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Abstract. — In a previous paper, we discussed Frobenius-projective structures on projec-
tive smooth curves in positive characteristic and established a relationship between pseudo-
coordinates and Frobenius-indigenous structures by means of Frobenius-projective structures.
In the present paper, we discuss an “affine version” of this study of Frobenius-projective
structures. More specifically, we discuss Frobenius-affine structures and establish a similar
relationship between Tango functions and Frobenius-affine-indigenous structures by means of
Frobenius-affine structures. Moreover, we also consider a relationship between these objects
and Tango curves.
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Introduction

In the previous paper [4], we discussed Frobenius-projective structures on projective
smooth curves in positive characteristic and established a relationship between certain
rational functions — i.e., pseudo-coordinates — and certain P1-bundles equipped with
sections [that may be regarded as an analogue, in positive characteristic, of indigenous
bundles in the classical theory of Riemann surfaces] — i.e., Frobenius-indigenous struc-
tures — by means of Frobenius-projective structures. In the present paper, we discuss
an “affine version” of this study of Frobenius-projective structures. More specifically,
we discuss Frobenius-affine structures and establish a similar relationship between Tango
functions and Frobenius-affine-indigenous structures. Moreover, we also consider a rela-
tionship between these objects and Tango curves [cf., e.g., [9] and [8]].

2010 Mathematics Subject Classification. — 14H25.
Key words and phrases. — Tango function, Frobenius-affine structure, Frobenius-affine-indigenous
structure, Frobenius-splitting pair, Tango curve.
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Let p be a prime number, k an algebraically closed field of characteristic p, g a non-
negative integer, and

X

a projective smooth curve over k of genus g. Throughout the present paper, let us fix a
positive integer

N.

Write XF for the base-change of X by [not the p-th if N 6= 1 but] the pN -th power Frobe-
nius endomorphism of k, Φ: X → XF for the relative pN -th power Frobenius morphism
over k, PGL2,XF for the sheaf of groups on XF obtained by considering automorphisms of
the trivial P1-bundle over XF [cf. Definition 1.1, (ii)], PGL∞

2,XF ⊆ PGL2,XF for the sub-

sheaf of PGL2,XF obtained by considering automorphisms of the trivial P1-bundle over
XF that restrict to automorphisms of the trivial A1-bundle over XF [cf. Definition 1.1,
(ii)], and

B def
= Φ−1PGL∞

2,XF ⊆ G def
= Φ−1PGL2,XF .

Write, moreover, Brtn ⊆ Grtn for the groups obtained by forming the stalks of the sheaves
B ⊆ G of groups at the generic point of X, respectively.

A Frobenius-affine structure of level N onX is defined to be a subsheaf of the sheaf onX
of étale morphisms to the affine line A1

k over k which forms a B-torsor with respect to the
natural action of B on the sheaf on X of morphisms to A1

k over k [cf. Definition 2.1]. One
finds easily that the notion of Frobenius-affine structures may be regarded as an “affine
version” of the notion of Frobenius-projective structures discussed in [4] and, moreover,
may be regarded as an analogue, in positive characteristic, of the notion of complex affine
structures [cf., e.g., [1, §2]] in the classical theory of Riemann surfaces. The main result
of the present paper yields a relationship between a certain rational function on X — i.e.,
a Tango function — and a certain A1-bundle equipped with a section — i.e., a Frobenius-
affine-indigenous structure — obtained by considering Frobenius-affine structures.

A Tango function of level N on X is defined to be a [necessarily generically étale]
morphism f : X → P1

k over k such that, for each closed point x ∈ X of X, there exist an
open subscheme U ⊆ X of X and an element g ∈ Brtn such that x ∈ U , and, moreover,
the restriction g(f)|U to U of the result g(f) of the action of g ∈ Brtn on f is an étale
morphism U → A1

k [cf. Definition 1.3]. For instance, if p = 2, then every generically étale
morphism to P1

k over k is a Tango function of level 1 [cf. Remark 1.7.1]. Moreover, we
prove the following result [cf. Corollary 1.11].

THEOREM A. — It holds that X is a Tango curve [cf. Definition 1.8, (ii)] if and only
if X has a Tango function of level 1.

