
Ramification of Torsion Points on a Curve with
Superspecial Reduction over an Absolutely Unramified Base

Yuichiro Hoshi

June 2021

———————————–

Abstract. — Let p be a prime number, W an absolutely unramified p-adically complete
discrete valuation ring with perfect residue field, and X a curve over the field of fractions of
W of genus greater than one. In the present paper, we study the ramification of torsion points
on the curve X. A consequence of the main result of the present paper is nonexistence of
ramified torsion point on X in the case where p is greater than three, the Jacobian variety J
of X has good reduction over W , and the special fiber of the good model of J is superspecial.
This consequence generalizes a theorem proved by Coleman.
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Introduction

In the present Introduction, let p be a prime number and k a perfect field of character-

istic p. Write W for the ring of Witt vectors with coefficients in k and K
def
= W [p−1] for

the field of fractions of W . Let K be an algebraic closure of K. Write ΓK
def
= Gal(K/K)

for the absolute Galois group of K determined by the algebraic closure K. Moreover,
let g ≥ 2 be an integer and X a curve over K [i.e., a scheme of dimension one that is
projective, smooth, and geometrically connected over K] of genus g. Write J for the
Jacobian variety of X. In the present Introduction, suppose that

the inequality p > 3 holds, and, moreover, the abelian variety J over K
has good reduction over W .

Write, moreover, XK
def
= X ×K K (respectively, JK

def
= J ×K K) and Xcl

K
(respectively,

Jcl
K
) for the set of closed points of XK (respectively, JK). We shall say that a closed point
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of JK is unramified if the image, by the natural morphism JK → J , of the closed point is
a closed point of J whose residue field is unramified over K.
If x0 is a K-rational point of X, then one may consider the Albanese embedding X ↪→ J

with respect to x0 ∈ X(K), i.e., the closed immersion over K obtained by, roughly
speaking, mapping a closed point “x” of X to the point of J corresponding to the divisor
“[x]− [x0]” — where we write “[−]” for the prime divisor determined by the closed point
“(−)” — of degree zero, which thus determines an injective map

a : Xcl
K
� � // Jcl

K
.

In the present paper, we study a torsion point on XK , i.e., a closed point of XK whose
image, via “a” with respect to some K-rational point of X, is a torsion point of JK . More
specifically, in the present paper, we study the ramification of torsion points on XK .
In the remainder of the present Introduction, suppose, moreover, that we are in the

following situation:

Let x0 ∈ X(K) be a K-rational point of X. By means of the injective
map a : Xcl

K
↪→ Jcl

K
determined by the Albanese embedding with respect

to this K-rational point x0 ∈ X(K), we regard Xcl
K
as a subset of Jcl

K
. Let

x ∈ Xcl
K
(⊆ Jcl

K
) be a closed point of XK such that the closed point x ∈ Jcl

K

[i.e., a(x) ∈ Jcl
K
] of JK is torsion.

Let us first recall that Coleman posed, in [2], a conjecture concerning the ramification
of torsion points on a curve that satisfies certain conditions [cf. [2, Conjecture B]]. The
following is the statement [of a stronger version] of the conjecture. [Note that the original
conjecture posed by Coleman is the following conjecture in the case where the pair (X, x0)
arises from a similar pair defined over a number field contained in K.]

CONJECTURE A (Coleman). — Suppose that the curve X over K has good reduction
over W . Then the torsion point x ∈ Jcl

K
is unramified.

Moreover, Coleman also essentially proved the following result concerning Conjecture A
[cf. [2, Corollary 20.2]].

THEOREM B (Coleman). — Suppose that the curve X over K has good reduction over
W . Suppose, moreover, that one of the following two conditions is satisfied:

(O) The special fiber of the good model of J is an ordinary abelian variety over k.

(S) The special fiber of the good model of J is a superspecial abelian variety over
k [i.e., is isomorphic to the fiber product of finitely many supersingular elliptic curves
over k].

Then the torsion point x ∈ Jcl
K

is unramified.

Next, let us recall that Tamagawa gives a refinement of Theorem B in the case where
condition (O) is satisfied. More precisely, by this refinement, one may remove the as-
sumption that the curve X over K has good reduction over W from the statement of
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Theorem B in the case where condition (O) is satisfied [cf. [9, Proposition 2.1] and [9,
Theorem 3.6, (ii)]].

THEOREM C (Tamagawa). — Suppose that the special fiber of the good model of J is an
ordinary abelian variety over k. Then the torsion point x ∈ Jcl

K
is unramified.

Next, let us also recall that the author of the present paper proved the following result
closely related to Conjecture A [cf. [5, Theorem B]].

THEOREM D. — The torsion point p · x ∈ Jcl
K

is unramified.

In the present paper, we study the ramification of torsion points on a curve such that
the special fiber of the good model of the Jacobian variety of the curve is superspecial by
means of Theorem D and some classical results in the study of finite flat commutative
group schemes. The main result of the present paper [cf. Corollary 3.3] implies the
following result, that is a refinement of Theorem B in the case where condition (S) is
satisfied. By this refinement, one may remove the assumption that the curve X over K
has good reduction over W from the statement of Theorem B in the case where condition
(S) is satisfied.

