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Abstract. — In the present paper, we study the absolute anabelian geometry of hyper-
bolic orbicurves. The first main result of the present paper shows the absolute version of the
Grothendieck conjecture for quasi-tripods — e.g., hyperbolic curves of genus less than two —
over, for instance, finitely generated extensions of mixed-characteristic local fields. Moreover,
we prove some absolute anabelian results for certain hyperbolic polycurves as applications of
the first main result. Finally, we also show the absolute version of the Grothendieck con-
jecture for MLF-isotrivial hyperbolic orbicurves over finitely generated extensions of mixed-
characteristic local fields.
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Introduction

In the present Introduction, let p be a prime number and k a field of characteristic
zero. We shall say that [cf. Definition 1.1 and Definition 1.2]

• the field k is algebraic if k is algebraic over the [unique] subfield of k isomorphic to
the field of rational numbers,

• the field k is p-adic local if k is isomorphic to a finite extension of the field of fractions
of the ring of Witt vectors with coefficients in a finite field of characteristic p,

• the field k is mixed-characteristic local if k is l-adic local for some prime number l,
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• the field k is sub-p-adic if k is isomorphic to a subfield of a field finitely generated
over a p-adic local field,

• the field k is generalized sub-p-adic if k is isomorphic to a subfield of a field finitely
generated over the field of fractions of the ring of Witt vectors with coefficients in an
algebraic extension of a finite field of characteristic p, and

• the field k is strictly sub-p-adic if k is sub-p-adic and contains a p-adic local field.

The [relative version of the] Grothendieck conjecture for hyperbolic [orbi]curves over
generalized sub-p-adic fields was proved by Mochizuki [cf. [12], Theorem A, and [13],
Theorem 4.12; also Theorem 4.5 of the present paper]. In the present paper, we study the
absolute anabelian geometry of hyperbolic orbicurves over generalized sub-p-adic fields. In
particular, we discuss the absolute version of the Grothendieck conjecture for quasi-tripods
over certain generalized sub-p-adic fields.

Let X be a hyperbolic orbicurve [cf. Definition 3.5, (i)] over k. Then we shall say
that X is a quasi-tripod [cf. Definition 3.7] if there exist a positive integer n and a
sequence (X = X1, X2, . . . , Xn−1, Xn) of hyperbolic orbicurves such that Xn is a tripod
[i.e., a hyperbolic curve of type (0, 3) — cf. Definition 3.4, (ii)], and, moreover, for each
i ∈ {1, . . . , n−1}, the hyperbolic orbicurve Xi is related to the hyperbolic orbicurve Xi+1

in one of the following four ways:

(1) There exists a finite étale covering Xi+1 → Xi.

(2) There exists a finite étale covering Xi → Xi+1.

(3) There exists an open immersion Xi ↪→ Xi+1.

(4) There exists a morphism Xi → Xi+1 such that the induced morphism between the
associated coarse spaces is an isomorphism.

The notion of a quasi-tripod may be regarded as a generalization of the notion of a
hyperbolic curve of Belyi type defined in [16], Definition 2.3, (ii). More precisely, if k is
mixed-characteristic local, and X is a hyperbolic curve over k, then it holds that X is
of Belyi type if and only if X is a quasi-tripod and, moreover, may be defined over an
algebraic subfield of k. Here, one verifies easily from elementary algebraic geometry the
following three assertions:

• An arbitrary nonempty open substack of a quasi-tripod is a quasi-tripod.

• For each point of a hyperbolic curve over k, there exists an open neighborhood of
the point which is a quasi-tripod.

• Every hyperbolic curve of genus ≤ 1 over k is a quasi-tripod.

The first main result of the present paper, i.e., Corollary 5.6, shows the absolute version
of the Grothendieck conjecture for quasi-tripods over certain generalized sub-p-adic fields.
One consequence of Corollary 5.6 is as follows:

THEOREM A. — For □ ∈ {◦, •}, let p□ be a prime number, k□ a field of characteristic
zero, and X□ a hyperbolic orbicurve over k□; write ΠX□ for the étale fundamental group
[relative to an appropriate choice of basepoint] of X□. Let

α : ΠX◦
∼ // ΠX•
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be an isomorphism of profinite groups. Suppose that either X◦ or X• is a quasi-tripod.
Suppose, moreover, that one of the following three conditions is satisfied:

(1) For each □ ∈ {◦, •}, the field k□ is algebraic, generalized sub-p□-adic, and
Hilbertian.

(2) For each □ ∈ {◦, •}, the field k□ is finitely generated and transcendental
over a field that is algebraic and sub-p□-adic.

(3) For each □ ∈ {◦, •}, the field k□ is strictly sub-p□-adic.

Then the isomorphism α arises from a unique isomorphism X◦
∼→ X• of stacks.

Note that Theorem A may be regarded as a generalization of the absolute anabelian
result for hyperbolic curves of Belyi type over mixed-characteristic local fields proved by
Mochizuki, i.e., [16], Corollary 2.3, in the case where condition (b) is satisfied.

Before proceeding, we pause to observe [cf. Remark 5.6.1] that if one replaces conditions
(1), (2), and (3) in the statement of Theorem A by, for instance, the condition that

for each □ ∈ {◦, •}, the field k□ is sub-p□-adic,

then the conclusion of Theorem A no longer holds in general. Indeed, if one writes Q for
the field of rational numbers, Qp for the p-adic completion of Q, and F for the algebraic
closure of Q in Qp, then it is immediate that both Qp and F are sub-p-adic. On the other
hand, it follows from Krasner’s lemma [cf., e.g., [20], Lemma 8.1.6] that the natural
inclusion F ↪→ Qp induces an outer isomorphism between the respective absolute Galois
groups. In particular, for an arbitrary hyperbolic curve X [e.g., a tripod, that is a quasi-
tripod] over F , the first projection X ×F Qp → X induces an outer isomorphism between
the respective étale fundamental groups. However, one verifies easily that the scheme
X ×F Qp is not isomorphic to the scheme X.

In [4], the author of the present paper studied the relative version of the Grothendieck
conjecture for hyperbolic polycurves [cf. Definition 6.1 of the present paper] over sub-p-
adic fields. In §6 of the present paper, we prove some absolute anabelian results for
certain hyperbolic polycurves as applications of the first main result of the present paper.
The first application, i.e., Corollary 6.4, is an absolute anabelian result for configuration
spaces of hyperbolic curves [cf. Definition 6.2]. This result may be derived from the first
main result of the present paper, together with the anabelian techniques applied in [18],
§1. One consequence of Corollary 6.4 is as follows:

THEOREM B. — For □ ∈ {◦, •}, let d□ be a positive integer, p□ a prime number, k□ a
field of characteristic zero, and C□ a hyperbolic curve over k□; write X□ for the d□-th
configuration space of C□ and ΠX□ for the étale fundamental group [relative to an
appropriate choice of basepoint] of X□. Let

α : ΠX◦
∼ // ΠX•

be an isomorphism of profinite groups. Suppose that one of the following three conditions
is satisfied:

(A) Either C◦ or C• is a quasi-tripod.

(B) Either C◦ or C• is affine. Moreover, the inequality max{d◦, d•} ≥ 2 holds.
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(C) The inequality max{d◦, d•} ≥ 3 holds.

Suppose, moreover, that one of the three conditions (1), (2), and (3) in the statement of
Theorem A is satisfied. Then the isomorphism α arises from a unique isomorphism
X◦

∼→ X• of schemes.

The second application, i.e., Corollary 6.10, is a result concerning an absolutely an-
abelian open basis. Let us recall that Schmidt and Stix proved that every smooth variety
over a field finitely generated over the field of rational numbers has an open basis for
the Zariski topology consisting of “anabelian” varieties [cf. [22], Corollary 1.7]. This was
predicted by Grothendieck in his letter to Faltings. Moreover, the author of the present
paper generalized this result of Schmidt and Stix to smooth varieties over generalized
sub-p-adic fields [cf. [8], Theorem A].
In [8], the author of the present paper also discussed an absolute version of the above

prediction due to Grothendieck. We shall say that a smooth variety over k has an abso-
lutely anabelian open basis [cf. Definition 6.9] if there exists an open basis for the Zariski
topology of the variety such that, for arbitrary members U and V of the open basis, the
natural map

Isom(U, V ) // Isom(ΠU ,ΠV )/Inn(ΠV )

is bijective — where we write “Π(−)” for the étale fundamental group [relative to an
appropriate choice of basepoint] of “(−)”. One consequence of Corollary 6.10 — that
may be regarded as a generalization of some results of [8], hence also of [22], Corollary
1.7 — is as follows:

THEOREM C. — Suppose that one of the following three conditions is satisfied:

(1) The field k is algebraic, generalized sub-p-adic, and Hilbertian.

(2) The field k is finitely generated and transcendental over a field that is alge-
braic and sub-p-adic.

(3) The field k is strictly sub-p-adic.

Then every smooth variety of positive dimension over the field k has an absolutely
anabelian open basis.

Finally, in §7 of the present paper, we also study the absolute anabelian geometry of
MLF-isotrivial hyperbolic orbicurves. Let X be a hyperbolic orbicurve over k. Then we
shall say that [cf. Definition 3.6]

• the hyperbolic orbicurveX is strictly MLF-isotrivial if there exist a mixed-characteristic
local subfield k0 ⊆ k of k, a hyperbolic orbicurve X0 over k0, and an isomorphism
X

∼→ X0 ×k0 k over k, and

• the hyperbolic orbicurve X is MLF-isotrivial if there exists a finite extension K of k
such that the hyperbolic orbicurve X ×k K over K is strictly MLF-isotrivial.

The main result of §7 of the present paper, i.e., Theorem 7.1, shows the absolute version
of the Grothendieck conjecture for MLF-isotrivial hyperbolic orbicurves over fields that
are strictly sub-p-adic but not p-adic local. One consequence of Theorem 7.1 is as follows:
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THEOREM D. — For □ ∈ {◦, •}, let p□ be a prime number, k□ a field that is strictly
sub-p□-adic but not p□-adic local, and X□ a hyperbolic orbicurve over k□; write
ΠX□ for the étale fundamental group [relative to an appropriate choice of basepoint] of
X□. Let

α : ΠX◦
∼ // ΠX•

be an isomorphism of profinite groups. Suppose that one of the following two conditions
is satisfied:

(1) Both X◦ and X• are MLF-isotrivial.

(2) The hyperbolic orbicurve X◦ is strictly MLF-isotrivial, and, moreover, the
unique maximal p◦-adic local subfield of k◦ [cf. Proposition 2.11, (iii)] is absolutely
abelian [cf. [7], Definition 4.2, (ii)].

Then the isomorphism α arises from a unique isomorphism X◦
∼→ X• of stacks.
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1. Some Generalities on Quasi-p-adic Local Fields

In the present §1, we discuss some generalities on quasi-p-adic local fields [cf. Defini-
tion 1.2, (ii)]. In the present §1, let p be a prime number and k a field of characteristic
zero.

DEFINITION 1.1.

(i) We shall write krtn ⊆ k for the [unique] subfield of k isomorphic to the field of
rational numbers. We shall write (p) for the [unique] nonarchimedean prime of krtn of
residue characteristic p.

(ii) We shall write kalg ⊆ k for the [unique] maximal subfield of k algebraic over krtn.

(iii) We shall say that k is algebraic if the equality k = kalg holds.

(iv) We shall say that k is a number field if k is finite over krtn.

REMARK 1.1.1. — One verifies easily the following three assertions:

(i) If k is algebraic, then an arbitrary algebraic extension of k is algebraic.

(ii) If k is a number field, then an arbitrary finite extension of k is a number field.

(iii) A number field is algebraic.
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DEFINITION 1.2.

(i) We shall say that k is p-adic local if k is isomorphic to a finite extension of the field
of fractions of the ring of Witt vectors with coefficients in a finite field of characteristic p.
We shall say that k is mixed-characteristic local if k is l-adic local for some prime number
l.

(ii) We shall say that k is quasi-p-adic local if k is isomorphic to a finite extension of
the field of fractions of the ring of Witt vectors with coefficients in an algebraic extension
of a finite field of characteristic p.

(iii) We shall say that k is sub-p-adic if k is isomorphic to a subfield of a field finitely
generated over a p-adic local field.

(iv) We shall say that k is generalized sub-p-adic if k is isomorphic to a subfield of a
field finitely generated over a quasi-p-adic local field.

(v) We shall say that k is strictly sub-p-adic if k is sub-p-adic and contains a p-adic
local field.

REMARK 1.2.1. — One verifies easily the following three assertions:

(i) If k is p-adic local (respectively, quasi-p-adic local), then an arbitrary finite exten-
sion of k is p-adic local (respectively, quasi-p-adic local).

(ii) If k is sub-p-adic (respectively, generalized sub-p-adic; strictly sub-p-adic), then an
arbitrary finitely generated extension of k is sub-p-adic (respectively, generalized sub-p-
adic; strictly sub-p-adic).

(iii) The following implications hold:

number field

��
p-adic local +3

��

strictly sub-p-adic +3 sub-p-adic

��
quasi-p-adic local +3 generalized sub-p-adic

LEMMA 1.3. — It holds that the field k is p-adic local (respectively, quasi-p-adic local)
if and only if there exists a prime p of kalg over (p) such that the degree (respectively,
ramification index) of p over (p) is finite, and, moreover, the natural inclusion kalg ↪→ k
determines an isomorphism of the completion of kalg at the prime p with k.

Proof. — This assertion follows immediately from the definitions of the notion of a
p-adic local field and the notion of a quasi-p-adic local field. □

LEMMA 1.4. — Let F ⊆ k be an algebraic subfield of k [so krtn ⊆ F ] and p a prime
of F over (p) such that the ramification index of p over (p) is finite. Write F∧ for the
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completion of F at the prime p and OF∧ ⊆ F∧ for the valuation ring of F∧ with respect
to the valuation determined by p. Then the following hold:

(i) The subring of F∧ generated by the subset⋃
l: prime

( ⋂
n≥1

(F∧)l
n
)
⊆ F∧

coincides with the subring OF∧ ⊆ F∧.

(ii) There exists a unique prime number l such that l · OF∧ 6= OF∧. Moreover, this
unique prime number coincides with p.

(iii) The collection {pn · OF∧}n≥1 of ideals of OF∧ determines a complete discrete
valuation on F∧. Moreover, this resulting complete discrete valuation on F∧ coincides
with the valuation on F∧ determined by p. In particular, the prime of F determined by
this complete discrete valuation on F∧ coincides with the prime p.