A Frobenius-affine-indigenous structure of level N on X is defined to be a pair of an
A1-bundle A → XF over XF and a section σ of the pull-back Φ∗A → X such that the
Kodaira-Spencer section of the PD-connection∇Φ∗A on Φ∗A at σ is nowhere vanishing [cf.
Definition 3.3]. One may find that the notion of Frobenius-affine-indigenous structures
of level 1 is closely related to the notion of dormant Miura GL2-opers discussed in [10]
[cf. Remark 4.2.3 and Proposition 4.7].
The main result of the present paper is as follows [cf. Theorem 3.10].
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THEOREM B. — There exist bijective maps between the following three sets:

(1) the set of Brtn-orbits of Tango functions of level N on X

(2) the set of Frobenius-affine structures of level N on X

(3) the set of isomorphism classes of Frobenius-affine-indigenous structures of
level N on X

Note that if (p,N) 6= (2, 1), then the bijective maps of Theorem B are compatible with
the bijective maps between the following three sets of [4, Theorem A] [cf. Remark 3.10.1]:

• the set of Grtn-orbits of pseudo-coordinates of level N on X

• the set of Frobenius-projective structures of level N on X

• the set of isomorphism classes of Frobenius-indigenous structures of level N on X

As already observed, the notion of Frobenius-affine structures may be regarded as an
analogue, in positive characteristic, of the notion of complex affine structures in the clas-
sical theory of Riemann surfaces. Moreover, it is well-known that if a compact Riemann
surface admits a complex affine structure, then the compact Riemann surface is of genus
1. On the other hand, one may conclude from Theorem B that there exists a projective
smooth curve over k of genus ≥ 2 that has a Frobenius-affine structure of level N [cf.
Remark 2.7.1].

One application of Theorem B is as follows. Suppose that g ≥ 2. Write FrX : X → X
for the p-th power Frobenius endomorphism of X. Then one may verify [cf. Remark 4.2.4
and Proposition 4.7] that there exists a bijective map between the set of (3) of Theorem B
and the set of P-equivalence [cf. Definition 4.1] classes of pairs (E ,L) of locally free
coherent OX-modules E of rank 2 and invertible subsheaves L ⊆ E that satisfy the
following condition: If, for a nonnegative integer i, we write

Li
def
=

i︷ ︸︸ ︷
Fr∗X · · ·Fr∗X L ⊆ Ei

def
=

i︷ ︸︸ ︷
Fr∗X · · ·Fr∗X E ,

then

• the locally free coherent OX-module EN−1, hence also E , is stable, but

• there exist an invertible sheafM onX of degree pN

2
·deg(E)+g−1 = 1

2
·deg(EN)+g−1

and a locally split injective homomorphism M ↪→ EN of OX-modules such that the
inclusions LN ,M ↪→ EN determine an isomorphism LN ⊕M

∼→ EN of OX-modules. [In
particular, the locally free coherent OX-module FN is not semistable.]

Thus, by applying Theorem B and some previous works, we obtain the following ap-
plication in small characteristic cases [cf. Corollary 5.5, (ii)].

THEOREM C. — Suppose that g ≥ 2, and that p = 2 (respectively, p = 3). Suppose,
moreover, that N ≥ 2 whenever p = 2. Then the following two conditions are equivalent:

(1) The curve X has a Tango function of level N .

(2) There exist
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• a [necessarily stable] locally free coherent OX-module E of rank 2,

• an invertible sheaf Q on X of degree (2g−2)/pN (respectively, (4g−4)/pN ),

• a surjective homomorphism E ↠ Q of OX-modules, and

• an isomorphism (FrX)∗OX
∼→ EN−1 (respectively, BX

∼→ EN−1) of OX-modules,

where we write

BX
def
= Coker

(
OX → (FrX)∗OX

)
for the OX-module obtained by forming the cokernel of the homomorphism OX → (FrX)∗OX

induced by FrX .