THEOREM E. — Suppose that the special fiber of the good model of J is a superspecial
abelian variety over k. Then the torsion point x ∈ Jcl

K
is unramified.

A short description of the strategy of the proof of Theorem E is as follows: Suppose
that we are in the situation of Theorem E. Let us first observe that, to verify Theorem E,
we may assume without loss of generality that k is algebraically closed. Then, to verify
Theorem E, it suffices to verify that a certain finite ΓK-stable submodule M(x,ΓK) of J

cl
K

determined by the torsion point x ∈ Jcl
K
[cf. Definition 2.3, (ii)] is trivial [cf. Lemma 2.4].

Assume thatM(x,ΓK) is nontrivial. Then it follows from some elementary considerations
in the theory of algebraic curves that, to obtain a contradiction, it suffices to verify
that the image of the action of ΓK on M(x,ΓK) contains sufficiently many homotheties
[cf. Lemma 2.7, (i), and condition (2C) in the discussion following Lemma 2.5; also
Corollary 3.2]. The first important observation to verify the existence of sufficiently
many homotheties is that

it follows from [5, Theorem B] that M(x,ΓK) is annihilated by p [cf.
Lemma 2.5, (ii)].

The second important observation to verify the existence of sufficiently many homotheties
is that since [we have assumed that] the special fiber of the good model of J is superspecial,

it follows from the main theorem of [6] that there exist g elliptic curves
E1, . . . , Eg over W such that the special fiber Ei ×W k is supersingular for
each i ∈ {1, . . . , g}, and, moreover, the ΓK-module Jcl

K
[p] of p-torsion ele-

ments of Jcl
K

is isomorphic to the ΓK-module of p-torsion K-valued points
of E1 ×W · · · ×W Eg.
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On the other hand, it follows from some classical results in the study of finite flat com-
mutative group schemes that the image of the action of ΓK on the module of p-torsion
K-valued points of E1 ×W · · · ×W Eg, hence also on the module M(x,ΓK), contains
sufficiently many homotheties [cf. Lemma 1.9], as desired. This completes the short de-
scription of the strategy of the proof of Theorem E.

Here, let us observe that one may think that curves over K subject to Theorem B in
the case where condition (S) is satisfied are “few” [cf. Remark 3.3.1, (i)]. On the other
hand, one may conclude that “many” curves over K may be thought to be subject to
Theorem E [cf. Remark 3.3.1, (ii)].
The present paper is organized as follows: In §1, we give proofs of some facts concerning

a Galois module of type G annihilated by p. In §2, we discuss Galois modules that arise
from torsion points on curves. In §3, we prove the main result of the present paper.
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1. Galois Modules of Type G Annihilated by p

In the present §1, we give proofs of some facts concerning a Galois module of type G
[cf. Definition 1.4 below] annihilated by p.

DEFINITION 1.1. — Let Γ be a group and S a set on which Γ acts. Then we shall write
SΓ ⊆ S for the subset of S of Γ-invariants, ΓS ⊆ Γ for the unique maximal [necessarily

normal] subgroup of Γ that acts on S trivially, and Γ[S]
def
= Γ/ΓS for the quotient of Γ by

ΓS.

REMARK 1.1.1. — In the situation of Definition 1.1, it is immediate that the action of
Γ on S factors through the natural surjective homomorphism Γ ↠ Γ[S], and, moreover,
the resulting action of Γ[S] on S is faithful.

DEFINITION 1.2. — Let A be a finite module.

(i) We shall write Aut(A) for the [necessarily finite] group of automorphisms of the
module A.

(ii) Let n be an integer. Then we shall write A[n]
def
= { a ∈ A |na = 0 } ⊆ A.

(iii) Let l be a prime number. Then we shall write A[l∞]
def
=

∪
i≥1A[l

i] ⊆ A and
A[l∞6= ] ⊆ A for the submodule of A generated by the elements of the A[(l′)∞]’s, where l′

ranges over the prime numbers such that l′ ̸= l.
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REMARK 1.2.1. — In the situation of Definition 1.2, (iii), it is immediate that we have a
natural decomposition A = A[l∞]⊕ A[l∞6= ].

DEFINITION 1.3. — Let Γ be a group, A a Γ-module whose underlying module is finite,
and l a prime number.

(i) Suppose that A[l∞] = {0}. Then we shall define the l-height of A to be zero.

(ii) Suppose that A[l∞] ̸= {0}. Then we shall define the l-height of A to be the
unique minimal positive integer divisible by dimFl

V , where V ranges over nonzero simple
Γ-modules that arise as Γ-stable subquotients of the Γ-module A[l∞].

