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ABSTRACT. — In the present paper, we discuss the homotopy sequences for varieties over
curves. We prove that, for instance, for a morphism from a normal variety to a certain
smooth curve over a field of characteristic zero, it holds that the induced outer homomorphism
between the étale fundamental groups satisfies some group-theoretic conditions if and only if
the homotopy sequence for the morphism of varieties is exact. Moreover, we also give a
refinement of a known result concerning the Grothendieck conjecture for hyperbolic polycurves
of dimension two by means of our study of homotopy sequences.
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INTRODUCTION

The exactness of the homotopy sequences for certain proper morphisms was established
in [16], Exposé X, Corollaire 1.4. Moreover, K. Mitsui [cf. [11], Theorem 1.1; [11], Theo-
rem 4.22] and the author of the present paper [cf. [7], Theorem 2; [8], Proposition 1.10,
()] have established the exactness of the homotopy sequences for certain not necessarily
proper morphisms. [Note that, in [7], Theorem 2, the morphism “f°8” of log schemes
is assumed to be proper; on the other hand, by applying the log purity theorem of [7],
Proposition B.7 — that gives a natural outer isomorphism between the log fundamental
group of a suitable log scheme and the étale fundamental group of the interior of the log
scheme — one may derive, from [7], Theorem 2, the exactness of the homotopy sequences
for certain not necessarily proper morphisms of schemes — i.e., as opposed to log schemes
— in suitable situations.] In the present paper, we discuss a “group-theoretic” approach
to the study of homotopy sequences.

Here, let us observe that each of the above results concerning the exactness of homotopy
sequences gives us a statement of the following form:

2010 MATHEMATICS SUBJECT CLASSIFICATION. — 14F35.
KEY WORDS AND PHRASES. — homotopy sequence.
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If a morphism of schemes satisfies suitable scheme-theoretic conditions,
then the homotopy sequence for the morphism of schemes is ezact.

On the other hand, one main purpose of the study of the present paper is to give a
statement of the following form:

For a morphism of schemes, if the induced outer homomorphism between
the étale fundamental groups satisfies suitable group-theoretic conditions,
then the homotopy sequence for the morphism of schemes is ezact.

Note that a requirement for such a statement arises naturally in, for instance, an at-
tempt to solve the Grothendieck conjecture for hyperbolic polycurves [cf., e.g., the various
arguments of [8], [14]; also the arguments of §3 of the present paper].
Here, let us explain a property
Pyoo

of a profinite group [cf. Definition 2.5, (i)] that plays an important role in the present
paper. We shall say that a profinite group G has the property P . if, for an arbitrary
open subgroup H C G of G, there exists a prime number [, depending on H, such that
H has no quotient which is free pro-ly and not topologically finitely generated. One
verifies easily that if a profinite group G has one of the following three properties, then
G has the property Py .o, [cf. Remark 2.5.1]:

e The profinite group G is topologically finitely generated.
e An open subgroup of the profinite group G is abelian.

e An open subgroup of the profinite group G is pro-X for some set X of prime numbers
not equal to the set of all prime numbers.

The first main result — in the case where the base field is of characteristic zero — is
as follows [cf. Theorem 2.8, also Remark 2.8.1]. In the present paper, if X is a connected
locally noetherian scheme, then we shall write

Ix

for the étale fundamental group of X [for some choice of basepoint] [cf. Definition 1.1,
(1)]; moreover, if f: X — Y is a morphism of connected locally noetherian schemes, then
we shall write

Ap Y Ker(Ily — Iy)

for the kernel of the outer homomorphism IIx — Ily induced by f [cf. Definition 1.1,

(i1)].

THEOREM A. — Let k be a field of characteristic zero, S a smooth curve over k
[c¢f. Definition 2.2, (ii)] whose base-change to an algebraic closure of k is isomorphic
neither to the projective line nor to the affine line, X a normal variety over k [cf.
Definition 2.2, ()], f: X — S a morphism over k, and 7 — S a geometric generic point
of S. Then the following four conditions are equivalent:

(1) The outer homomorphism Ilx — Ilg induced by f is surjective. Moreover, the
profinite group Ay is topologically finitely generated.

(2) The outer homomorphism Iy — Ilg induced by f is surjective. Moreover, the
profinite group Ay has the property Py .o [cf. Definition 2.5, (1)].
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(3)  The morphism f is surjective and generically geometrically irreducible.
Moreover, the sequence of irreducible [hence also connected] schemes

Xxgn e x tog
induces an exact sequence of profinite groups and outer homomorphisms

x5 ITx I 1.

(4)  The morphism f is dominant and generically geometrically irreducible.
Moreover, the sequence of irreducible [hence also connected] schemes

Xxg7 e x tog
induces an exact sequence of profinite groups and outer homomorphisms

HXxSﬁ Iy Ilg 1.

In §3 of the present paper, we apply [some considerations that lead us to] Theorem A
to the study of the Grothendieck conjecture for hyperbolic polycurves. The second main
result of the present paper is as follows [cf. Theorem 3.3].

THEOREM B. — Let p be a prime number, k a sub-p-adic field [cf., e.g., [8], Definition
3.1], k an algebraic closure of k, X a hyperbolic polycurve of dimension 2 over k
[cf. [8], Definition 2.1, (ii)], and Z a normal variety over k [cf. Definition 2.2, (i)].
Write G, % Gal(k/k). Let

a: 11, —=1lx
be an open homomorphism of profinite groups over Gy [i.e., an open homomorphism

a: Iy — Ilx of profinite groups such that the induced outer homomorphism I1; — 1lx
fits into a commutative diagram of profinite groups and outer homomorphisms

11, IIx
G,

— where the left-hand, right-hand arrows to Gy are the outer homomorphisms induced
by the structure morphisms of the normal varieties Z, X over k, respectively]. Suppose
that the kernel of a has the property Py .o [cf. Definition 2.5, (i)]. Then there exists a
uniquely determined dominant morphism

J ——X

over k from which « arises. In particular, the normal variety Z is of dimension > 2.