Acknowledgments

This research was supported by JSPS KAKENHI Grant Number 18K03239 and by the
Research Institute for Mathematical Sciences, an International Joint Usage/Research
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1. Tango Functions

In the present §1, we introduce and discuss the notion of Tango functions [cf. Defini-
tion 1.3 below]. Moreover, we also discuss a relationship between Tango functions and
Tango curves studied in, for instance, [9] and [8] [cf. Theorem 1.9 below and Corollary 1.11
below].

In the present §1, let p be a prime number, k an algebraically closed field of character-
istic p, g a nonnegative integer, and

X

a projective smooth curve over k of genus g. Throughout the present paper, let us fix a
positive integer

N.

If “(−)” is an object over k, then we shall write “(−)F” for the object over k obtained
by forming the base-change of “(−)” by [not the p-th if N 6= 1 but] the pN -th power
Frobenius endomorphism of k. We shall write

W : XF // X

for the morphism obtained by forming the base-change of the pN -th power Frobenius
endomorphism of Spec(k) by the structure morphism X → Spec(k). Thus, the pN -th
power Frobenius endomorphism of X factors as a composite

X // XF W // X.

We shall write

Φ: X // XF

for the first arrow in this composite, i.e., the relative pN -th power Frobenius morphism
over k. Note that XF is a projective smooth curve over k of genus g, and Φ is a finite
flat morphism over k of degree pN .
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DEFINITION 1.1. — Let S be a scheme.

(i) We shall write

A1
S

// S

for the trivial A1-bundle over S,

P1
S

// S

for the trivial P1-bundle over S obtained by forming the smooth compactification of
A1

S → S, and

∞S ∈ P1
S(S)

for the section of P1
S → S obtained by considering the complement of A1

S in P1
S. Thus,

A1
k

def
= A1

Spec(k) ⊆ P1
k

def
= P1

Spec(k) denote the affine, projective lines over k, respectively, and

∞k
def
= ∞Spec(k) ∈ P1

k(k) denotes the k-rational closed point of P1
k obtained by considering

the complement of A1
k in P1

k.

(ii) We shall write

PGL2,S

for the sheaf of groups on S that assigns, to an open subscheme T ⊆ S, the group
AutT (P1

T ) of automorphisms over T of the trivial P1-bundle P1
T → T and

PGL∞
2,S ⊆ PGL2,S

for the sheaf of groups on S that assigns, to an open subscheme T ⊆ S, the subgroup
of AutT (P1

T ) consisting of automorphisms over T of the trivial P1-bundle P1
T → T that

preserve the section∞T ∈ P1
T (T ), or, equivalently, restrict to automorphisms of the open

subscheme A1
T ⊆ P1

T over T .

(iii) We shall write

B def
= Φ−1PGL∞

2,XF ⊆ G def
= Φ−1PGL2,XF

and
Brtn ⊆ Grtn

for the groups obtained by forming the stalks of B ⊆ G at the generic point of X,
respectively.

DEFINITION 1.2.

(i) We shall write

P
for the sheaf of sets onX that assigns, to an open subscheme U ⊆ X, the set of morphisms
from U to P1

k over k,

Pgét ⊆ P
for the subsheaf of P that assigns, to an open subscheme U ⊆ X, the set of generically
étale morphisms from U to P1

k over k, and

P ét ⊆ Pgét
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for the subsheaf of Pgét that assigns, to an open subscheme U ⊆ X, the set of étale
morphisms from U to P1

k over k.

(ii) We shall write

A (⊆ P)

for the sheaf of sets onX that assigns, to an open subscheme U ⊆ X, the set of morphisms
from U to A1

k over k and

Aét def
= A×P P ét ⊆ A

for the subsheaf of A that assigns, to an open subscheme U ⊆ X, the set of étale
morphisms from U to A1

k over k.

REMARK 1.2.1.

(i) One verifies easily that both P and Pgét are [isomorphic to] constant sheaves.

(ii) One verifies easily that P , Amay be naturally identified with the sheaves of sets on
X that assign, to an open subscheme U ⊆ X, the sets of sections of the trivial P1-bundle
P1
U → U , the trivial A1-bundle A1

U → U , respectively.

(iii) It follows immediately from (ii) that G, hence also B, naturally acts, via Φ, on
P . Moreover, one verifies easily that the subsheaves P ét ⊆ Pgét ⊆ P of P are preserved
by this action of G, hence also of B, on P .