(iii) Let h be a nonnegative integer. Then we shall say that the Γ-module A is of
strictly l-height h if dimFl

V = h for each simple Γ-module V that arises as a Γ-stable
subquotient of the Γ-module A[l∞].

Let p be an odd prime number and k a perfect field of characteristic p. Write W for

the ring of Witt vectors with coefficients in k and K
def
= W [p−1] for the field of fractions

of W . Let K be an algebraic closure of K. Write Ktm ⊆ K for the unique maximal

tamely ramified extension of K in K and Γwd
K

def
= Gal(K/Ktm) ⊆ ΓK

def
= Gal(K/K) for

the respective absolute Galois groups of Ktm, K determined by the algebraic closure K.
[Thus, it is well-known that if k is algebraically closed, then the closed subgroup Γwd

K of
ΓK is the unique pro-p-Sylow subgroup of ΓK .] Let M be a ΓK-module whose underlying
module is nonzero and finite.

DEFINITION 1.4. — We shall say that the ΓK-module M is of type G [cf. [5, Definition
2.3, (i)]] if there exist an abelian variety A over K that has good reduction over W and
a ΓK-equivariant injective homomorphism M ↪→ A(K).

In the remainder of the present §1, suppose that k is algebraically closed, and that the
following two conditions are satisfied:

(1A) The ΓK-module M is of type G.

(1B) The equality M [p] = M holds.

Write hM (̸= 0 — cf. condition (1B)) for the p-height of the ΓK-moduleM and qM
def
= phM .

DEFINITION 1.5. — We shall say that the ΓK-module M is connected if the action of ΓK

on every nonzero ΓK-stable subquotient of M is nontrivial [cf. also [5, Lemma 2.4, (ii)]].

LEMMA 1.6. — Suppose that the ΓK-module M is connected and semisimple, i.e., that
there exist a positive integer r and, for each i ∈ {1, . . . , r}, a connected and simple
ΓK-module Mi ( ̸= {0}) such that the ΓK-module M is isomorphic to the ΓK-module⊕r

i=1Mi. For each i ∈ {1, . . . , r}, write di
def
= dimFp Mi [cf. condition (1B)] and qi

def
= pdi.
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[Thus, one verifies easily that the integer hM coincides with the least common multiple
of the di’s, where i ranges over the elements of {1, . . . , r}.] Then there exist

(a) a surjective homomorphism F×
qM

↠ ΓK [M ] of groups,

(b) an isomorphism Mi
∼→ Fqi of modules for each i ∈ {1, . . . , r}, and

(c) a nonempty subset Ii ⊆ {0, 1, . . . , di − 1} for each i ∈ {1, . . . , r}
such that, for each i ∈ {1, . . . , r}, the following two actions of F×

qM
on Fqi coincide:

• The action
F×
qM

// // ΓK [M ] // Aut(Mi)
∼ // Aut(Fqi)

obtained by forming the composite of the surjective homomorphism F×
qM

↠ ΓK [M ] of (a),
the homomorphism ΓK [M ] → Aut(Mi) determined by the action of ΓK on Mi, and the

isomorphism Aut(Mi)
∼→ Aut(Fqi) obtained by conjugation by the isomorphism Mi

∼→ Fqi

of (b).

• The action

F×
qM

NormFqM /Fqi // // F×
qi

a7→a
∑

j∈Ii
pj

// F×
qi
� � multiplication // Aut(Fqi).

Proof. — This assertion follows immediately, in light of [5, Remark 2.3.1, (iii)], from
[8, Théorème 3.3.3] and [8, Corollaire 3.4.4]. □

REMARK 1.6.1. — In the situation of Lemma 1.6, suppose, moreover, that r = 1, which
thus implies that qM = q1. Then since the ΓK-module M is simple, it follows immediately
from Lemma 1.6 that the image of the homomorphism

F×
qM

a7→a
∑

j∈I1
pj

// F×
qM

does not factor through any subgroup of F×
qM

of the form “F× ⊆ F×
qM

”, where F ⊆ FqM is
a subfield of FqM .

REMARK 1.6.2. — In the situation of Lemma 1.6, suppose, moreover, that di = 2 for
each i ∈ {1, . . . , r} [which thus implies that the ΓK-module M is of strictly p-height two].
Then one verifies easily [cf. also Remark 1.6.1] that the subset Ii ⊆ {0, 1} of (c) may be
taken to be of cardinality one for each i ∈ {1, . . . , r}.

LEMMA 1.7. — There exist

(a) a surjective homomorphism F×
qM

↠ ΓK [M ]/Γwd
K [M ] of groups,

(b) a sequence of ΓK-stable submodules of M

{0} = M0 ⊆ M1 ⊆ . . . ⊆ Mr = M◦ ⊆ M,

(c) an isomorphism Mi/Mi−1
∼→ Fqi of modules, where we write di

def
= dimFp(Mi/Mi−1)

[cf. condition (1B)], which thus implies that qi = pdi, for each i ∈ {1, . . . , r}, and



Ramification of Torsion Points 7

(d) a nonempty subset Ii ⊆ {0, 1, . . . , di − 1} for each i ∈ {1, . . . , r}
that satisfy the following three conditions:

(1) The action of ΓK on M/M◦ is trivial. Moreover, the ΓK-module M◦ is con-
nected.