Note that Theorem B may be regarded as a refinement of [8], Theorem A, in the case
where condition (2) is satisfied [cf. Remark 3.3.1]. Finally, in §3, we observe that if one
drops one of

e the assumption that the hyperbolic polycurve X is of dimension 2 and
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e the assumption that the kernel of o has the property Py

in the statement of Theorem B, then the conclusion of Theorem B no longer holds in
general [cf. Remark 3.3.2; Remark 3.3.4, (i)].
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1. SOME GENERALITIES ON HOMOTOPY SEQUENCES

In the present §1, we discuss some generalities on homotopy sequences [cf. Lemma 1.3
and Lemma 1.5 below].

DEFINITION 1.1.
(i) Let X be a connected locally noetherian scheme. Then we shall write
Iy
for the étale fundamental group of X [for some choice of basepoint].

(ii) Let X, Y be connected locally noetherian schemes; f: X — Y a morphism of
schemes. Then we shall write

Af = Ax/y d:ef Ker(HX — Hy) - HX

for the kernel of the outer homomorphism Ily — IIy induced by f.

DEFINITION 1.2. — We shall say that a scheme is of CLN-type if the scheme is connected,
locally noetherian, and normal.

LEMMA 1.3. — Let X, S be schemes of CLN-type; f: X — S a morphism of schemes
which is of finite type, separated, and dominant; 7 — S a geometric generic point
of S. Suppose that the following two conditions are satisfied:

(a) The outer homomorphism Ilx — Ilg induced by f is surjective.
(b) The geometric generic fiber X X7 of f is reduced [cf. Remark 1.3.1 below).
Consider the following four conditions:

(1) LetY — X be a connected finite étale covering of X. Then the normalization of
S inY is étale over S.

(2) LetY — X be a connected finite étale covering of X. If the base-change Y X g7 —
X xgmof Y — X byn — S has a splitting, then the normalization of S in'Y is étale
over S.
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(3) The morphism f is generically geometrically irreducible. Moreover, for a
connected finite étale covering Y — X of X, if the base-change Y xsgn — X Xg7n of
Y — X byn — S has a splitting, then there exists a connected finite étale covering of
S whose pull-back by X — S is isomorphic to Y over X.

(4)  The morphism f is generically geometrically irreducible. Moreover, the
sequence of irreducible [hence also connected] schemes

Xxsg 2 x tog
induces an exact sequence of profinite groups and outer homomorphisms

HXxsﬁ Iy Ilg 1.

Then the implications

(1) (2) (3) (4)

hold.
PRrROOF. — The implication

(1) =—(2)
is immediate. Next, we verify the implication

(2) — ().

To this end, suppose that condition (2) is satisfied, and take a connected finite étale
covering Y — X of X whose base-change Y X7 — X Xg¢7 by 7 — S has a splitting.
Now let us write

T——S

for the normalization of S in Y. Let us first verify the following claim:

Claim 1.3.A: The normalization 7' — S of S in Y is a connected finite
étale covering of S.

To this end, let us observe that it is immediate that T is connected. Next, let us observe
that it follows from [2], Proposition 4.6.1, together with the condition (b), that the
function field of X, hence also of Y, is separable over the function field of S. Thus, it
follows from [9], §33, Lemma 1, that the morphism 7" — S is finite. In particular, since
it follows from condition (2) that] 7" — S is étale, we conclude that Claim 1.3.A holds,
as desired. This completes the proof of Claim 1.3.A.

Next, we verify the following claim:

Claim 1.3.B: The morphism f is generically geometrically irreducible.

To this end, let us observe that it follows from Claim 1.3.A [i.e., in the case where we take
“Y” of Claim 1.3.A to be X] that the normalization of S in X is a connected finite étale
covering of S. Thus, since the outer homomorphism Iy — Ilg induced by f is surjective
[cf. the condition (a)], we conclude that the normalization of S in X coincides with S,
which thus implies that the function field of S is algebraically closed in the function field
of X. In particular, it follows from [2], Proposition 4.5.9, and [3], Proposition 9.7.8,
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that f is generically geometrically irreducible, as desired. This completes the proof of
Claim 1.3.B.
Next, we verify the following claim:

Claim 1.3.C: The fiber product X xg T is of CLN-type.

To this end, let us observe that one verifies easily from Claim 1.3.A that X x g7 is locally
noetherian and normal. Next, it follows from the surjectivity of the outer homomorphism
IIx — Ilg induced by f [cf. the condition (a)], together with Claim 1.3.A, that X xg T
is connected. This completes the proof of Claim 1.3.C.

Next, we verify the following claim:

Claim 1.3.D: The natural morphism Y — X xg T is a connected finite
étale covering [hence closed and open; thus, this morphism ¥V — X xg T
is surjective — cf. Claim 1.3.C].

To this end, let us first observe that since both Y and X xg T are finite over X [cf.
Claim 1.3.A], it follows that the morphism Y — X xg T is finite. In particular, since
[one verifies easily that] both Y — X and X xgT — X are surjective, by considering
the fibers of Y — X xg T — X at the generic point of X [cf. also Claim 1.3.C], we
conclude that the morphism Y — X x¢T is dominant. On the other hand, since Y — X
is unramified, it follows from [4], Proposition 17.3.3, (v), that the morphism ¥ — X xgT
is unramified. Thus, since X x g7 is normal [cf. Claim 1.3.C], it follows from [16], Exposé
I, Corollaire 9.11, that the morphism Y — X xg T is étale, as desired. This completes
the proof of Claim 1.3.D.
Finally, we verify the following claim:

Claim 1.3.E: The natural morphism Y — X xg T is an isomorphism.

