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Abstract. — Let p be a prime number and k a perfect field of characteristic p. In the
present paper, we study deformations of finite flat commutative group schemes over k to the
ring W of Witt vectors with coefficients in k. We prove that, for a given principally quasi-
polarizable p-torsion finite flat commutative group scheme over k, it holds that the group
scheme is pseudo-rigid — i.e., roughly speaking, has a unique, up to isomorphism over W ,
deformation to W — if and only if the group scheme is superspecial.

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

§1. p-Torsion Finite Flat Commutative Group Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

§2. Review of a Linear Algebra Theory for Group Schemes over k . . . . . . . . . . . . 5

§3. Review of a Linear Algebra Theory for Group Schemes over W . . . . . . . . . . . 6

§4. Pseudo-rigid p-Torsion Finite Flat Commutative Group Schemes . . . . . . . . . . . 9

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Introduction

Let p be a prime number and k a perfect field of characteristic p. In the present
paper, we study deformations of finite flat commutative group schemes over k to the ring

W
def
= W (k) of Witt vectors with coefficients in k. More specifically, we study pseudo-rigid

p-torsion finite flat commutative group schemes over k.
A finite flat commutative group scheme over W is one fundamental object in the study

of arithmetic geometry from the point of view of Galois representations. Now let us
observe that, for two finite flat commutative group schemes H1, H2 over W , if H1 is
isomorphic to H2 over W , then it is immediate that H1 ×W k is isomorphic to H2 ×W k
over k. However, in this situation, the existence of an isomorphism H1 ×W k

∼→ H2 ×W k
over k does in general not imply the existence of an isomorphism H1

∼→ H2 over W . Put
another way, the isomorphism class of a finite flat commutative group scheme over W is
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in general not determined by the isomorphism class of the special fiber over k. A central
problem discussed in the present paper is as follows:

Give a sufficient and necessary condition for a finite flat commutative group
scheme that ensures this converse implication.

Let G be a p-torsion finite flat commutative group scheme over k. Then we shall say
that G is principally quasi-polarizable [cf. Definition 1.4] if G is isomorphic to the Cartier
dual of G over k. Moreover, we shall say that G is pseudo-rigid [cf. Definition 1.8] if the
following two conditions are satisfied:

• There exists a p-torsion finite flat commutative group scheme H over W such that
H ×W k is isomorphic to G over k.

• If H1, H2 are p-torsion finite flat commutative group schemes over W such that
Hi ×W k is isomorphic to G over k for each i ∈ {1, 2}, then H1 is isomorphic to H2 over
W .

Thus, roughly speaking, we say that G is pseudo-rigid if G has a deformation to W , and,
moreover, arbitrary two deformations of G to W are isomorphic over W .
A typical example of a pseudo-rigid finite flat commutative group scheme is an étale

commutative group scheme over k. Moreover, one verifies immediately, by considering
the Cartier dual, that a multiplicative [cf. Definition 4.8, (i)] finite flat commutative group
scheme over k is pseudo-rigid. The main result of the present paper gives a sufficient and
necessary condition for a principally quasi-polarizable p-torsion finite flat commutative
group scheme over k to be pseudo-rigid. The main result of the present paper is as follows
[cf. Theorem 4.10, (i), (iii)]:

THEOREM. — Let G be a p-torsion finite flat commutative group scheme over k. Suppose
that either G or the Cartier dual of G is connected whenever p = 2. Then the following
assertions hold:

(i) If G is either étale over k, multiplicative, or superspecial [cf. Definition 4.8,
(ii)], then G is pseudo-rigid.

(ii) Suppose that G is principally quasi-polarizable. Then G is pseudo-rigid if
and only if G is superspecial.

The present paper is organized as follows: In §1, we introduce the notion of pseudo-
rigidity, that is one central notion of the present paper. In §2, we give a review of a certain
linear algebra theory for p-torsion finite flat commutative group schemes over k. In §3,
we give a review of a certain linear algebra theory for p-torsion finite flat commutative
group schemes over W . In §4, we prove the main result of the present paper.
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1. p-Torsion Finite Flat Commutative Group Schemes

In the present §1, we introduce the notion of pseudo-rigidity [cf. Definition 1.8 below],
that is one central notion of the present paper.