(2) For each i ∈ {1, . . . , r}, the action of ΓK on Mi/Mi−1 factors through the natural
surjective homomorphism ΓK ↠ ΓK [M ]/Γwd

K [M ].

(3) For each i ∈ {1, . . . , r}, the following two actions of F×
qM

on Fqi coincide:

• The action

F×
qM

// // ΓK [M ]/Γwd
K [M ] // Aut(Mi/Mi−1)

∼ / / Aut(Fqi)

obtained by forming the composite of the surjective homomorphism F×
qM

↠ ΓK [M ]/Γwd
K [M ]

of (a), the homomorphism ΓK [M ]/Γwd
K [M ] → Aut(Mi/Mi−1) determined [cf. (2)] by the

action of ΓK on Mi/Mi−1, and the isomorphism Aut(Mi/Mi−1)
∼→ Aut(Fqi) obtained by

conjugation by the isomorphism Mi/Mi−1
∼→ Fqi of (c).

• The action

F×
qM

NormFqM /Fqi // / / F×
qi

a7→a
∑

j∈Ii
pj

// F×
qi
� � multiplication // Aut(Fqi).

Proof. — Let us first observe that it follows from [5, Proposition 2.5, (i)] and condition
(1A) that the ΓK-module M has a G-part M◦ ⊆ M [cf. [5, Definition 2.3, (ii)]]. Now we
claim the following assertion:

Claim 1.7.A: The action of ΓK on M/M◦ is trivial. Moreover, the ΓK-
module M◦ is connected.

Indeed, the first assertion follows from condition (2) of [5, Definition 2.3, (ii)]. Moreover,
the second assertion follows from condition (3) of [5, Definition 2.3, (ii)]. This completes
the proof of Claim 1.7.A.

Let {0} = M0 ⊆ M1 ⊆ . . . ⊆ Mr = M◦ be a composition series of the ΓK-module

M◦. For each i ∈ {1, . . . , r}, write Vi
def
= Mi/Mi−1. Write, moreover, M◦

ss
def
=

⊕r
i=1 Vi and

Mss
def
= (M/M◦)⊕M◦

ss. Now we claim the following assertion:

Claim 1.7.B: The kernel of the natural surjective homomorphism ΓK [M ] ↠
ΓK [M

◦
ss] is a p-group.

To this end, let us first observe that since [one verifies easily that] the group of upper
triangular unipotent matrices of a fixed degree with coefficients in Fp is a p-group, it
follows from condition (1B) that the kernel of the natural surjective homomorphism
ΓK [M ] ↠ ΓK [Mss] is a p-group. On the other hand, it follows from the first assertion of
Claim 1.7.A that the two quotients ΓK [M

◦
ss] and ΓK [Mss] of ΓK coincide. This completes

the proof of Claim 1.7.B.
Next, let us observe that it follows from Lemma 1.6 and Claim 1.7.A that there exist

(a′) a surjective homomorphism F×
qM

↠ ΓK [M
◦
ss] of groups,
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(b′) an isomorphism Vi
∼→ Fqi of modules for each i ∈ {1, . . . , r}, and

(c′) a nonempty subset Ii ⊆ {0, 1, . . . , di − 1} for each i ∈ {1, . . . , r}
such that, for each i ∈ {1, . . . , r}, the following two actions of F×

qM
on Fqi coincide:

• The action

F×
qM

// // ΓK [M
◦
ss] // Aut(Vi)

∼ // Aut(Fqi)

obtained by forming the composite of the surjective homomorphism F×
qM

↠ ΓK [M
◦
ss]

of (a′), the homomorphism ΓK [M
◦
ss] → Aut(Vi) determined by the action of ΓK on Vi,

and the isomorphism Aut(Vi)
∼→ Aut(Fqi) obtained by conjugation by the isomorphism

Vi
∼→ Fqi of (b

′).

• The action

F×
qM

NormFqM /Fqi // // F×
qi

a7→a
∑

j∈Ii
pj

// F×
qi
� � multiplication // Aut(Fqi).

Thus, we conclude immediately [cf. also Claim 1.7.A] that, to complete the verification
of Lemma 1.7, it suffices to verify the following assertion:

Claim 1.7.C: The two quotients ΓK [M
◦
ss] and ΓK [M ]/Γwd

K [M ] of ΓK coin-
cide.