Proof. — First, we verify assertion (i). Write µ ⊆ O×
F∧ for the subgroup consisting

of roots of unity in F∧, m ⊆ OF∧ for the maximal ideal of the local ring OF∧ , S
def
=⋃

l: prime (
⋂

n≥1 (F∧)l
n
) ⊆ F∧, and R ⊆ F∧ for the subring of F∧ generated by S ⊆ F∧.

Then since the ramification index of p over (p) is finite, the quotient (F∧)×/O×
F∧ is cyclic

and infinite. Thus, the inclusion S ⊆ OF∧ , hence also the inclusion R ⊆ OF∧ , holds.
Next, let us observe that one verifies immediately the inclusion µ ⊆ S. Moreover, one
also verifies immediately the equality (1 + m)l = 1 + m for an arbitrary prime number l
not equal to p, hence also the inclusion 1 + m ⊆ S. Thus, assertion (i) follows from the
[easily verified] fact that the ring OF∧ is generated by µ and 1 + m. This completes the
proof of assertion (i). Assertions (ii), (iii) are immediate. This completes the proof of
Lemma 1.4. □

DEFINITION 1.5. — We shall write Ok ⊆ k for the subring of k generated by the subset⋃
l: prime

( ⋂
n≥1

kln
)
⊆ k.

REMARK 1.5.1. — If the field k is quasi-p-adic local, then it follows from Lemma 1.3 and
Lemma 1.4, (i), that the natural inclusion Ok ↪→ k determines an isomorphism of the
field of fractions of Ok with k.

DEFINITION 1.6. — Suppose that k is quasi-p-adic local.

(i) We shall write pk for the [unique — cf. Lemma 1.3 and Lemma 1.4, (ii)] prime
number such that pk · Ok 6= Ok. [So pk = p — cf. Lemma 1.3 and Lemma 1.4, (ii).]

(ii) The collection {pnk ·Ok}n≥1 of ideals of Ok determines a complete discrete valuation
on k [cf. Lemma 1.3 and Lemma 1.4, (ii), (iii)]. We shall write pk for the prime of kalg

determined by this complete discrete valuation on k.
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2. Anabelian Results for Finitely Generated Transcendental Extensions

In the present §2, we prove some anabelian results for finitely generated transcenden-
tal extensions. In particular, we discuss a consequence of anabelian results proved by
Mochizuki and Pop [cf. Theorem 2.14 below]. In the present §2, let p be a prime number,

k a field of characteristic zero, and k an algebraic closure of k. Write Gk
def
= Gal(k/k)

for the absolute Galois group of k determined by the algebraic closure k; Ω ⊆ k for the
algebraic closure of krtn [hence also of kalg] in k;

Galg
k

def
= Gal(Ω/kalg) ⊆ Grtn

k
def
= Gal(Ω/krtn)

for the respective absolute Galois groups of kalg, krtn determined by the algebraic closure

Ω. Thus, the natural inclusion Ω ↪→ k determines a surjective homomorphism of profinite
groups

Gk
// // Galg

k ,

by means of which we shall regard the profinite group Galg
k as a quotient of the profinite

group Gk.

LEMMA 2.1. — Suppose that k is quasi-p-adic local. Then the following hold:

(i) The natural surjective homomorphism Gk ↠ Galg
k is an isomorphism.

(ii) Write p̃k for the nonarchimedean prime of Ω determined by, relative to the natural
inclusion Ω ↪→ k, the unique extension to k of the complete discrete valuation on k of
Definition 1.6, (ii); Ip̃k ⊆ Dp̃k ⊆ Grtn

k for the inertia, decomposition subgroups of Grtn
k

associated to p̃k, respectively. Then the following two conditions are satisfied:

(1) The inclusion Galg
k ⊆ Dp̃k holds.

(2) The closed subgroup Galg
k ⊆ Grtn

k contains an open subgroup of Ip̃k ⊆ Grtn
k .

If, moreover, the field k is p-adic local, then the closed subgroup Galg
k ⊆ Grtn

k contains
an open subgroup of Dp̃k ⊆ Grtn

k .

Proof. — These assertions follow immediately — in light of Lemma 1.3 — from Kras-
ner’s lemma [cf., e.g., [20], Lemma 8.1.6]. □

LEMMA 2.2. — Suppose that k is quasi-p-adic local. Then the set of primes of kalg

over (p) of finite ramification index is of cardinality one, i.e., consists of the prime
pk of Definition 1.6, (ii).

Proof. — This assertion follows immediately — in light of Lemma 1.3— from Lemma 2.1,
(ii), and [15], Proposition 2.3, (iv). □

LEMMA 2.3. — Suppose that k is sub-p-adic (respectively, generalized sub-p-adic).
Then there exists a prime p̃ of Ω over (p) such that if one writes Ip̃ ⊆ Dp̃ ⊆ Grtn

k for
the inertia, decomposition subgroups of Grtn

k associated to p̃, respectively, then the closed

subgroup Galg
k ⊆ Grtn

k contains an open subgroup of Dp̃ ⊆ Grtn
k (respectively, Ip̃ ⊆ Grtn

k ).
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Proof. — Let K0 be a p-adic local (respectively, quasi-p-adic local) field, K a field
finitely generated overK0, and k ↪→ K an injective homomorphism of fields. Then observe
that, to verify Lemma 2.3, we may assume without loss of generality, by replacing k by
K, that k = K. Next, observe that, to verify Lemma 2.3, we may assume without loss of
generality, by replacingK0 by the algebraic closure ofK0 inK, that (K0)alg = Kalg. Thus,
Lemma 2.3 follows from Lemma 2.1, (ii). This completes the proof of Lemma 2.3. □

DEFINITION 2.4. — Let G be a group and H ⊆ G a subgroup of G.

(i) We shall write

ZG(H)
def
= { g ∈ G | ghg−1 = h for every h ∈ H }

⊆ NG(H)
def
= { g ∈ G | gHg−1 = H }

⊆ CG(H)
def
= { g ∈ G | [H : H ∩ (gHg−1)] <∞, [gHg−1 : H ∩ (gHg−1)] <∞}

for the centralizer, normalizer, and commensurator of H in G, respectively. We shall

write Z(G)
def
= ZG(G) for the center of G.

(ii) We shall say that H is commensurably terminal in G if the equality H = CG(H),
or, alternatively, the inclusion CG(H) ⊆ H, holds.

(iii) Suppose that G is a profinite group. Then we shall say that G is slim if the
equality ZG(H) = {1} holds for every open subgroup H ⊆ G of G. Note that one verifies
immediately that it holds that G is slim if and only if every open subgroup of G is
center-free [i.e., has a trivial center].

LEMMA 2.5. — Let p̃ be a nonarchimedean prime of Ω. Write Ip̃ ⊆ Dp̃ ⊆ Grtn
k for the

inertia, decomposition subgroups of Grtn
k associated to p̃, respectively. Then the following

hold:

(i) Let H ⊆ Dp̃ be a nontrivial [not necessarily closed] subgroup of Dp̃. Then the
inclusion CGrtn

k
(H) ⊆ Dp̃ holds. In particular, the closed subgroup Dp̃ ⊆ Grtn

k is com-

mensurably terminal in Grtn
k .

(ii) Let J ⊆ Ip̃ be an open subgroup of Ip̃. Then the action of NDp̃
(J) on NDp̃

(J)∩ Ip̃
by conjugation is faithful.

(iii) Let J ⊆ Ip̃ be an open subgroup of Ip̃. Then the equality ZGrtn
k
(J) = {1} holds.

Proof. — First, we verify assertion (i). Since Dp̃ is torsion-free [cf. [15], Proposition 2.3,
(iii)], the group H is infinite. Let γ ∈ CGrtn

k
(H) be an element of the commensurator of

H in Grtn
k . Write q̃ for the nonarchimedean prime of Ω obtained by forming the conjugate

of p̃ by γ and Dq̃ ⊆ Grtn
k for the decomposition subgroup of Grtn

k associated to q̃. Then
since H is infinite as already verified above, the intersection H ∩ (γHγ−1), hence also
the intersection Dp̃∩Dq̃, is nontrivial. In particular, it follows from [15], Proposition 2.3,
(iv), that p̃ = q̃, i.e., that γ ∈ Dp̃, as desired. This completes the proof of assertion (i).
Next, we verify assertion (ii). Since J is open in Ip̃, one verifies easily that the closed

subgroup NDp̃
(J) ⊆ Dp̃ of Dp̃ is open. Thus, it follows immediately from [20], Proposition

7.5.2, and [20], Proposition 7.5.4, (ii), that the natural outer action of NDp̃
(J)/(NDp̃

(J)∩
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Ip̃) on NDp̃
(J) ∩ Ip̃ is faithful. On the other hand, let us recall from [13], Lemma 4.14,

that Ip̃ is slim, which thus implies that NDp̃
(J) ∩ Ip̃ is center-free. Thus, assertion (ii)

holds. This completes the proof of assertion (ii).
Finally, we verify assertion (iii). It follows from assertion (i) that ZGrtn

k
(J) = ZDp̃

(J).

Let γ ∈ ZGrtn
k
(J) = ZDp̃

(J) be an element of the centralizer of J in Grtn
k . Then since

Ip̃ is slim [cf. the proof of assertion (ii)], the action of NDp̃
(J) ∩ Ip̃ on J by conjugation

is faithful. Thus, since [one verifies easily that] the resulting injective homomorphism
NDp̃

(J)∩Ip̃ ↪→ Aut(J) is compatible with the respective natural actions of γ on NDp̃
(J)∩Ip̃

and Aut(J) [i.e., by conjugation], we conclude that γ centralizes NDp̃
(J) ∩ Ip̃. Thus, it

follows from assertion (ii) that γ = 1, as desired. This completes the proof of assertion
(iii), hence also of Lemma 2.5. □

In the remainder of the present §2, for □ ∈ {◦, •}, let p□ be a prime number, k□ a field
of characteristic zero, and k□ an algebraic closure of k□; write Ω□ ⊆ k□ for the algebraic
closure of (k□)rtn [hence also of (k□)alg] in k□ and

Gk□
def
= Gal(k□/k□) // // Galg

k□
def
= Gal

(
Ω□/(k□)alg

)
⊆ Grtn

k□
def
= Gal

(
Ω□/(k□)rtn

)
for the respective absolute Galois groups of k□, (k□)alg, (k□)rtn determined by the algebraic

closures k□, Ω□, Ω□.

LEMMA 2.6. — Suppose that, for each □ ∈ {◦, •}, the field k□ is quasi-p□-adic local.
Let φ : (k•)alg ↪→ (k◦)alg be an injective homomorphism of fields. Then the following hold:

(i) The equality p◦ = p• holds.

(ii) The homomorphism φ is compatible with the primes pk•, pk◦ of Definition 1.6,
(ii).

Proof. — First, we verify assertion (i). It follows from Lemma 2.1, (i), and condition
(2) of Lemma 2.1, (ii), together with [20], Proposition 7.5.1, that the profinite group

Galg
k◦

contains a closed subgroup that is free pro-p◦ and not topologically finitely generated.

Thus, since [it is immediate that] the outer homomorphism Galg
k◦
→ Galg

k•
of profinite

groups induced by φ is injective, it follows from condition (1) of Lemma 2.1, (ii), that the
decomposition subgroup Dp̃k•

associated to the prime p̃k• introduced in the statement

of Lemma 2.1 [i.e., in the case where we take the “(k, k)” of Lemma 2.1 to be (k•, k•)]
contains a closed subgroup that is free pro-p◦ and not topologically finitely generated. In
particular, it follows immediately from [20], Proposition 7.5.1, and [20], Proposition 7.5.2,
that p◦ = p•, as desired. This completes the proof of assertion (i). Assertion (ii) follows
from assertion (i) and Lemma 2.2. This completes the proof of Lemma 2.6. □

PROPOSITION 2.7. — Suppose that, for each □ ∈ {◦, •}, the field k□ is quasi-p□-adic
local. Then the natural map

Isom(k•, k◦) // Isom
(
(k•)alg, (k◦)alg

)
is bijective.
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Proof. — The surjectivity of the map under consideration follows immediately from
Lemma 2.6, (ii), together with Lemma 1.3 and Lemma 2.2. Next, to verify the injectivity
of the map under consideration, observe that it is immediate that every isomorphism
k•

∼→ k◦ of fields is compatible with the respective topologies determined by the complete
discrete valuations on k•, k◦ discussed in Definition 1.6, (ii). On the other hand, the
subfields (k•)alg, (k◦)alg are dense in k•, k◦ with respect to these topologies, respectively.
Thus, the desired injectivity holds. This completes the proof of Proposition 2.7. □

PROPOSITION 2.8. — Suppose that k◦ satisfies one of the following two conditions:

(1) The field k◦ is algebraic and generalized sub-p◦-adic.

(2) The field k◦ is quasi-p◦-adic local.

Then the natural map

Isom(k•, k◦) // Isom(Gk◦ , Gk•)/Inn(Gk•)

is injective.

Proof. — Let us first observe that, to verify Proposition 2.8, we may assume without
loss of generality, by considering the difference of two elements of the domain of the map
under consideration whose images coincide, that k◦ = k•. Next, let us observe that it
follows from Lemma 2.1, (i), and Proposition 2.7 that, to verify Proposition 2.8, we may
assume without loss of generality, by replacing k◦ by (k◦)alg, that k◦ satisfies condition
(1). Then the desired injectivity is a formal consequence of Lemma 2.3 and Lemma 2.5,
(iii). This completes the proof of Proposition 2.8. □

LEMMA 2.9. — Suppose that, for each □ ∈ {◦, •}, the field k□ is quasi-p□-adic local.

Let α : Gk◦
∼→ Gk• be an outer isomorphism of profinite groups. Then the following two

conditions are equivalent:

(1) The outer isomorphism α : Gk◦
∼→ Gk• arises from an isomorphism k•

∼→ k◦ of
fields.

(2) The composite

Galg
k◦

Gk◦∼
oo

∼
α // Gk• ∼

// Galg
k•

— where the first and third arrows are the isomorphisms of Lemma 2.1, (i) — arises

from an isomorphism (k•)alg
∼→ (k◦)alg of fields.

Proof. — This assertion follows immediately from Lemma 2.1, (i), and Proposition 2.7.
□

LEMMA 2.10. — Suppose that, for each □ ∈ {◦, •}, the field k□ is quasi-p□-adic local.
Suppose, moreover, that one of the following two conditions is satisfied:

(1) For each □ ∈ {◦, •}, the field k□ is p□-adic local.
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(2) The field k• is isomorphic to a finite extension of the field of fractions of the ring
of Witt vectors with coefficients in an algebraic closure of a finite field of characteristic
p•.

Then an arbitrary injective homomorphism k• ↪→ k◦ of fields is finite.

