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Abstract. — In the present paper, we study profinite groups of PIPSC-type, i.e., abstract
profinite groups isomorphic to the extensions determined by outer representations of PIPSC-
type. In particular, we establish a “group-theoretic” algorithm for constructing, from a profi-
nite group of PIPSC-type that is noncuspidal, a certain profinite graph.
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Introduction

In the present paper, we study the combinatorial anabelian geometry of semi-graphs
of anabelioids of PSC-type, i.e., roughly speaking, semi-graphs of anabelioids associated
to pointed stable curves [cf., e.g., [7], [3], [4], [5], [6]]. The focus of the present paper is
on a “group-theoretic” reconstruction, from a profinite group of PIPSC-type, of a certain
profinite graph [cf. Theorem A below].

Let Σ be a nonempty set of prime numbers and G a semi-graph of anabelioids of pro-

Σ PSC-type [cf. [7], Definition 1.1, (i)]. Let us fix a universal pro-Σ covering G̃ → G
of G. Write G̃ for the underlying profinite semi-graph of G̃ [i.e., the projective system
consisting of the underlying semi-graphs of the connected finite étale subcoverings of

G̃ → G] and ΠG for the [pro-Σ] fundamental group of G determined by G̃ → G. Let I
be a profinite group and ρ : I → Aut(G) an outer representation of pro-Σ PSC-type [cf.
[3], Definition 2.1, (i)], which thus determines a homomorphism I → Out(ΠG). Then
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since ΠG is topologically finitely generated and center-free [cf. [7], Remark 1.1.3], the

outer representation ρ determines a profinite group Πρ
def
= ΠG

out
o I that fits into an exact

sequence of profinite groups

1 −→ ΠG −→ Πρ −→ I −→ 1

[cf. the discussion entitled “Profinite Groups” in §0].
Main objects of the present paper are outer representations of PIPSC-type [cf. [6],

Definition 1.3] and profinite groups of PIPSC-type [cf. Definition 3.1]. Let us recall
that, roughly speaking, an outer representation of PIPSC-type is defined to be an outer
representation of PSC-type whose restriction to some open subgroup of the domain is
isomorphic to the outer representation arising from a pointed stable curve over a log
point. A profinite group of PIPSC-type is defined to be a profinite group isomorphic,
as an abstract profinite group, to the profinite group “Πρ” as above for some outer
representation “ρ” of PIPSC-type; moreover, we shall say that a profinite group of PIPSC-
type is noncuspidal if one may take the “G” as above to be a semi-graph of anabelioids
of pro-Σ PSC-type that has no cusp [cf. Definition 3.2; Proposition 3.3]. An example
of a profinite group of PIPSC-type is as follows: Let R be a strictly henselian discrete
valuation ring of residue characteristic zero. Then the étale fundamental group of a
hyperbolic curve over the field of fractions of R is an example of a profinite group of
PIPSC-type [cf. Remark 3.1.2, (ii)]. Moreover, in this situation, the profinite semi-graph

“G̃” as above may be naturally identified with the projective system consisting of the
dual semi-graphs of the special fibers of the geometric stable models of the connected
finite étale coverings of X [i.e., dominated by a fixed universal profinite covering of X].

The main result of the present paper may be summarized as follows [cf. Theorem 3.13]:

THEOREM A. — There exists a “group-theoretic” algorithm

G̃ : Π 7→ (Π y G̃(Π))

for constructing, from a profinite group Π of PIPSC-type that is noncuspidal, a profi-

nite graph G̃(Π) equipped with an action of Π such that if the above ρ is of PIPSC-type
[which thus implies that the above profinite group Πρ is of PIPSC-type], and G has no

cusp, then there exists a natural isomorphism of G̃ with G̃(Πρ).

Here, let us recall that if we are in a situation in which the profinite group Πρ is
equipped with the closed subgroup ΠG ⊆ Πρ, then a similar reconstruction result to the
reconstruction result of Theorem A was already essentially obtained by S. Mochizuki and
the author of the present paper in [5], Theorem 1.9, (ii), without the noncuspidal assump-
tion. That is to say, roughly speaking, we already have a “group-theoretic” algorithm

(ΠG ⊆ Πρ) 7→ (ΠG ⊆ Πρ y G̃)

for constructing, from the profinite group Πρ equipped with the closed subgroup ΠG ⊆ Πρ,

the profinite graph G̃ equipped with the natural action of Πρ. Thus, Theorem A may be
regarded as a refinement of this reconstruction result of [5] in the noncuspidal case.
Next, let us observe that if one considers the maximal pro-Σ quotient “Π” of the étale

fundamental group of a certain hyperbolic curve over the field of fractions of a strictly
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henselian discrete valuation ring of residue characteristic 6∈ Σ [cf. Remark 3.1.2], then one
verifies easily that it holds that the hyperbolic curve has potentially good reduction if and

only if the profinite graph “G̃(Π)” of Theorem A has no node. In particular, as discussed
in the introductions of [7] and [3], this sort of result may be regarded as a refinement
of the “group-theoretic” pro-l criterion by Takayuki Oda and Akio Tamagawa for such a
hyperbolic curve to have good reduction.
Finally, in §4, we study analogues of the discussions of [2], §5, and [2], §7 [i.e., related

to mono-anabelian transport for MLF-pairs], from the point of view of the present paper.
A PIPSC-pair is defined to be a collection of data Π y H consisting of a profinite semi-
graph H, a profinite group Π, and a continuous action of Π on H which is isomorphic to

the collection of data “Πρ y G̃” as above for some outer representation “ρ” of PIPSC-
type [cf. Definition 4.2, (ii)]; moreover, we shall say that a PIPSC-pair is noncuspidal if
one may take the “G” as above to be a semi-graph of anabelioids of pro-Σ PSC-type that
has no cusp [cf. Definition 4.2, (ii)]. As an application of Theorem A, we also prove the
following result in §4 [cf. Theorem 4.5]:

THEOREM B. — Let Π◦ y H◦, Π• y H• be noncuspidal PIPSC-pairs. Then the
natural map

Isom(Π◦ y H◦,Π• y H•) −→ Isom(Π◦,Π•)

is bijective.

Here, observe that the bijectivity of the map of Theorem B may be regarded as an
analogue of the bijectivity of the map of [2], Theorem 7.6, (iv), from the point of view of
the present paper.
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0. Notations and Conventions

Profinite Groups. — If G is a profinite group, then we shall write Aut(G) for the
group of automorphisms of the profinite group G, Out(G) for the group of outer auto-
morphisms of the profinite group G, Gab for the abelianization of G [i.e., the maximal
abelian quotient of G whose kernel is closed in G], and Gab-free for the maximal abelian
torsion-free quotient of G whose kernel is closed in G.

If G is a profinite group, and H ⊆ G is a closed subgroup of G, then we shall write
ZG(H) ⊆ NG(H) ⊆ CG(H) ⊆ G for the centralizer, normalizer, and commensurator
of H in G, respectively. We shall say that H is characteristic if every automorphism
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of the profinite group G restricts to an automorphism of H. We shall say that H is
commensurably terminal if H = CG(H).
If G is a profinite group, then we shall refer to the inductive limit of the respective

centralizers, in G, of the open subgroups of G as the local center of G. Thus, the local
center of G contains the center ZG(G) of G. We shall say that G is slim if the local center
of G is trivial.

If G is a topologically finitely generated profinite group, then one verifies easily that G
admits a basis of characteristic open subgroups, which thus induces a profinite topology
on Aut(G), hence also on Out(G), with respect to which the natural exact sequence of
groups G → Aut(G) → Out(G) → 1 — where the first arrow is given by the action by
conjugation — determines an exact sequence of profinite groups. Now suppose, moreover,
that G is center-free [which thus implies that the above exact sequence of profinite groups
determines an exact sequence 1 → G → Aut(G) → Out(G) → 1], and that we are given
a profinite group J and a homomorphism ρ : J → Out(G) of profinite groups. Then we
shall write

G
out
o J

def
= Aut(G)×Out(G) J.