In the present §1, let p be a prime number and k a perfect field of characteristic p. Write

W
def
= W (k) for the ring of Witt vectors with coefficients in k. Let R be a W -algebra.

DEFINITION 1.1. — We shall write

ffg
[p]
R

for the category defined as follows:

• An object of the category ffg
[p]
R is defined to be a p-torsion finite flat commutative

group scheme over R.

• A morphism in the category ffg
[p]
R is defined to be a homomorphism between finite

flat commutative group schemes over R.

DEFINITION 1.2. — We shall write

cffg
[p]
R ⊆ ffg

[p]
R

for the full subcategory of ffg
[p]
R consisting of connected p-torsion finite flat commutative

group schemes over R.

DEFINITION 1.3. — Let G be an object of the category ffg
[p]
R . Then we shall write

GD

for the object of the category ffg
[p]
R obtained by forming the Cartier dual of G.

REMARK 1.3.1. — One verifies immediately that the assignment “G ⇝ GD” defines a

[contravariant] functor ffg
[p]
R → ffg

[p]
R , that gives an anti-equivalence of categories.

DEFINITION 1.4. — Let G be an object of the category ffg
[p]
R . Then we shall say that G

is principally quasi-polarizable if G is isomorphic to GD in ffg
[p]
R .
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DEFINITION 1.5. — Let G be an object of the category ffg
[p]
W . Then one verifies immedi-

ately that G×W R may be regarded as an object of the category ffg
[p]
R . Moreover, one also

verifies immediately that the assignment “G⇝ G×W R” defines a functor ffg
[p]
W → ffg

[p]
R .

We shall write

rdct : ffg
[p]
W

// ffg
[p]
k

for this functor in the case where we take the W -algebra “R” to be k = W/pW .

In the remainder of the present §1, let G be an object of the category ffg
[p]
k .

DEFINITION 1.6. — Let H be an object of the category ffg
[p]
W . Then we shall say that H

is a deformation of G to W if G is isomorphic to rdct(H) in ffg
[p]
k .

DEFINITION 1.7. — We shall say that G is deformable if there exists a deformation of G
to W .

The following notion is one central notion of the present paper.

DEFINITION 1.8. — We shall say that G is pseudo-rigid if the following two conditions
are satisfied:

(1) The object G is deformable.

(2) If H1, H2 are deformations of G to W , then H1 is isomorphic to H2 in ffg
[p]
W .

REMARK 1.8.1.

(i) Let us observe that an arbitrary deformation [cf. condition (1) of Definition 1.8]

of a pseudo-rigid object of the category ffg
[p]
k may be regarded as an object H of the

category ffg
[p]
W that satisfies the following condition [cf. condition (2) of Definition 1.8]:

For an object H ′ of the category ffg
[p]
W , it holds that H is isomorphic to H ′ in ffg

[p]
W if and

only if H ×W (W/pW ) is isomorphic to H ′ ×W (W/pW ) in ffg
[p]
W/pW .

(ii) Suppose that p 6= 2. Then it follows from [6, §3] that the functor ffg[p]W → ffg
[p]
W [1/p]

of Definition 1.5 in the case where we take the W -algebra “R” to be W [1/p] is fully
faithful. In particular, one may conclude from [4, Corollary 8] that, for two objects H1,

H2 of the category ffg
[p]
W , it holds that H1 is isomorphic to H2 in ffg

[p]
W if and only if

H1 ×W (W/p2W ) is isomorphic to H2 ×W (W/p2W ) in ffg
[p]

W/p2W .
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2. Review of a Linear Algebra Theory for Group Schemes over k

In the present §2, we maintain the notational conventions introduced at the beginning
of the preceding §1. Write, moreover, Fr for the p-th power Frobenius automorphism of
k.

In the present §2, we give a review of a certain linear algebra theory for p-torsion finite
flat commutative group schemes over k [cf. Definition 2.1 and Proposition 2.5 below].

DEFINITION 2.1. — We shall write

Dm[p]

for the category defined as follows:

• An object of the category Dm[p] is defined to be a collection D = (MD = M,FD =
F, VD = V ) of data consisting of a finitely generated k-module M and endomorphisms F ,
V of the module M such that the following three conditions are satisfied:

• The endomorphism F is Fr-semilinear.

• The endomorphism V is Fr−1-semilinear.

• The sequence of modules

M
F // M

V // M
F // M

forms a complex.

