Gal

(
k◦/Qpk

(ζpk
)
))
6⊆ NOut(G•)

(
Aut(k•)

)
.

Proof. — This assertion follows immediately from Theorem 8.5, together with Re-
mark 8.1.1 and Remark 8.2.2, (iii), (iv). �

REMARK 8.6.1.

(i) Let us recall from Theorem 6.13, (i), that if k is Galois-specifiable [cf. Definition 6.1],
then there is a precisely one Out(Gk)-conjugacy class of strictly quasi-geometric subgroups
of Out(Gk).

(ii) Next, suppose that we are in the situation of Corollary 8.6. Then it follows
immediately from Corollary 8.6 that Φ(Aut(k◦)) 6= Aut(k•). On the other hand, it fol-
lows from Proposition 6.8 that both Φ(Aut(k◦)) and Aut(k•) are strictly quasi-geometric.

Thus, [since one may take the isomorphism “G◦
∼→ G•” of Corollary 8.6 to be an arbitrary

isomorphism] there are at least two Out(G•)-conjugacy classes of strictly quasi-geometric
subgroups of Out(G•). In particular — in light of Theorem 5.9, (ii) — we conclude that,
in general, a similar assertion to Theorem 6.13, (i), for [the absolute Galois group of] an
absolutely characteristic [cf. Definition 5.7] MLF does not hold.

COROLLARY 8.7. — Suppose that pk is odd, and that

k = Qpk
(ζpk

, p
1/pk

k ).

Then the subgroup

Aut(k) ⊆ Out(Gk)

is neither normally terminal nor normal.

Proof. — Since k is absolutely strictly radical [cf. Definition 5.6, (iii)], hence also ab-
solutely characteristic [cf. Theorem 5.9, (ii)], it follows from Theorem 7.2, (i), that the
subgroup Aut(k) ⊆ Out(Gk) of Out(Gk) is not normally terminal. Moreover, it follows
immediately from Corollary 8.6 that the subgroup Aut(k) ⊆ Out(Gk) of Out(Gk) is not
normal. This completes the proof of Corollary 8.7. �

REMARK 8.7.1. — In the present Remark 8.7.1, let us recall some of the discussions of
the present §8 from the point of view of the notion of “link” [cf. [9], §2.7, (i)] as follows:
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(i) Let us apply the notational conventions introduced in the statement of Corol-
lary 8.6. In particular, the prime number pk is odd. Moreover, for each � ∈ {◦, •}, we
are given an element

a� ∈ Q×
pk
\ (Q×

pk
)pk ,

an MLF

k�
def
= Qpk

(ζpk
, a

1/pk

� ),

and an algebraic closure

k�

of k�. Here, let us recall that the MLF k� — that is one of the main arithmetic holo-
morphic objects [cf. [9], §2.7, (vii)] in this discussion — determines some mono-analytic
objects [cf. [9], §2.7, (vii)]. For instance, we have

• the group of MLF-type

G�
def
= Gal(k�/k�)

obtained by forming the absolute Galois group of k� and

• the MLF ♦ -pair [cf. [3], Definition 5.3]

G� y k×�

obtained by considering the natural action of G� on k×�.

In the remainder of Remark 8.7.1, suppose that we are in a situation in which

we are interested in a certain “characterization” of the element a� ∈ Q×
pk

from the point of view of such mono-analytic objects associated to the
arithmetic holomorphic object k�.

More specifically, suppose that we are in a situation in which

we are interested in a certain “comparison” between a◦ and a• via a suitable
“link” that relates such mono-analytic objects associated to k◦ and k•.

a “link”, i.e., a suitable isomorphism

mono-an. obj. of k◦
∼→ mono-an. obj. of k•
?

=⇒ a certain “comparison” between a◦ and a•

(ii) Let us start by observing that, for each � ∈ {◦, •}, the group G� of MLF-type
does not give any “characterization” of the element a� ∈ Q×

pk
. Indeed, one verifies easily

that

k
(ab)
� = Qpk

(ζpk
), dk�

= pk · (pk − 1), d
(ab)
k�

= pk − 1.