Thus, the profinite group G
out
o J fits into an exact sequence of profinite groups

1 −→ G −→ G
out
o J −→ J −→ 1.

Semi-graphs. — In the present paper, we shall refer to a collection of data

G = (Vert(G), Cusp(G), Node(G), {ζe}e∈Cusp(G)⊔Node(G))

consisting of

• a nonempty set Vert(G),

• a set Cusp(G) of sets of cardinality one,

• a set Node(G) of sets of cardinality two, and,

• for each e ∈ Cusp(G) t Node(G), a map ζe : e → Vert(G) of sets

such that,

• for each e, e′ ∈ Cusp(G) t Node(G), if e 6= e′, then e ∩ e′ = ∅
as a semi-graph. For two semi-graphs G = (Vert(G),Cusp(G),Node(G), {ζe}e) and G′ =
(Vert(G′),Cusp(G′),Node(G′), {ζ ′e′}e′), we shall refer to a collection of data

φ = (φVert, φEdge, {φe}e∈Cusp(G)⊔Node(G))

consisting of

• maps φVert : Vert(G) → Vert(G′), φEdge : Cusp(G)tNode(G) → Cusp(G′)tNode(G′)
of sets and,

• for each e ∈ Cusp(G) t Node(G), a bijection φe : e
∼→ φEdge(e) of sets

such that,
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• for each e ∈ Cusp(G) t Node(G), the diagram

e
ζe−−−→ Vert(G)

ϕe

y yϕVert

φEdge(e) −−−−−→
ζ′
ϕEdge(e)

Vert(G′)

commutes

as a morphism G → G′ of semi-graphs.
Let G = (Vert(G),Cusp(G),Node(G), {ζe}e) be a semi-graph. We shall refer to an

element of Vert(G) (respectively, Cusp(G); Node(G); Cusp(G) t Node(G)) as a vertex
(respectively, a cusp; a node; an edge) of G. For a vertex v of G and an edge e of G, we
shall say that e abuts to v if v ∈ Im(ζe). We shall say that G is a graph if Cusp(G) = ∅.
We shall say that G is finite if each of the sets Vert(G), Cusp(G), and Node(G) is finite.
In a case where G is finite, we shall say that G is connected if, for every v, w ∈ Vert(G),
there exist vertices v0, . . . , vr of G and nodes e1, . . . , er of G such that v0 = v, vr = w,
and, for each 1 ≤ i ≤ r, the node ei abuts to both vi−1 and vi. We shall say that G is
untangled if, for every e ∈ Node(G), the image of ζe is of cardinality two.

We shall refer to a projective system consisting of finite semi-graphs as a profinite semi-

graph. Let G̃ = (Gλ = (Vert(Gλ),Cusp(Gλ),Node(Gλ), {ζλ,eλ}eλ))λ be a profinite semi-
graph. We shall refer to an element of the projective limit of the Vert(Gλ)’s (respectively,
Cusp(Gλ)’s; Node(Gλ)’s; Cusp(Gλ)tNode(Gλ)’s) as a vertex (respectively, a cusp; a node;

an edge) of G̃. For a vertex v = (vλ)λ of G̃ and an edge e = (eλ)λ of G̃, we shall say that

e abuts to v if eλ abuts to vλ for every λ. We shall say that G̃ is a profinite graph if each

of the Gλ’s is a graph. We shall say that G̃ is connected if each of the Gλ’s is connected.

1. Extensions Determined by Outer Representations of PSC-type

A basic reference for the theory of semi-graphs of anabelioids of PSC-type is [7]. We
shall use the terms “semi-graph of anabelioids of [pro-Σ] PSC-type”, “PSC-fundamental
group of a semi-graph of anabelioids of [pro-Σ] PSC-type”, “finite étale covering of semi-
graphs of anabelioids of [pro-Σ] PSC-type”, “vertex”, “edge”, “cusp”, and “node” as they
are defined in [7], Definition 1.1. Also, we shall refer to the “PSC-fundamental group of
a semi-graph of anabelioids of [pro-Σ] PSC-type” simply as the “fundamental group” [of
the semi-graph of anabelioids of [pro-Σ] PSC-type]. That is to say, we shall refer to the
maximal pro-Σ quotient of the fundamental group of a semi-graph of anabelioids of pro-Σ
PSC-type [as a semi-graph of anabelioids] as the “fundamental group of the semi-graph
of anabelioids of pro-Σ PSC-type”.

In the present §1, let Σ be a nonempty set of prime numbers and

G
a semi-graph of anabelioids of pro-Σ PSC-type. Let us fix a universal pro-Σ covering

G̃ → G of G. Write G̃ for the underlying profinite semi-graph of G̃ [i.e., the projective
system consisting of the underlying semi-graphs of the connected finite étale subcoverings

of G̃ → G] and
ΠG
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for the fundamental group of G determined by G̃ → G.

DEFINITION 1.1.

(i) We shall write

Vert(G̃), Node(G̃)
for the sets of vertices, nodes of G̃, i.e., of the profinite semi-graph G̃, respectively. More-
over, we shall write

VN(G̃) def
= Vert(G̃) t Node(G̃).

(ii) Let z̃ ∈ VN(G̃) be an element of VN(G̃). Then we shall write

Πz̃ ⊆ ΠG

for the VCN-subgroup of ΠG associated to z̃ ∈ VN(G̃) [cf. [4], Definition 2.1, (i)], i.e., the

stabilizer of z̃ ∈ VN(G̃) with respect to the natural action of ΠG on VN(G̃).
(iii) We shall write

Π
ab/node
G

for the quotient of the abelianization Πab
G of ΠG by the [necessarily normal closed] subgroup

topologically generated by the images of Πẽ ⊆ ΠG, where ẽ ranges over the nodes of G̃.

REMARK 1.1.1. — Let us recall that it follows from the well-known structure of the
maximal pro-Σ quotient of the admissible fundamental group of a pointed stable curve
over an algebraically closed field of characteristic 6∈ Σ [cf. also [7], Example 2.5] that the

quotient Π
ab/node
G is torsion-free [cf. also [7], Remark 1.1.4].

LEMMA 1.2. — Let J ⊆ ΠG be a nontrivial procyclic closed subgroup of ΠG. Then the
following two conditions are equivalent:

(1) There exists a [uniquely determined — cf. [3], Lemma 1.5] node ẽ ∈ Node(G̃) of

G̃ such that J ⊆ Πẽ.

(2) For every connected finite étale subcovering H → G of G̃ → G, the image of the
composite

J ∩ ΠH ↪→ ΠH ↠ Π
ab/node
H

is trivial.

Proof. — This follows immediately from a similar argument to the argument applied
in the proof of [3], Lemma 1.6. □

LEMMA 1.3. — The following hold:

(i) There exists a connected finite étale subcovering H → G of G̃ → G such that the
underlying semi-graph of H is untangled.
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(ii) If the underlying semi-graph of G is untangled, then the underlying semi-graph

of a connected finite étale subcovering of G̃ → G is untangled.

Proof. — Assertion (i) follows from the fourth paragraph of the discussion entitled
“Curves” in [8], §0. Assertion (ii) is immediate. This completes the proof of Lemma 1.3.

□

In the remainder of the present §1, let I be a profinite group and ρ : I → Aut(G) an
outer representation of pro-Σ PSC-type [cf. [3], Definition 2.1, (i)], i.e., a homomorphism
of profinite groups, which thus determines a homomorphism

I −→ Out(ΠG).

DEFINITION 1.4.

(i) Since ΠG is topologically finitely generated and center-free [cf. [7], Remark 1.1.3],
the outer representation ρ determines an exact sequence of profinite groups

1 −→ ΠG −→ ΠG
out
o I −→ I −→ 1

[cf. the discussion entitled “Profinite Groups” in §0]. We shall write

Πρ
def
= ΠG

out
o I

for the middle profinite group of this exact sequence.