• Let (M1, F1, V1), (M2, F2, V2) be objects of the category Dm[p]. Then a morphism
(M1, F1, V1) → (M2, F2, V2) in the category Dm[p] is defined to be a homomorphism
f : M1 → M2 of k-modules such that the equalities f ◦ F1 = F2 ◦ f , f ◦ V1 = V2 ◦ f hold.

In the remainder of the present §2, let D = (M,F, V ) be an object of the category
Dm[p].

DEFINITION 2.2. — We shall say that D is connected if the endomorphism F of M is
nilpotent.

DEFINITION 2.3. — We shall write

MD def
= Homk(M,k)

for the [necessarily finitely generated] k-module obtained by forming the k-dual of M ,

FD : MD // MD

for the [necessarily Fr-semilinear] endomorphism of MD given by mapping φ ∈ MD to
the element of MD obtained by forming the composite

M
V // M

ϕ // k
Fr

∼
// k,

and
V D : MD // MD
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for the [necessarily Fr−1-semilinear] endomorphism of MD given by mapping φ ∈ MD to
the element of MD obtained by forming the composite

M
F // M

ϕ // k
Fr−1

∼
// k.

DEFINITION 2.4. — One verifies immediately that the collection (MD, FD, V D) of data
may be regarded as an object of the category Dm[p]. We shall write

DD

for this object.

REMARK 2.4.1. — One verifies immediately that the assignment “D ⇝ DD” defines a
[contravariant] functor Dm[p] → Dm[p], that gives an anti-equivalence of categories.

PROPOSITION 2.5. — There exists a contravariant functor

M : ffg
[p]
k

// Dm[p]

that gives an anti-equivalence of categories and, for each object G of the category ffg
[p]
k ,

satisfies the following three conditions:

(1) It holds that G is connected if and only if M(G) is connected.

(2) The object M(GD) is naturally isomorphic [cf. Remark 1.3.1 and Remark 2.4.1]
to the object M(G)D in Dm[p].

(3) It holds that G is étale over k if and only if FM(G) is an isomorphism.

Proof. — This assertion follows from, for instance, [2, Chapitre III, §1]. □

3. Review of a Linear Algebra Theory for Group Schemes over W

In the present §3, we maintain the notational conventions introduced at the beginning
of the preceding §2.

In the present §3, we give a review of a certain linear algebra theory for p-torsion finite
flat commutative group schemes over W [cf. Definition 3.6 and Proposition 3.11 below].

DEFINITION 3.1. — Let D = (M,F, V ) be an object of the category Dm[p]. Then we
shall write

CD = C
def
= Im(F ) ⊆ M, HD = H

def
= Im(V ) ⊆ M

for the k-submodules of M obtained by forming the images of the Fr-, Fr−1-semilinear
endomorphisms F , V , respectively.
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LEMMA 3.2. — Let D1, D2 be objects of the category Dm[p] and f : D1 → D2 a morphism
in the category Dm[p]. Then the inclusions f(CD1) ⊆ CD2, f(HD1) ⊆ HD2 hold.

Proof. — This assertion follows from the definition of morphisms in the categoryDm[p].
□

LEMMA 3.3. — Let D be an object of the category Dm[p]. Then the following assertions
hold:

(i) The equalities dimk(CD) = dimk(HDD), dimk(HD) = dimk(CDD) hold.

(ii) It holds that the inclusion HD ⊆ CD holds if and only if the inclusion CDD ⊆ HDD

holds.

Proof. — These assertions follow immediately from the various definitions involved. □

DEFINITION 3.4. — Let D = (M,F, V ) be an object of the category Dm[p]. Then we

shall say that D is deformable if the complex M
F→ M

V→ M
F→ M [cf. Definition 2.1]

forms an exact sequence.

DEFINITION 3.5. — Let D be an object of the category Dm[p]. Suppose that D is de-
formable. Then we shall refer to a k-linear splitting of the natural surjective homomor-
phism MD ↠MD/CD as a deformation structure on D.

REMARK 3.5.1. — Let D be an object of the category Dm[p].