Proof. — Let φ : k• ↪→ k◦ be an injective homomorphism of fields. Write φalg : (k•)alg ↪→
(k◦)alg for the injective homomorphism of fields determined by φ. Then it follows imme-
diately from Lemma 2.1, (i), (ii), that φalg is finite. Thus, it follows from Lemma 2.6, (ii),
together with Lemma 1.3 and Lemma 2.2, that φ is finite, as desired. This completes the
proof of Lemma 2.10. □

PROPOSITION 2.11. — The following hold:

(i) The following three conditions are equivalent:

(1) The field k is strictly sub-p-adic.

(2) The field k contains a p-adic local field and is sub-l-adic for some prime
number l.

(3) The field k is finitely generated over a p-adic local field.

(ii) Suppose that k is strictly sub-p-adic and contains an l-adic local field for some
prime number l. Then the equality l = p holds.

(iii) Suppose that k is strictly sub-p-adic. Then there exists a unique maximal
mixed-characteristic local subfield of k. Moreover, this mixed-characteristic local sub-
field is p-adic local and algebraically closed in k, and the field k is finitely gener-
ated over this mixed-characteristic local subfield.

(iv) Suppose that k contains a field isomorphic to the field of fractions of the ring of
Witt vectors with coefficients in an algebraic closure of a finite field of characteristic
p. Then it holds that k is generalized sub-l-adic for some prime number l if and only
if k is finitely generated over a quasi-p-adic local field.

Proof. — First, we verify assertion (i). The implications (3) ⇒ (1) ⇒ (2) are immedi-
ate. To verify the implication (2) ⇒ (3), suppose that condition (2) is satisfied, i.e., that
there exist a p-adic local subfield k0 ⊆ k of k, an l-adic local field K0, a field K finitely
generated over K0, and an injective homomorphism k ↪→ K of fields. Now let us observe
that, to verify condition (3), we may assume without loss of generality, by replacing K0

by the algebraic closure of K0 in K, that K0 is algebraically closed in K. Then since [one
verifies easily that] the quotient K×/K×

0 is a free module, the equality OK0 = OK of the
subrings of Definition 1.5 holds. Thus, the injective homomorphism k ↪→ K restricts to
an injective homomorphism Ok0 ↪→ (Ok ↪→ OK =) OK0 , hence also [cf. Remark 1.5.1] an
injective homomorphism k0 ↪→ K0. In particular, it follows from Lemma 2.10 that the
resulting injective homomorphism k0 ↪→ K0 is finite, which thus implies that K, hence
also k, is finitely generated over k0, as desired. This completes the proof of the implication
(2) ⇒ (3), hence also of assertion (i).

Next, we verify assertion (ii). Let k0 ⊆ k be a p-adic local subfield of k over which k
is finitely generated [cf. assertion (i)] and kl ⊆ k an l-adic local subfield of k. Now let
us observe that, to verify assertion (ii), we may assume without loss of generality, by
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replacing k0 by the algebraic closure of k0 in k, that k0 is algebraically closed in k, which
thus implies [cf. the proof of assertion (i)] that Ok0 = Ok. Thus, the natural inclusion
kl ↪→ k restricts to an injective homomorphism Okl ↪→ (Ok =) Ok0 , hence also [cf.
Remark 1.5.1] an injective homomorphism kl ↪→ k0. In particular, it follows immediately
from Lemma 2.6, (i), that l = p, as desired. This completes the proof of assertion (ii).

Assertion (iii) follows from assertions (i), (ii) [cf. also the proof of assertion (ii)]. As-
sertion (iv) follows immediately from a similar argument to the argument applied in
the proof of [the equivalence (2) ⇔ (3) in] assertion (i). This completes the proof of
Proposition 2.11. □

DEFINITION 2.12. — Suppose that k is strictly sub-p-adic.

(i) We shall write kMLF ⊆ k for the [unique] maximal [necessarily p-adic local] mixed-
characteristic local subfield of k [cf. Proposition 2.11, (iii)]. Thus, it follows from Propo-
sition 2.11, (iii), that the subfield kMLF is algebraically closed in k, and the field k is
finitely generated over kMLF.

(ii) We shall write dk for the extension degree of kMLF over the [unique] minimal
mixed-characteristic local subfield of kMLF [i.e., over the subfield of kMLF obtained by
forming the closure of krtn ⊆ kMLF with respect to the topology on kMLF determined by
the complete discrete valuation discussed in Definition 1.6, (ii)].

(iii) We shall write ek for the absolute ramification index of the mixed-characteristic
local field kMLF, i.e., for ](k

×
MLF/(O

×
kMLF
·pZkMLF

)) [cf. Definition 1.5 and Definition 1.6, (i)].

LEMMA 2.13. — Let k0 be a subfield of k. Suppose that the field k is finitely generated
and transcendental over k0, and that the subfield k0 is algebraically closed in k.
Write k0 ⊆ k for the algebraic closure of k0 in k. Thus, the natural inclusion k0 ↪→ k

determines a surjective homomorphism Gk ↠ Gk0
def
= Gal(k0/k0) of profinite groups.

Write, moreover, ∆ ⊆ Gk for the kernel of this surjective homomorphism Gk ↠ Gk0.
Then the following hold:

(i) The profinite group ∆ is slim.

(ii) The natural outer action of Gk0 on ∆ is faithful.

(iii) Let α, β be automorphisms of the profinite group Gk that preserve the closed
subgroup ∆ ⊆ Gk. Then the equality α|∆ = β|∆ implies the equality α = β.

Proof. — First, we verify assertion (i). Let us first observe that since [it is immediate
that] every open subgroup of ∆ is the absolute Galois group of a finite extension of k · k0

in k, to verify assertion (i), it suffices to verify that ∆ is center-free. Next, let us observe
that since [one verifies easily that] an extension of a center-free group by a center-free
group is center-free, to verify assertion (i), we may assume without loss of generality, by
applying induction on the transcendental degree over k0 and replacing k by a subfield of
k of transcendental degree one over k0, that k is of transcendental degree one over k0. Let
C be a projective smooth model of k over k0; x, y ∈ C distinct closed points of C; I(x),
I(y) ⊆ ∆ inertia subgroups of ∆ associated to x, y ∈ C, respectively. Then it follows
immediately from the well-known structure of the étale fundamental group of an algebraic
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curve over an algebraically closed field of characteristic zero that I(x)∩ I(y) = {1}, and,
moreover, both I(x) and I(y) are commensurably terminal in ∆. Thus, we conclude that
Z(∆) ⊆ C∆(I(x)) ∩ C∆(I(y)) = I(x) ∩ I(y) = {1}, as desired. This completes the proof
of assertion (i).

Next, we verify assertion (ii). Let t ∈ k \ k0 be an element of k transcendental over
k0. Then it follows immediately from [9], Lemma 2.2, together with assertion (i), that,
to verify assertion (ii), we may assume without loss of generality, by replacing k by the
subfield k0(t) ⊆ k of k, that k = k0(t). For each a ∈ k0, write I(a) for the ∆-conjugacy
class of inertia subgroups of ∆ associated to the discrete k0-valuation on k · k0 = k0(t)
determined by the prime element t − a ∈ k0[t] of k0[t]. Then it is immediate that the
assignment “k0 3 a 7→ I(a)” is compatible with the natural action of Gk0 on k0 and the
action of Gk0 on the set {I(a)}a∈k0 determined by the natural outer action of Gk0 on ∆.

Thus, since the natural action of Gk0 on k0 is faithful, we conclude that the action of
Gk0 on the set {I(a)}a∈k0 , hence also the natural outer action of Gk0 on ∆, is faithful, as
desired. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). It follows immediately from assertions (i), (ii) that
the action of Gk on ∆ by conjugation is faithful. Thus, since [one verifies easily that]
the resulting injective homomorphism Gk ↪→ Aut(∆) is compatible with the respective
natural actions of α ◦β−1 on Gk and Aut(∆), we conclude that assertion (iii) holds. This
completes the proof of assertion (iii), hence also of Lemma 2.13. □

Anabelian results proved by Mochizuki and Pop, together with some results of the
present §2 of the present paper, lead us to the following theorem:

THEOREM 2.14. — For □ ∈ {◦, •}, let p□ be a prime number, k□ a field of characteristic
zero, and k□ an algebraic closure of k□. Moreover, for □ ∈ {◦, •}, write Ω□ ⊆ k□ for the
algebraic closure of (k□)alg in k□;

Gk□
def
= Gal(k□/k□) // // Galg

k□
def
= Gal

(
Ω□/(k□)alg

)
for the respective absolute Galois groups of k□, (k□)alg determined by the algebraic closures

k□, Ω□; ∆□ ⊆ Gk□ for the kernel of the surjective homomorphism Gk□ ↠ Galg
k□
. Suppose

that, for each □ ∈ {◦, •}, there exists a subfield (k□)0 ⊆ k□ of k□ that satisfies the
following two conditions:

(1) The field k□ is finitely generated and transcendental over (k□)0.

(2) The subfield (k□)0 is algebraically closed in k□.

Suppose, moreover, that one of the following five conditions is satisfied:

(a) For each □ ∈ {◦, •}, the field (k□)0 is algebraic and sub-p□-adic.

(b) For each □ ∈ {◦, •}, the field k□ is of transcendental degree one over (k□)0,
and, moreover, the field (k□)0 is algebraic and generalized sub-p□-adic.

(c) For each □ ∈ {◦, •}, the field k□ is of transcendental degree ≥ 3 over (k□)0,
and, moreover, the field (k□)0 is algebraic and generalized sub-p□-adic.

(d) For each □ ∈ {◦, •}, the field (k□)0 is p□-adic local.
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(e) For each □ ∈ {◦, •}, the field k□ is of transcendental degree one over (k□)0,
and, moreover, the field (k□)0 is quasi-p□-adic local.

Write
Isom(k•, k◦)

for the set of isomorphisms k•
∼→ k◦ of fields [which necessarily restrict to isomorphisms

(k•)alg =
(
(k•)0

)
alg

∼ // (k◦)alg =
(
(k◦)0

)
alg

— cf. (2) — of subfields] and

OutIsomalg-fld(Gk◦ , Gk•)

for the set of outer isomorphisms α : Gk◦
∼→ Gk• of profinite groups such that

• the outer isomorphism α restricts to a Gk•-conjugacy class of isomorphisms ∆◦
∼→

∆• of closed subgroups, and, moreover,

• the resulting outer isomorphism Galg
k◦

∼→ Galg
k•

arises from an isomorphism (k•)alg
∼→

(k◦)alg of fields.

Then the natural map

Isom(k•, k◦) // OutIsomalg-fld(Gk◦ , Gk•)

is bijective.

Proof. — Let us first observe that if condition (a) (respectively, (b); (c); (d); (e))
is satisfied, then the injectivity of the map under consideration follows immediately —
in light of Lemma 2.1, (i), and Proposition 2.8 — from the injectivity portion of [12],
Theorem B (respectively, [13], Theorem 4.12; [21], Theorem 1.2, (4); [12], Theorem B;
[13], Theorem 4.12). The remainder of the proof of Theorem 2.14 is devoted to verifying
the surjectivity of the map under consideration.

If condition (a) is satisfied, then the desired surjectivity follows immediately from the
surjectivity portion of [12], Theorem B.

Next, suppose that condition (b) is satisfied. To verify the desired surjectivity, let
α be an element of OutIsomalg-fld(Gk◦ , Gk•). For □ ∈ {◦, •}, let C□ be a projective
smooth model of k□ over (k□)0. Then it follows immediately from similar arguments
to the arguments applied in the proofs of [19], Corollary 1.11, (a), (b), that the outer
isomorphism α determines a bijection between the set of cuspidal inertia subgroups of
Gk◦ associated to closed points of C◦ and the set of cuspidal inertia subgroups of Gk•

associated to closed points of C•. Thus, the desired surjectivity follows immediately from
the surjectivity portion of [13], Theorem 4.12. This completes the proof of the desired
surjectivity in the case where condition (b) is satisfied.

Next, suppose that condition (c) is satisfied. To verify the desired surjectivity, let

α : Gk◦
∼→ Gk• be an isomorphism of profinite groups that restricts to an isomorphism

∆◦
∼→ ∆• of closed subgroups. Then it follows immediately from [21], Theorem 1.2,

(4), that the outer isomorphism ∆◦
∼→ ∆• determined by the resulting isomorphism

arises from an isomorphism k• · Ω•
∼→ k◦ · Ω◦ of fields. On the other hand, since [it

is immediate that] the outer isomorphism ∆◦
∼→ ∆• is compatible with the respective

natural outer actions of Gk◦/∆◦ = Galg
k◦
, Gk•/∆• = Galg

k•
on ∆◦, ∆• [relative to some
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isomorphism Galg
k◦

∼→ Galg
k•
], it follows from the injectivity of the map under consideration

already verified above that the isomorphism k• · Ω•
∼→ k◦ · Ω◦ is compatible with the

respective natural actions of Galg
k◦
, Galg

k•
on k• · Ω•, k◦ · Ω◦ [relative to some isomorphism

Galg
k◦

∼→ Galg
k•
]. In particular, by considering the Galg

k◦
-, Galg

k•
-invariants, respectively, we

conclude that the isomorphism k• · Ω•
∼→ k◦ · Ω◦ of fields restricts to an isomorphism

k•
∼→ k◦ of subfields. Thus, it follows immediately from Lemma 2.13, (iii), that the outer

isomorphism Gk◦
∼→ Gk• determined by α is contained in the image of the map under

consideration, as desired. This completes the proof of the desired surjectivity in the case
where condition (c) is satisfied.

If condition (d) (respectively, (e)) is satisfied, then the desired surjectivity follows
immediately — in light of Lemma 2.1, (i), and Lemma 2.9, together with the definition
of the set “OutIsomalg-fld(Gk◦ , Gk•)” — from a similar argument to the argument applied
in the proof of the desired surjectivity in the case where condition (a) (respectively, (b))
is satisfied. This completes the proof of Theorem 2.14. □

3. Quasi-tripods

In the present §3, we introduce the notion of a quasi-tripod [cf. Definition 3.7 below],
that is one central object of the present paper. In the present §3, let k be a field of
characteristic zero.

DEFINITION 3.1. — We shall say that a scheme X over k is a smooth variety over k if X
is smooth, of finite type, separated, and geometrically connected over k.

DEFINITION 3.2. — Let S be a scheme. Then we shall say that a scheme X over S is a
hyperbolic curve [of type (g, r)] over S if there exist

• a pair (g, r) of nonnegative integers,

• a scheme X+ over S that is smooth, proper, geometrically connected, and of relative
dimension one over S, and

• a [possibly empty] closed subscheme D ⊆ X+ of X+ that is finite and étale over S

such that

• the inequality 2g − 2 + r > 0 holds,

• each geometric fiber of X+ over S is [a necessarily smooth proper curve] of genus g,

• the finite étale covering of S obtained by forming the composite D ↪→ X+ → S is of
degree r, and

• the scheme X is isomorphic to X+ \D over S.