(ii) Let z̃ ∈ VN(G̃) be an element of VN(G̃). Then we shall write

Iz̃
def
= ZΠρ(Πz̃) ⊆ Dz̃

def
= NΠρ(Πz̃) ⊆ Πρ

for the inertia, decomposition subgroups of Πρ associated to z̃, respectively [cf. [3], Defi-
nition 2.2, (i), (iii)].

(iii) Let H ⊆ Πρ be an open subgroup of Πρ. Then the open subgroup H ∩ ΠG ⊆ ΠG

of ΠG corresponds to a connected finite étale subcovering H → G of G̃ → G. Moreover,
one verifies easily that if we write IH ⊆ I for the image of H ⊆ Πρ in I, then the resulting
exact sequence of profinite groups

1 −→ ΠH −→ H −→ IH −→ 1

determines an outer representation IH → Aut(H) of pro-Σ PSC-type. We shall refer
to this resulting outer representation of pro-Σ PSC-type as the outer representation of
pro-Σ PSC-type determined by the open subgroup H ⊆ Πρ of Πρ.

REMARK 1.4.1. — Note that the exact sequence of profinite groups

1 −→ ΠG −→ Πρ −→ I −→ 1

determines an action of I on the abelianization Πab
G of ΠG.
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REMARK 1.4.2. — One verifies immediately from [7], Proposition 1.2, (i), that, for each

z̃ ∈ VN(G̃), the decomposition subgroup Dz̃ ⊆ Πρ associated to z̃ coincides with the

stabilizer of z̃ ∈ VN(G̃) with respect to the natural action of Πρ on VN(G̃).

LEMMA 1.5. — The following hold:

(i) For every z̃ ∈ VN(G̃), the equality Dz̃ ∩ ΠG = Πz̃ holds.

(ii) For every ṽ ∈ Vert(G̃), the equality Iṽ ∩ ΠG = {1} holds.

(iii) For every ṽ ∈ Vert(G̃), the composite Iṽ ↪→ Πρ ↠ I is injective. In particular,
if I is abelian, then Iṽ is abelian.

(iv) For every ṽ ∈ Vert(G̃), the natural inclusions Πṽ, Iṽ ↪→ Dṽ determine an injec-
tion Πṽ × Iṽ ↪→ Dṽ.

Proof. — Assertion (i) follows formally from the commensurable terminality of Πz̃ in
ΠG [cf. [7], Proposition 1.2, (ii)]. Assertion (ii) follows from [3], Lemma 2.3, (i). Assertions
(iii), (iv) follow from assertion (ii). This completes the proof of Lemma 1.5. □

LEMMA 1.6. — For every z̃1, z̃2 ∈ VN(G̃), the following two conditions are equivalent:

(1) The equality z̃1 = z̃2 holds.

(2) The equality Dz̃1 = Dz̃2 holds.

Proof. — The implication (1) ⇒ (2) is immediate. The implication (2) ⇒ (1) follows
from [7], Proposition 1.2, (i) [cf. also [7], Remark 1.1.3], together with Lemma 1.5, (i).
This completes the proof of Lemma 1.6. □

Next, let us recall some fundamental conditions imposed on outer representations of
PSC-type [cf. [3], Definition 2.4; [6], Definition 1.3]:

DEFINITION 1.7.

(i) We shall say that ρ is of IPSC-type [cf. [3], Definition 2.4, (i)] [where the “IPSC”
stands for “inertial pointed stable curve”] if ρ is isomorphic [cf. [3], Definition 2.1, (ii)]
to the outer representation of PSC-type determined by [cf. [3], Remark 2.1.1] a pro-Σ
IPSC-extension [i.e., roughly speaking, an extension that arises from a stable log curve
over a log point — cf. [8], Definition 1.2, (ii)]. We shall say that ρ is of PIPSC-type
[cf. [6], Definition 1.3] [where the “PIPSC” stands for “potentially inertial pointed stable
curve”] if the following two conditions are satisfied:

(1) The profinite group I is isomorphic, as an abstract profinite group, to ẐΣ.

(2) The restriction of ρ to some open subgroup of I is of IPSC-type.

(ii) We shall say that ρ is of VA-type [cf. [3], Definition 2.4, (ii)] [where the “VA”
stands for “verticially admissible”] if condition (1) in (i) and the following condition are
satisfied:
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(3) For every ṽ ∈ Vert(G̃), the [necessarily injective — cf. Lemma 1.5, (iii)] com-
posite Iṽ ↪→ Πρ ↠ I is an open homomorphism.

We shall say that ρ is of SVA-type [cf. [3], Definition 2.4, (ii)] [where the “SVA” stands
for “strictly verticially admissible”] if condition (1) in (i) and the following condition are
satisfied:

(3′) For every ṽ ∈ Vert(G̃), the [necessarily injective — cf. Lemma 1.5, (iii)] com-
posite Iṽ ↪→ Πρ ↠ I is surjective.

(iii) We shall say that ρ is of NN-type [cf. [3], Definition 2.4, (iii)] [where the “NN”
stands for “nodally nondegenerate”] if ρ is of VA-type, and, moreover, the following
condition is satisfied:

(4) For every ẽ ∈ Node(G̃), if we write ṽ1, ṽ2 ∈ Vert(G̃) for the two distinct vertices

of G̃ to which ẽ abuts, then the natural inclusions Iṽ1 , Iṽ2 ↪→ Iẽ determine an open
injection Iṽ1 × Iṽ2 ↪→ Iẽ.

We shall say that ρ is of SNN-type [cf. [3], Definition 2.4, (iii)] [where the “SNN” stands
for “strictly nodally nondegenerate”] if ρ is of SVA-type and of NN-type.

LEMMA 1.8. — The following hold:

(i) The following implications hold:

ρ is of IPSC-type =⇒ ρ is of SNN-type =⇒ ρ is of SVA-type

⇓ ⇓ ⇓

ρ is of PIPSC-type =⇒ ρ is of NN-type =⇒ ρ is of VA-type.

(ii) If ρ is of SVA-type, then the three vertical implications in (i) are equivalences.

(iii) Suppose that I is isomorphic, as an abstract profinite group, to ẐΣ. Let H ⊆
Πρ be an open subgroup of Πρ. Write ρH for the outer representation of pro-Σ PSC-
type determined by H [cf. Definition 1.4, (iii)]. Then it holds that ρ is of PIPSC-
type (respectively, of VA-type; of NN-type) if and only if ρH is of PIPSC-type
(respectively, of VA-type; of NN-type).

Proof. — Assertion (i) follows from [3], Remark 2.4.2, and [6], Remark 1.6.2. Next,
we verify assertion (ii). Now it is immediate that the middle and right-hand vertical
implications in assertion (i) are equivalences under the assumption that ρ is of SVA-type.
On the other hand, it follows immediately from [4], Corollary 5.9, (i), (iii), that the left-
hand vertical implication in assertion (i) is an equivalence under the assumption that ρ
is of SVA-type. This completes the proof of assertion (ii). Finally, assertion (iii) follows
immediately from a similar argument to the argument applied in the proof of [6], Lemma
1.5. This completes the proof of Lemma 1.8. □

LEMMA 1.9. — Suppose that ρ is of VA-type. Let ṽ ∈ Vert(G̃) be a vertex of G̃. Then
the closed subgroup Iṽ ⊆ Dṽ of Dṽ coincides with the local center of Dṽ.



10 Yuichiro Hoshi

Proof. — Let us first observe that it follows from Lemma 1.5, (i), and condition (3) of
Definition 1.7, (ii), that the subgroup Πṽ × Iṽ ⊆ Dṽ of Dṽ [cf. Lemma 1.5, (iv)] is open.
Thus, since Iṽ is abelian [cf. Lemma 1.5, (iii)], we conclude that Iṽ is contained in the
local center of Dṽ.