(i) Suppose that D is deformable. Let L ⊆ MD be a k-submodule of MD. Then
one verifies immediately that L determines a deformation structure on D in the sense of
Definition 3.5 if and only if the pair (L,D) is a finite Honda system in the sense of [3,
§9.4]. [Here, let us recall that a finite Honda system in the sense of [3, §9.4] is defined to
be a collection (J, (N,FN , VN)) of data consisting of

• a W -module N of finite length,

• an endomorphism FN of the module N semilinear with respect to the automor-
phism of W that lifts Fr,

• an endomorphism VN of the module N semilinear with respect to the automor-
phism of W that lifts Fr−1, and

• a W -submodule J ⊆ N of N

such that

• both FN ◦ VN and VN ◦FN coincide with the endomorphism of N given by multi-
plication by p,

• the restriction of VN to the submodule J ⊆ N is injective,

• the composite J ↪→ N ↠ N/Im(FN) factors through the natural surjective homo-
morphism J ↠ J/pJ , and, moreover,
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• the resulting homomorphism J/pJ → N/Im(FN) is an isomorphism.]

(ii) One also verifies immediately from the discussion of (i) that D is deformable if
and only if there exists a k-submodule L ⊆ MD of MD such that the pair (L,D) is a finite
Honda system in the sense of [3, §9.4].

DEFINITION 3.6. — We shall write fHs[p] for the category defined as follows:

• An object of the category fHs[p] is defined to be a collection H = (D, s) of data
consisting of a deformable object D of the category Dm[p] and a deformation structure s
on D.

• Let (D1, s1), (D2, s2) be objects of the category fHs[p]. Then a morphism (D1, s1) →
(D2, s2) in the category fHs[p] is defined to be a morphism f : D1 → D2 in the category
Dm[p] such that the inclusion f(Im(s1)) ⊆ Im(s2) holds.

DEFINITION 3.7. — We shall write

R : fHs[p] // Dm[p]

for the functor defined by the assignment “(D, s)⇝ D”.

DEFINITION 3.8. — Let H be an object of the category fHs[p]. Then we shall say that H
is connected if the object R(H) of the category Dm[p] is connected.

DEFINITION 3.9. — We shall write

cfHs[p] ⊆ fHs[p]

for the full subcategory of fHs[p] consisting of connected objects of fHs[p].

DEFINITION 3.10. — Let H = (D, s) be an object of the category fHs[p]. Then one
verifies immediately that the k-submodule of MD

D obtained by forming the kernel of the
surjective homomorphism MD

D ↠ Homk(MD/CD, k) of k-modules induced by the injective
homomorphism s : MD/CD ↪→ MD determines a deformation structure sD on DD. We shall
write

HD def
= (DD, sD)

for the resulting object of fHs[p].

REMARK 3.10.1. — One verifies immediately that the assignment “H ⇝ HD” defines a
[contravariant] functor fHs[p] → fHs[p], that gives an anti-equivalence of categories.
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PROPOSITION 3.11. — There exist contravariant functors

M : ffg
[p]
k

// Dm[p], LM : ffg
[p]
W

// fHs[p]

that satisfy the following five conditions:

(1) The functor M gives an anti-equivalence of categories and satisfies the three
conditions in the statement of Proposition 2.5.

(2) The functor LM restricts to an anti-equivalence of categories

cffg
[p]
W

∼ // cfHs[p].

Moreover, the functor LM : ffg
[p]
W → fHs[p] gives an anti-equivalence of categories when-

ever p 6= 2.

(3) Let G be an object of the category ffg
[p]
W . Then it holds that G is connected if

and only if LM(G) is connected.

(4) Let G be an object of the category ffg
[p]
W . Then LM(GD) is naturally isomorphic

[cf. Remark 1.3.1 and Remark 3.10.1] to LM(G)D in fHs[p].

(5) Let G be an object of the category ffg
[p]
W . Then M(rdct(G)) is naturally isomor-

phic to R(LM(G)) in Dm[p].

Proof. — This assertion follows from, for instance, [3, §9] and [1, §1] [cf. also Re-
mark 3.5.1, (i), (ii), of the present paper]. □

LEMMA 3.12. — Let G be an object of the category ffg
[p]
k . Then it holds that G is de-

formable if and only if M(G) is deformable.