(iv) It is immediate from (i) that the actions of G on P , Pgét of (iii) determine actions
of Grtn on P(X), Pgét(X), respectively. In particular, the actions of B on P , Pgét of (iii)
determine actions of Brtn on P(X), Pgét(X), respectively.

(v) It follows immediately from (ii) that B naturally acts, via Φ, on A. In particular,
it follows from (iii) that the subsheaf Aét ⊆ A of A is preserved by this action of B on A.

DEFINITION 1.3. — We shall say that a global section f ∈ Pgét(X) of Pgét is a Tango
function of level N if, for each closed point x ∈ X of X, there exist an open subscheme
U ⊆ X of X and an element g ∈ Brtn such that x ∈ U , and, moreover, the restriction
g(f)|U ∈ Pgét(U) to U of the result g(f) ∈ Pgét(X) of the action of g ∈ Brtn on f ∈
Pgét(X) [cf. Remark 1.2.1, (iv)] is contained in the subset Aét(U) ⊆ Pgét(U) of Pgét(U).

We shall write

TfN(X) ⊆ Pgét(X)

for the subset of Tango functions of level N .

REMARK 1.3.1. — One verifies easily that if a global section of Pgét is a Tango function
of level N , then every element of the Brtn-orbit (⊆ Pgét(X)) of the global section is a
Tango function of level N .
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REMARK 1.3.2. — It is immediate that an arbitrary Tango function of level N is a pseudo-
coordinate of level N [cf. [4, Definition 2.3]]. Thus, we have a commutative diagram

TfN(X) �
� //

����

pcdN(X)

����
TfN(X)/Brtn // pcdN(X)/Grtn

[cf. Remark 1.3.1, [4, Definition 2.3], [4, Remark 2.3.1]].

DEFINITION 1.4. — Let f ∈ Pgét(X) be a global section of Pgét and x ∈ X a closed

point of X. Let us identify A
def
= k[[t]] with the completion ÔX,x of the local ring OX,x by

means of a fixed isomorphism A
∼→ ÔX,x over k. Write F ∈ OX,x for the image, via f , in

OX,x of a fixed uniformizer of the discrete valuation ring OP1
k,f(x)

and

F =
∑
i≥1

ait
i ∈ A

for the expansion of F in A. Thus, the positive integer

indx(f)
def
= νA(F ) = min{ i ∈ Z≥1 | ai 6= 0 }

— where νA denotes the t-adic valuation on A = k[[t]] that maps t ∈ A to 1 — coincides
with the ramification index of the dominant morphism f : X → P1

k at x ∈ X. Then we
shall write

ind̸∈pN
x (f)

def
= min{ i ∈ Z≥1 | ai 6= 0 and i 6∈ pNZ }

(
≥ indx(f)

)
and

ind̸∈pN
x (f)

for the uniquely determined positive integer such that 1 ≤ ind̸∈pN
x (f) ≤ pN − 1, and,

moreover, ind ̸∈pN
x (f)− ind̸∈pN

x (f) ∈ pNZ.
Note that one verifies easily that since f is a global section of Pgét, it holds that

ind̸∈pN
x (f) <∞. Moreover, one also verifies easily that both ind̸∈pN

x (f) and ind ̸∈pN
x (f) are

independent of the choices of the fixed isomorphism A
∼→ ÔX,x and the fixed uniformizer

of OP1
k,f(x)

.

LEMMA 1.5. — Let f ∈ Pgét(X) be a global section of Pgét and x ∈ X a closed point of
X. Then the following assertions hold:

(i) Suppose that f(x) 6=∞k. Then there exists an element g ∈ Brtn such that

g(f)(x) 6=∞k, indx

(
g(f)

)
= ind ̸∈pN

x (f)

[which thus implies that indx(g(f)) = ind ̸∈pN
x (g(f))].
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(ii) Suppose that f(x) = ∞k, and that indx(f) = ind ̸∈pN
x (f). Then there exists an

element g ∈ Brtn such that

g(f)(x) 6=∞k, indx

(
g(f)

)
= pN − ind̸∈pN

x (f)

[which thus implies that indx(g(f)) = pN − ind̸∈pN
x (g(f))].