Next, let γ ∈ Dṽ be an element of the local center ofDṽ. Thus, the element γ centralizes
some open subgroup of Dṽ, hence also some open subgroup of Πṽ. Now let us recall that
Πṽ is slim [cf. [7], Remark 1.1.3]. Thus, since Πṽ is normal in Dṽ, the element γ centralizes
Πṽ, i.e., γ ∈ Iṽ, as desired. This completes the proof of Lemma 1.9. □

LEMMA 1.10. — Suppose that ρ is of VA-type. Let ṽ ∈ Vert(G̃) be a vertex of G̃ and

ẽ ∈ Node(G̃) a node of G̃. Then the following two conditions are equivalent:

(1) The node ẽ abuts to the vertex ṽ.

(2) The intersection Dẽ ∩Dṽ is not procyclic.

Proof. — First, we verify the implication (1) ⇒ (2). Suppose that condition (1) is
satisfied. Then it is immediate that Πẽ ⊆ Πṽ, which thus implies that Iṽ ⊆ Iẽ. In
particular, it follows from Lemma 1.5, (ii), that Πẽ × Iṽ ⊆ Dẽ ∩ Dṽ. Now recall that

both Πẽ and Iṽ are isomorphic, as abstract profinite groups, to ẐΣ [cf. [7], Remark 1.1.3;
condition (3) of Definition 1.7, (ii)]. Thus, we conclude that condition (2) is satisfied.
This completes the proof of the implication (1) ⇒ (2).
Next, we verify the implication (2) ⇒ (1). Suppose that condition (1) is not satisfied.

Then it follows from [3], Lemma 1.7, together with Lemma 1.5, (i), that Dẽ ∩Dṽ ∩ΠG =
{1}, which thus implies that the composite Dẽ ∩Dṽ ↪→ Πρ ↠ I is injective. Thus, since
I is procyclic, condition (2) is not satisfied. This completes the proof of the implication
(2) ⇒ (1), hence also of Lemma 1.10. □

LEMMA 1.11. — Suppose that ρ is of NN-type. Let ẽ1, ẽ2 ∈ Node(G̃) be nodes of G̃.
Then the following two conditions are equivalent:

(1) It holds that ẽ1 6= ẽ2, but there exists a [uniquely determined] vertex of G̃ to which
both ẽ1 and ẽ2 abut.

(2) It holds that Dẽ1 6= Dẽ2, but Dẽ1 ∩Dẽ2 6= {1}.
Proof. — This assertion follows from [3], Proposition 3.8, (i). □

LEMMA 1.12. — In the situation of Lemma 1.11, suppose that the two conditions in

the statement of Lemma 1.11 are satisfied. Write ṽ ∈ Vert(G̃) for the unique vertex of
condition (1) of Lemma 1.11. Then the following hold:

(i) The intersection Iṽ ∩Dẽ1 ∩Dẽ2 is open in both Iṽ and Dẽ1 ∩Dẽ2. In particular,
the equality CΠρ(Iṽ) = CΠρ(Dẽ1 ∩Dẽ2) holds.

(ii) The inclusion CΠρ(Iṽ) ⊆ Dṽ holds.

(iii) The inclusion Dṽ ⊆ NΠρ(Iṽ) holds.

(iv) The equality CΠρ(Dẽ1 ∩Dẽ2) = Dṽ holds.
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Proof. — Assertion (i) follows from [3], Proposition 3.8, (ii). Assertion (ii) follows im-
mediately from the final equivalence of [3], Remark 3.5.1. Assertion (iii) follows formally
— in light of Lemma 1.8, (i) — from Lemma 1.9. Assertion (iv) follows from assertions
(i), (ii), (iii). This completes the proof of Lemma 1.12. □

LEMMA 1.13. — The following hold:

(i) It holds that the semi-graph obtained by forming the quotient, by the natural action
of I, of the underlying semi-graph of G is untangled if and only if the following condition

is satisfied: Let ẽ ∈ Node(G̃) be a node of G̃. Write ṽ1, ṽ2 ∈ Vert(G̃) for the two distinct

vertices of G̃ to which ẽ abuts. Then the Πρ-conjugacy class of the pair (Dṽ1 , Dṽ2) does
not coincide with the Πρ-conjugacy class of the pair (Dṽ2 , Dṽ1).

(ii) Suppose that ρ is of SVA-type, and that the underlying semi-graph of G is
untangled. Then the semi-graph obtained by forming the quotient, by the natural action
of I, of the underlying semi-graph of G is untangled.

Proof. — Assertion (i) follows immediately from the definition of the condition “un-
tangled”. Next, to verify assertion (ii), let us observe that since ρ is of SVA-type, it is
immediate that the natural action of I on the underlying semi-graph of G is trivial. Thus,
assertion (ii) follows. This completes the proof of Lemma 1.13. □

LEMMA 1.14. — The following hold:

(i) Suppose that G is not noncuspidal [i.e., has a cusp — cf. [7], Definition 1.1, (i)],

and that I is isomorphic, as an abstract profinite group, to ẐΣ. Then, for each open
subgroup H ⊆ Πρ of Πρ and each prime number l, it holds that H3(H,Fl) = {0}.
(ii) Suppose that G is noncuspidal [i.e., has no cusp — cf. [7], Definition 1.1, (i)], and

that ρ is of SVA-type. Let l ∈ Σ be an element of Σ. Then it holds that H3(Πρ,Fl) 6=
{0}.
Proof. — Let H ⊆ Πρ be an open subgroup of Πρ. Thus, by applying the notation of
Definition 1.4, (iii), we have an exact sequence of profinite groups

1 −→ ΠH −→ H −→ IH −→ 1,

which thus gives rise to a spectral sequence

Ei,j
2 = H i(IH , Hj(ΠH, Fl)) =⇒ H i+j(H, Fl) = Ei+j.

Suppose that we are in the situation of assertion (i). Then both ΠH and IH are free
pro-Σ [cf. [7], Remark 1.1.3]. Thus, it holds that Ei,j

2 = {0} whenever either i ≥ 2 or
j ≥ 2, which thus implies that E3 = {0}, as desired. This completes the proof of assertion
(i).

Next, suppose that H = Πρ, and that we are in the situation of assertion (ii). Then
since IH is free pro-Σ, and ΠH is isomorphic to the maximal pro-Σ quotient of the
étale fundamental group of a proper hyperbolic curve over an algebraically closed field of
characteristic 6∈ Σ [cf. [7], Remark 1.1.3], it holds that Ei,j

2 = {0} whenever either i ≥ 2
or j ≥ 3, which thus implies that

E1,2
2 = H1(IH , H2(ΠH, Fl)) = H1(IH , HomẐΣ(ΛH, Fl)) ∼= H3(H, Fl) = E3
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[cf. [4], Definition 3.8, (i)]. Now let us recall that since [we have assumed that] ρ is of
SVA-type, it follows immediately from [4], Corollary 3.9, (ii), that the action of IH on

ΛH is trivial. Thus, since ΛH is isomorphic, as an abstract module, to ẐΣ, we conclude

that H3(H,Fl) ∼= HomẐΣ(ẐΣ,HomẐΣ(ẐΣ,Fl)) ∼= Fl 6= {0}, as desired. This completes the
proof of assertion (ii), hence also of Lemma 1.14. □

2. Maximal Abelian Torsion-free Quotients

In the present §2, we maintain the notational conventions introduced at the beginning
of the preceding §1. Moreover, let I be a profinite group and ρ : I → Aut(G) an outer
representation of pro-Σ PSC-type. Thus, we have an exact sequence of profinite groups

1 −→ ΠG −→ Πρ −→ I −→ 1.

In the present §2, we discuss the quotient Πab-free
ρ of Πρ.

DEFINITION 2.1.

(i) We shall write

Π
ab-free/ρ
G

for the [uniquely determined] maximal torsion-free quotient of Πab
G whose kernel is closed

in Πab
G and on which I acts trivially [cf. Remark 1.4.1].