Proof. — Necessity follows from condition (5) of Proposition 3.11, together with Re-
mark 3.5.1, (ii). Next, we verify sufficiency. Suppose that M(G) is deformable. Let us
first observe that since [we have assumed that] k is perfect, there exist objects G1 and G2

of ffg
[p]
k and an isomorphism G

∼→ G1 ×k G2 in ffg
[p]
k [which thus induces an isomorphism

M(G)
∼→ M(G1) ⊕ M(G2) in Dm[p]] such that G1 is connected, and, moreover, G2 is

étale over k. Thus, since [it is immediate that] an arbitrary object of ffg
[p]
k étale over k is

deformable, to verify sufficiency, we may assume without loss of generality, by replacing
G by G1, that G is connected. In particular, it follows immediately, in light of condition
(1) of Proposition 2.5, from conditions (1), (2), (5) of Proposition 3.11, together with Re-
mark 3.5.1, (ii), that G is deformable, as desired. This completes the proof of sufficiency,
hence also of Lemma 3.12. □

4. Pseudo-rigid p-Torsion Finite Flat Commutative Group Schemes

In the present §4, we prove the main result of the present paper [cf. Theorem 4.10
below].
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In the present §4, we maintain the notational conventions introduced at the beginning
of §2. Moreover, let D = (M,F, V ) be a deformable object of the category Dm[p]. Thus,
we have a commutative diagram of k-modules

0 // C ∩H //
� _

��

H //
� _

��

H/(C ∩H) //
� _

��

0

0 // C // M // M/C // 0

— where the horizontal sequences are exact, and the vertical arrows are injective. Now let
us observe that it is immediate that the natural homomorphism AutDm[p](D) → Autk(M)
of groups is injective. Let us regard AutDm[p](D) as a subgroup of Autk(M) by means of
this injective homomorphism:

AutDm[p](D) ⊆ Autk(M).

LEMMA 4.1. —An arbitrary automorphism of M contained in the subgroup AutDm[p](D) ⊆
Autk(M) preserves the k-submodules C, H ⊆ M of M . In particular, we have a natural
action of the group AutDm[p](D) on the set of deformation structures on D.

Proof. — This assertion follows from Lemma 3.2. □

LEMMA 4.2. — Let G be an object of ffg
[p]
k such that M(G) [cf. Proposition 3.11] is

isomorphic to D in Dm[p]. Suppose that either G or GDis connected whenever p = 2.
Then it holds that G is pseudo-rigid if and only if the action of the group AutDm[p](D)
on the set of deformation structures on D [cf. Lemma 4.1] is transitive.

Proof. — This assertion follows immediately from Proposition 3.11. □

DEFINITION 4.3. — We shall write

U(D) ⊆ Autk(M)

for the subgroup of Autk(M) consisting of [necessarily unipotent] automorphisms of the
k-module M that preserve the k-submodules C and H of M and, moreover, induce the
identity automorphisms of the four subquotients C, H, M/C, and M/H of M .

LEMMA 4.4. — The following assertions hold:

(i) The inclusion U(D) ⊆ AutDm[p](D) holds.
(ii) Suppose that the equality C = H holds. Then the action of U(D) on the set of

deformation structures on M [cf. (i) and Lemma 4.1] is transitive.

Proof. — Assertion (i) follows immediately from the definition of the category Dm[p]

and the definition of the notion of deformability. Next, we verify assertion (ii). Let us
first observe that it follows immediately from the various definitions involved that the set
of deformation structures on D [i.e., the set of k-linear splittings of the natural surjective
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homomorphism M ↠M/C] has a natural structure of Homk(M/C,C)-torsor. Moreover,
one also verifies immediately that the equality C = H, together with the definition of
the subgroup U(D), implies that there exists an isomorphism U(D) ∼→ Homk(M/C,C) of
groups, that is compatible with the respective actions on the set of deformation structures
on D. Thus, we conclude that the action of U(D) on the set of deformation structures
on M is transitive, as desired. This completes the proof of assertion (ii), hence also of
Lemma 4.4. □

DEFINITION 4.5. — Let s be a deformation structure on D. Then we shall say that s is
H-full if the image of the k-submodule H/(C∩H) ⊆ M/C by s : M/C ↪→ M is contained
in the k-submodule H ⊆ M [cf. the diagram in the discussion at the beginning of the
present §4].

LEMMA 4.6. — The following assertions hold:

(i) A deformation structure on D obtained as an element of the AutDm[p](D)-orbit of
an H-full deformation structure on D is H-full.