To this end, let us first recall that the natural surjective homomorphism ΓK ↠ ΓK [M
◦
ss]

factors through the natural surjective homomorphism ΓK ↠ ΓK [M ]. Thus, to verify
Claim 1.7.C, it suffices to verify that the kernel of the resulting surjective homomorphism
ΓK [M ] ↠ ΓK [M

◦
ss] coincides with the normal subgroup Γwd

K [M ] of ΓK [M ]. On the other
hand, the inclusion Ker(ΓK [M ] ↠ ΓK [M

◦
ss]) ⊆ Γwd

K [M ] follows immediately from Claim
1.7.B. Moreover, since the order of the group ΓK [M

◦
ss] is prime to p [cf. (a′)], the inclusion

Γwd
K [M ] ⊆ Ker(ΓK [M ] ↠ ΓK [M

◦
ss]) holds. This completes the proof of Claim 1.7.C, hence

also of Lemma 1.7. □

REMARK 1.7.1. — In the situation of Lemma 1.7, suppose, moreover, that the ΓK-module
M is of strictly p-height two. Then it follows from Remark 1.6.2, together with the proof
of Lemma 1.7, that the subset Ii ⊆ {0, 1} of (d) may be taken to be of cardinality one
for each i ∈ {1, . . . , r}.

LEMMA 1.8. — There exist

(a) a finite quotient ΓK ↠ Q of ΓK,

(b) an injective homomorphism F×
p ↪→ Q of groups,

(c) a ΓK-stable submodule M◦ of M , and

(d) decompositions M = M◦ ⊕M(0) and M◦ =
⊕hM

i=1M(i)

that satisfy the following four conditions:

(1) The action of ΓK on M factors through the finite quotient ΓK ↠ Q of (a).
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(2) If one writes Qwd ⊆ Q for the normal subgroup of Q obtained by forming the image
of Γwd

K ⊆ ΓK in Q, then the quotient Q/Qwd is cyclic and of order qM − 1.

(3) The ΓK-module M◦ is connected.

(4) Let us regard M as an F×
p -module by the action of F×

p on M obtained by forming
the composite

F×
p
� � // Q // Aut(M)

— where the first arrow is the injective homomorphism of (b), and the second arrow is the
homomorphism determined by the action of ΓK on M [cf. (1)]. Then the decompositions

M = M◦ ⊕ M(0) and M◦ =
⊕hM

i=1 M(i) of (d) are F×
p -stable. Moreover, for each

i ∈ {0, 1, . . . , hM}, the resulting action of F×
p on M(i) coincides with the action of F×

p

on M(i) obtained by forming the composite

F×
p

a7→ai // F×
p
� �multiplication // Aut

(
M(i)

)
.

Proof. — Write H ⊆ ΓK for the unique normal open subgroup of ΓK of index qM −
1, ΓK ↠ Q for the [necessarily finite] quotient of ΓK by the normal open subgroup
Ker(ΓK ↠ ΓK [M ]) ∩ H of ΓK , and Qwd for the normal subgroup of Q obtained by
forming the image of Γwd

K ⊆ ΓK in Q. Now we claim the following assertion:

Claim 1.8.A: The action of ΓK on M factors through the finite quotient
ΓK ↠ Q.

Indeed, this assertion follows from the definition of the finite quotient ΓK ↠ Q.
Next, we claim the following assertion:

Claim 1.8.B: The quotient Q/Qwd is cyclic and of order qM − 1.

Indeed, this assertion follows from the existence of (a) in the statement of Lemma 1.7,
together with the definition of the finite quotient ΓK ↠ Q.
Next, let us observe that since Qwd is a p-group, which thus implies [cf. Claim 1.8.B]

that Q is solvable, it follows from Claim 1.8.B that every prime-to-p Hall subgroup of Q
determines a splitting of the natural surjective homomorphismQ ↠ Q/Qwd. In particular,
an arbitrary prime-to-p Hall subgroup of Q yields a [necessarily injective] lifting F×

qM
↪→ Q

of a surjective homomorphism F×
qM

↠ ΓK [M ]/Γwd
K [M ] as in the existence of (a) in the

statement of Lemma 1.7 [i.e., relative to the natural surjective homomorphism Q ↠
ΓK [M ]/Γwd

K [M ] — cf. Claim 1.8.A]. Thus, since [it is immediate that] an arbitrary action
of F×

p on a finite module annihilated by p is semisimple, we conclude immediately, by
considering the injective homomorphism F×

p ↪→ Q obtained by forming the composite of
the natural inclusion F×

p ↪→ F×
qM

and a lifting F×
qM

↪→ Q as above, from Lemma 1.7 that
Lemma 1.8 holds. This completes the proof of Lemma 1.8. □

LEMMA 1.9. — Suppose that the ΓK-module M is of strictly p-height two. Then the
image of the injective [cf. Remark 1.1.1] homomorphism ΓK [M ] ↪→ Aut(M) determined
by the action of ΓK on M contains the subgroup F×

p ⊆ Aut(M) of homotheties.
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Proof. — Since M is of strictly p-height two, it follows immediately from Remark 1.7.1,
together with the proof of Lemma 1.8, that the decomposition of (d) of Lemma 1.8 is
given by M = M(1). Thus, this assertion follows from condition (4) of Lemma 1.8. □

2. Galois Modules Arising from Torsion Points on Curves

In the present §2, we discuss Galois modules that arise from torsion points on curves.
In the present §2, we maintain the notational conventions introduced in the discussion
following Definition 1.3. Moreover, let g ≥ 2 be an integer and X a curve over K [i.e.,
a scheme of dimension one that is projective, smooth, and geometrically connected over

K] of genus g. Write J for the Jacobian variety of X. Write, moreover, XK
def
= X ×K K

(respectively, JK
def
= J ×K K).