(ii) We shall write

Π
ab/node
ρ

for the quotient of Πρ by the kernel of the natural surjection (Πρ ⊇) ΠG ↠ Π
ab/node
G .

Thus, this quotient and the exact sequence at the beginning of the present §2 determine
an exact sequence of profinite groups

1 −→ Π
ab/node
G −→ Π

ab/node
ρ −→ I −→ 1.

LEMMA 2.2. — Suppose that ρ is of VA-type. Then the exact sequence at the beginning
of the present §2 determines an exact sequence of profinite groups

1 −→ Π
ab-free/ρ
G −→ Πab-free

ρ −→ I −→ 1.

Proof. — Let us first recall that I is free pro-Σ. In particular, the surjection Πρ ↠ I
has a splitting. Thus, Lemma 2.2 follows immediately from the fact that I is abelian and
torsion-free. This completes the proof of Lemma 2.2. □

LEMMA 2.3. — Suppose that ρ is of SVA-type. Then the following hold:

(i) For each ṽ ∈ Vert(G̃), write Qṽ ⊆ Π
ab/node
ρ for the image of Iṽ ⊆ Πρ in the quotient

Π
ab/node
ρ . Then the closed subgroup Qṽ ⊆ Π

ab/node
ρ does not depend on the choice of

ṽ ∈ Vert(G̃).
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(ii) Write QVert ⊆ Π
ab/node
ρ for the closed subgroup topologically generated by the images

of Iṽ ⊆ Πρ — where ṽ ranges over the vertices of G̃ — in the quotient Π
ab/node
ρ . Then the

closed subgroup QVert ⊆ Π
ab/node
ρ is normal and coincides with the image of a splitting

of the surjection Π
ab/node
ρ ↠ I.

(iii) The profinite group Π
ab/node
ρ is abelian and torsion-free.

Proof. — First, we verify assertion (i). Let us first observe that since the profinite

semi-graph G̃ is connected, to verify assertion (i), it suffices to verify that

for ṽ, w̃ ∈ Vert(G̃), if there exists a node ẽ ∈ Node(G̃) that abuts to both
ṽ and w̃, then Qṽ = Qw̃.

To this end, let us recall that, in the above situation, since [we have assumed that] ρ is
of SVA-type, it follows from [3], Remark 2.7.1, that

Dẽ = Iṽ × Πẽ = Iw̃ × Πẽ.

In particular, the respective images of Dẽ, Iṽ, and Iw̃ in Π
ab/node
ρ coincide, as desired.

This completes the proof of assertion (i).
Next, we verify assertion (ii). Let us first observe that it is immediate that a Πρ-

conjugate of Iṽ is Iw̃ for some w̃ ∈ Vert(G̃). Thus, the closed subgroup QVert ⊆ Π
ab/node
ρ

is normal. Next, since [we have assumed that] ρ is of SVA-type, it follows that, for

each ṽ ∈ Vert(G̃), the closed subgroup Iṽ ⊆ Πρ coincides with the image of a splitting
of the surjection Πρ ↠ I. Thus, it follows from assertion (i) that the closed subgroup

QVert ⊆ Π
ab/node
ρ coincides with the image of a splitting of the surjection Π

ab/node
ρ ↠ I.

This completes the proof of assertion (ii).

Finally, we verify assertion (iii). Let us first recall that Π
ab/node
G is abelian and torsion-

free [cf. Remark 1.1.1]. Thus, since I is abelian and torsion-free, it follows from asser-

tion (ii), together with the exact sequence of Definition 2.1, (ii), that Π
ab/node
ρ is abelian

and torsion-free, as desired. This completes the proof of assertion (iii), hence also of
Lemma 2.3. □

One main technical observation of the present paper is as follows:

LEMMA 2.4. — The following hold:

(i) Suppose that ρ is of SVA-type. Then the natural surjection Πρ ↠ Π
ab/node
ρ

factors through the natural surjection Πρ ↠ Πab-free
ρ :

Πρ ↠ Πab-free
ρ ↠ Π

ab/node
ρ .

(ii) Suppose that ρ is of IPSC-type, and that G is noncuspidal. Then the quotient

Πρ ↠ Πab-free
ρ coincides with the quotient Πρ ↠ Π

ab/node
ρ :

Πab-free
ρ = Π

ab/node
ρ .
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(iii) Suppose that ρ is of PIPSC-type, and that G is noncuspidal. Then the natural

surjection Πρ ↠ Πab-free
ρ factors through the natural surjection Πρ ↠ Π

ab/node
ρ :

Πρ ↠ Π
ab/node
ρ ↠ Πab-free

ρ .

Proof. — Assertion (i) is an immediate consequence of Lemma 2.3, (iii). Next, we verify
assertion (ii). Since an outer representation of IPSC-type is of SVA-type [cf. Lemma 1.8,
(i)], it follows from Lemma 2.2 and assertion (i) that, to verify assertion (ii), it suffices
to verify that

the natural surjection ΠG ↠ Π
ab-free/ρ
G factors through the natural surjec-

tion ΠG ↠ Π
ab/node
G .

On the other hand, this follows immediately from [7], Proposition 2.6 [i.e., essentially the
“weight-monodromy conjecture for proper hyperbolic curves”]. This completes the proof
of assertion (ii). Finally, assertion (iii) follows formally from assertion (ii), together with
Lemma 2.2. This completes the proof of Lemma 2.4. □

LEMMA 2.5. — Suppose that ρ is of PIPSC-type, and that G is noncuspidal. Let
J ⊆ Πρ be a nontrivial procyclic closed subgroup of Πρ. Then the following two
conditions are equivalent:

(1) There exists a [uniquely determined — cf. [3], Lemma 1.5] node ẽ ∈ Node(G̃) of

G̃ such that J ⊆ Πẽ.

(2) For every open subgroup H ⊆ Πρ of Πρ, the image of the composite

J ∩H ↪→ H ↠ Hab-free

is trivial.

Proof. — This assertion follows immediately — in light of Lemma 1.8, (iii) — from
Lemma 1.2 and Lemma 2.4, (ii), (iii). □

3. Profinite Groups of PIPSC-type

In the present §3, we maintain the notational conventions introduced at the beginning
of the preceding §2. Thus, we are given an outer representation ρ : I → Aut(G) of pro-Σ
PSC-type and an exact sequence of profinite groups

1 −→ ΠG −→ Πρ −→ I −→ 1.

In the present §3, we establish a “group-theoretic” algorithm for constructing, from a
profinite group of PIPSC-type [cf. Definition 3.1 below] that is noncuspidal [cf. Defini-
tion 3.2 below], a certain profinite graph [cf. Theorem 3.13 below].

DEFINITION 3.1. — Let Π be a profinite group. Then we shall say that Π is of [pro-Σ]
PIPSC-type if there exists an outer representation χ of pro-Σ PSC-type such that χ is of
PIPSC-type [cf. Definition 1.7, (i)], and, moreover, the profinite group Π is isomorphic
to the profinite group Πχ determined by χ [cf. Definition 1.4, (i)].
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REMARK 3.1.1. — It follows from Lemma 1.8, (iii), that an open subgroup of a profinite
group of [pro-Σ] PIPSC-type is of [pro-Σ] PIPSC-type.

REMARK 3.1.2. — Let R be a strictly henselian discrete valuation ring. Write K for the
field of fractions of R. Let Ksep be a separable closure of K and X a hyperbolic curve
over K.

(i) Suppose that R is of residue characteristic 6∈ Σ, and that the action, by conjuga-
tion, of the étale fundamental group of X on the maximal pro-Σ quotient of the étale
fundamental group of X×KKsep factors through the maximal pro-Σ quotient of the étale
fundamental group of X. Then one verifies easily that the maximal pro-Σ quotient of the
étale fundamental group of X gives an example of a profinite group of pro-Σ PIPSC-type.

(ii) In particular, if R is of residue characteristic zero, then the étale fundamental
group of X gives an example of a profinite group of PIPSC-type.