(ii) There exists an H-full deformation structure on D.
(iii) The following two conditions are equivalent:

(1) Either the inclusion C ⊆ H or the inclusion H ⊆ C holds.

(2) An arbitrary deformation structure on D is H-full.

(iv) Suppose that condition (2) in (iii) is not satisfied. Then the action of the group
AutDm[p](D) on the set of deformation structures on D is not transitive.

Proof. — Assertion (i) follows from Lemma 4.1. Assertion (ii) follows from the elemen-
tary theory of linear algebra. Next, we verify assertion (iii). If the inclusion C ⊆ H holds,
then it follows immediately from assertion (ii) that condition (2) is satisfied. Moreover,
if the inclusion H ⊆ C holds, then the k-module H/(C ∩H) is zero, which thus implies
that condition (2) is satisfied. This completes the proof of the implication (1) ⇒ (2).
Next, to verify the implication (2) ⇒ (1), suppose that condition (1) is not satisfied.

Let s be an H-full deformation structure on D [cf. assertion (ii)] and e1, . . . , ed elements of
M/C that form a basis of the finitely generated k-module M/C such that e1, . . . , eh form
a basis of the k-submodule H/(C ∩H) for some h ∈ {0, . . . , d}. Now let us observe that
since [we have assumed that] H 6⊆ C, the inequality h 6= 0 holds. Moreover, let us also
observe that since [we have assumed that] C 6⊆ H, there exists an elementm of C\(C∩H).
Then, by considering the assignment “(e1, e2, . . . , ed) 7→ (s(e1)+m, s(e2), . . . , s(ed))”, one
may obtain a deformation structure on D that is not H-full, as desired. This completes
the proof of the implication (2) ⇒ (1), hence also of assertion (iii).

Finally, we verify assertion (iv). It follows from assertion (ii) that there exists a defor-
mation structure on D that is H-full. Moreover, it follows from our assumption that there
exists a deformation structure on D that is not H-full. Thus, it follows from assertion
(i) that the action of the group AutDm[p](D) on the set of deformation structures on D
is not transitive, as desired. This completes the proof of assertion (iv), hence also of
Lemma 4.6. □
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One main technical observation of the present paper is as follows:

LEMMA 4.7. — The following assertions hold:

(i) Suppose that one of the following three conditions is satisfied:

(1) The equality C = {0} holds.

(2) The equality H = {0} holds.

(3) The equality C = H holds.

Then the action of the group AutDm[p](D) on the set of deformation structures on D is
transitive.

(ii) If the action of the group AutDm[p](D) on the set of deformation structures on D
is transitive, then either the inclusion C ⊆ H or the inclusion CDD ⊆ HDD holds.

Proof. — First, we verify assertion (i). If condition (1) is satisfied, then it is immediate
that the set of deformation structures on D is of cardinality one. If condition (2) is
satisfied, then since D is deformable, the equality C = M holds, which thus implies that
the set of deformation structures on D is of cardinality one. Thus, we conclude that
assertion (i) holds if either condition (1) or condition (2) is satisfied. Assertion (i) in the
case where condition (3) is satisfied follows from Lemma 4.4, (i), (ii). This completes the
proof of assertion (i). Assertion (ii) follows from Lemma 3.3, (ii), and Lemma 4.6, (iii),
(iv). This completes the proof of Lemma 4.7. □

DEFINITION 4.8. — Let G be an object of the category ffg
[p]
k .

(i) We shall say that G is multiplicative if either G is zero or the following condition
is satisfied: Let k be an algebraic closure of k. Then the finite flat commutative group
scheme G ×k k over k is isomorphic to the fiber product of finitely many copies of the
finite flat commutative group scheme “µp”, i.e., of p-th roots of unity, over k.

(ii) We shall say that G is superspecial if either G is zero or the following condition
is satisfied: Let k be an algebraic closure of k. Then there exist a positive integer r
and, for each i ∈ {1, . . . , r}, a supersingular elliptic curve Ei over k such that if, for
each i ∈ {1, . . . , r}, one writes Ei[p] for the finite flat commutative group scheme over k
obtained by forming the kernel of the endomorphism of Ei given by multiplication by p,
then the finite flat commutative group scheme G ×k k over k is isomorphic to the fiber
product E1[p]×k · · · ×k Er[p] over k.