To this end, write d for the degree of the connected finite covering 7' — S [cf. Claim 1.3.A].
Then since X x g7 is connected [cf. Claim 1.3.B], one verifies easily that the number of the
connected components of (X xg7') x g7 is equal to d. Moreover, since the geometric fiber
of Y — T at an arbitrary geometric generic point of 7" is connected [cf. [2], Proposition
4.5.9], the number of the connected components of Y xg 7 is equal to d. Thus, since
Y — X xg T is surjective [cf. Claim 1.3.D], this morphism Y — X Xg¢ T determines a
bijection between the set of connected components of Y xg 7 and the set of connected
components of (X xg7T) Xg7. On the other hand, let us recall that we have assumed
that the base-change ¥ x¢7 — X xgnof Y — X by n — S has a splitting. Thus,
by considering the connected component of Y xg 77 obtained by forming the image of
a splitting of Y xg¢m — X xg¢ 7, we conclude that the connected finite étale covering
Y — X xg T [cf. Claim 1.3.D] is of degree one, i.e., an isomorphism, as desired. This
completes the proof of Claim 1.3.E, hence also of the implication (2) = (3) [cf. also
Claim 1.3.A].
Next, we verify the implication

(3) = (2).

To this end, suppose that condition (3) is satisfied, take a connected finite étale covering
Y — X of X whose base-change Y xs7 — X Xg7 by 7 — S has a splitting, and write
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T — S for the normalization of S in Y. Then it follows from condition (3) that there
exist a connected finite étale covering Sy — S and an isomorphism Y = X x ¢Sy over X.
Now let us observe that it follows from [2], Proposition 4.6.1, together with the condition
(b), that the function field of X, hence also of Y, is separable over the function field of
S. Thus, since [one verifies easily that] Sy is normal, and [we have assumed that] the
morphism X — S, hence also Y — Sy, is generically geometrically irreducible, it follows
from [2], Proposition 4.5.9, that the morphism Sy — S factors through a birational
morphism Sy — T over S. In particular, since T" is normal, and the morphism Sy — S,
hence also Sy — T, is finite, it follows from [1], Corollaire 4.4.9, that the birational
finite morphism Sy — T is an isomorphism, as desired. This completes the proof of the
implication (3) = (2).
Finally, we verify the equivalence

(3) <= (4).

To this end, suppose that the morphism f is generically geometrically irreducible. Now

let us observe that since the composite X xg7 Mxtg factors through the geometric
point 7 — S, the image of the composite x5z — IIx — Ilg is trivial. Moreover, we
have assumed that the outer homomorphism IIx — Ilg induced by f is surjective [cf. the
condition (a)]. Thus, we conclude that condition (4) is equivalent to the inclusion

Af - Im(HXxsﬁ — H)()

On the other hand, it is immediate that this inclusion is equivalent to condition (3). This
completes the proof of the equivalence (3) < (4), hence also of Lemma 1.3. O

REMARK 1.3.1. — In the situation of Lemma 1.3, suppose that the function field of S is
of characteristic zero. Then since [we have assumed that] X is normal, it follows from
2], Proposition 4.6.1, that the condition (b) is always satisfied.

DEFINITION 1.4. — Let P be a property of a profinite group [e.g., “topologically finitely
generated”, “abelian”, or “pro-3 for some set X of prime numbers”].

(i) We shall say that the property P is stable under taking open subquotients if the
following condition is satisfied: If a profinite group G has the property P, then every
quotient of an arbitrary open subgroup of G [i.e., by a normal closed subgroup of the
open subgroup] has the property P.

(ii) Let X be a scheme of CLN-type. Then we shall say that X satisfies the condition
(xp) if the following condition is satisfied: For a scheme Y of CLN-type and a finite
and generically étale surjective morphism f: Y — X, if the profinite group Ay has the
property P, then f is étale.

LEMMA 1.5. — Let X, S be schemes of CLN-type; f: X — S a morphism of schemes
which is of finite type, separated, and dominant; 7 — S a geometric generic point
of S. Suppose that the following two conditions are satisfied:
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(a) The outer homomorphism Ilx — Ilg induced by f is surjective.
(b) The geometric generic fiber X Xg7 of f is reduced [cf. Remark 1.3.1].
Suppose, moreover, that there exists a property P of a profinite group such that
(1) the property P is stable under taking open subquotients,
(2) the kernel Ay has the property P, and, moreover,
(3) the scheme S of CLN-type satisfies the condition (xp).
Then the following assertions hold:

(i) LetY — X be a connected finite étale covering of X. Then the normalization of
S in'Y is étale over S.

(ii)  The morphism f is generically geometrically irreducible. Moreover, the
sequence of irreducible [hence also connected] schemes

Xxsg 2 x Jog
induces an exact sequence of profinite groups and outer homomorphisms

xxgn 115 IIg 1.

PROOF. — First, we verify assertion (i). Write ' — S for the normalization of S in Y.
First, let us verify the following claim:

Claim 1.5.A: The morphism 7" — S is finite, generically étale, and surjec-
tive.

To this end, let us observe that it follows from [2], Proposition 4.6.1, together with the
condition (b), that the function field of X, hence also of Y, is separable over the function
field of S. Thus, the morphism 7" — S is finite [cf. [9], §33, Lemma 1] and generically
étale, which thus implies that f is closed and dominant. In particular, the morphism
T — S is surjective, as desired. This completes the proof of Claim 1.5.A.

Next, let us observe that we have a commutative diagram of profinite groups

1 —Ay)g — Iy —1lg

|

1 —> Agys — Iy — I

— where the horizontal sequences are exact. It follows immediately from [similar argu-
ments to the arguments applied in the proofs of] [8], Lemma 1.6, and [8], Lemma 1.9,
that the middle vertical arrow IIy — Il of this diagram, hence also the left-hand ver-
tical arrow Ay,s — Ap/g of this diagram, is surjective. In particular, since [it follows
from conditions (1), (2) that] the profinite group Ay, has the property P, it follows
from condition (1) that the profinite group Ag/g has the property P. Thus, it follows
from Claim 1.5.A and condition (3) that the morphism 7" — S is étale, as desired. This
completes the proof of assertion (i).

Assertion (ii) follows from the implication (1) = (4) of Lemma 1.3, together with
assertion (i). This completes the proof of Lemma 1.5. O



HomMoOTOPY SEQUENCES OVER CURVES 9

2. HOMOTOPY SEQUENCES FOR VARIETIES OVER CURVES

In the present §2, we obtain an application of the results of §1 concerning the homotopy
sequences for normal varieties over smooth curves [cf. Theorem 2.8 below].