DEFINITION 3.2. — Let Π be a profinite group of PIPSC-type. Then we shall say that
Π is noncuspidal if there exist an open subgroup H ⊆ Π of Π and a prime number l such
that H3(H,Fl) 6= {0}.

PROPOSITION 3.3. — Suppose that ρ is of PIPSC-type [which thus implies that the
profinite group Πρ is of PIPSC-type]. Then the following two conditions are equivalent:

(1) The profinite group Πρ of PIPSC-type is noncuspidal.

(2) The semi-graph of anabelioids G of pro-Σ PSC-type is noncuspidal.

Proof. — This assertion follows from Lemma 1.14. □

REMARK 3.3.1. — It follows from Proposition 3.3, together with Remark 3.1.1, that an
open subgroup of a profinite group of PIPSC-type that is noncuspidal is a profinite group
of PIPSC-type that is noncupidal.

In the remainder of the present §3, suppose that

• the outer representation ρ is of PIPSC-type [which thus implies that the profinite
group Πρ is of PIPSC-type], and that

• the semi-graph of anabelioids G of pro-Σ PSC-type is noncuspidal.

Moreover, let
Π

be a profinite group of PIPSC-type that is noncuspidal.

DEFINITION 3.4.

(i) Let J ⊆ Π be a closed subgroup of Π. Then we shall say that J is nodal if the
following three conditions are satisfied:
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(1) The closed subgroup J is nontrivial and procyclic.

(2) For every open subgroup H ⊆ Π of Π, the image of the composite

J ∩H ↪→ H ↠ Hab-free

is trivial.

(3) If a closed subgroup K ⊆ Π of Π satisfies conditions (1), (2) and contains J ,
then J = K.

(ii) We shall refer to a closed subgroup of Π obtained by forming the normalizer
(respectively, centralizer) of a nodal closed subgroup of Π as a nodal normalizer (respectively,
nodal centralizer) subgroup of Π.

(iii) We shall say that Π is nonnodal if there is no nodal closed subgroup of Π.

PROPOSITION 3.5. — Let J ⊆ Πρ be a closed subgroup of Πρ. Then the following hold:

(i) The following two conditions are equivalent:

(i-1) The closed subgroup J is nodal [i.e., in the sense of Definition 3.4, (i)].

(i-2) There exists a node ẽ ∈ Node(G̃) of G̃ such that J = Πẽ.

(ii) The following two conditions are equivalent:

(ii-1) The closed subgroup J is a nodal normalizer subgroup.

(ii-2) There exists a node ẽ ∈ Node(G̃) of G̃ such that J = Dẽ.

(iii) The following two conditions are equivalent:

(iii-1) The closed subgroup J is a nodal centralizer subgroup.

(iii-2) There exists a node ẽ ∈ Node(G̃) of G̃ such that J = Iẽ.

(iv) The following two conditions are equivalent:

(iv-1) The profinite group Πρ of PIPSC-type is nonnodal.

(iv-2) The semi-graph of anabelioids G of pro-Σ PSC-type is nonnodal [i.e., has
no node — cf. [7], Definition 1.1, (i)].

Proof. — These assertions follow immediately — in light of Proposition 3.3 — from
Lemma 2.5. □

DEFINITION 3.6.

(i) Suppose that Π is not nonnodal. Let J ⊆ Π be a closed subgroup of Π. Then we
shall say that J is a verticial normalizer subgroup of Π if there exist nodal normalizer
subgroups D1, D2 ⊆ Π of Π such that the following two conditions are satisfied:

(1) It holds that D1 6= D2, but D1 ∩D2 6= {1}.
(2) The closed subgroup J coincides with CΠ(D1 ∩D2).

(ii) Suppose that Π is nonnodal. Let J ⊆ Π be a closed subgroup of Π. Then we shall
say that J is a verticial normalizer subgroup of Π if J = Π.
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(iii) We shall refer to a closed subgroup of Π obtained by forming the local center of
a verticial normalizer subgroup of Π as a verticial centralizer subgroup of Π.

PROPOSITION 3.7. — Let J ⊆ Πρ be a closed subgroup of Πρ. Then the following hold:

(i) The following two conditions are equivalent:

(i-1) The closed subgroup J is a verticial normalizer subgroup.

(i-2) There exists a vertex ṽ ∈ Vert(G̃) of G̃ such that J = Dṽ.

(ii) The following two conditions are equivalent:

(ii-1) The closed subgroup J is a verticial centralizer subgroup.

(ii-2) There exists a vertex ṽ ∈ Vert(G̃) of G̃ such that J = Iṽ.

Proof. — Assertion (i) follows immediately — in light of Lemma 1.8, (i), and Propo-
sition 3.5, (ii) — from Lemma 1.12, (iv). Assertion (ii) follows immediately — in light
of Lemma 1.8, (i), and assertion (i) — from Lemma 1.9. This completes the proof of
Proposition 3.7. □

DEFINITION 3.8.

(i) We shall write

Ṽert(Π)

for the set of verticial normalizer subgroups of Π. Thus, we have an action of Π on

Ṽert(Π) by conjugation.

(ii) We shall write

Ñode(Π)

for the set of nodal normalizer subgroups of Π. Thus, we have an action of Π on Ñode(Π)
by conjugation.

(iii) We shall write

ṼN(Π)
def
= Ṽert(Π) t Ñode(Π).

Thus, the actions of Π on Ṽert(Π) and Ñode(Π) determine an action of Π on ṼN(Π).

PROPOSITION 3.9. — The following hold:

(i) The assignment “Vert(G̃) 3 ṽ 7→ Dṽ” determines a Πρ-equivariant bijection

Vert(G̃) ∼−→ Ṽert(Πρ).

(ii) The assignment “Node(G̃) 3 ẽ 7→ Dẽ” determines a Πρ-equivariant bijection

Node(G̃) ∼−→ Ñode(Πρ).

(iii) The assignment “VN(G̃) 3 z̃ 7→ Dz̃” determines a Πρ-equivariant bijection

VN(G̃) ∼−→ ṼN(Πρ).



18 Yuichiro Hoshi

Proof. — Assertion (i) follows from Lemma 1.6 and Proposition 3.7, (i). Assertion (ii)
follows from Lemma 1.6 and Proposition 3.5, (ii). Assertion (iii) follows from Lemma 1.6
and assertions (i), (ii). This completes the proof of Proposition 3.9. □

DEFINITION 3.10. — We shall say that Π is untangled if the following condition is satis-
fied: Let N ⊆ Π be a nodal normalizer subgroup of Π and V1, V2 ⊆ Π verticial normalizer
subgroups of Π. Suppose that V1 6= V2, and that neither N ∩ V1 nor N ∩ V2 is procyclic.
Then the Π-conjugacy class of the pair (V1, V2) does not coincide with the Π-conjugacy
class of the pair (V2, V1).

PROPOSITION 3.11. — The following two conditions are equivalent:

(1) The profinite group Πρ of PIPSC-type is untangled.

(2) The semi-graph obtained by forming the quotient, by the natural action of I, of
the underlying semi-graph of G is untangled.

Proof. — This assertion follows immediately — in light of Lemma 1.8, (i) — from
Lemma 1.13, (i), together with Lemma 1.10 and Proposition 3.9, (i), (ii). □

DEFINITION 3.12.

(i) Let H ⊆ Π be an open subgroup of Π. Suppose that H is untangled [cf. Re-
mark 3.1.1; Remark 3.3.1]. Then let us define a graph

G(H)

as follows:

(1) The set of vertices of G(H) is defined to be the set of H-conjugacy classes of
verticial normalizer subgroups of H [cf. Remark 3.1.1; Remark 3.3.1].