(iii) Suppose that f(x) = ∞k, and that indx(f) 6= ind ̸∈pN
x (f). Then there exists an

element g ∈ Brtn such that

g(f)(x) 6=∞k, indx

(
g(f)

)
= ind ̸∈pN

x (f)

[which thus implies that indx(g(f)) = ind ̸∈pN
x (g(f))].

Proof. — Write KX for the function field of X. Let us identify the scheme Proj(k[u, v])

with P1
k by means of a fixed isomorphism Proj(k[u, v])

∼→ P1
k over k that maps the point

“(u, v) = (1, 0)” to the closed point∞k. Thus, the global section f ∈ Pgét(X) determines
and is determined by an element F of KX \Kp

X [i.e., the image of u/v ∈ k(u/v) in KX

via f ]. Now let us first observe that if f(x) 6= ∞k, then we may assume without loss
of generality, by replacing f by the composite of f and a suitable element of Autk(A1

k),

that f(x) is the point “(u, v) = (0, 1)”, i.e., that F ∈ mx. Let us identify A
def
= k[[t]] with

the completion ÔX,x of the local ring OX,x by means of a fixed isomorphism A
∼→ ÔX,x

over k that maps t ∈ A into OX,x ⊆ ÔX,x. [Thus, it holds that F ∈ tA[[t]] (respectively,

F−1 ∈ tA[[t]]) whenever f(x) 6=∞k (respectively, f(x) =∞k).] Write d0
def
= ind ̸∈pN

x (f).
Now we verify assertion (i). Let us first observe that it follows from the definition of

“ind̸∈pN
x (f)” that there exist a ∈ OX,x, u ∈ A×, and a nonnegative integer r such that

F = ap
N − trp

N+d0u, and, moreover, either a = 0 or νA(a
pN ) (= pNνA(a)) < rpN + d0.

Then one verifies immediately from the various definitions involved that the global section
of Pgét that corresponds to the element t−rpN (F − ap

N
) of KX \Kp

X is contained in the
Brtn-orbit of f and satisfies the condition in the statement of assertion (i). This completes
the proof of assertion (i).

Next, we verify assertions (ii), (iii). Let us first observe that it follows from the def-

inition of “ind ̸∈pN
x (f)” that there exist a ∈ OX,x, u ∈ A×, and a nonnegative integer

r such that F−1 = ap
N − trp

N+d0u, and, moreover, a = 0 in the situation of assertion
(ii) (respectively, νA(a

pN ) (= pNνA(a)) < rpN + d0 in the situation of assertion (iii)).
Then one verifies immediately from the various definitions involved that if we are in the
situation of assertion (ii), then the global section of Pgét that corresponds to the element

t(r+1)pNF of KX \Kp
X is contained in the Brtn-orbit of f and satisfies the condition in the

statement of assertion (ii). This completes the proof of assertion (ii).
Next, to verify assertion (iii), observe that, in the situation of assertion (iii), since

F−1 = ap
N − trp

N+d0u = ap
N
(1 − a−pN trp

N+d0u), and 0 < rpN + d0 − pNνA(a), it follows
that

F = a−pN (1 + a−pN trp
N+d0u+ a−2pN t2rp

N+2d0u2 + . . . ).

Then one verifies immediately from the various definitions involved that the global section
of Pgét that corresponds to the element t−rpNa2p

N
F − t−rpNap

N
of KX \Kp

X is contained
in the Brtn-orbit of f and satisfies the condition in the statement of assertion (iii). This
completes the proof of assertion (iii), hence also of Lemma 1.5. □
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LEMMA 1.6. — Let f ∈ Pgét(X) be a global section of Pgét and x ∈ X a closed point

of X. Suppose that f(x) 6= ∞k, and that ind̸∈pN
x (f) 6= 1. Then, for each g ∈ Brtn, the

result g(f) ∈ Pgét(X) of the action of g ∈ Brtn on f ∈ Pgét(X) either is not étale at x
or maps x to ∞k.