LEMMA 2.1. — Let k be an algebraically closed field, X a hyperbolic curve over k [cf.,
e.g., [8], Definition 2.1, (i)], and | a prime number invertible in k. Then an arbitrary
nontrivial normal closed subgroup of the maximal pro-l quotient of Ilx of infinite
index is free pro-l and not topologically finitely generated.

PrROOF. — Let N be a nontrivial normal closed subgroup of the maximal pro-l quotient
of llx of infinite index. Let us first recall from [12], Proposition 2.3, (i), that N is not
topologically finitely generated. Next, let us observe that since N is of infinite index, and
the maximal pro-I quotient of Ilx is topologically finitely generated [cf. [12], Proposition
2.2], there exists a sequence of open subgroups of the maximal pro-l quotient of ITx

- CH,(wCH,C---CH,CH

such that H; # H;,, for an arbitrary positive integer ¢, and, moreover, the equality
(; Hi = N holds, which thus implies [cf. [13], Proposition 6.5.5] that the natural homo-
morphism

113 H*(H;,7Z/17Z) — H*(N,Z/I7)

— where the module Z/IZ is regarded as being equipped with the trivial actions of N and
the H;’s — is an wsomorphism. In particular, to verify that N is free pro-l, it follows from
[13], Theorem 7.7.4, that it suffices to verify that the image of the natural homomorphism

H*(H,,Z)1Z) —> H*(Hy1,7,)17)

is zero for an arbitrary positive integer n. To this end, write X,,,; — X,, — X for the
connected finite étale coverings of X that correspond to the open subgroups H,,.1 C H, of
the maximal pro-I quotient of Ilx, respectively. Now let us recall that the homomorphism
under consideration fits into a commutative diagram

H*(H,,7)17) — H*(H, 1, 7/17)

HE(Xo, Z)1Z) —= HE(Xoi1, Z/12)

— where the vertical arrows are isomorphisms [cf., e.g., [6], Lemma 4.2, (iii)], and the
lower horizontal arrow is the homomorphism induced by the connected finite étale cov-
ering X,,.; — X,,. Thus, since the module H?(H,,Z/IZ) is annihilated by [, and [it is
well-know — cf., e.g., the first paragraph of the proof of [10], Chapter V, Theorem 2.1,
(a), if X is not affine; [10], Chapter VI, Theorem 7.2, if X is affine — that] the lower hor-
izontal arrow of this diagram factors through the endomorphism of H% (X, Z/IZ) given
by multiplication by the degree of the covering X,,1; — X,, — i.e., the index [H,, : H, 1]
(# 1) — we conclude that the image of the upper horizontal arrow of the above diagram
is zero, as desired. This completes the proof of Lemma 2.1. O
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DEFINITION 2.2. — Let k be a field and X a scheme over k.

(i) We shall say that X is a normal variety over k if X is of finite type, separated,
geometrically connected, and geometrically normal over k.

(i) We shall say that X is a smooth curve over k if there exist a normal variety X °P*
over k which is proper over k and of dimention one, a [possible empty] closed subscheme
D C X of X°P* which is étale over k, and an isomorphism X — X°P*\ D over k.

REMARK 2.2.1. — One verifies easily that a smooth curve over a field is smooth and a
normal variety over the field.

LEMMA 2.3. — Let k be an algebraically closed field, X a smooth curve over k, and ! a
prime number invertible in k. Suppose that X is isomorphic neither to the projective
line over k nor to the affine line over k. Then the maximal pro-l quotient of Ilx, hence
also Iy itself, is infinite.

PROOF. — This assertion follows from, for instance, the isomorphism (1-3) and the exact
sequence (1-5) of [15], Remark 1.3. O

LEMMA 2.4. — Let k be an algebraically closed field, X and Y smooth curves over k,
I a prime number invertible in k, and f: X — Y a dominant and generically étale
morphism over k. Suppose that the following two conditions are satisfied:

(1) The smooth curve Y is isomorphic neither to the projective line over k nor to
the affine line over k.

(2) The outer homomorphism from the maximal pro-l quotient of Ilx to the mazimal
pro-l quotient of Ily induced by f is an outer isomorphism.

Then f is a finite étale covering.

PROOF. — Let us write X' (respectively, Y°P*) for the smooth compactification of X
(respectively, V'), gx (respectively, gy) for the genus of X (respectively, YP") and
rx (respectively, ry) for the cardinality of the complement in X°P* (respectively, Y Pt)
of X (respectively, Y). Then since f is dominant, it follows from elementary theory of
algebraic curves that

gx = gy and rx > ry.

Thus, it follows immediately from conditions (1), (2), together with [15], Proposition 1.1
[cf. also the isomorphism (1-3) and the exact sequence (1-5) of [15], Remark 1.3], that

gx =gy and rx = ry.

In particular, since f is generically étale, it follows immediately from condition (1), to-
gether with elementary theory of algebraic curves, that f is a finite étale covering, as
desired. This completes the proof of Lemma 2.4. O
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DEFINITION 2.5.

(i) Let ¥ be a [possibly empty] set of prime numbers. Then we shall write

gy

]P),;!—»oo
for the property of a profinite group defined as follows: A profinite group G has the
property Pgiio if, for an arbitrary open subgroup H C G of G, there exists a prime

number [y, dependeing on H, such that Iy € ¥, and, moreover, there is no quotient of
H which is free pro-ly and not topologically finitely generated. Moreover, we shall write

Pyoo & P

F—»oo”

(ii) Let P be a property of a profinite group. Then we shall say that a profinite group
G has the property almost P if an open subgroup of GG has the property P.

REMARK 2.5.1. — One verifies easily that, in the situation of Definition 2.5, (i), if ¥ is
not equal to the set of all prime numbers, and a profinite group G has one of the following
three properties, then G has the property ]P’g(izoo:

(1) The profinite group G is topologically finitely generated.