DEFINITION 2.1.

(i) We shall writeXcl
K
(respectively, Jcl

K
) for the set of closed points ofXK (respectively,

JK).

(ii) Let x ∈ Xcl
K
be a closed point of XK . Then we shall write [x] for the prime divisor

on XK determined by x.

REMARK 2.1.1.

(i) We have a natural bijective map XK(K)
∼→ Xcl

K
(respectively, JK(K)

∼→ Jcl
K
),

which thus determines a natural action of ΓK on the set Xcl
K

(respectively, Jcl
K
).

(ii) We also have a natural injective map X(K) ↪→ Xcl
K

(respectively, J(K) ↪→ Jcl
K
),

that determines a bijective map X(K)
∼→ (Xcl

K
)ΓK (respectively, J(K)

∼→ (Jcl
K
)ΓK ) [cf.

(i)].

DEFINITION 2.2. — We shall write Deg(XK) for the set consisting of the degrees of finite
morphisms XK → P1

K
over K.

Let us fix a K-rational point x0 ∈ X(K) of X. Write

a : Xcl
K
� � // Jcl

K

for the injective map determined by the Albanese embedding X ↪→ J with respect to
x0 ∈ X(K). In particular, for each x ∈ Xcl

K
, the image a(x) is the closed point of JK that

corresponds to the divisor [x]− [x0] of degree zero. Let x be a closed point of XK .
In the remainder of the present §2, suppose that k is algebraically closed, and that the

following two conditions are satisfied:

(2A) The abelian variety J over K has good reduction over W .

(2B) The closed point a(x) ∈ Jcl
K

is torsion.
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Moreover, let H ⊆ ΓK be a normal closed subgroup of ΓK .

DEFINITION 2.3.

(i) We shall write M(x) for the [necessarily finite — cf. condition (2B)] ΓK-stable
submodule of Jcl

K
generated by a(x).

(ii) We shall write M(x,H) ⊆ M(x) for the [necessarily finite and ΓK-stable] submod-
ule of M(x) generated by γ1(1− δ)γ2 · a(x) ∈ M(x), where γ1, γ2 range over the elements
of ΓK , and δ ranges over the elements of H.

LEMMA 2.4. — The following three conditions are equivalent:

(1) The residue field at the image, by the natural morphism XK → X, of the closed
point x ∈ Xcl

K
is contained in KH .

(2) The action of H on M(x) is trivial.

(3) The equality M(x,H) = {0} holds.

Proof. — This assertion is immediate. □

LEMMA 2.5. — The following assertions hold:

(i) The ΓK-module M(x), hence also the ΓK-module M(x,ΓK), is of type G.

(ii) The equality M(x,H)[p] = M(x,H) holds.

Proof. — Assertion (i) follows from condition (2A). Assertion (ii) follows, in light of
condition (2A), from [5, Theorem B], together with the definition of M(x,H). □

Here, let us observe that it follows from Lemma 2.5 that the ΓK-module M(x,ΓK)
satisfies two conditions (1A), (1B) in the discussion following Definition 1.4.

In the remainder of the present §2, suppose, moreover, that the following condition is
satisfied:

(2C) The action of ΓK on M(x) is nontrivial, and, moreover, the image of the in-
jective [cf. Remark 1.1.1] homomorphism ΓK [M(x,ΓK)] ↪→ Aut(M(x,ΓK)) determined
by the action of ΓK on M(x,ΓK) (̸= {0} — cf. Lemma 2.4) contains the subgroup
F×
p ⊆ Aut(M(x,ΓK)) of homotheties [cf. Lemma 2.5, (ii)].

LEMMA 2.6. — Let a be an element of F×
p \ {1} and γa an element of ΓK whose action

on M(x,ΓK) is given by multiplication by a ∈ F×
p [cf. condition (2C)]. Then there exists

an element γ of ΓK such that γa does not fix the closed point γ · x ∈ Xcl
K
.

Proof. — Since the action of γa on M(x,ΓK), hence also on M(x), is nontrivial, this
assertion is immediate. □
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LEMMA 2.7. — The following assertions hold:

(i) The equality p = 3 holds.

(ii) It holds that 3 ∈ Deg(XK).

Proof. — Let us begin the proof of Lemma 2.7 with the following claim:

Claim 2.7.A: If either p ̸= 3 or 3 ̸∈ Deg(XK), then 2 ∈ Deg(XK), and the
closed point x ∈ Xcl

K
is a Weierstrass point of XK .