REMARK 3.2.1. — It is immediate that a hyperbolic curve over k is a smooth variety over
k.
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REMARK 3.2.2. — Suppose that we are in the situation of Definition 3.2.

(i) One verifies immediately from elementary algebraic geometry that if S is the
spectrum of a field, then both X+ and D as in Definition 3.2 are uniquely determined up
to canonical isomorphism.

(ii) It follows from (i) that if S is the spectrum of a field, then (g, r) as in Definition 3.2
is uniquely determined. Thus, by considering a fiber of X → S, one may conclude that if
S is connected, then (g, r) as in Definition 3.2 is uniquely determined.

DEFINITION 3.3. — Let X be a hyperbolic curve over k. Then we shall refer to X+

as in Definition 3.2 [which is uniquely determined up to canonical isomorphism — cf.
Remark 3.2.2, (i)] as the smooth compactification of X.

DEFINITION 3.4. — Let X be a hyperbolic curve over S.

(i) We shall say that X is split if there exists D as in Definition 3.2 such that D is
either empty or isomorphic, over S, to the disjoint union of finitely many copies of S.

(ii) We shall say that X is a tripod if X is of type (0, 3).

(iii) Suppose that X is of type (g, r). Then we shall refer to the positive integer
2g +max{0, r − 1} as the rank of X.

REMARK 3.4.1. — It follows from Remark 3.2.2, (ii), that the rank of a hyperbolic curve
over a connected scheme is uniquely determined.

DEFINITION 3.5.

(i) We shall say that an algebraic stack X over k is a hyperbolic orbicurve over k if
there exist

• a finite étale Galois covering Y → X whose domain Y is a hyperbolic curve over
the [necessarily finite] extension of k obtained by forming the algebraic closure of k in
the function field of Y and

• a dense open substack U ⊆ X ofX that is a scheme and is geometrically connected
over k.

(ii) Let X be a hyperbolic orbicurve over k and Y → X as in (i). Then we shall refer
to the stack-theoretic quotient of the smooth compactification of Y by the natural action
of Gal(Y/X) as the smooth compactification of X relative to Y → X.

REMARK 3.5.1. — Let X be a smooth variety (respectively, hyperbolic curve; hyperbolic
orbicurve) over k. Then one verifies easily the following two assertions:

(i) An arbitrary nonempty open substack of X is a smooth variety (respectively,
hyperbolic curve; hyperbolic orbicurve) over k.
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(ii) Let Y → X be a connected finite étale covering of X. Then Y is a smooth variety
(respectively, hyperbolic curve; hyperbolic orbicurve) over the [necessarily finite] extension
of k obtained by forming the algebraic closure of k in the function field of Y .

DEFINITION 3.6. — Let X be a hyperbolic orbicurve over k.

(i) We shall say that X is strictly NF-isotrivial (respectively, strictly MLF-isotrivial) if
there exist a subfield k0 ⊆ k of k that is a number field (respectively, mixed-characteristic

local field), a hyperbolic orbicurve X0 over k0, and an isomorphism X
∼→ X0 ×k0 k over

k.

(ii) We shall say that X is NF-isotrivial (respectively, MLF-isotrivial) if there exists
a finite extension K of k such that the hyperbolic orbicurve X ×k K over K is strictly
NF-isotrivial (respectively, strictly MLF-isotrivial).

DEFINITION 3.7. — We shall say that a hyperbolic orbicurve X over k is a quasi-tripod if
there exist a positive integer n and a sequence (X = X1, X2, . . . , Xn−1, Xn) of hyperbolic
orbicurves such that Xn is a tripod, and, moreover, for each i ∈ {1, . . . , n − 1}, the
hyperbolic orbicurve Xi is related to the hyperbolic orbicurve Xi+1 in one of the following
four ways:

(1) There exists a finite étale covering Xi+1 → Xi.

(2) There exists a finite étale covering Xi → Xi+1.

(3) There exists an open immersion Xi ↪→ Xi+1.

(4) There exists a morphism Xi → Xi+1 such that the induced morphism between the
associated coarse spaces is an isomorphism.

REMARK 3.7.1. — Let X be a hyperbolic curve over a mixed-characteristic local field.
Then it is immediate that the following two conditions are equivalent:

(1) The hyperbolic curve X is a strictly NF-isotrivial quasi-tripod.

(2) The hyperbolic curve X is of Belyi type [cf. [16], Definition 2.3, (ii)].

REMARK 3.7.2. — One verifies easily the following three assertions:

(i) An arbitrary nonempty open substack of a quasi-tripod is a quasi-tripod.

(ii) For each point of a hyperbolic curve over k, there exists an open neighborhood of
the point which is a quasi-tripod.

(iii) Every hyperbolic curve of genus ≤ 1 over k is a quasi-tripod [cf. also the proof of
[8], Proposition 2.8].



The Absolute Anabelian Geometry of Quasi-tripods 19

4. Review of Some Anabelian Results for Hyperbolic Orbicurves

In the present §4, we discuss some immediate consequences of the Grothendieck conjec-
ture for hyperbolic curves over generalized sub-p-adic fields proved in [13] by Mochizuki
[cf. Lemma 4.4, Theorem 4.5, Lemma 4.6 below]. In the present §4, let k be a field of
characteristic zero, k an algebraic closure of k, and X a hyperbolic orbicurve over k. Write

Gk
def
= Gal(k/k) for the absolute Galois group of k determined by the algebraic closure k,

ΠX for the étale fundamental group [relative to an appropriate choice of basepoint] of X,
and ∆X ⊆ ΠX for the kernel of the natural surjective outer homomorphism ΠX ↠ Gk.

LEMMA 4.1. — The following hold:

(i) It holds that X is a hyperbolic curve over k if and only if the profinite group
∆X is torsion-free.

(ii) Let H ⊆ ∆X be an open subgroup of ∆X . Write YH → X ×k k for the connected
finite étale covering of X ×k k corresponding to the open subgroup H ⊆ ∆X . Then it
holds that the profinite group H is torsion-free and not topologically generated by
the cuspidal inertia subgroups of H [i.e., associated to the cusps of YH ] if and only
if the hyperbolic orbicurve YH is a hyperbolic curve of genus ≥ 1.

(iii) There exists a characteristic open subgroup H ⊆ ∆X of ∆X [which thus implies
that H is normal in ΠX ] such that H is torsion-free and not topologically generated
by the cupidal inertia subgroups of H. Moreover, an arbitrary open subgroup of ∆X

contained in the open subgroup H is torsion-free and not topologically generated
by the cupidal inertia subgroups.

(iv) Let H be as in (iii). Write Q for the quotient of H by the normal closed
subgroup normally topologically generated by the cuspidal inertia subgroups of H and

Λ
def
= HomẐ(H

2(Q, Ẑ), Ẑ). Then the profinite module Λ is a free Ẑ-module of rank
one.

(v) Suppose that we are in the situation of (iv). Then the action of ΠX on Λ by
conjugation [cf. the fact that H is normal in ΠX — cf. (iii)] factors through the natural
surjective outer homomorphism ΠX ↠ Gk, and, moreover, the resulting character Gk →
Ẑ× [cf. (iv)] coincides with the cyclotomic character of Gk.

Proof. — Assertion (i) follows from [17], Lemma 4.1, (iv). Assertion (ii) follows imme-
diately from assertion (i), together with the well-known structure of the étale fundamental
group of an algebraic curve over an algebraically closed field of characteristic zero. Next,
since the profinite group ∆X is topologically finitely generated [cf. [17], Proposition 2.2],
assertion (iii) follows immediately — in light of assertion (ii) — from elementary algebraic
geometry, together with the definition of the notion of a hyperbolic orbicurve. Assertions
(iv), (v) follow immediately — in light of assertion (ii) — from the elementary theory
of étale cohomology of algebraic curves [cf. also the proof of the existence of the natural
isomorphism between étale cohomology and group cohomology discussed in [2], Lemma
4.2, (iii)]. This completes the proof of Lemma 4.1. □
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PROPOSITION 4.2. — Write Ω ⊆ k for the algebraic closure of kalg in k, Galg
k

def
=

Gal(Ω/kalg) for the absolute Galois group of kalg determined by the algebraic closure Ω,

∆ ⊆ Gk for the kernel of the surjective homomorphism Gk ↠ Galg
k induced by the natural

inclusion Ω ↪→ k [cf. the discussion at the beginning of §2], and

ρ : Gk
/ / Out(∆X)

for the natural outer action of Gk on ∆X . Then the inclusion Ker(ρ) ⊆ ∆ holds.

Proof. — Write Grtn
k

def
= Gal(Ω/krtn) for the absolute Galois group of krtn determined

by the algebraic closure Ω.
Let us first observe that it follows immediately from Lemma 4.1, (iii), (iv), (v), that the

cyclotomic character Gk → Ẑ× of Gk factors through the outer action ρ. Thus, to verify
Proposition 4.2, we may assume without loss of generality, by replacing k by the finite
extension of k obtained by adjoining to k the fourth roots of unity in k, that the closed
subgroup Galg

k ⊆ Grtn
k of Grtn

k does not contain an arbitrary decomposition subgroup of
Grtn

k associated to the unique archimedean prime of krtn.
Next, let us recall from [11], Theorem C, (ii), that if X is a hyperbolic curve over k,

then Proposition 4.2 holds. Thus, since the profinite group ∆X is topologically finitely
generated [cf. [17], Proposition 2.2] and slim [cf. [17], Proposition 2.3, (i)], it follows
from [3], Lemma 23, (i), (iii), together with the definition of the notion of a hyperbolic
orbicurve, that the closed subgroup Ker(ρ)∩∆ ⊆ Ker(ρ) of Ker(ρ) is open. In particular,

the image of the composite Ker(ρ) ↪→ Gk ↠ Gk/∆
∼→ Galg

k is finite. Thus, it follows from

[20], Theorem 12.1.7, that the image of the composite Ker(ρ) ↪→ Gk ↠ Gk/∆
∼→ Galg

k is
trivial, as desired. This completes the proof of Proposition 4.2. □

LEMMA 4.3. — In the situation of Proposition 4.2, the following hold:

(i) If X is either strictly NF-isotrivial or strictly MLF-isotrivial, then the equal-
ity Ker(ρ) = ∆ holds.

(ii) If X is either NF-isotrivial or MLF-isotrivial, then the closed subgroup Ker(ρ) ⊆
∆ of ∆ [cf. Proposition 4.2] is open.

(iii) Let X0 be a hyperbolic orbicurve over kalg such that there exists an isomorphism

X
∼→ X0 ×kalg k over k [which thus implies that X is strictly NF-isotrivial]. Write

ΠX0 for the étale fundamental group [relative to an appropriate choice of basepoint] of
X0. Then the outer homomorphism ΠX → ΠX0 induced by the composite of the isomor-
phism X

∼→ X0 ×kalg k and the first projection X0 ×kalg k → X0 is a surjective outer
homomorphism whose kernel coincides with the centralizer ZΠX

(∆X) ⊆ ΠX of ∆X in
ΠX .

Proof. — Assertions (i), (ii) follow from Lemma 2.1, (i), and Proposition 4.2, together
with the various definitions involved. Finally, since the profinite group ∆X is topologically
finitely generated [cf. [17], Proposition 2.2] and slim [cf. [17], Proposition 2.3, (i)], assertion
(iii) follows immediately from assertion (i) and [3], Lemma 4, (i). This completes the proof
of Lemma 4.3. □
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LEMMA 4.4. — Suppose that k is generalized sub-p-adic for some prime number p.
Let X+ be a smooth compactification of X. Then the following hold:

(i) Let x, y ∈ X+ be closed points of X+. Then the following three conditions are
equivalent:

(1) The equality x = y holds.

(2) The ΠX-conjugacy class of decomposition subgroups associated to x coin-
cides with the ΠX-conjugacy class of decomposition subgroups associated to y.

(3) There exist decomposition subgroups D(x), D(y) ⊆ ΠX of ΠX associated to x,
y, respectively, such that the image of the composite D(x) ∩D(y) ↪→ ΠX ↠ Gk is open
in Gk.

(ii) An arbitrary decomposition subgroup of ΠX associated to a closed point of
X+ is commensurably terminal in ΠX .

(iii) Let x ∈ X+ be a closed point of X+. Then it holds that the image of x in the
coarse space associated to X+ is k-rational if and only if a decomposition subgroup of
ΠX associated to x maps surjectively onto Gk.

Proof. — First, we verify assertion (i). The implications (1) ⇒ (2) ⇒ (3) are immedi-
ate. Next, let us observe that it is immediate that, to verify the implication (3) ⇒ (1),
we may assume without loss of generality, by replacing X by a suitable connected finite
étale covering of X, that X is a hyperbolic curve. Then the implication (3)⇒ (1) follows
immediately from [13], Theorem 4.12, together with a similar argument to the argument
applied in the proof of [12], Theorem C. This completes the proof of assertion (i). As-
sertion (ii) is a formal consequence of assertion (i) [cf. also the proof of Lemma 2.5, (i)].
Assertion (iii) follows immediately from the various definitions involved. This completes
the proof of Lemma 4.4. □

THEOREM 4.5. — For □ ∈ {◦, •}, let p□ be a prime number, k□ a generalized sub-
p□-adic field, k□ an algebraic closure of k□, and X□ a hyperbolic orbicurve over k□;
write ΠX□ for the étale fundamental group [relative to an appropriate choice of basepoint]

of X□, Gk□
def
= Gal(k□/k□) for the absolute Galois group of k□ determined by the algebraic

closure k□, and ∆X□ ⊆ ΠX□ for the kernel of the natural surjective outer homomorphism
ΠX□ ↠ Gk□. Let

α : ΠX◦
∼ // ΠX•

be an isomorphism of profinite groups that restricts to an isomorphism ∆X◦
∼→ ∆X• of

closed subgroups. Write

αG : Gk◦
∼ // Gk•

for the isomorphism induced by α. Suppose that the isomorphism αG arises from an
isomorphism k•

∼→ k◦ of fields that restricts to an isomorphism k•
∼→ k◦ of subfields.

Then the isomorphism α arises from a unique isomorphism X◦
∼→ X• of stacks that

lies over the isomorphism k•
∼→ k◦.
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Proof. — First, we verify the uniqueness of such an isomorphism X◦
∼→ X• of stacks.