(2) The profinite group G is almost abelian.

(3) The profinite group G is almost pro-3' for some set ¥’ of prime numbers such that
the union X U Y does not coincide with the set of all prime numbers.

LEMMA 2.6. — Let X be a set of prime numbers and G a profinite group. Then the
following assertions hold:

(i) Let H C G be an open subgroup of G. Then the profinite group G has the property

P;izoo if and only if the profinite group H has the property P;iio

(ii) The property ]P’;izoo is stable under taking open subquotients.
PROOF. — First, we verify assertion (i). It is immediate that if G has the property
IP’;%E)O, then H has the property ngizoo Suppose that H has the property P;izoo To

complete the verification of assertion (i), assume that G does not have the property
IP’;%»EOO, i.e., that there exists an open subgroup U C G of G such that, for an arbitrary
prime number [ ¢€ ¥, the profinite group U has a free pro-l and not topologically finitely
generated quotient U — ). Then since U N H is an open subgroup of U, the image of
the composite U N H — U — (@ is an open subgroup of (). In particular, this image is
free pro-l [cf. [13], Corollary 7.7.5] and not topologically finitely generated. Thus, since
U N H is an open subgroup of H, we obtain a contradiction. This completes the proof of
assertion (i).

Next, we verify assertion (ii). It follows from assertion (i) that, to verify assertion (ii),

it suffices to verify that if a profinite group has the property P27>  then an arbitrary quo-

34»007
tient of the profinite group has the property P;izoo On the other hand, this is immediate.
This completes the proof of assertion (ii), hence also of Lemma 2.6. U
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LEMMA 2.7. — Let k be an algebraically closed field and X a smooth curve over k.
Suppose that X is isomorphic neither to the projective line over k nor to the affine
line over k. Write X for the set of prime numbers not invertible in k. [So 3 < 1.]
Then the following assertions hold:

(i) LetY be a hyperbolic curve overk and f: Y — X a dominant and generically
étale morphism over k. Suppose that there exists a prime number | & 3 such that there
is no quotient of Ay which is free pro-l and not topologically finitely generated.
Then f is o finite étale covering.

(ii) The smooth curve X satisfies the condition (*Piﬁo) [cf. Definition 1.4, (ii)].

PROOF. — First, we verify assertion (i). Let us first observe that since [we have assumed
that] X is isomorphic neither to the projective line over k nor to the affine line over k, it
follows from elementary theory of algebraic curves that an arbitrary connected finite étale
covering of X is isomorphic neither to the projective line over k nor to the affine line over
k. Thus, we may assume without loss of generality, by replacing X by the connected finite
étale covering of X that corresponds to the image of some homomorphism Il — Ilx
induced by f, that

the outer homomorphism Iy — Ilx is surjective.

Let [ ¢ 3 be as in the statement of assertion (i). Then we have an ezact sequence of
profinite groups

l l l
N L B B

2

— where we write “(—)®” for the maximal pro-I quotient of “(—)”.

from Lemma 2.3 that the profinite group Hg? is infinite, which thus implies that the

Now let us recall

image of the first arrow of the above exact sequence is of infinite index in Hgﬁ). Thus, it
follows immediately from Lemma 2.1, together with our assumption on the quotients of
Ay, that the image of the first arrow of the above exact sequence is trivial. In particular,

the outer homomorphism ng — Hg? induced by f is an outer isomorphism. Thus, it
follows from Lemma 2.4 that f is a finite étale covering, as desired. This completes the
proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that it follows immediately from
assertion (i) that, to verify assertion (ii), it suffices to verify the following claim:

Claim 2.7.A: Let Y be a scheme of CLN-type and f: Y — X a finite and
generically étale surjective morphism. [So one verifies easily that Y has
a natural structure of a smooth curve over k with respect to which f is
a morphism over k.] If Y, hence also X, is not a hyperbolic curve over k,
then f is étale.

To this end, let us first observe that since [we have assumed that] X is isomorphic
neither to the projective line over k£ nor to the affine line over k, it follows immediately
from elementary theory of algebraic curves that both Y and X are either

e proper over k and of genus one, or
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e isomorphic to the complement in the projective line over k of distinct two closed
points.

Thus, since [we have assumed that] f is generically étale and finite, again by elementary
theory of algebraic curves, we conclude immediately that f is étale, as desired. This
completes the proof of assertion (ii), hence also of Lemma 2.7. U

THEOREM 2.8. — Let k be a field, S a smooth curve over k [cf. Definition 2.2, (ii)]
whose base-change to an algebraic closure of k is isomorphic neither to the projective
line nor to the affine line, X a normal variety over k [cf. Definition 2.2, (i)], f: X — S
a morphism over k, andmn — S a geometric generic point of S. Suppose that the geometric
generic fiber X X7 of f is [either empty or] reduced [cf. Remark 2.8.1 below]. Consider
the following four conditions:

(1) The outer homomorphism Ilx — g induced by f is surjective. Moreover, the
profinite group Ay is topologically finitely generated.

(2) The outer homomorphism llx — Ilg induced by f is surjective. Moreover, if we
write 3 for the set of prime numbers not invertible in k [so §3 < 1], then the profinite

group Ay has the property Pgﬁio defined in Definition 2.5, (i) [which is the case if, for
instance, either

e the profinite group Ay is topologically finitely generated,
e the profinite group Ay is almost abelian, or

e the profinite group Ay is almost pro-X’ for some [possibly empty| set X' of prime
numbers such that there exists a prime number not contained in X’ and invertible in

k
— ¢f. Remark 2.5.1].

(3) The morphism f is surjective and generically geometrically irreducible.
Moreover, the sequence of irreducible [hence also connected] schemes

Xxg7 e x tog

induces an exact sequence of profinite groups and outer homomorphisms

x5 ITx I 1.

(4) The morphism f is dominant and generically geometrically irreducible.
Moreover, the sequence of irreducible [hence also connected] schemes

Xxg7 e x tog
induces an exact sequence of profinite groups and outer homomorphisms

Moy — Tx T 1,

Then the following assertions hold:
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(i) The implications

(1) (2) (3) (4)

hold.