(2) Let N ∈ Ñode(H) be a nodal normalizer subgroup of H [cf. Remark 3.1.1;
Remark 3.3.1]. Then it follows from Lemma 1.10 and Proposition 3.9, (i), (ii), that

there are precisely two distinct elements V1, V2 ∈ Ṽert(H) of Ṽert(H) such that neither
N ∩ V1 nor N ∩ V2 is procyclic. Write e(N) for the set consisting of the H-conjugacy
class of the pair (V1, V2) and the H-conjugacy class of the pair (V2, V1). Note that since
[we have assumed that] H is untangled, it follows immediately from Lemma 1.10 and
Proposition 3.9, (i), (ii), that,

(a) for each N ∈ Ñode(H), the set e(N) is of cardinality two, and,

(b) for each N1, N2 ∈ Ñode(H), the following three conditions are equivalent:

• N1 is an H-conjugate of N2. • e(N1) = e(N2). • e(N1) ∩ e(N2) 6= ∅.

(3) The set of edges of G(H) is defined to be the set consisting of the e(N)’s of
(2), where N ranges over the nodal normalizer subgroups of H [cf. (a), (b) of (2)]. [So it
follows from (b) of (2) that the set of edges of G(H) is naturally identified with the set
of H-conjugacy classes of nodal normalizer subgroups of H.]
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(4) Let N ∈ Ñode(H) be a nodal normalizer subgroup of H. Then the map
ζe(N) : e(N) → Vert(G(H)) is defined, in the notation of (2), to be the map

e(N) = {[V1, V2], [V2, V1]} −→ Vert(G(H)); [Vi, Vj] 7→ [Vi]

— where we write “[−]” for the H-conjugacy class of “(−)”.

(ii) Let H1 ⊆ H2 ⊆ Π be untangled open subgroups of Π. Let us define a map

Vert(G(H1)) −→ Vert(G(H2))

(respectively, Node(G(H1)) −→ Node(G(H2)))

as follows: Let v (respectively, e) be a vertex (respectively, an edge) of the graph G(H1).

Let us take an element V1 ∈ Ṽert(H1) (respectively, E1 ∈ Ñode(H1)) whose H1-conjugacy
class is given by v (respectively, class corresponds to e). Then it follows from [7], Proposi-
tion 1.2, (i), and Proposition 3.9, (i) (respectively, Proposition 3.9, (ii)), that there exists

a unique element V2 ∈ Ṽert(H2) (respectively, E2 ∈ Ñode(H2)) such that V1 (respectively,
E1) is an open subgroup of V2 (respectively, E2). Then the image of v (respectively, e)
by the map is defined to be the vertex (respectively, edge) given by (respectively, cor-
responding to) the H2-conjugacy class of V2 (respectively, E2). [Note that one verifies
easily that the H2-conjugacy class of V2 (respectively, E2) does not depend on the choice
of “V1” (respectively, “E1”), i.e., depends only on v (respectively, e).]

(iii) In the situation of (ii), it follows immediately from the various definitions involved
that the maps defined in (ii) determine a morphism of graphs

G(H1) −→ G(H2).

We shall write
G̃(Π)

def
= (G(H))H⊆Π

for the profinite graph consisting of the various G(H)’s — where H ranges over the

untangled open subgroups of Π. Thus, the actions of Π on ṼN(Π) determines an action

of Π on G̃(Π).

The main result of the present paper is as follows:

THEOREM 3.13. — Let Σ be a nonempty set of prime numbers,

G
a semi-graph of anabelioids of pro-Σ PSC-type, and G̃ → G a universal pro-Σ covering

of G. Write G̃ for the underlying profinite semi-graph of G̃ and ΠG for the fundamental

group of G determined by G̃ → G. Let I be a profinite group and ρ : I → Aut(G) an
outer representation of pro-Σ PSC-type. Suppose that ρ is of PIPSC-type [which thus
implies that the profinite group Πρ defined in Definition 1.4, (i), is of PIPSC-type], and

that G is noncuspidal. Then the bijection VN(G̃) ∼→ ṼN(Πρ) of Proposition 3.9, (iii),
determines a Πρ-equivariant isomorphism of profinite graphs

G̃ ∼−→ G̃(Πρ).

Proof. — This assertion follows immediately from the definition of the assignment

“G̃(−)” [cf. also Lemma 1.3, (i), (ii); Lemma 1.8, (i); Lemma 1.13, (ii)]. □



20 Yuichiro Hoshi

REMARK 3.13.1.

(i) The main result of the present paper, i.e., Theorem 3.13, may be summarized as
follows:

There exists a “group-theoretic” algorithm

G̃ : Π 7→ (Π y G̃(Π))

for constructing, from a profinite group Π of PIPSC-type that is noncus-

pidal, a profinite graph G̃(Π) equipped with an action of Π such that if
one applies this algorithm to the profinite group Πρ arising from the outer
representation ρ of PIPSC-type as in Theorem 3.13, then there exists a

natural isomorphism of G̃ with G̃(Πρ).

(ii) Here, let us recall that if we are in a situation in which the profinite group Πρ

is equipped with the closed subgroup ΠG ⊆ Πρ, then a similar reconstruction result
to the reconstruction result summarized in (i) was already essentially obtained by S.
Mochizuki and the author of the present paper in [5], Theorem 1.9, (ii), without the
noncuspidal assumption. That is to say, roughly speaking, we already have a “group-
theoretic” algorithm

(ΠG ⊆ Πρ) 7→ (ΠG ⊆ Πρ y G̃)

for constructing, from the profinite group Πρ equipped with the closed subgroup ΠG ⊆ Πρ,

the profinite graph G̃ equipped with the natural action of Πρ. From this point of view,
the main result of the present paper, i.e., Theorem 3.13, may be regarded as an “absolute
version” of the reconstruction result of [5], Theorem 1.9, (ii), in the noncuspidal case.

(iii) In the context of (ii), it is of interest to observe that, in general, one cannot “re-
construct” group-theoretically, from Πρ, the closed subgroup ΠG ⊆ Πρ. Indeed, suppose

that Node(G̃) = ∅ [which thus implies that Vert(G̃) is of cardinality one], and that ρ is

of IPSC-type [which thus implies that ρ is trivial]. Write ṽ ∈ Vert(G̃) for the unique

vertex of G̃. Then it is immediate that the equality Πρ = ΠG × Iṽ holds. Thus, since the

abelianization of ΠG is a nontrivial free ẐΣ-module [cf. [7], Remark 1.1.4], which thus im-
plies that there exists a nontrivial homomorphism ΠG → Iṽ, one verifies easily that there
exists an automorphism of Πρ = ΠG × Iṽ which does not preserve the closed subgroup
ΠG ⊆ Πρ. In particular, in this situation, one cannot “reconstruct” group-theoretically,
from Πρ, the closed subgroup ΠG ⊆ Πρ.

REMARK 3.13.2. — In general, one cannot “reconstruct” group-theoretically, from Πρ,

the profinite semi-graph G̃ equipped with the natural action of Πρ if one does not work
with the assumption that G is noncuspidal. Indeed, suppose that we are in the situation
of Remark 3.13.1, (iii), but remove the assumption that G is noncuspidal. [Then, as in
the situation of Remark 3.13.1, (iii), the equality Πρ = ΠG×Iṽ holds.] Suppose, moreover,

that Σ is of cardinality one, and that G has at least two cusps. Let ẽ be a cusp of G̃.
Write Πẽ ⊆ ΠG for the VCN-subgroup of ΠG associated to ẽ [cf. [4], Definition 2.1, (i)].
Then it follows from the well-known structure of the maximal pro-Σ quotient of the étale
fundamental group of a hyperbolic curve over an algebraically closed field of characteristic
6∈ Σ [cf. [7], Remark 1.1.3] that
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• the closed subgroup Πẽ ⊆ ΠG is isomorphic, as an abstract profinite group, to ẐΣ,
and

• the composite Πẽ ↪→ ΠG ↠ Πab
G is a split injection;

moreover,

• ΠG is free pro-Σ, and

• there exists a split injection ẐΣ ↪→ Πab
G such that, for every VCN-subgroup of ΠG

associated to a cusp of G̃, the intersection of the image of the VCN-subgroup in Πab
G and

the image of the split injection ẐΣ ↪→ Πab
G is trivial.