Let us observe that, to verify the desired uniqueness, we may assume without loss of gen-
erality, by replacing X◦ by a suitable connected finite étale covering of X◦ and replacing
X• by the corresponding connected finite étale covering of X• by α, that both X◦ and X•
are hyperbolic curves. Then the desired uniqueness follows from Lemma 4.4, (i), and [5],

Lemma 3.5. Next, we verify the existence of such an isomorphism X◦
∼→ X• of stacks.

Let us observe that it follows from the uniqueness already verified above that, to verify
the desired existence, we may assume without loss of generality — by applying Galois
descent, replacing X◦ by a suitable connected finite étale covering of X◦, and replacing X•
by the corresponding connected finite étale covering of X• by α — that both X◦ and X•
are hyperbolic curves. Then the desired existence follows immediately from [13], Theorem
4.12. This completes the proof of Theorem 4.5. □

LEMMA 4.6. — For □ ∈ {◦, •}, let p□ be a prime number, k□ a generalized sub-p□-
adic field, k□ an algebraic closure of k□, and X□ a hyperbolic orbicurve over k□; write
ΠX□ for the étale fundamental group [relative to an appropriate choice of basepoint] of

X□, Gk□
def
= Gal(k□/k□) for the absolute Galois group of k□ determined by the algebraic

closure k□, and ∆X□ ⊆ ΠX□ for the kernel of the natural surjective outer homomorphism
ΠX□ ↠ Gk□. Let

α : ΠX◦
∼ // ΠX•

be an isomorphism of profinite groups that restricts to an isomorphism ∆X◦
∼→ ∆X• of

closed subgroups. Write

αG : Gk◦
∼ // Gk•

for the isomorphism induced by α. Then the following hold:

(i) The isomorphism α determines a bijection between the set of cuspidal inertia
subgroups of ∆X◦ and the set of cuspidal inertia subgroups of ∆X•. Moreover, the
isomorphism α also determines a bijection between the set of cuspidal decomposition
subgroups of ΠX◦ and the set of cuspidal decomposition subgroups of ΠX•.

(ii) The isomorphism αG is compatible with the respective cyclotomic characters
of Gk◦, Gk•.

(iii) It holds that X◦ is a quasi-tripod if and only if X• is a quasi-tripod.

(iv) Suppose that either X◦ or X• is a quasi-tripod [which thus implies that both
X◦ and X• are quasi-tripods — cf. (iii)]. Then, after replacing k◦ by a suitable finite
extension of k◦ in k◦ and replacing k• by the corresponding finite extension of k• in k• by
αG, there exist split tripods T◦, T• over k◦, k•, respectively, and a commutative diagram
of profinite groups

ΠT◦
∼ //

����

ΠT•

����
Gk◦

∼
αG

// Gk•
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— where the vertical arrows are the natural surjective outer homomorphisms, the hor-
izontal arrows are isomorphisms, and, for □ ∈ {◦, •}, we write ΠT□ for the étale
fundamental group [relative to an appropriate choice of basepoint] of T□.

In the remainder of the statement of Lemma 4.6, suppose that either X◦ or X• is a
hyperbolic curve [which thus implies that both X◦ and X• are hyperbolic curves —
cf. Lemma 4.1, (i)].

(v) Suppose that, for □ ∈ {◦, •}, the hyperbolic curve X□ over k□ is of type (g□, r□).
Then the equality (g◦, r◦) = (g•, r•) holds.

(vi) It holds that X◦ is affine (respectively, split; a tripod) if and only if X• is affine
(respectively, split; a tripod).

Proof. — First, we verify assertion (i). Let us first observe that, to verify assertion (i), it
follows immediately from Lemma 4.4, (ii), that we may assume without loss of generality,
by replacing X◦ by a suitable connected finite étale covering of X◦ and replacing X• by
the corresponding connected finite étale covering of X• by α, that both X◦ and X• are
hyperbolic curves. Next, let us recall from [17], Lemma 4.5, that, to verify assertion (i),
it suffices to verify that, for □ ∈ {◦, •}, the p◦-adic cyclotomic character Gk□ → Z×

p◦ of
Gk□ has open image. To this end, let us recall that it is well-known that, for □ ∈ {◦, •}
and a prime number l, the restriction, to a suitable open subgroup of ΠX□ , of the action,
by conjugation, of ΠX□ on the “determinant” of ∆ab

X□ ⊗Ẑ Ql is isomorphic to a positive
power of the l-adic cyclotomic character. In particular, since [one verifies easily that] the
p◦-adic cyclotomic character of Gk◦ has open image, it follows that p◦-adic cyclotomic
character of Gk• has open image, as desired. This completes the proof of assertion (i).

Assertion (ii) follows immediately from assertion (i) and Lemma 4.1, (iii), (iv), (v).
Next, we verify assertion (v). It follows from assertion (i) and Lemma 4.4, (i), that
r◦ = r•. Thus, since [it is well-known that], for □ ∈ {◦, •}, the abelianization of the

profinite group ∆X□ is a free Ẑ-module of rank 2g□ +max{0, r□ − 1}, one may conclude
the equality (g◦, r◦) = (g•, r•) of assertion (v), as desired. This completes the proof of
assertion (v). Assertion (vi) follows from assertions (i), (v) and Lemma 4.4, (iii).

Assertions (iii), (iv) follow — in light of assertion (vi) — from [17], Theorem 4.7, (i),
(ii), together with [17], Example 4.8, (i). This completes the proof of Lemma 4.6. □

5. The Absolute Anabelian Geometry of Quasi-tripods

In the present §5, we discuss the étale fundamental groups of tripods over generalized
sub-p-adic fields [cf. Theorem 5.4 below]. Moreover, we also give a proof of the first main
result of the present paper [cf. Corollary 5.6 below].

In the present §5, let p be a prime number, k a generalized sub-p-adic field, and k

an algebraic closure of k. Write Gk
def
= Gal(k/k) for the absolute Galois group of k

determined by the algebraic closure k, k/Gk for the set of Gk-orbits of k, P
def
= P1

k for the
projective line over k, and P cl for the set of closed points of P . By abuse of notation,
we shall regard k as a subset of k/Gk in an evident way. Then the standard coordinate
on the projective line P determines a bijection between P cl and (k/Gk)∪ {∞}. We shall
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identify P cl with (k/Gk) ∪ {∞} by means of this bijection:

P cl = (k/Gk) ∪ {∞}.

Write, moreover, T ⊆ P for the split tripod over k obtained by forming the complement
in P of the closed subset determined by {0, 1,∞} ⊆ (k/Gk) ∪ {∞} = P cl and T cl ⊆ P cl

for the set of closed points of T . Thus, the identification of P cl with (k/Gk) ∪ {∞}
determines an identification of T cl with (k/Gk) \ {0, 1}:

T cl = (k/Gk) \ {0, 1}.

Finally, if U ⊆ P is a nonempty open subscheme of P , then write ΠU for the étale
fundamental group [relative to an appropriate choice of basepoint] of U and ∆U ⊆ ΠU

for the kernel of the natural surjective outer homomorphism ΠU ↠ Gk.

DEFINITION 5.1. — Let S ⊆ k/Gk be a finite subset of k/Gk.

(i) We shall write TS ⊆ T for the open subscheme of T obtained by forming the
complement in T of the closed subset determined by S \ (S ∩ {0, 1}) ⊆ T cl.

(ii) Let a be an element of (k/Gk) ∪ {∞}. Then we shall write DTS
(a) for the ΠTS

-
conjugacy class of decomposition subgroups of ΠTS

associated to the closed point of P
(⊇ TS) determined by a ∈ (k/Gk) ∪ {∞}.

LEMMA 5.2. — Suppose that k is algebraic. Let a, b ∈ k be two [not necessarily distinct]
elements of k. Then, after replacing k by a suitable finite extension of k in k, there exist
a finite subset S ⊆ k/GK of k/GK and a finite étale covering TS → T over k such that
a, b ∈ S.

Proof. — This assertion follows from [14], Corollary 1.2. □

LEMMA 5.3. — Let a ∈ k× be an element of k×. Then the following hold:

(i) There exists an automorphism of ΠT over Gk that maps DT (0) (respectively, DT (1);
DT (∞)) to DT (∞) (respectively, DT (1); DT (0)). Moreover, an arbitrary such automor-
phism of ΠT maps DT (a) to DT (1/a).

(ii) There exists an automorphism of ΠT over Gk that maps DT (0) (respectively,
DT (1); DT (∞)) to DT (1) (respectively, DT (0); DT (∞)). Moreover, an arbitrary such
automorphism of ΠT maps DT (a) to DT (1− a).

(iii) There exists an automorphism of ΠT{−1} over Gk that maps DT{−1}(0) (respectively,

DT{−1}(1); DT{−1}(∞)) to DT{−1}(0) (respectively, DT{−1}(−1); DT{−1}(∞)). Moreover, an

arbitrary such automorphism of ΠT{−1} maps DT{−1}(a) to DT{−1}(−a).

(iv) Let b ∈ k be an element of k. Then there exists an automorphism of ΠT{b}

over Gk that maps DT{b}(0) (respectively, DT{b}(1); DT{b}(∞)) to DT{b}(∞) (respectively,

DT{b}(b); DT{b}(0)). Moreover, an arbitrary such automorphism of ΠT{b} maps DT{b}(a) to

DT{b}(b/a).
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Proof. — First, we verify assertion (i). By considering the outer automorphism of
ΠT induced by the automorphism of T over k given by “t 7→ 1/t”, one may conclude
the existence of an automorphism of the desired type. Moreover, the final portion of
assertion (i) follows from Lemma 4.4, (i), and Theorem 4.5, together with elementary
algebraic geometry. This completes the proof of assertion (i).

Assertion (ii) (respectively, (iii); (iv)) follows from a similar argument to the argument
applied in the proof of assertion (i), together with the existence of the automorphism
of T (respectively, T{−1}; T{b}) over k given by “t 7→ 1 − t” (respectively, “t 7→ −t”;
“t 7→ b/t”). This completes the proof of Lemma 5.3. □

THEOREM 5.4. — For □ ∈ {◦, •}, let p□ be a prime number, k□ a generalized sub-
p□-adic field, k□ an algebraic closure of k□, and X□ a hyperbolic orbicurve over k□.
Moreover, for □ ∈ {◦, •}, write Ω□ ⊆ k□ for the algebraic closure of (k□)alg in k□;

Gk□
def
= Gal(k□/k□) // // Galg

k□
def
= Gal

(
Ω□/(k□)alg

)
for the respective absolute Galois groups of k□, (k□)alg determined by the algebraic clo-

sures k□, Ω□; ΠX□ for the étale fundamental group [relative to an appropriate choice of
basepoint] of X□; ∆X□ ⊆ ΠX□ for the kernel of the natural surjective outer homomorphism
ΠX□ ↠ Gk□. Let

α : ΠX◦
∼ // ΠX•

be an isomorphism of profinite groups that restricts to an isomorphism ∆X◦
∼→ ∆X• of

closed subgroups. Write

αG : Gk◦
∼ // Gk•

for the isomorphism induced by α. Suppose that either X◦ or X• is a split tripod
[which thus implies that both X◦ and X• are split tripods — cf. Lemma 4.6, (vi)]. Then
the isomorphism αG restricts to an isomorphism of the kernel of the natural surjec-
tive homomorphism Gk◦ ↠ Galg

k◦
with the kernel of the natural surjective homomorphism

Gk• ↠ Galg
k•
. Moreover, the resulting isomorphism Galg

k◦

∼→ Galg
k•

arises from an isomor-

phism Ω•
∼→ Ω◦ of fields that restricts to an isomorphism (k•)alg

∼→ (k◦)alg of subfields.

Proof. — For □ ∈ {◦, •}, write T□ for the “T” of the discussion at the beginning of
the present §5, i.e., in the case where we take the “k” of the discussion at the beginning
of the present §5 to be k□. Then it follows from elementary algebraic geometry that, for
□ ∈ {◦, •}, there exists an isomorphism ι□ : X□

∼→ T□ over k□ such that the bijection [cf.
Lemma 4.6, (i)] between {DT◦(0),DT◦(1),DT◦(∞)} and {DT•(0),DT•(1),DT•(∞)} deter-

mined by the composite ΠT◦
∼← ΠX◦

α
∼→ ΠX•

∼→ ΠT• — where the first, third arrows are
isomorphisms over Gk◦ , Gk• that arise from ι◦, ι•, respectively — maps DT◦(∗) to DT•(∗)
for each ∗ ∈ {0, 1,∞}. In the remainder of the proof of Theorem 5.4, for □ ∈ {◦, •}, we
shall identify X□ with T□ by means of such an isomorphism ι□.
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Next, for □ ∈ {◦, •}, write ρ□ : Gk□ → Out(∆T□) for the natural outer action of Gk□
on ∆T□ . Thus, the isomorphism α determines a commutative diagram

Gk◦

αG

∼
//

ρ◦
��

Gk•

ρ•
��

Out(∆T◦) ∼
// Out(∆T•).

Now observe that since, for □ ∈ {◦, •}, the split tripod T□ is strictly NF-isotrivial,
it follows from Lemma 4.3, (i), that the outer action ρ□ factors through the natural

surjective homomorphism Gk□ ↠ Galg
k□
, and the resulting outer action Galg

k□
→ Out(∆T□)

is injective. Thus, we conclude from the above diagram that the isomorphism αG restricts
to an isomorphism of the kernel of the natural surjective homomorphism Gk◦ ↠ Galg

k◦

with the kernel of the natural surjective homomorphism Gk• ↠ Galg
k•
. Moreover, to verify

Theorem 5.4, we may assume without loss of generality — by replacing ΠX◦ , ΠX• by the
quotients ΠX◦/ZΠX◦

(∆X◦), ΠX•/ZΠX•
(∆X•), respectively [cf. Lemma 4.3, (iii)] — that

both k◦ and k• are algebraic.
Next, let us verify the following assertion:

Claim 5.4.A: There exists a unique map φ : k◦ → k•/Gk• of sets that
satisfies the following three conditions:

(1) For each a, b ∈ k◦ — after replacing k◦ by a suitable finite extension
[that may depend on the choice of {a, b}] of k◦ in k◦ and replacing k• by
the corresponding finite extension of k• in k• by αG — there exists a
commutative diagram of profinite groups

Π(T◦){a,b} ∼
α{a,b} //

����

Π(T•){ϕ(a),ϕ(b)}

����
Π(T◦){b} ∼

α{b} //

����

Π(T•){ϕ(b)}

����
ΠT◦ ∼

α // ΠT•

— where the horizontal arrows are isomorphisms, and the left-hand upper
(respectively, right-hand upper; left-hand lower; right-hand lower) vertical
arrow is a surjective homomorphism that arises from the natural open
immersion (T◦){a,b} ↪→ (T◦){b} (respectively, (T•){ϕ(a),ϕ(b)} ↪→ (T•){ϕ(b)};
(T◦){b} ↪→ T◦; (T•){ϕ(b)} ↪→ T•).