(ii) Suppose that either k is of characteristic zero, or the geometric generic fiber
X xg7 of f is proper over 7. Then the equivalences

(1) (2) (3) (4)

hold.

PROOF. — Let us first observe that one verifies immediately from [16], Exposé IX,
Théoreme 6.1, that, to verify Theorem 2.8, we may assume without loss of generality, by
replacing k by the algebraic closure of k determined by the composite 7 — S — Spec(k),
that

k is algebraically closed.
Now we verify assertion (i). The implications
(1) =—(2), (3) =—(4)
are immediate. Next, to verify the implication
(2) =— (4),

suppose that condition (2) is satisfied. Let us first recall from Lemma 2.3 that the
profinite group Il is nontrivial. In particular, since [we have assumed that] the outer
homomorphism IIx — Ilg is surjective, we conclude that the morphism f is noncon-
stant, i.e., dominant. Thus, the implication (2) = (4) follows from Lemma 1.5, (ii), and
Lemma 2.7, (ii) [cf. also Lemma 2.6, (ii)]. This completes the proof of the implication
(2) = (4).

Next, to verify the implication

(2) = (3),

suppose that condition (2), hence also condition (4) [cf. the preceding paragraph], is
satisfied, and write U C S for the image of the morphism f: X — S. [Thus, U is an open
subscheme of S — cf. condition (4).] Then we have a commutative diagram of profinite
groups

1 A Iy Mg 1
11— AU/S Iy IIg 1

— where the horizontal sequences are exact. Next, let us observe that since the resulting
[necessarily surjective] morphism X — U is generically geometrically irreducible [cf. con-
dition (4)], it follows from [a similar argument to the argument applied in the proof of]
[8], Lemma 1.6, that the middle vertical arrow ITx — II;; of this diagram, hence also the

left-hand vertical arrow Ay — Ay/g of this diagram, is surjective. In particular, since the
3¢y

7 oo [cf. condition (2)], it follows from Lemma 2.6,

J¢s

3~»oo7

profinite group Ay has the property P

(ii), that the profinite group Ay/g has the property PP which thus implies that there
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exists a prime number [ ¢ X such that there is no quotient of Ay g which is free pro-I
and not topologically finitely generated.

Next, let us observe that the lower horizontal sequence of the above diagram determines
an exact sequence of profinite groups

A(l)

(0 !
U/s 1T Hg) 1

— where we write “(—)®” for the maximal pro-I quotient of “(—)”. Now assume that
U # S. Then since [we have assumed that] S is isomorphic neither to the projective
line over k nor to the affine line over k, one verifies easily that U is a hyperbolic curve
over k. Moreover, it follows from Lemma 2.3 that the profinite group Hg) is infinite,
which thus implies that the image of the first arrow of the above exact sequence is of
infinite index in Hg). Thus, it follows immediately from Lemma 2.1, together with our
assumption on the quotients of Ay/g, that the image of the first arrow of the above exact

sequence is trivial. In particular, the outer homomorphism Hg) — Hg) induced by the
open immersion U < S is an outer isomorphism. Thus, it follows from Lemma 2.4 that
U = S, in contradiction to our assumption that U # S. This completes the proof of the
implication (2) = (3), hence also of assertion (i).

Next, we verify assertion (ii). Suppose that condition (4) is satisfied. Thus, the outer
homomorphism IIx — Ilg induced by f is surjective. Next, let us observe that it follows
from condition (4) that the outer homomorphism ITx .7 — IIx induced by X xg7 — X
determines a IIx-conjugacy class of surjective homomorphisms Iy, ;7 — Ay. Thus, since
I x« 47 is topologically finitely generated [cf. [8], Lemma 1.7, and [16], Exposé X, Théoreme
2.9], we conclude that condition (1) is satisfied, as desired. This completes the proof of
assertion (ii), hence also of Theorem 2.8. O

REMARK 2.8.1. — In the situation of Theorem 2.8, suppose that k is of characteristic
zero. Then it follows from Remark 1.3.1 that the assumption that the geometric generic
fiber X x g7 of f is [either empty or] reduced in the statement of Theorem 2.8 is always
satisfied.

REMARK 2.8.2. — Theorem 2.8 may be regarded as a refinement of the implication
(2) = (3) of [8], Lemma 2.11.

REMARK 2.8.3. — Let k£ be an algebraically closed field of characteristic zero. Write S

for either the projective line over k or the affine line over k. Let f: X of Spec(k) — S
be a k-rational point of S [i.e., a splitting of the structure morphism of S]. Then one
verifies easily that the morphism f satisfies condition (1) of Theorem 2.8 but does not
satisfy condition (4) of Theorem 2.8.
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3. AN ANABELIAN RESULT ON HYPERBOLIC POLYCURVES OF DIMENSION TwO

In the present §3, we obtain an application of the results of §1 concerning the Grothendieck
conjecture for hyperbolic polycurves of dimension two [cf. Theorem 3.3 below].

DEFINITION 3.1. — Let P be a property of a profinite group. Then we shall say that the
property P is stable under taking extensions of topologically finitely generated profinite
groups if the following condition is satisfied: If a profinite group G has the property P,
then an arbitrary extension of a topologically finitely generated profinite group by G [i.e,
a profinite group E that fits into an exact sequence of profinite groups

1 G E H 1
— where H is topologically finitely generated| has the property P.

REMARK 3.1.1. — Let P be a property of a profinite group which is stable under taking
open subquotients and stable under taking extensions of topologically finitely generated
profinite groups. Suppose that there exists a profinite group that has the property P.
Then one verifies easily that an arbitrary topologically finitely generated profinite group
has the property P.