Thus, it follows immediately from Theorem 4.11 [cf. also Proposition 4.9, (i); [3], Propo-
sition 3.6] that the isomorphism class of the group “G�” does not depend on the choice
of “a�”. In particular, we have an isomorphism of groups

G◦
∼−→ G•.

As a consequence, one may conclude that

one cannot obtain “any information about a�” if one considers only “G�”.



66 Yuichiro Hoshi

(iii) In order to obtain a certain “comparison” between a◦ and a•, let us relate mono-
analytic portions of the arithmetic holomorphic structures of k◦ and k• as follows: In the
remainder of Remark 8.7.1, let us fix an isomorphism of [abstract] groups [i.e., between
Frobenius-like portions — cf. [3], Definition 5.4]

αFr : k×◦
∼−→ k×•

such that the isomorphism Aut(k×◦ )
∼→ Aut(k×• ) obtained by conjugation by αFr restricts

to an isomorphism of G◦ ⊆ Aut(k×◦ ) with G• ⊆ Aut(k×• ). Write

αét : G◦
∼−→ G•

for the resulting isomorphism [i.e., between étale-like portions — cf. [3], Definition 5.4].
[So the pair (αFr, αét) determines an isomorphism

(αFr, αét) : (G◦ y k×◦ )
∼−→ (G• y k×• )

of MLF ♦ -pairs — cf. [3], Definition 5.1, (ii).] In particular, roughly speaking, we are in a
situation in which the collection of data “G� y k×�” may be regarded as a coric object
[cf. [9], §2.7, (iv)] of our “link” [i.e., the pair (αFr, αét)].

Note that we have natural inclusions of groups

G� ⊆ GΓ
�

def
= Gal(k�/k

(ab)
� ) ⊆ Aut(k�) ⊆ Aut(k×�).

Write
k

(d=1)
�

def
= (k�)Aut(k).

[So k
(d=1)
� = Qpk

in k�.] Thus, we have a natural identification

Aut(k�) = Gal(k�/k
(d=1)
� ).

In particular, the group Aut(k�) is a group of MLF-type such that d(Aut(k�)) = 1 [cf.
[3], Proposition 3.6].

(iv) Before proceeding, we pause to recall some of the discussions of §5 from the point
of view of this situation. Let us recall that the reconstruction algorithms of Definition 5.2
and Definition 5.8, (i), assert that, in this situation,

(∗): the MLF k
(d=1)
� , as well as the collection of strictly radical data for the

MLF k
(d=1)
� [cf. Definition 5.6, (i)] each member of which yields the abso-

lutely strictly radical MLF k� [e.g., the strictly radical data (pk; 1; pk; a�)

for k
(d=1)
� ], is “intrinsic” from the point of view of the collection of data

G� ↪→ Aut(k�) y k×�

— i.e., the MLF ♦ -pair Aut(k�) y k×� equipped with the subgroup G� ⊆
Aut(k�) of the étale-like portion Aut(k�).

Here, suppose that the “link” of (iii) [i.e., the pair (αFr, αét)] satisfies the condition that

(†1): the isomorphism Aut(k×◦ )
∼→ Aut(k×• ) obtained by conjugation by

αFr also restricts to an isomorphism of Aut(k◦) ⊆ Aut(k×◦ ) with Aut(k•) ⊆
Aut(k×• ).

[Put another way, roughly speaking, we are in a situation in which the collection of data
“Aut(k�) y k×�” may be regarded as a coric object of our “link”.] Then we conclude
immediately from the above (∗) that
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the ((k
(d=1)
◦ )×)pk-orbit of a◦ ∈ (k

(d=1)
◦ )× coincides — relative to some

isomorphism k◦
∼→ k• of fields [i.e., determined by either the restric-

tion αFr|(k(d=1)
◦ )×

or the composite of αFr|(k(d=1)
◦ )×

and the automorphism

of (k
(d=1)
• )× given by “x 7→ x−1” — cf. [3], Theorem 7.6, (ii)] — with the

((k
(d=1)
• )×)pk-orbit of a• ∈ (k

(d=1)
• )×,

i.e., obtain a certain “comparison” between a◦ and a•. As a result,

the field k◦ is isomorphic, as an abstract field, to the field k•.