Proof. — Let us first observe that it follows immediately from Lemma 1.5, (i), that
we may assume without loss of generality, by replacing f by the result of the action of a
suitable element of Brtn on f , that

(a) indx(f) = d0
def
= ind ̸∈pN

x (f) ( 6= 1).

Let us identify A
def
= k[[t]] with the completion ÔX,x of the local ring OX,x by means of

a fixed isomorphism A
∼→ ÔX,x over k. Then it is immediate that, to verify Lemma 1.6,

it suffices to verify that

(∗1): for each g ∈ Brtn, the composite of the natural morphism Spec(A)→
X with g(f) : X → P1

k is not formally étale whenever this composite does
not map the closed point of Spec(A) to ∞k.

Let g be an element of Brtn. Next, let us identify the scheme Proj(k[u, v]) with P1
k by

means of a fixed isomorphism Proj(k[u, v])
∼→ P1

k over k that maps the point “(u, v) =
(1, 0)” to the closed point ∞k. Write K for the field of fractions of A and

Proj(k[u, v]) ←− Spec(A); (u, v) 7→ (fu, fv)

— where fu, fv ∈ A — for the composite of the natural morphism Spec(A) → X with

f : X → P1
k. Thus, there exist ag, bg, dg ∈ k[[tp

N
]] = ApN ⊆ A [which thus implies

that νA(ag), νA(bg), νA(dg) ∈ pNZ] such that agdg 6= 0, and, moreover, the composite of
the natural morphism Spec(A) → X with g(f) : X → P1

k coincides with the morphism
determined by the composite

Proj(k[u, v]) ←− Proj(K[u, v]) ←− Proj(K[u, v]) ←− Spec(K)
(u, v) 7→ (u, v)

(u, v) 7→ (agu+ bgv, dgv)
(u, v) 7→ (fu, fv).

Next, let us observe that, to verify (∗1), we may assume without loss of generality, by
replacing f by the composite of f and a suitable element of Autk(A1

k), that the image of
x ∈ X via f is the point “(u, v) = (0, 1)”, i.e., that [cf. (a)]

(b) νA(fu) = d0, and fv = 1. [Recall that 2 ≤ d0 ≤ pN − 1 — cf. (a).]

Next, let us observe that, to verify (∗1), we may assume without loss of generality, by
replacing g by the product of g and a suitable element of Autk(A1

k), that the image of
x ∈ X via g(f) is the point “(u, v) = (0, 1)”, i.e., that [cf. (b)]

(c) if we write

F
def
=

agfu + bg
dg

∈ K,

then F ∈ A, and, moreover, νA(F ) ≥ 1.

Thus, it is immediate that, to verify (∗1), it suffices to verify that

(∗2): νA(F ) 6= 1.
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Next, let us observe that, to verify (∗2), we may assume without loss of generality, by
replacing (ag, bg, dg) by t−min{νA(ag),νA(bg),νA(dg)} · (ag, bg, dg), that

(d) 0 ∈ {νA(ag), νA(bg), νA(dg)}.
Here, let us verify that

(e) νA(bg) ≥ pN .

Indeed, if νA(bg) = 0, then it follows from (b) that νA(agfu + bg) = 0, which thus implies
that νA(F ) ≤ 0 — in contradiction to (c). This completes the proof of (e).

Next, suppose that νA(dg) = 0. Then it follows from (b) and (e) that νA(F ) =
νA(agfu + bg) ≥ 2, as desired. Thus, to verify (∗2), we may assume without loss of
generality that

(f) νA(dg) ≥ pN .

Thus, it follows from (d), (e), (f) that νA(ag) = 0. Then it follows from (b) and (e) that
νA(agfu+bg) = d0. In particular, it follows from (b) and (f) that νA(F ) = d0−νA(dg) < 0
— in contradiction to (c). This completes the proof of (∗2), hence also of Lemma 1.6. □

PROPOSITION 1.7. — Let f ∈ Pgét(X) be a global section of Pgét. Then it holds that f
is a Tango function of level N if and only if, for each closed point x ∈ X of X, the
equality

ind̸∈pN
x (f) =

{
1 if either f(x) 6=∞k or indx(f) 6= ind ̸∈pN

x (f)

pN − 1 if f(x) =∞k and indx(f) = ind ̸∈pN
x (f)

holds.