LEMMA 3.2. — Let ¥ be a set of prime numbers. Then the property P;iio on a profinite
group defined in Definition 2.5, (i), is stable under taking extensions of topologi-

cally finitely generated profinite groups.
g

T oo and

PROOF. — Let G be a profinite group that has the property P
1 G E H 1

an exact sequence of profinite groups such that H is topologically finitely generated. Now,
to verify Lemma 3.2, assume that the profinite group E does not have the property
i.e., that there exists an open subgroup U C E of E such that, for an arbitrary
prime number [ ¢€ ¥, the profinite group U has a free pro-l and not topologically finitely
generated quotient U — ().

Now let us observe that since G is normal in E, the image of the composite U N G —
U — @ is normal in Q;. In particular, if this image of U NG in Q; is nontrivial, then this
image in Q) is free pro-l [cf. [13], Corollary 7.7.5] and not topologically finitely generated
[cf. [13], Theorem 8.6.5]. Thus, since U N G is an open subgroup of G, and [we have
assumed that] G has the property sziw we conclude that there exists a prime number
[ ¢ X such that the image of the composite U NG — U — @ is trivial, which thus
implies that we have a surjective homomorphism U/(U N G) — Q.

On the other hand, since U/(U N G) may be regarded as an open subgroup of the
topologically finitely generated profinite group H, the quotient U/(U N G) is topologically
finitely genmerated. Thus, since @); is not topologically finitely generated, we obtain a
contradiction by the above surjective homomorphism U/(U N G) — ;. This completes
the proof of Lemma 3.2. Il
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THEOREM 3.3. — Let p be a prime number, k a sub-p-adic field [cf., e.g., [8], Definition
3.1], k an algebraic closure of k, X a hyperbolic polycurve of dimension 2 over k
[cf. [8], Definition 2.1, (ii)], and Z a normal variety over k [cf. Definition 2.2, (i)].

Write Gy, < Gal(k/k). Let
a HZ e HX

be an open homomorphism of profinite groups over Gy. Suppose that the kernel Ker(«a) of
a has the property Py.oo defined in Definition 2.5, (i) [which is the case if, for instance,
either

e the profinite group Ker(«) is topologically finitely generated,
e the profinite group Ker(«) is almost abelian, or

e the profinite group Ker(a) is almost pro-X for some [possibly empty] set X2 of prime
numbers not equal to the set of all prime numbers

— ¢f. Remark 2.5.1]. Then there exists a uniquely determined dominant morphism
Z —=X

over k from which « arises. In particular, the normal variety Z is of dimension > 2.

PROOF. — Let us first observe that one verifies easily [cf. also [8], Proposition 2.3] that,

to verify Theorem 3.3, we may assume without loss of generality, by replacing X by the
connected finite étale covering of X that corresponds to the image of «, that

the homomorphism « is surjective.

Fix a parametrizing morphism X — S for X [cf. [8], Definition 2.1, (ii)] and a
[necessarily surjective — cf. [8], Proposition 2.4, (i)] homomorphism Iy — IIg over
(), induced by this parametrizing morphism X — S. Write §: 114 5 [Ty — Ilg for the
composite of o and the fixed surjective homomorphism Iy — IIg. Then it follows from
[8], Theorem A, in the case where condition (1) is satisfied that there exists a uniquely
determined dominant morphism

f:Z—S5
over k from which 3 arises.

Now we verify the following claim:

Claim 3.3.A: The kernel Ay [i.e., the kernel of ] has the property Pz o.

To this end, let us first observe that we have a commutative diagram of profinite groups

1 Ay M, Ty ——1
| — Ayyg —= Ty —= g ——~1

— where the horizontal sequences are exact. Thus, the kernel Ay is isomorphic to an
extension of Ax/g by the kernel of a. Now let us recall from [8], Proposition 2.4, (iii),
that the profinite group Ax/g is topologically finitely generated. Thus, since the property
Py . is stable under taking extensions of topologically finitely generated profinite groups
[cf. Lemma 3.2], and [we have assumed that] the kernel of a has the property Py,
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the profinite group Ay has the property Py, as desired. This completes the proof of
Claim 3.3.A.
Next, we verify the following claim:

Claim 3.3.B: Both the morphism X — S and f: Z — S are generically
geometrically irreducible.

To this end, let us recall from the definition of a hyperbolic curve that the morphism
X — S'is generically geometrically irreducible. On the other hand, the assertion that the
morphism f: Z — S is generically geometrically irreducible follows from Lemma 1.5, (ii)
cf. also Lemma 2.6, (ii), and Lemma 2.7, (ii)], together with Claim 3.3.A. This completes
the proof of Claim 3.3.B.

Write n — S for the [morphism of schemes determined by the| generic point of S. Let
7 — (n —) S be a geometric generic point of S. Next, we verify the following claim:

Claim 3.3.C: There exists a surjective homomorphism
oy Izxgn > Il xxgn

[cf. Claim 3.3.B] over II, such that the diagram of profinite groups

Qn
HZXSn HXXSn

v

I, ITx

a

— where the vertical arrows are some [necessarily surjective — cf. [8],
pr

Lemma 1.2] homomorphisms over IIg induced by Z x g1 7 Xx sn— X,
respectively — commutes.

To this end, let us first observe that it follows immediately from the various definitions
involved that we have a sequence of profinite groups over II,

aX idHS idnn

Hszn*)HZ X1lg Hﬂ HX X1Ig HT]<7HX><S7]-

On the other hand, it follows from [8], Proposition 2.4, (ii), that the third arrow of this
sequence is an isomorphism; moreover, since « is surjective, one verifies easily that the sec-
ond arrow of this sequence is surjective. Thus, to complete the verification of Claim 3.3.C,
it suffices to verify that the first arrow of this sequence is surjective, or, alternatively [cf.
8], Lemma 1.5], the IIz-conjugacy class of homomorphisms I, — Az g induced by

Z xsT 2 Z is surjective. On the other hand, this follows from Lemma 1.5, (ii) [cf. also
Lemma 2.6, (ii), and Lemma 2.7, (ii)], together with Claim 3.3.A. This completes the
proof of Claim 3.3.C.