Thus, one verifies easily that there exists an automorphism of Πρ = ΠG × Iṽ that maps
Πẽ ⊆ ΠG to a closed subgroup of ΠG not a VCN-subgroup of ΠG associated to a cusp of

G̃. In particular, in this situation, one cannot “reconstruct” group-theoretically, from Πρ,

the VCN-subgroups of ΠG associated to cusps of G̃ [i.e., the collection of stabilizers of

the cusps of G̃ with respect to the natural action of Πρ on G̃], hence also the profinite

semi-graph G̃ equipped with the natural action of Πρ.

REMARK 3.13.3.

(i) In [1], the author of the present paper has established a “group-theoretic” algo-
rithm for constructing, from the geometrically pro-p étale fundamental group of a proper
hyperbolic curve over a p-adic local field, the set of vertices of positive p-rank of the dual
graph of the special fiber of the geometric stable model of the curve [cf. [1], Theorem 3.7,
(viii)]. Thus, the main result of the present paper, i.e., Theorem 3.13, may be regarded
as a “PIPSC-type analogue” of the reconstruction result of [1], Theorem 3.7, (viii).

(ii) In [9], Y. Yang has essentially established a “group-theoretic” algorithm for con-
structing, from the admissible fundamental group of a pointed stable curve over an alge-
braically closed field of positive characteristic, the dual semi-graph of the pointed stable
curve, i.e., the underlying semi-graph of the semi-graph of anabelioids of PSC-type de-
termined by the pointed stable curve [cf. [9], Theorem 1.2]. Thus, the main result of the
present paper, i.e., Theorem 3.13, may be regarded as a “PIPSC-type analogue” of the
reconstruction result of [9], Theorem 1.2.

4. PIPSC-pairs

In the present §4, we maintain the notational conventions introduced at the beginning
of §2. In the present §4, we study analogues of the discussions ofmono-anabelian transport
for MLF-pairs in [2] from the point of view of the present paper.

DEFINITION 4.1.

(i) We shall refer to a collection of data

Π y H



22 Yuichiro Hoshi

consisting of a profinite semi-graph H, a profinite group Π, and a continuous action of Π
on H as a profinite-(group-semi-graph)-pair.

(ii) Let Π◦ y H◦, Π• y H• be profinite-(group-semi-graph)-pairs. Then we shall

refer to a pair α = (αΠ, αH) consisting of isomorphisms αΠ : Π◦
∼→ Π•, αH : H◦

∼→ H•
compatible with the respective actions of Π◦, Π• on H◦, H• as an isomorphism from
Π◦ y H◦ to Π• y H•.

DEFINITION 4.2.

(i) If ρ is of PIPSC-type, then we shall refer to the profinite-(group-semi-graph)-pair

Πρ y G̃
as the model [pro-Σ] PIPSC-pair associated to ρ. Moreover, we shall say that the model
PIPSC-pair associated to ρ is noncuspidal if G is noncuspidal.

(ii) We shall refer to a profinite-(group-semi-graph)-pair isomorphic [i.e., in the sense
of Definition 4.1, (ii)] to the model [pro-Σ] PIPSC-pair (respectively, noncuspidal model
[pro-Σ] PIPSC-pair) associated to an outer representation of pro-Σ PSC-type and of
PIPSC-type as a [pro-Σ] PIPSC-pair (respectively, noncuspidal [pro-Σ] PIPSC-pair).

(iii) Let Π be a profinite group of [pro-Σ] PIPSC-type that is noncuspidal. Then, by
Definition 3.12, (iii), one can construct, from Π, a profinite-(group-semi-graph)-pair

Π y G̃(Π).

Moreover, it follows from Theorem 3.13 that this profinite-(group-semi-graph)-pair is a
[necessarily noncuspidal] [pro-Σ] PIPSC-pair. We shall refer to this PIPSC-pair as the
PIPSC-pair associated to Π.

LEMMA 4.3. — Let Π y H be a noncupidal PIPSC-pair. [So one verifies easily that
the profinite group Π is of PIPSC-type and noncuspidal.] Then the following hold:

(i) The stabilizer of a vertex (respectively, an edge) of H with respect to the action of Π
on H is a verticial (respectively, nodal) normalizer subgroup of Π [cf. Definition 3.4,
(ii); Definition 3.6, (i), (ii)].

(ii) The resulting [cf. (i)] assignments

Vert(H) −→ Ṽert(Π), Node(H) −→ Ñode(Π)

determine a Π-equivariant isomorphism

H ∼−→ G̃(Π).

Proof. — Assertion (i) follows from Proposition 3.5, (ii), and Proposition 3.7, (i).
Assertion (ii) follows immediately from Theorem 3.13. □

DEFINITION 4.4. — Let Π y H be a noncuspidal PIPSC-pair. Then we shall write

κ(Π y H) : (Π y H)
∼−→ (Π y G̃(Π))

for the isomorphism of Lemma 4.3, (ii).
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REMARK 4.4.1. — The isomorphism “κ(Π y H)” of Definition 4.4 may be regarded as
an analogue of the Kummer poly-isomorphism of [2], Definition 7.4, from the point of
view of the present paper.

One important consequence of the main result of the present paper is as follows:

THEOREM 4.5. — Let Π◦ y H◦, Π• y H• be noncuspidal PIPSC-pairs. Then the
natural map

Isom(Π◦ y H◦,Π• y H•) −→ Isom(Π◦,Π•)

is bijective.

Proof. — First, we verify the surjectivity of the map. Let αΠ : Π◦
∼→ Π• be an isomor-

phism [i.e., an element of the codomain of the map under consideration]. Then one verifies

easily from the functoriality of the assignment “G̃(−)” that αΠ induces an isomorphism
of profinite-(group-semi-graph)-pairs

(αΠ, G̃(αΠ)) : (Π◦ y G̃(Π◦))
∼−→ (Π• y G̃(Π•)).

Thus, by considering the isomorphisms κ(Π◦ y H◦), κ(Π• y H•) of Definition 4.4, we
obtain an element of the domain of the map under consideration whose image, via the
map under consideration, coincides with the original isomorphism αΠ, as desired. This
completes the proof of the surjectivity.

Next, we verify the injectivity of the map. Let us first observe that, to verify the
injectivity, by considering the difference of two elements of the domain of the map under
consideration whose images, via the map under consideration, coincide, it suffices to verify
the following assertion:

Let (αΠ, αH) be an automorphism of Π◦ y H◦. Suppose that αΠ is the
identity automorphism. Then αH is the identity automorphism.

To this end, let us observe that it follows from the functoriality of the isomorphism
“κ(Π y H)” of Definition 4.4 that the isomorphism κ(Π◦ y H◦) is compatible with
the automorphism (αΠ, αH), i.e., the diagram of isomorphisms of profinite-(group-semi-
graph)-pairs

(Π◦ y H◦)
κ(Π◦yH◦)−−−−−−→ (Π◦ y G̃(Π◦))

(αΠ, αH)

y y(αΠ, G̃(αΠ))

(Π◦ y H◦) −−−−−−→
κ(Π◦yH◦)

(Π◦ y G̃(Π◦))

commutes. Next, let us observe that since [we have assumed that] αΠ is the identity
automorphism, the right-hand vertical arrow of this diagram is the identity automorphism.
Thus, we conclude that αH is the identity automorphism, as desired. This completes the
proof of the injectivity, hence also of Theorem 4.5. □

REMARK 4.5.1. — The bijectivity of the map of Theorem 4.5 may be regarded as an
analogue of the bijectivity of the map of [2], Theorem 7.6, (iv), from the point of view of
the present paper.
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REMARK 4.5.2. — A similar remark to [2], Remark 7.6.1 [i.e., concerning the technique
of mono-anabelian transport], applies to the situation discussed in Theorem 4.5, as well.
We leave the routine details of translating the remark into the language of the situation
of Theorem 4.5 to the interested reader.
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