Let us first verify Claim 2.7.A in the case where p ̸= 3. Suppose that p ̸= 3. Then
since p ̸= 3 [which thus implies that −2 ̸= 1 in Fp], it follows from condition (2C)
and Lemma 2.6 that there exist elements γ−2, γ of ΓK such that the action of γ−2 on
M(x,ΓK) is given by multiplication by −2, and, moreover, γ−2 does not fix the closed
point γ ·x ∈ Xcl

K
, i.e., γ−2γ ·x ̸= γ ·x. Then since (1−γ−2)γ ·a(x) ∈ M(x) is contained in

M(x,ΓK), it follows from our choice of γ−2 ∈ ΓK that the divisor (2+γ−2)(1−γ−2)γ·a(x) is
principal, i.e., that the effective divisor 2[γ ·x] is linearly equivalent to the effective divisor
[γ−2γ ·x]+ [γ2

−2γ ·x]. Thus, since γ−2γ ·x ̸= γ ·x, we conclude that 2 ∈ Deg(XK), and the
closed point γ · x, hence also the closed point x, is a Weierstrass point of XK , as desired.
This completes the proof of Claim 2.7.A in the case where p ̸= 3.

Next, let us verify Claim 2.7.A in the case where 3 ̸∈ Deg(XK). Suppose that 3 ̸∈
Deg(XK). Let us first recall from condition (2C) that there exists an element γ2 ∈ ΓK

whose action on M(x,ΓK) is given by multiplication by 2. Next, let us observe that it
follows from Lemma 2.4 that there exists an element δ ∈ ΓK such that (1−δ)·a(x) ∈ M(x)
is nonzero, or, equivalently, x ̸= δ · x. Then since (1 − δ) · a(x) ∈ M(x) is contained in
M(x,ΓK), it follows from our choice of γ2 ∈ ΓK that the divisor (2− γ2)(1− δ) · a(x) is
principal, i.e., that the effective divisor 2[x]+ [γ2δ ·x] is linearly equivalent to the effective
divisor 2[δ · x] + [γ2 · x]. Thus, since [we have assumed that] 3 ̸∈ Deg(XK), and x ̸= δ · x,
we conclude that either x = γ2 · x or γ2δ · x = δ · x holds, which thus implies that either

• the effective divisor [x] + [γ2δ · x] is linearly equivalent to the effective divisor 2[δ · x],
or

• the effective divisor 2[x] is linearly equivalent to the effective divisor [δ · x] + [γ2 · x].
In particular, again by the fact that x ̸= δ · x, we conclude that 2 ∈ Deg(XK), and,
moreover, a ΓK-conjugate of x, hence also x itself, is a Weierstrass point of XK , as
desired. This completes the proof of Claim 2.7.A in the case where 3 ̸∈ Deg(XK).
Assume that p ̸= 3 or 3 ̸∈ Deg(XK). Then it follows from Claim 2.7.A and [9,

Proposition 3.1, (i)] that the action of ΓK on 2 · M(x) is trivial. Thus, since p ̸= 2,
it follows from Lemma 2.5, (i), together with [5, Remark 2.3.1, (ii)], that the action of
ΓK on M(x) is trivial, in contradiction to condition (2C). This completes the proof of
Lemma 2.7. □

LEMMA 2.8. — Suppose that 2 ̸∈ Deg(XK). Then the ΓK-module M(x,ΓK) is iso-
morphic to the ΓK-module Fp(1), where “(1)” denotes a Tate twist [i.e., the ΓK-module
obtained by forming the group of p-th roots of unity in K].
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Proof. — Let us first recall from condition (2C) that there exists an element γ−1 ∈ ΓK

whose action on M(x,ΓK) is given by multiplication by −1.
Let δ be an element of ΓK such that δ · x ̸= x, or, equivalently, (1− δ) · a(x) ∈ M(x) is

nonzero. Then since (1− δ) · a(x) ∈ M(x) is contained in M(x,ΓK), it follows from our
choice of γ−1 ∈ ΓK that the divisor (1+γ−1)(1−δ)·a(x) is principal, i.e., that the effective
divisor [x] + [γ−1 · x] is linearly equivalent to the effective divisor [δ · x] + [γ−1δ · x]. Thus,
since [we have assumed that] 2 ̸∈ Deg(XK), and δ ·x ̸= x, it follows that δ ·x = γ−1 ·x. In
particular, we conclude that the equality ΓK ·x = {x, γ−1 ·x} holds. Thus, it follows from
the definition ofM(x,ΓK) that the moduleM(x,ΓK) is, as an abstract module, generated
by the single element (1−γ−1) ·a(x) ∈ M(x,ΓK). In particular, it follows immediately —
in light of Lemma 1.6 — from condition (2C) that the ΓK-module M(x,ΓK) is isomorphic
to Fp(1), as desired. This completes the proof of Lemma 2.8. □

3. Ramified Torsion Points on Curves with Superspecial Reduction

In the present §3, we prove the main result of the present paper [cf. Corollary 3.3
below]. In the present §3, we maintain the notational conventions introduced at the
beginning of the preceding §2 and in the discussion following Definition 2.2.