(2) For each a ∈ k◦, the isomorphism α maps DT◦(a) to DT•(φ(a)).

(3) The equality (φ(0), φ(1)) = (0, 1) holds.

Moreover, in the situation of (1), the isomorphism α{b} (respectively,
α{b}; α{a,b}) maps D(T◦){b}(b) (respectively, D(T◦){b}(a); D(T◦){a,b}(a)) to

D(T•){ϕ(b)}(φ(b)) (respectively, D(T•){ϕ(b)}(φ(a)); D(T•){ϕ(a),ϕ(b)}(φ(a))).
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To this end, let us first observe that the uniqueness of such a map φ follows from condition
(2) and Lemma 4.4, (i). Next, to verify the existence of such a map φ, let us observe that,
for each a, b ∈ k◦, it follows from Lemma 5.2 and [17], Theorem 4.7, (i), (ii), together with
[17], Example 4.8, (i), that — after replacing k◦ by a suitable finite extension [that may
depend on the choice of {a, b}] of k◦ in k◦ and replacing k• by the corresponding finite
extension of k• in k• by αG — there exists a commutative diagram as in condition (1)
for some elements “φ(a)” and “φ(b)” of k•/Gk• . Then since [we have assumed that] the
isomorphism α maps DT◦(∗) to DT•(∗) for each ∗ ∈ {0, 1,∞}, by applying Lemma 4.6,
(i), to the isomorphism α{b}, we conclude that the isomorphism α{b} maps D(T◦){b}(b)

to D(T•){ϕ(b)}(φ(b)). Thus, by applying Lemma 4.6, (i), to the isomorphism α{a,b}, we

conclude that the isomorphism α{a,b} maps D(T◦){a,b}(a) to D(T•){ϕ(a),ϕ(b)}(φ(a)), which thus

implies that the isomorphism α{b} maps D(T◦){b}(a) to D(T•){ϕ(b)}(φ(a)). In particular, it

follows immediately from Lemma 4.4, (ii), that the “original α” [i.e., without replacing
k◦, k• by finite extensions of k◦, k•, respectively] maps DT◦(a) to DT•(φ(a)), as desired.
This completes the proof of Claim 5.4.A.

Next, let us verify the following assertion:

Claim 5.4.B: The map φ : k◦ → k•/Gk• of sets in Claim 5.4.A determines

a bijection k◦
∼→ k•. Moreover, for each a ∈ k×

◦ and b ∈ k◦, the equalities
in k•

φ(1/a) = 1/φ(a), φ(1− a) = 1− φ(a),

φ(−a) = −φ(a), φ(b/a) = φ(b)/φ(a)

hold.

To this end, let us first observe that it follows from condition (2) of Claim 5.4.A and
Lemma 4.4, (iii), that the image of φ is contained in the subset k• ⊆ k•/Gk• . Next, let
us observe that the injectivity of the map φ follows from condition (2) of Claim 5.4.A
and Lemma 4.4, (i). Moreover, one may conclude the surjectivity [i.e., bijectivity] of the
resulting injective map k◦ ↪→ k• by applying Claim 5.4.A to the inverse of α.
Next, to verify the [fourth] equality φ(b/a) = φ(b)/φ(a), let us recall that, in the

diagram of condition (1) of Claim 5.4.A, the isomorphism α{b} maps

D(T◦){b}(0)
(
respectively, D(T◦){b}(1); D(T◦){b}(∞); D(T◦){b}(a)

)
to

D(T•){ϕ(b)}(0)
(
respectively, D(T•){ϕ(b)}(1); D(T•){ϕ(b)}(∞); D(T•){ϕ(b)}

(
φ(a)

))
.

Let β be an automorphism of Π(T◦){b} over Gk◦ that maps

D(T◦){b}(0)
(
respectively, D(T◦){b}(1); D(T◦){b}(∞); D(T◦){b}(a)

)
to

D(T◦){b}(∞)
(
respectively, D(T◦){b}(b); D(T◦){b}(0); D(T◦){b}(b/a)

)
[cf. Lemma 5.3, (iv)]. Then since the isomorphism α{b} maps D(T◦){b}(b) to D(T•){ϕ(b)}(φ(b))

[cf. the final portion of Claim 5.4.A], it is immediate that the automorphism α{b}◦β ◦α−1
{b}
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of Π(T•){ϕ(b)} is an automorphism over Gk• and, moreover, maps

D(T•){ϕ(b)}(0)
(
respectively, D(T•){ϕ(b)}(1); D(T•){ϕ(b)}(∞)

)
to

D(T•){ϕ(b)}(∞)
(
respectively, D(T•){ϕ(b)}

(
φ(b)

)
; D(T•){ϕ(b)}(0)

)
.

Thus, again by Lemma 5.3, (iv), we conclude that the automorphism α{b} ◦β ◦α−1
{b} maps

D(T•){ϕ(b)}(φ(a)) to D(T•){ϕ(b)}(φ(b)/φ(a)). In particular, since the isomorphism β ◦ α−1
{b}

maps D(T•){ϕ(b)}(φ(a)) to D(T◦){b}(b/a) [cf. the final portion of Claim 5.4.A], the isomor-

phism α{b} maps D(T◦){b}(b/a) to D(T•){ϕ(b)}(φ(b)/φ(a)), which thus implies that φ(b/a) =

φ(b)/φ(a), as desired. This completes the proof of the equality φ(b/a) = φ(b)/φ(a).
The [first, second] equalities φ(1/a) = 1/φ(a), φ(1−a) = 1−φ(a) follow from a similar

argument to the argument applied in the proof of the equality φ(b/a) = φ(b)/φ(a),
together with Lemma 5.3, (i), (ii).

Next, observe that it follows from the [first] equality φ(1/a) = 1/φ(a) already veri-
fied above, together with the equality φ(1) = 1 [cf. condition (3) of Claim 5.4.A], that
φ(−1) = −1. Thus, the [third] equality φ(−a) = −φ(a) follows from a similar argument
to the argument applied in the proof of the equality φ(b/a) = φ(b)/φ(a), together with
Lemma 5.3, (iii). This completes the proof of Claim 5.4.B.

Next, we verify the following assertion:

Claim 5.4.C: The bijection φ : k◦
∼→ k• of sets [cf. Claim 5.4.B] is an

isomorphism of fields.

To this end, let us first recall from condition (3) of Claim 5.4.A that φ(0) = 0, φ(1) = 1.
Moreover, it follows from Claim 5.4.B that, for each a ∈ k×

◦ and b ∈ k◦,

φ(a · b) = φ
(
b/(1/a)

)
= φ(b)/φ(1/a) = φ(b)/

(
1/φ(a)

)
= φ(a) · φ(b),

φ(a+ b) = φ
(
a ·

(
1− (−b/a)

))
= φ(a) · φ

(
1− (−b/a)

)
= φ(a) ·

(
1− φ(−b/a)

)
= φ(a) ·

(
1 + φ(b/a)

)
= φ(a) ·

(
1 + φ(b)/φ(a)

)
= φ(a) + φ(b),

as desired. This completes the proof of Claim 5.4.C.
By applying Claim 5.4.C to the various restrictions of α to the open subgroups of ΠT◦

that arise from the open subgroups of Gk◦ , we obtain an isomorphism k◦
∼→ k• of fields

[that restricts to an isomorphism k◦
∼→ k• of subfields]. Moreover, one verifies easily

that, for □ ∈ {◦, •}, the identification of the set of closed points of T□ ×k□ k□ with

k□ \ {0, 1} by the standard coordinate on T□ is ΠT□-equivariant. Thus, we conclude that

the isomorphism αG : Gk◦
∼→ Gk• arises from the inverse of the isomorphism k◦

∼→ k• of
fields, as desired. This completes the proof Theorem 5.4. □

LEMMA 5.5. — Let F be a field and F a separable closure of F . Write GF
def
= Gal(F/F )

for the absolute Galois group of F determined by the separable closure F . Consider the
following three conditions:
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(1) There exists a subfield F0 ⊆ F of F such that F is finitely generated and
transcendental over F0.

(2) The field F is Hilbertian.

(3) The profinite group GF is nontrivial, and an arbitrary open subgroup of GF

has no nontrivial topologically finitely generated normal closed subgroup. [In
particular, the profinite group GF is not topologically finitely generated.]

Then the implications

(1) +3 (2) +3 (3).

hold.

Proof. — The implication (1)⇒ (2) follows from [1], Theorem 13.4.2. The implication
(2) ⇒ (3) follows from [1], Corollary 12.2.3, and [1], Proposition 16.11.6. □

We are now ready to state and prove the first main result of the present paper.

COROLLARY 5.6. — For □ ∈ {◦, •}, let p□ be a prime number, k□ a field of characteristic
zero, k□ an algebraic closure of k□, and X□ a hyperbolic orbicurve over k□; write ΠX□ for

the étale fundamental group [relative to an appropriate choice of basepoint] of X□, Gk□
def
=

Gal(k□/k□) for the absolute Galois group of k□ determined by the algebraic closure k□,
and ∆X□ ⊆ ΠX□ for the kernel of the natural surjective outer homomorphism ΠX□ ↠ Gk□.
Let

α : ΠX◦
∼ // ΠX•

be an isomorphism of profinite groups. Suppose that either X◦ or X• is a quasi-tripod.
Suppose, moreover, that one of the following six conditions is satisfied:

(1) For each □ ∈ {◦, •}, the field k□ is algebraic and generalized sub-p□-adic.

(2) For each □ ∈ {◦, •}, the field k□ is finitely generated and transcendental
over a field that is algebraic and sub-p□-adic.

(3) For each □ ∈ {◦, •}, the field k□ is finitely generated and of transcendental
degree ̸∈ {0, 2} over a field that is algebraic and generalized sub-p□-adic.

(4) For each □ ∈ {◦, •}, the field k□ is strictly sub-p□-adic.

(5) For each □ ∈ {◦, •}, the field k□ is quasi-p□-adic local.

(6) For each □ ∈ {◦, •}, the field k□ is finitely generated and of transcendental
degree one over a quasi-p□-adic local field.

If either (1) or (5) is satisfied, then suppose, moreover, that one of the following three
conditions is satisfied:

(a) The isomorphism α restricts to an isomorphism ∆X◦
∼→ ∆X• of closed subgroups.

(b) For each □ ∈ {◦, •}, the profinite group Gk□ has no nontrivial topologically
finitely generated normal closed subgroup.

(c) For each □ ∈ {◦, •}, the field k□ is Hilbertian.



30 Yuichiro Hoshi

Then the following hold:

(i) The isomorphism α restricts to an isomorphism ∆X◦
∼→ ∆X• of closed subgroups.

(ii) The isomorphism of profinite groups

αG : Gk◦
∼ // Gk•

induced by α [cf. (i)] arises from a unique isomorphism k•
∼→ k◦ of fields that restricts

to an isomorphism k•
∼→ k◦ of subfields.

(iii) The isomorphism α arises from a unique isomorphism X◦
∼→ X• of stacks

that lies over the isomorphism k•
∼→ k◦ of (ii).

Proof. — First, we verify assertion (i). Now let us verify the following assertion:

Claim 5.6.A: The implications

(c) +3 (b) +3 (a)

hold.

To this end, let us first recall that the implication (c) ⇒ (b) follows from Lemma 5.5.
Next, to verify the implication (b) ⇒ (a), suppose that condition (b) is satisfied. Then
since ∆X◦ is topologically finitely generated [cf. [17], Proposition 2.2] and normal in ΠX◦ , it

follows from condition (b) that the image of the composite ∆X◦ ↪→ ΠX◦

α
∼→ ΠX• ↠ Gk• is

trivial, which thus implies that α(∆X◦) ⊆ ∆X• . Moreover, by applying a similar argument
to this argument to the inverse of α, we conclude that α(∆X◦) = ∆X• , as desired. This
completes the proof of the implication (b) ⇒ (a), hence also of Claim 5.6.A.
If either (1) or (5) is satisfied, then assertion (i) follows from our assumption, together

with Claim 5.6.A. Next, if either (2), (3), or (6) is satisfied, then it follows from Lemma 5.5
that condition (c) is satisfied, which thus implies [cf. Claim 5.6.A] that assertion (i) holds.
Thus, to verify assertion (i), we may assume without loss of generality that condition (4)
is satisfied. In particular, for each □ ∈ {◦, •}, the field k□ is finitely generated over the
p□-adic local subfield (k□)MLF ⊆ k□ of Definition 2.12, (i).

Now suppose that k◦ = (k◦)MLF, i.e., that k◦ is p◦-adic local. Then it follows from
[17], Theorem 2.6, (ii), that the profinite group ΠX◦ , hence also the profinite group ΠX• ,
is topologically finitely generated. In particular, it follows immediately from Lemma 5.5
that k• = (k•)MLF, i.e., that k• is p•-adic local. Thus, we conclude from [17], Corollary
2.8, (ii), that assertion (i) holds.

Next, suppose that k◦ 6= (k◦)MLF, i.e., that k◦ is transcendental over (k◦)MLF. Then it
follows from Lemma 5.5 that the profinite group ΠX◦ , hence also the profinite group ΠX• ,
is not topologically finitely generated. In particular, it follows from [17], Theorem 2.6,
(ii), that k• 6= (k•)MLF, i.e., that k• is transcendental over (k•)MLF. Thus, we conclude
from Lemma 5.5 that condition (c) is satisfied, which thus implies [cf. Claim 5.6.A] that
assertion (i) holds. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that it follows immediately from
Proposition 2.8 and the injectivity portion of Theorem 2.14 that, by Galois descent, to
verify assertion (ii), it suffices to verify that there exists a finite extension K◦ ⊆ k◦ of k◦ in
k◦ such that if one writes K• ⊆ k• for the corresponding finite extension of k• in k• by αG,



The Absolute Anabelian Geometry of Quasi-tripods 31

then the restriction Gal(k◦/K◦)
∼→ Gal(k•/K•) of αG arises from an isomorphism k•

∼→ k◦
of fields that restricts to an isomorphism K•

∼→ K◦ of subfields. Thus, it follows from
Lemma 4.6, (iv), that, to verify assertion (ii), we may assume without loss of generality
that both X◦ and X• are split tripods. In particular, it follows from Theorem 2.14 and
Theorem 5.4 that the isomorphism αG arises from a unique isomorphism k•

∼→ k◦ of
fields that restricts to an isomorphism k•

∼→ k◦ of subfields, as desired. This completes
the proof of assertion (ii). Assertion (iii) follows from assertion (ii) and Theorem 4.5.
This completes the proof of Corollary 5.6. □

REMARK 5.6.1. — If one replaces conditions (1), (2), (3), (4), (5), and (6) in the statement
of Corollary 5.6 by, for instance, the condition that

for each □ ∈ {◦, •}, the field k□ is sub-p□-adic,

then the conclusion of Corollary 5.6 no longer holds in general. A counter example may be
obtained as follows: Let p be a prime number. Write Q for the field of rational numbers,
Qp for the p-adic completion of Q, and F for the algebraic closure of Q in Qp. Then
it is immediate that both Qp and F are sub-p-adic. On the other hand, it follows from
Krasner’s lemma [cf., e.g., [20], Lemma 8.1.6] that the natural inclusion F ↪→ Qp induces
an outer isomorphism between the respective absolute Galois groups. In particular, for
an arbitrary hyperbolic curve X [e.g., a tripod, that is a quasi-tripod] over F , the first
projection X ×F Qp → X induces an outer isomorphism between the respective étale
fundamental groups [that satisfies a similar condition to condition (a) in the statement
of Corollary 5.6]. However, one verifies easily that the scheme X×F Qp is not isomorphic
to the scheme X.