(iii) Let n be a positive integer. Then we shall say that G is of Frobenius height ≤ n
if the image of the n-th iterate of the Frobenius endomorphism of G is zero.

REMARK 4.8.1. — Let us recall that every elliptic curve over a field admits a principal
polarization. In particular, one verifies immediately from the various definitions involved

that if k is algebraically closed, then every superspecial object of the category ffg
[p]
k is

principally quasi-polarizable.
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LEMMA 4.9. — Let G be an object of ffg
[p]
k such that M(G) [cf. Proposition 3.11] is

isomorphic to D in Dm[p]. Then the following two conditions are equivalent:

(1) The finite flat commutative group scheme G is superspecial.

(2) The equality C = H holds.

Proof. — Let us first observe that one verifies immediately from, for instance, [2,
Chapitre III, §2] that, to verify Lemma 4.9, we may assume without loss of generality, by
replacing G by the base-change of G to an algebraic closure of k, that k is algebraically
closed.

Now we verify the implication (1) ⇒ (2). Let us first observe that it is immediate that,
to verify the implication (1) ⇒ (2), we may assume without loss of generality that G is
isomorphic to “Ei[p]” as in Definition 4.8, (ii). Then it is well-known [cf., e.g., [5, §5.6]]
that condition (2) is satisfied, as desired. This completes the proof of the implication (1)
⇒ (2).

Finally, we verify the implication (2) ⇒ (1). Suppose that condition (2) is satisfied.

Let us first observe that since the sequence M
F→ M

V→ M
F→ M is exact, the Fr-, Fr−1-

semilinear endomorphisms F , V determine Fr-, Fr−1-semilinear isomorphisms M/H
∼→

C, M/C
∼→ H, respectively. Write F , V for these Fr-, Fr−1-semilinear isomorphisms

M/C = M/H
∼→ C = H [cf. condition (2)], respectively. Then since k is algebraically

closed, and the composite

M/C
F

∼
// C

V −1

∼
// M/C

is an Fr2-semilinear isomorphism, it follows from [7, Exposé XXII, Proposition 1.1] that
there exist elements e1, . . . , ed of M/C such that these elements form a basis of the
finitely generated k-module M/C, and, moreover, the equality (V −1 ◦ F )(ei) = ei, i.e.,
the equality F (ei) = V (ei), holds for each i ∈ {1, . . . , d}. For each i ∈ {1, . . . , d}, let us
fix a lifting ẽi ∈ M of ei ∈ M/C and write Mi ⊆ M for the k-submodule of M generated
by F (ei) = V (ei) ∈ C ⊆ M and the fixed lifting ẽi ∈ M . Then one verifies immediately
from condition (2), together with the various definitions involved, that

• the collection Di
def
= (Mi, F |Mi

, V |Mi
) of data forms a deformable object of the cate-

gory Dm[p] such that CDi
= HDi

for each i ∈ {1, . . . , d}, and, moreover,

• the natural inclusions Mi ↪→ M — where i ranges over the elements of {1, . . . , d} —

determine an isomorphism D1 ⊕ · · · ⊕ Dd
∼→ D in Dm[p].

In particular, we conclude immediately from Proposition 3.11 that, to verify the impli-
cation (2) ⇒ (1), we may assume without loss of generality, by replacing D by Di for
each i ∈ {1, . . . , d}, that dimk(M) = 2. On the other hand, if dimk(M) = 2, then the
implication (2) ⇒ (1) is well-known [cf., e.g., [5, §5.6]]. This completes the proof of the
implication (2) ⇒ (1), hence also of Lemma 4.9. □

The main result of the present paper is as follows:



14 Yuichiro Hoshi

THEOREM 4.10. — Let p be a prime number, k a perfect field of characteristic p, and
G a p-torsion finite flat commutative group scheme over k. Suppose that either G or the
Cartier dual of G is connected whenever p = 2. Then the following assertions hold:

(i) If G is either étale over k, multiplicative [cf. Definition 4.8, (i)], or superspe-
cial [cf. Definition 4.8, (ii)], then G is pseudo-rigid [cf. Definition 1.8].

(ii) If G is pseudo-rigid, then either G or the Cartier dual of G is of Frobenius
height ≤ 2 [cf. Definition 4.8, (iii)].