THEOREM 3.1. — Suppose that k is algebraically closed. Suppose, moreover, that two
conditions (2A), (2B) in the discussion following Definition 2.2 and condition (2C) in the
discussion following Lemma 2.5 are satisfied. Then the equality p = 3 holds. Moreover,
one of the following two conditions is satisfied:

(a) The curve X over K is of genus two.

(b) The ΓK-module M(x,ΓK) is isomorphic to the ΓK-module Fp(1), where “(1)”
denotes a Tate twist.

Proof. — Let us first observe that it follows from Lemma 2.7, (i), that p = 3. Suppose
that condition (b) is not satisfied. Then it follows from Lemma 2.7, (ii), and Lemma 2.8
that {2, 3} ⊆ Deg(XK). In particular, it follows from [1, Chapter I, Exercise D-9] that
g = 2, as desired. This completes the proof of Theorem 3.1. □

COROLLARY 3.2. — Suppose that the following four conditions are satisfied:

(1) The abelian variety J over K has good reduction over W .

(2) The closed point a(x) ∈ Jcl
K

is torsion.

(3) The natural action of the inertia subgroup of ΓK on J(K)[p] is of strictly p-
height two.

(4) Either p > 3 or g > 2.

Then the residue field at the image, by the natural morphism XK → X, of the closed
point x ∈ Xcl

K
is unramified over K.
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Proof. — Let us first observe that, to verify Corollary 3.2, we may assume without
loss of generality, by replacing K by the p-adic completion of the unique maximal un-
ramified extension of K in K, that k is algebraically closed. Then this assertion follows
immediately, in light of Lemma 2.4, from Theorem 3.1, together with Lemma 1.9. □

The main result of the present paper is as follows.

COROLLARY 3.3. — Suppose that the following two conditions are satisfied:

(1) The closed point a(x) ∈ Jcl
K

is torsion.

(2) Either p > 3 or g > 2.

Suppose, moreover, that one of the following two conditions is satisfied:

(a) The abelian variety J over K has good reduction over W . Moreover, the special
fiber of the good model of J is a superspecial abelian variety over k [i.e., is isomorphic
to the fiber product of finitely many supersingular elliptic curves over k].

(b) For each i ∈ {1, . . . , g}, there exists an elliptic curve Ei over W such that Ei×W k
is supersingular, and, moreover, the abelian variety J is isogenous to (E1 ×W · · · ×W

Eg)×W K over K.

Then the residue field at the image, by the natural morphism XK → X, of the closed
point x ∈ Xcl

K
is unramified over K.

Proof. — Each of conditions (a) and (b) implies immediately condition (1) in the
statement of Corollary 3.2. Condition (1) implies condition (2) in the statement of
Corollary 3.2. Condition (2) implies condition (4) in the statement of Corollary 3.2.
Thus, it follows from Corollary 3.2 that, to complete the verification of Corollary 3.3, it
suffices to verify that each of conditions (a) and (b) implies condition (3) in the statement
of Corollary 3.2. On the other hand, it follows immediately — in light of the discussion
given in [8, §3.4, Exemple] — from the main theorem of [6] (respectively, the various
definitions involved) that condition (a) (respectively, (b)) implies condition (3) in the
statement of Corollary 3.2, as desired. This completes the proof of Corollary 3.3. □

REMARK 3.3.1.

(i) Let us recall that it follows from [7, Corollary 1.2], together with the well-known
finiteness of the set of isomorphism classes of supersingular elliptic curves over k, that
the set of isomorphism classes of curves over k of genus g whose Jacobian varieties are
superspecial is finite. Moreover, it follows from [4, §2, Theorem 1.1] that there is no curve
over k of genus g whose Jacobian variety is superspecial whenever 2g > p2 − p. Thus,
one may conclude that curves over k whose Jacobian varieties are superspecial are “few”.
On the other hand, a curve over K subject to Theorem B [i.e., of the Introduction] in
the case where condition (S) is satisfied is a curve over K obtained as the generic fiber
of [the algebraization of] a deformation to W of such a curve over k. In particular, one
may also conclude that curves over K subject to Theorem B in the case where condition
(S) is satisfied are “few”.
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(ii) Suppose that g > 2. Then one verifies immediately, by considering, for instance,
stable curves [cf. [3], Definition 1.1] over k whose dual graphs are trees and whose ir-
reducible components are supersingular elliptic curves over k, that there are infinitely
many isomorphism classes of stable curves over k of genus g whose Jacobian varieties
are superspecial abelian varieties [even if the inequality 2g > p2 − p holds]. Moreover, a
curve over K obtained as the generic fiber of [the algebraization of] a generically smooth
deformation to W of such a stable curve over k satisfies condition (a) in the statement
of Corollary 3.3. In particular, one may conclude that “many” curves over K may be
thought to be subject to Corollary 3.3.
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