REMARK 5.6.2. — Corollary 5.6, (iii), under the condition that,

for each □ ∈ {◦, •}, the field k□ is algebraic and sub-p□-adic, and, more-
over, one of the three conditions (a), (b), and (c) in the statement of
Corollary 5.6 is satisfied

may also be derived from [5], Theorem A, as follows: Let us first observe that it follows
from a similar argument to the argument applied in the proof of Theorem 4.5 that we
may assume without loss of generality, by replacing X◦ by a suitable connected finite étale
covering of X◦ and replacing X• by the corresponding connected finite étale covering of
X• by α, that both X◦ and X• are hyperbolic curves. Next, observe that since an arbitrary
sub-l-adic field for some prime number l is Kummer-faithful [cf. [19], Remark 1.5.4, (i)],
both k◦ and k• are Kummer-faithful. Moreover, since both k◦ and k• are algebraic, and
X◦ and X• are quasi-tripods [cf. Lemma 4.6, (iii)], it follows immediately from a similar
argument to the argument applied in the proof of [16], Proposition 2.4, (iii), that the
isomorphism α is point-theoretic. Thus, it follows immediately from [5], Theorem A, that

the isomorphism α arises from a unique isomorphism X◦
∼→ X• of stacks, as desired.

REMARK 5.6.3. — Corollary 5.6 may be regarded as a generalization of [16], Corollary
2.3, in the case where condition (b) is satisfied [cf. also Remark 3.7.1].
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6. Applications to Certain Hyperbolic Polycurves

In the present §6, we discuss some applications of the first main result of the present
paper, i.e., Corollary 5.6, to the absolute anabelian geometry of certain hyperbolic poly-
curves [cf. Corollary 6.4, Corollary 6.6, Corollary 6.10 below]. In the present §6, let k be
a field of characteristic zero.

DEFINITION 6.1. — Let S be a scheme. Then we shall say that a scheme X over S is
a hyperbolic polycurve over S if there exist a positive integer d and a [not necessarily
unique] factorization of the structure morphism X → S

X = Xd
// Xd−1

// . . . // X2
// X1

// S = X0

such that, for each i ∈ {1, . . . , d}, the morphism Xi → Xi−1 is a hyperbolic curve. We
shall refer to a factorization of X → S as above as a sequence of parametrizing morphisms
for X over S.

REMARK 6.1.1. — It is immediate that a hyperbolic polycurve over k is a smooth variety
over k.

DEFINITION 6.2. — Let d be a positive integer and X a hyperbolic curve over k. Write
X×d for the fiber product over k of d copies of X and δX ⊆ X×2 for the diagonal divisor.
Write, moreover, for a subset S ⊆ {1, . . . , d} of cardinality two, pS : X

×d → X×2 for the
projection onto the factors labeled by the elements of S. Then we shall refer to the open
subscheme of X×d

X×d \
⋃

S⊆{1,...,d}, ♯S=2

p−1
S (δX) ⊆ X×d

as the d-th configuration space of X.

REMARK 6.2.1. — One verifies easily that, in the situation of Definition 6.2, the d-th
configuration space of X is a hyperbolic polycurve over k.

Here, let us recall the following result concerning the Grothendieck conjecture for
configuration spaces of hyperbolic curves over generalized sub-p-adic fields:

THEOREM 6.3. — For □ ∈ {◦, •}, let d□ be a positive integer, p□ a prime number, k□ a
generalized sub-p□-adic field, k□ an algebraic closure of k□, and C□ a hyperbolic curve
over k□; write X□ for the d□-th configuration space of C□, ΠX□ for the étale fundamen-

tal group [relative to an appropriate choice of basepoint] of X□, Gk□
def
= Gal(k□/k□) for

the absolute Galois group of k□ determined by the algebraic closure k□, and ∆X□ ⊆ ΠX□
for the kernel of the natural surjective outer homomorphism ΠX□ ↠ Gk□. Let

α : ΠX◦
∼ // ΠX•
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be an isomorphism of profinite groups that restricts to an isomorphism ∆X◦
∼→ ∆X• of

closed subgroups. Write

αG : Gk◦
∼ // Gk•

for the isomorphism induced by α. Suppose that the isomorphism αG arises from an
isomorphism k•

∼→ k◦ of fields that restricts to an isomorphism k•
∼→ k◦ of subfields.

Then the isomorphism α arises from a unique isomorphism X◦
∼→ X• of schemes that

lies over the isomorphism k•
∼→ k◦.

Proof. — This assertion follows immediately — in light of Theorem 4.5 — from [10],
Theorem A, (ii), together with a similar argument to the argument applied in the proof
of [18], Theorem 1.8, (i). □

COROLLARY 6.4. — For □ ∈ {◦, •}, let d□ be a positive integer, p□ a prime number, k□
a field of characteristic zero, k□ an algebraic closure of k□, and C□ a hyperbolic curve over
k□; write X□ for the d□-th configuration space of C□, ΠX□ for the étale fundamental

group [relative to an appropriate choice of basepoint] of X□, Gk□
def
= Gal(k□/k□) for the

absolute Galois group of k□ determined by the algebraic closure k□, and ∆X□ ⊆ ΠX□ for
the kernel of the natural surjective outer homomorphism ΠX□ ↠ Gk□. Let

α : ΠX◦
∼ // ΠX•

be an isomorphism of profinite groups. Suppose that one of the following three conditions
is satisfied:

(A) Either C◦ or C• is a quasi-tripod.

(B) Either C◦ or C• is affine. Moreover, the inequality max{d◦, d•} ≥ 2 holds.

(C) The inequality max{d◦, d•} ≥ 3 holds.

Suppose, moreover, that one of the six conditions (1), (2), (3), (4), (5), and (6) in the
statement of Corollary 5.6 is satisfied. If either (1) or (5) in the statement of Corollary 5.6
is satisfied, then suppose, moreover, that one of the three conditions (a), (b), and (c) in
the statement of Corollary 5.6 is satisfied. Then the following hold:

(i) The isomorphism α restricts to an isomorphism ∆X◦
∼→ ∆X• of closed subgroups.

(ii) The isomorphism of profinite groups

αG : Gk◦
∼ // Gk•

induced by α [cf. (i)] arises from a unique isomorphism k•
∼→ k◦ of fields that restricts

to an isomorphism k•
∼→ k◦ of subfields.

(iii) The isomorphism α arises from a unique isomorphism X◦
∼→ X• of schemes

that lies over the isomorphism k•
∼→ k◦ of (ii).

Proof. — Assertion (i) follows from a similar argument to the argument applied in the
proof of Corollary 5.6, (i).

Next, we verify assertions (ii), (iii) in the case where condition (A) is satisfied. Suppose
that condition (A) is satisfied. Then it follows from assertion (i) and [10], Theorem A,
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(ii), that, to verify assertion (ii), we may assume without loss of generality, by replacing
X□ by C□ for each □ ∈ {◦, •}, that d□ = 1. In particular, assertion (ii) follows from
Corollary 5.6, (ii). Moreover, assertion (iii) follows from assertion (ii) and Theorem 6.3.
This completes the proofs of assertions (ii), (iii) in the case where condition (A) is satisfied.

Finally, we verify assertions (ii), (iii) in the case where either (B) or (C) is satisfied.
Suppose that either (B) or (C) is satisfied. Let us first observe that if condition (B)
is satisfied, then it follows from assertion (i), Lemma 4.6, (vi), and [10], Theorem A,
(i), that both C◦ and C• are affine. Thus, assertions (ii), (iii) follow immediately — in
light of assertion (i) and [10], Theorem A, (ii) — from Corollary 5.6, (ii), (iii), and a
similar argument to the argument applied in the proof of [18], Corollary 1.11, (iii). This
completes the proofs of assertions (ii), (iii) in the case where either (B) or (C) is satisfied,
hence also of Corollary 6.4. □

DEFINITION 6.5. — Let S be a scheme and X a hyperbolic polycurve over S. Then we
shall say that a sequenceX = Xd → Xd−1 → . . .→ X2 → X1 → S = X0 of parametrizing
morphisms for X over S is of strictly decreasing type if the following condition is satisfied:
If, for each i ∈ {1, . . . , d}, the hyperbolic curve Xi → Xi−1 is of rank ni, then n1 > n2 >
· · · > nd−1 > nd.

COROLLARY 6.6. — For □ ∈ {◦, •}, let p□ be a prime number, k□ a field of characteristic
zero, k□ an algebraic closure of k□, and X□ a hyperbolic polycurve over k□; write
ΠX□ for the étale fundamental group [relative to an appropriate choice of basepoint] of

X□, Gk□
def
= Gal(k□/k□) for the absolute Galois group of k□ determined by the algebraic

closure k□, and ∆X□ ⊆ ΠX□ for the kernel of the natural surjective outer homomorphism
ΠX□ ↠ Gk□. Let

α : ΠX◦
∼ // ΠX•

be an isomorphism of profinite groups. Suppose that, for each □ ∈ {◦, •}, there exists a
sequence X□ = (X□)d□ → (X□)d□−1 → . . . → (X□)2 → (X□)1 → Spec(k□) = (X□)0 of
parametrizing morphisms for X□ over k□ of strictly decreasing type such that either
the hyperbolic curve (X◦)1 over k◦ or the hyperbolic curve (X•)1 over k• is a quasi-
tripod. Suppose, moreover, that one of the six conditions (1), (2), (3), (4), (5), and
(6) in the statement of Corollary 5.6 is satisfied. If either (1) or (5) in the statement of
Corollary 5.6 is satisfied, then suppose, moreover, that one of the three conditions (a),
(b), and (c) in the statement of Corollary 5.6 is satisfied. Then the following hold:

(i) The isomorphism α restricts to an isomorphism ∆X◦
∼→ ∆X• of closed subgroups.

(ii) The isomorphism of profinite groups

αG : Gk◦
∼ // Gk•

induced by α [cf. (i)] arises from a unique isomorphism k•
∼→ k◦ of fields that restricts

to an isomorphism k•
∼→ k◦ of subfields.

(iii) The isomorphism α arises from a unique isomorphism X◦
∼→ X• of schemes

that lies over the isomorphism k•
∼→ k◦ of (ii).
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Proof. — Assertion (i) follows from a similar argument to the argument applied in the
proof of Corollary 5.6, (i). Next, we verify assertion (ii). It follows from assertion (i) and
[8], Lemma 2.3, (iii), (iv), that we may assume without loss of generality, by replacing X□
by (X□)1 for each □ ∈ {◦, •}, that d□ = 1. Thus, assertion (ii) follows from Corollary 5.6,
(ii). This completes the proof of assertion (ii). Finally, assertion (iii) follows immediately
from assertion (ii) and [8], Theorem 2.4. This completes the proof of Corollary 6.6. □

LEMMA 6.7. — Let n0 be an integer, X a smooth variety over k, and x ∈ X a point
of X. Suppose that X is of positive dimension. Then there exists an open neighborhood
U ⊆ X of x ∈ X that satisfies the following two conditions:

(1) The smooth variety U has a structure of hyperbolic polycurve over k.

(2) There exists a sequence U = Ud → Ud−1 → . . . → U2 → U1 → Spec(k) = U0 of
parametrizing morphisms for U over k [cf. (1)] of strictly decreasing type such that
the hyperbolic curve U over Ud−1 is of rank ≥ n0, and, moreover, the hyperbolic curve
U1 over k is a quasi-tripod.

Proof. — We prove Lemma 6.7 by induction on the dimension of X. If X is of di-
mension one, then Lemma 6.7 follows immediately from Remark 3.7.2, (i), (ii), and [8],
Lemma 1.8. In the remainder of the proof of Lemma 6.7, suppose that X is of dimension
≥ 2, and that the induction hypothesis is in force.

Next, let us observe that we may assume without loss of generality, by replacing x ∈ X
by a closed point of the closure of {x} ⊆ X in X, that x ∈ X is a closed point of X.
Moreover, it follows from [8], Lemma 1.11, that we may assume without loss of generality,
by replacing X by a suitable open neighborhood of x ∈ X, that there exists a smooth
variety S over k such that X has a structure of hyperbolic curve over S, by means of which
we shall regard X as a scheme over S. Thus, it follows from [8], Lemma 1.8, that we
may assume without loss of generality, by replacing X by a suitable open neighborhood
of x ∈ X, that

(a) the hyperbolic curve X over S is of rank ≥ n0.

Write nX (≥ n0) for the rank of the hyperbolic curve X over S [cf. (a)]. Then since S is
of dimension dim(X)− 1, it follows from the induction hypothesis that we may assume
without loss of generality, by replacing S by a suitable open neighborhood of the image
of x ∈ X in S, that

(b) the smooth variety S has a structure of hyperbolic polycurve over k, and

(c) there exists a sequence S = Sd−1 → Sd−2 → . . . → S2 → S1 → Spec(k) = S0 of
parametrizing morphisms for S over k [cf. (b)] of strictly decreasing type such that the
hyperbolic curve S over Sd−2 is of rank > nX , and, moreover, the hyperbolic curve S1

over k is a quasi-tripod.

Now let us observe that it follows from (a), (b), (c) that X satisfies conditions (1), (2) in
the statement of Lemma 6.7. This completes the proof of Lemma 6.7. □
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LEMMA 6.8. — Let X be a smooth variety over k. Suppose that X is of positive dimen-
sion. Then there exists an open basis for the Zariski topology of X such that each member
U of the open basis satisfies the following two conditions:

(1) The smooth variety U has a structure of hyperbolic polycurve over k.