(iii) Suppose that G is principally quasi-polarizable [cf. Definition 1.4]. Then G
is pseudo-rigid if and only if G is superspecial.

Proof. — First, we verify assertion (i). Let us observe that it follows — in light of
Lemma 3.12 — from Lemma 4.2 and Lemma 4.7, (i), that G is pseudo-rigid if M(G) [cf.
Proposition 3.11] is deformable, and, moreover, one of the three conditions of Lemma 4.7,
(i) — i.e., in the case where we take the “D” of Lemma 4.7, (i), to be M(G) — is satisfied.
On the other hand,

• by conditions (2), (3) of Proposition 2.5, Lemma 3.3, (i), and condition (1) of Propo-
sition 3.11, one concludes that, under the assumption that M(G) is deformable, condition
(1) of Lemma 4.7, (i), is equivalent to the condition that G is multiplicative,

• by condition (3) of Proposition 2.5 and condition (1) of Proposition 3.11, one con-
cludes that, under the assumption that M(G) is deformable, condition (2) of Lemma 4.7,
(i), is equivalent to the condition that G is étale over k, and

• by Lemma 4.9, one concludes that, under the assumption that M(G) is deformable,
condition (3) of Lemma 4.7, (i), is equivalent to the condition that G is superspecial.

This completes the proof of assertion (i).
Next, we verify assertion (ii). Let us observe that it follows — in light of Lemma 3.12 —

from Lemma 4.2 and Lemma 4.7, (ii), that if G is pseudo-rigid, then either the inclusion
CM(G) ⊆ HM(G) or the inclusion CM(G)D ⊆ HM(G)D holds. Thus, it follows immediately

from the exactness of the sequence M
F→ M

V→ M
F→ M , together with condition (2) of

Proposition 2.5 and condition (1) of Proposition 3.11, that either G or GD is of Frobenius
height ≤ 2, as desired. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). Sufficiency follows from assertion (i). To verify neces-
sity, suppose that G is principally quasi-polarizable and pseudo-rigid, which thus implies
[cf. Lemma 4.2 and Lemma 4.7, (ii)] that either the inclusion CM(G) ⊆ HM(G) or the inclu-
sion CM(G)D ⊆ HM(G)D holds. If the inclusion CM(G) ⊆ HM(G) (respectively, CM(G)D ⊆
HM(G)D) holds, then since G [hence also GD] is principally quasi-polarizable, it follows
from Lemma 3.3, (ii), together with condition (2) of Proposition 2.5 and condition (1)
of Proposition 3.11, that the equality CM(G) = HM(G) (respectively, CM(G)D = HM(G)D)

holds. In particular, it follows from Lemma 4.9 that G (respectively, GD, hence also
G) is superspecial, as desired. This completes the proof of assertion (iii), hence also of
Theorem 4.10. □

REMARK 4.10.1. — Let p be a prime number and k a perfect field of characteristic p.
Then there exists a pseudo-rigid p-torsion finite flat commutative group scheme over k
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which is neither étale over k, multiplicative, nor superspecial. Such an example may be
obtained by considering the following object “D” of the category Dm[p] [cf. also the proof
of Theorem 4.10]: Write

• M
def
= k · e1 ⊕ k · e2 ⊕ k · e3 for the finitely generated k-module that admits a basis

{e1, e2, e3} ⊆ M ,

• F for the Fr-semilinear endomorphism of M given by mapping

(e1, e2, e3) 7→ (0, e1, e2),

and

• V for the Fr−1-semilinear endomorphism of M given by mapping

(e1, e2, e3) 7→ (0, 0, e1).

Then one verifies easily that D def
= (M,F, V ) is an object of the category Dm[p]. Moreover,

one also verifies easily that

• this object D is connected and deformable, and

• neither CD = {0}, HD = {0}, nor CD = HD holds.

On the other hand, it follows from the various definitions involved that, for every a,
b ∈ k, the automorphism of the k-module M given by mapping

(e1, e2, e3) 7→ (e1, bpe1 + e2, ae1 + be2 + e3)

determines an automorphism of D in Dm[p]. In particular, one verifies immediately that

• the action of the group AutDm[p](D) on the set of deformation structures on D is
transitive.
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Mathématique de France, Paris, 1977.

[3] J.-M. Fontaine and G. Laffaille: Construction de représentations p-adiques. Ann. Sci. École Norm.
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