Thus, since [one verifies easily from Claim 3.3.B that] Z x g n is a normal variety over
n [i.e., over the function field of S], and the function field of S is sub-p-adic, it follows
immediately from [8], Theorem A, in the case where condition (1) is satisfied and [§],
Lemma 2.10, that there exists a uniquely determined dominant morphism

J ——X
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over S from which « arises, as desired. This completes the proof of Theorem 3.3. O

REMARK 3.3.1. — Let us recall that [8], Theorem A, in the case where condition (2)
is satisfied is nothing but Theorem 3.3 under the assumption that the kernel of « is
topologically finitely generated. Thus, Theorem 3.3 may be regarded as a refinement of
[8], Theorem A, in the case where condition (2) is satisfied.

REMARK 3.3.2. — Suppose that we are in the situation of Theorem 3.3. Then one may
conclude that

if one drops the assumption that the hyperbolic polycurve X is of dimen-
sion 2, then the conclusion of Theorem 3.3 no longer holds in general

as follows: Let C, Cy, C3 be proper hyperbolic curves over k. Then Y def C %, Cy %3, Cs
is a hyperbolic polycurve of dimension 3 over k. Now it follows from [5], Exposé XII,
Corollaire 3.5, that there exist a normal variety H of dimension 2 over k and a closed
immersion i: H < Y over k such that ¢ induces an outer isomorphism

My —= 1.
Now let us observe that

(a) the triple consisting of the hyperbolic polycurve Y over k, the normal variety
H over k, and some fixed isomorphism II; = IIy over G contained in the outer iso-
morphism induced by i satisfies the condition imposed on the triple “(X, Z, a)” in the
statement of Theorem 3.3 except for the condition that “X” is of dimension 2. On the
other hand, there is no dominant morphism from H to Y [cf. dim(H) = 2 < 3 = dim(Y)],
which thus implies that the fixed isomorphism Iz = Ily over G}, never arises from a
dominant morphism over k.

Moreover, let Cy be a hyperbolic curve over k. Then one verifies easily [cf. [8], Propo-
sition 2.4, (i)] that the composite H x; Cy — Y of the first projection H x; Cy — H and
the closed immersion 7: H — Y induces an outer surjective homomorphism

gy, c, — 1y

whose kernel is isomorphic to Ag, i, hence also topologically finitely generated [cf. [8],
Proposition 2.4, (iii)]. Now let us also observe that

(b) the triple consisting of the hyperbolic polycurve Y over k, the normal variety
H x3, Cy over k, and some fixed surjective homomorphism Iz, o, — Iy over Gy con-
tained in the outer surjective homomorphism induced by the above composite satisfies
the condition imposed on the triple “(X, Z, a))” in the statement of Theorem 3.3 except
for the condition that “X” is of dimension 2. On the other hand, it follows immediately
from [8], Proposition 3.2, (ii), that the fixed surjective homomorphism gy, ¢, — Iy
over (G, never arises from a dominant morphism over k.

REMARK 3.3.3. — Let us observe that it follows from [8], Lemma 2.6, (i), and [§],
Proposition 2.7, that the normal variety “H” over k of Remark 3.3.2 is of LFG-type [cf.
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[8], Definition 2.5]. In particular, it follows from [8], Proposition 2.7, that the normal
variety “H X C4” over k of Remark 3.3.2 is of LFG-type. Thus, the observation (a) of
Remark 3.3.2 implies that

if one drops assumption (3-iv) in the statement of [8], Theorem A, then
the conclusion of [8], Theorem A [i.e., in the case where condition (3) is
satisfied], no longer holds in general.

Moreover, the observation (b) of Remark 3.3.2 implies that

if one drops assumption (3-ii) in the statement of [8], Theorem A, then
the conclusion of [8], Theorem A [i.e., in the case where condition (3) is
satisfied], no longer holds in general.

Finally, one may also conclude from a similar argument to the argument applied in the
consideration related to (b) of Remark 3.3.2 that

if one drops assumption (4-ii) in the statement of [8], Theorem A, then
the conclusion of [8], Theorem A [i.e., in the case where condition (4) is
satisfied], no longer holds in general.

REMARK 3.34.

(i) Suppose that we are in the situation of Theorem 3.3. Then one may conclude that

if one drops the assumption that the kernel of o has the property P,
then the conclusion of Theorem 3.3 no longer holds in general

as follows: Let €'y and (5 be proper hyperbolic curves over k. Then W g Cy xx Cyis a

hyperbolic polycurve of dimension 2 over k. Now it follows from [5], Exposé XII, Corollaire
3.5, that there exist a normal variety J over k and a closed immersion j: J < W over k
such that j is not an isomorphism [or, alternatively, not dominant] — which thus implies
that J is of dimension < 1 — but induces an outer surjective homomorphism

HJ4>>H{/V.

Now let us observe that the triple consisting of the hyperbolic polycurve W over k,
the normal variety J over k, and some fixed surjective homomorphism II; — Ily over
(G, contained in the outer surjective homomorphism induced by j satisfies the condition
imposed on the triple “(X, Z, «)” in the statement of Theorem 3.3 except for the condition
that the kernel of “a” has the property P5 ... On the other hand, there is no dominant
morphism from J to W [cf. dim(J) < 1 < 2 = dim(W)], which thus implies that the fixed
surjective homomorphism II; — Ily, over G never arises from a dominant morphism
over k.

(ii) One may find
an example of a triple consisting of a hyperbolic polycurve X of dimension

2 over k, a normal variety Z over k, and a dominant morphism f: 7 — X

over k such that the kernel Ay does not have the property Py .o
as follows: Let C', Csy, C5 be hyperbolic curves over k; fo: Co — Cs a dominant morphism
over k that is not a finite étale covering. Then both W 5 def Cy X, Cy and Wy 3 def Ci xC4
are hyperbolic polycurves of dimension 2 over k, and the morphism fy: Wy o — Wi 3 over

(4, hence also over k, induced by fo is dominant. Moreover, one verifies easily [cf. [§],
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Proposition 2.4, (i)] that Ay, = Ay,. On the other hand, it follows immediately from
Lemma 2.7, (i), that the profinite group Ay, hence also Ay, , does not have the property
Pooo.
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