(2) There exists a sequence U = Ud → Ud−1 → . . . → U2 → U1 → Spec(k) = U0

of parametrizing morphisms for U over k [cf. (1)] such that this sequence is of strictly
decreasing type, and, moreover, the hyperbolic curve U1 over k is a quasi-tripod.

Proof. — This assertion follows from Lemma 6.7. □

DEFINITION 6.9. — We shall say that a smooth variety over k has an absolutely anabelian
open basis if there exists an open basis for the Zariski topology of the variety such that,
for arbitrary members U and V of the open basis, the natural map

Isom(U, V ) // Isom(ΠU ,ΠV )/Inn(ΠV )

— where we write “Π(−)” for the étale fundamental group [relative to an appropriate
choice of basepoint] of “(−)” — is bijective.

COROLLARY 6.10. — Let k be a field. Suppose that there exists a prime number p such
that the field k satisfies one of the following five conditions:

(1) The field k is algebraic, generalized sub-p-adic, and Hilbertian.

(2) The field k is finitely generated and transcendental over a field that is alge-
braic and sub-p-adic.

(3) The field k is finitely generated and of transcendental degree ̸∈ {0, 2} over
a field that is algebraic and generalized sub-p-adic.

(4) The field k is strictly sub-p-adic.

(5) The field k is finitely generated and of transcendental degree one over a
quasi-p-adic local field.

Then every smooth variety of positive dimension over the field k has an absolutely
anabelian open basis.

Proof. — This assertion follows from Corollary 6.6 and Lemma 6.8. □

REMARK 6.10.1. — Observe that an arbitrary finitely generated extension of the field of
rational numbers satisfies either (1) or (2) in the statement of Corollary 6.10; moreover,
an arbitrary mixed-characteristic local field satisfies condition (4) in the statement of
Corollary 6.10. Thus, Corollary 6.10 may be regarded as a generalization of [8], Corol-
lary 3.4, (ii), (iii) [i.e., in the case where the variety under consideration is of positive
dimension], hence also of [22], Corollary 1.7 [cf. also [8], Remark 3.4.1].
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7. The Absolute Anabelian Geometry of MLF-isotrivial Orbicurves

In the present §7, we discuss the absolute anabelian geometry of MLF-isotrivial hyper-
bolic orbicurves.

THEOREM 7.1. — For □ ∈ {◦, •}, let p□ be a prime number, k□ a field that is strictly
sub-p□-adic but not p□-adic local, k□ an algebraic closure of k□, and X□ a hyper-
bolic orbicurve over k□; write ΠX□ for the étale fundamental group [relative to an

appropriate choice of basepoint] of X□, Gk□
def
= Gal(k□/k□) for the absolute Galois group

of k□ determined by the algebraic closure k□, and ∆X□ ⊆ ΠX□ for the kernel of the natural
surjective outer homomorphism ΠX□ ↠ Gk□. Let

α : ΠX◦
∼ // ΠX•

be an isomorphism of profinite groups. Suppose that one of the following four conditions
is satisfied:

(1) Both X◦ and X• are MLF-isotrivial [cf. Definition 3.6, (ii)].

(2) The hyperbolic orbicurve X◦ is strictly MLF-isotrivial [cf. Definition 3.6, (i)],
and, moreover, the inequality dk◦ ≤ dk• [cf. Definition 2.12, (ii)] holds.

(3) The hyperbolic orbicurve X◦ is strictly MLF-isotrivial, and, moreover, the
inequality ek◦ ≤ ek• [cf. Definition 2.12, (iii)] holds.

(4) The hyperbolic orbicurve X◦ is strictly MLF-isotrivial, and, moreover, the
mixed-characteristic local field (k◦)MLF [cf. Definition 2.12, (i)] is absolutely abelian
[cf. [7], Definition 4.2, (ii)].

Then the following hold:

(i) The isomorphism α restricts to an isomorphism ∆X◦
∼→ ∆X• of closed subgroups.

(ii) The isomorphism of profinite groups

αG : Gk◦
∼ // Gk•

induced by α [cf. (i)] arises from a unique isomorphism k•
∼→ k◦ of fields that restricts

to an isomorphism k•
∼→ k◦ of subfields.

(iii) The isomorphism α arises from a unique isomorphism X◦
∼→ X• of stacks

that lies over the isomorphism k•
∼→ k◦ of (ii).

Proof. — Let us first observe that, for each □ ∈ {◦, •}, since the field k□ is strictly sub-
p□-adic but not p□-adic local, the field k□ is finitely generated and transcendental over the

p□-adic local subfield (k□)0
def
= (k□)MLF ⊆ k□ [cf. Definition 2.12, (i)]. Moreover, for each

□ ∈ {◦, •}, since the subfield (k□)0 ⊆ k□ is algebraically closed in k□ [cf. Definition 2.12,
(i)], the equality (k□)alg = ((k□)0)alg ⊆ (k□)0 holds. For □ ∈ {◦, •}, write (k□)0 ⊆ k□ for

the algebraic closure of (k□)0 in k□ and Ω□ ⊆ k□ for the algebraic closure of (k□)alg in k□.

Thus, the natural inclusions Ω□ ↪→ (k□)0 ↪→ k□ determine homomorphisms of profinite
groups

Gk□
// // G(k□)0

def
= Gal

(
(k□)0/(k□)0

) ∼ // Galg
k□

def
= Gal

(
Ω□/(k□)alg

)
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— where the first arrow is surjective, and the second arrow is an isomorphism [cf.
Lemma 2.1, (i)]. For □ ∈ {◦, •}, write ∆□ ⊆ Gk□ for the kernel of the first surjec-
tive homomorphism Gk□ ↠ G(k□)0 .
Now we verify assertion (i). It follows from the discussion of the preceding paragraph,

together with Lemma 5.5, that condition (c) in the statement of Corollary 5.6 is satisfied.
Thus, it follows from a similar argument to the argument applied in the proof of Claim
5.6.A [i.e., in the proof of Corollary 5.6] that assertion (i) holds. This completes the proof
of assertion (i).

Next, we verify assertion (ii). Let us first observe that it follows immediately from
the injectivity portion of Theorem 2.14 that, by Galois descent, to verify assertion (ii),
it suffices to verify that there exists a finite extension K◦ ⊆ k◦ of k◦ in k◦ such that if
one writes K• ⊆ k• for the corresponding finite extension of k• in k• by αG, then the
restriction Gal(k◦/K◦)

∼→ Gal(k•/K•) of αG arises from an isomorphism k•
∼→ k◦ of fields

that restricts to an isomorphism K•
∼→ K◦ of subfields. Thus, to verify assertion (ii), we

may assume without loss of generality that X◦ is strictly MLF-isotrivial.
For □ ∈ {◦, •}, write ρ□ : Gk□ → Out(∆X□) for the natural outer action of Gk□ on

∆X□ . Thus, the isomorphism α determines a commutative diagram

Gk◦

αG

∼
//

ρ◦
��

Gk•

ρ•
��

Out(∆X◦) ∼
// Out(∆X•)

— where the horizontal arrows are isomorphisms. To verify assertion (ii), let us verify
the following assertion:

Claim 7.1.A: The isomorphism αG restricts to an isomorphism ∆◦
∼→ ∆•

of closed subgroups.

To this end, let us observe that since X◦ is strictly MLF-isotrivial, it follows from the
diagram preceding Claim 7.1.A, together with Proposition 4.2 and Lemma 4.3, (i), that
the isomorphism αG determines a sequence of profinite groups

G(k◦)0 Gk◦/Ker(ρ◦)
∼oo ∼ // Gk•/Ker(ρ•) // // G(k•)0

— where the first and second arrows are isomorphisms, and the third arrow is a surjective
homomorphism whose kernel is ∆•/Ker(ρ•).

Now let us discuss Claim 7.1.A in the case where condition (1) is satisfied. Since
the hyperbolic orbicurve X• is MLF-isotrivial, it follows from Lemma 4.3, (ii), that the
closed subgroup Ker(ρ•) ⊆ ∆• of ∆• is open, which thus implies that ∆•/Ker(ρ•) is
finite. Thus, since G(k◦)0 , hence also Gk•/Ker(ρ•), is torsion-free [cf. [15], Proposition 2.3,
(iii)], we conclude that ∆• = Ker(ρ•), which thus implies that Claim 7.1.A holds. This
completes the proof of Claim 7.1.A in the case where condition (1) is satisfied.

Next, suppose that condition (2) (respectively, (3); (4)) is satisfied. Then it follows
from [7], Theorem B, (i), together with [6], Proposition 3.6 (respectively, [7], Theorem
B, (ii), together with [6], Proposition 3.6; Lemma 4.6, (ii), and [7], Theorem 4.13, (ii),
together with [6], Proposition 4.2, (iv), and [7], Proposition 4.9, (iii)), that the composite
G(k◦)0 ↠ G(k•)0 of the three homomorphisms in the display of the discussion at the
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beginning of the proof of Claim 7.1.A is an isomorphism. In particular, Claim 7.1.A
holds. This completes the proof of Claim 7.1.A.

It follows from Claim 7.1.A that the isomorphism αG induces an isomorphism G(k◦)0
∼→

G(k•)0 . Thus, since, for each □ ∈ {◦, •}, the field k□ is finitely generated and transcen-
dental over the p□-adic local field (k□)0, it follows from [17], Corollary 3.9 [cf. also [19],

Appendix], that the isomorphism αG : Gk◦
∼→ Gk• arises from an isomorphism k•

∼→ k◦
of fields that restricts to an isomorphism k•

∼→ k◦ of subfields, as desired. This completes
the proof of assertion (ii). Assertion (iii) follows from assertion (ii) and Theorem 4.5.
This completes the proof of Theorem 7.1. □

COROLLARY 7.2. — For □ ∈ {◦, •}, let p□ be a prime number, k□ a field that is strictly
sub-p□-adic but not p□-adic local, k□ an algebraic closure of k□, and X□ a hyper-
bolic polycurve over k□; write ΠX□ for the étale fundamental group [relative to an

appropriate choice of basepoint] of X□, Gk□
def
= Gal(k□/k□) for the absolute Galois group

of k□ determined by the algebraic closure k□, and ∆X□ ⊆ ΠX□ for the kernel of the natural
surjective outer homomorphism ΠX□ ↠ Gk□. Let

α : ΠX◦
∼ // ΠX•

be an isomorphism of profinite groups. Suppose that one of the following eight conditions
is satisfied:

(1) For each □ ∈ {◦, •}, there exist a positive integer d□, an MLF-isotrivial hyper-
bolic curve C□ over k□, and an isomorphism of X□ with the d□-th configuration space
of C□ over k□.

(2) For each □ ∈ {◦, •}, there exist a positive integer d□, a hyperbolic curve C□
over k□, and an isomorphism of X□ with the d□-th configuration space of C□ over
k□. Moreover, the hyperbolic curve C◦ is strictly MLF-isotrivial, and the inequality
dk◦ ≤ dk• holds.

(3) For each □ ∈ {◦, •}, there exist a positive integer d□, a hyperbolic curve C□
over k□, and an isomorphism of X□ with the d□-th configuration space of C□ over
k□. Moreover, the hyperbolic curve C◦ is strictly MLF-isotrivial, and the inequality
ek◦ ≤ ek• holds.

(4) For each □ ∈ {◦, •}, there exist a positive integer d□, a hyperbolic curve C□
over k□, and an isomorphism of X□ with the d□-th configuration space of C□ over
k□. Moreover, the hyperbolic curve C◦ is strictly MLF-isotrivial, and the mixed-
characteristic local field (k◦)MLF is absolutely abelian.

(5) For each □ ∈ {◦, •}, there exists a sequence X□ = (X□)d□ → (X□)d□−1 → . . . →
(X□)2 → (X□)1 → Spec(k□) = (X□)0 of parametrizing morphisms for X□ over k□ such
that this sequence is of strictly decreasing type, and, moreover, the hyperbolic curve
(X□)1 is MLF-isotrivial.

(6) For each □ ∈ {◦, •}, there exists a sequence X□ = (X□)d□ → (X□)d□−1 → . . . →
(X□)2 → (X□)1 → Spec(k□) = (X□)0 of parametrizing morphisms for X□ over k□ of
strictly decreasing type. Moreover, the hyperbolic curve (X◦)1 is strictly MLF-
isotrivial, and the inequality dk◦ ≤ dk• holds.
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(7) For each □ ∈ {◦, •}, there exists a sequence X□ = (X□)d□ → (X□)d□−1 → . . . →
(X□)2 → (X□)1 → Spec(k□) = (X□)0 of parametrizing morphisms for X□ over k□ of
strictly decreasing type. Moreover, the hyperbolic curve (X◦)1 is strictly MLF-
isotrivial, and the inequality ek◦ ≤ ek• holds.

(8) For each □ ∈ {◦, •}, there exists a sequence X□ = (X□)d□ → (X□)d□−1 → . . . →
(X□)2 → (X□)1 → Spec(k□) = (X□)0 of parametrizing morphisms for X□ over k□ of
strictly decreasing type. Moreover, the hyperbolic curve (X◦)1 is strictly MLF-
isotrivial, and the mixed-characteristic local field (k◦)MLF is absolutely abelian.

Then the following hold:

(i) The isomorphism α restricts to an isomorphism ∆X◦
∼→ ∆X• of closed subgroups.

(ii) The isomorphism of profinite groups

αG : Gk◦
∼ // Gk•

induced by α [cf. (i)] arises from a unique isomorphism k•
∼→ k◦ of fields that restricts

to an isomorphism k•
∼→ k◦ of subfields.

(iii) The isomorphism α arises from a unique isomorphism X◦
∼→ X• of schemes

that lies over the isomorphism k•
∼→ k◦ of (ii).

Proof. — Assertion (i) follows from a similar argument to the argument applied in the
proof of Theorem 7.1, (i). Next, we verify assertion (ii). If either (1), (2), (3), or (4)
(respectively, (5), (6), (7), or (8)) is satisfied, then it follows from assertion (i) and [10],
Theorem A, (ii) (respectively, and [8], Lemma 2.3, (iii), (iv)), that, to verify assertion
(ii), we may assume without loss of generality, by replacing X□ by C□ (respectively,
(X□)1) for each □ ∈ {◦, •}, that d□ = 1. Thus, assertion (ii) follows from Theorem 7.1,
(ii). This completes the proof of assertion (ii). Assertion (iii) in the case where either
(1), (2), (3), or (4) (respectively, (5), (6), (7), or (8)) is satisfied follows from assertion
(ii), together with Theorem 6.3 (respectively, with [8], Theorem 2.4). This completes the
proof of Corollary 7.2. □
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