This is precisely what is achieved by the application of the “tautological” assertion in
Remark 5.9.3, (i), to absolutely strictly radical MLF’s [cf. Remark 5.9.3, (ii)].

Put another way, roughly speaking,

in the situation of (iv), one may characterize the element a� up to the

indeterminacies arise from the action of the group ((k
(d=1)
� )×)pk .

Aut(k◦)
∼→ Aut(k•)

y y
k×◦

∼→ k×• =⇒ a◦ = a• up to ((k
(d=1)
◦ )×)pk

∼→ ((k
(d=1)
• )×)pk

(v) Let us return to the situation of the present §8. Next, suppose that the “link” of
(iii) [i.e., the pair (αFr, αét)] satisfies the condition that

(†2): the action of the subgroup GΓ
◦ ⊆ Aut(k×◦ ) on Aut(k×• ) by conjugation

— relative to the isomorphism Aut(k×◦ )
∼→ Aut(k×• ) by αFr — preserves

the subgroup Aut(k•) ⊆ Aut(k×• ).

[Note that one verifies easily that the condition (†1) in (iv) implies this condition (†2).]
In this situation, we are not given any isomorphism of Aut(k◦) with Aut(k•). [Put

another way, roughly speaking, we cannot regard the collection of data “Aut(k�) y k×�”
as a coric object of our “link”.] In particular, we cannot apply the reconstruction algorithm
of Definition 5.8, (i). Nevertheless, Theorem 8.5 allows one to conclude that

if the ((k
(d=1)
◦ )×)pk-orbit of a◦ ∈ (k

(d=1)
◦ )× contains a unit of O

k
(d=1)
◦

, then

the ((k
(d=1)
• )×)pk-orbit of a• ∈ (k

(d=1)
• )× contains a unit of O

k
(d=1)
•

,

which thus implies that

if ord
k
(d=1)
◦

(a◦) = 0, then ord
k
(d=1)
•

(a•) ∈ pkZ.

In particular, we obtain a certain “comparison” between a◦ and a•.

GΓ
◦ ⊇ G◦

∼→ G• ⊆ Aut(k•)
y y
k×◦

∼→ k×• , GΓ
◦ y k×• preserves Aut(k•)

Then: ord
k
(d=1)
◦

(a◦) = 0 =⇒ ord
k
(d=1)
•

(a•) ∈ pkZ

(vi) Finally, in order to obtain an application of the conclusion of the discussion of
(v), let us take the “(a◦, a•)” to be (pk + 1, pk). Then it follows from the discussion of
(ii) that the group G◦ is isomorphic to the group G•. Thus, by applying a technique of
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mono-anabelian transport [cf. [3], Theorem 7.6, (i); also [3], Remark 7.6.1, (i)], we obtain
a “link”

(αFr, αét) : (G◦ y k×◦ )
∼−→ (G• y k×• )

as in (iii). In particular, since (a◦, a•) = (pk + 1, pk), it follows from the conclusion of the
discussion of (v) that the “link” does not satisfy the condition (†2) in (v), i.e., that

the action of GΓ
◦ on Aut(k×• ) by conjugation — relative to the isomorphism

Aut(k×◦ )
∼→ Aut(k×• ) by αFr — does not preserve the subgroup Aut(k•) ⊆

Aut(k×• ).

Therefore, we conclude that

the subgroup Aut(k•) ⊆ Aut(G•) is not normal,

which thus implies — by considering the respective quotients by G• — that

the subgroup Aut(k•) ⊆ Out(G•) is not normal.

This situation is precisely the situation formulated in the “nonnormal portion” of Corol-
lary 8.7.
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