Proof. — The sufficiency follows immediately from Lemma 1.5, (i), (ii), (iii). The
necessity follows from Lemma 1.5, (ii), (iii), and Lemma 1.6. □

REMARK 1.7.1. — Suppose that (p,N) = (2, 1). Then one verifies easily from Proposi-
tion 1.7 that every global section of Pgét is a Tango function of level N :

Pgét(X) = TfN(X).

Moreover, one also verifies easily that

]
(
Pgét(X)/Brtn

)
= ]

(
TfN(X)/Brtn

)
= 1.

REMARK 1.7.2. — One may construct some examples of Tango functions by means of
the well-known structure of the maximal pro-prime-to-p quotient of the abelianization
of the étale fundamental group of an open subscheme of the projective line over an
algebraically closed field of characteristic p as follows: Let r be a positive integer. Write

d
def
= (rpN − 1)(pN − 1). Let a1, . . . , ad−(pN−1) ∈ A1

k be distinct d− (pN − 1) closed points

of A1
k. Write a0

def
= ∞k ∈ P1

k, P for the ring obtained by forming the pro-prime-to-
p completion of the ring Z of rational integers, and Q for the maximal pro-prime-to-p
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quotient of the abelianization of the étale fundamental group of A1
k\{a1, . . . , ad−(pN−1)} =

P1
k\{a0, a1, . . . , ad−(pN−1)}. Then it is well-known that, for each i ∈ {0, 1, . . . , d−(pN−1)},

there exists an element γi of Q such that

(a) these elements of Q determine an isomorphism between Q and the quotient of
the free P -module freely generated by the γi’s [where i ∈ {0, 1, . . . , d− (pN − 1)}] by the
P -submodule generated by γ0 + γ1 + · · ·+ γd−(pN−1), and, moreover,

(b) for each i ∈ {0, 1, . . . , d− (pN − 1)}, the element γi generates the inertia subgroup
of Q associated to the closed point ai of P1

k.

Thus, it follows from (a) that there exists a surjective homomorphism Q ↠ Z/dZ of
groups that maps the element γ0 to pN−1 ∈ Z/dZ and, for each i ∈ {1, . . . , d−(pN−1)},
maps the element γi to 1 ∈ Z/dZ. Write

fN,r : CN,r
// P1

k

for the morphism over k [that is necessarily finite and of degree d] obtained by forming the
smooth compactification of the finite étale Galois covering of P1

k \ {a0, a1, . . . , ad−(pN−1)}
determined by a surjective homomorphism Q ↠ Z/dZ as above. Thus, it follows from
(b) and the condition imposed on the surjective homomorphism Q ↠ Z/dZ that

(c) the finite morphism fN,r is étale over the open subscheme P1
k\{a0, a1, . . . , ad−(pN−1)}

of P1
k,

(d) the fiber f−1
N,r(a0) is of cardinality pN − 1, and the equality indx(fN,r) = rpN − 1

holds for each x ∈ f−1
N,r(a0), and,

(e) for each i ∈ {1, . . . , d − (pN − 1)}, the fiber f−1
N,r(ai) is of cardinality 1, and the

equality indx(fN,r) = d holds for each x ∈ f−1
N,r(ai).

In particular, it follows from Proposition 1.7, together with (c), (d), (e), that the global
section fN,r of “Pgét” for the projective smooth curve CN,r over k is a Tango function of
level N .

Note that it follows from the Riemann-Hurwitz formula that if one writes gN,r for the
genus of CN,r, then the equalities

2gN,r − 2 = d(d− pN − 1) = dpN
(
r(pN − 1)− 2

)
hold. In particular, one concludes that the inequality gN,r ≥ 2 holds if and only if
(p,N, r) 6∈ {(2, 1, 1), (2, 1, 2), (3, 1, 1)}.

Finally, we discuss a relationship between Tango functions and Tango curves studied
in, for instance, [9] and [8].

DEFINITION 1.8.

(i) Let f ∈ Pgét(X) be a global section of Pgét. Then we shall write

n(N ; f)
def
=

∑
x∈X: closed

[νx(df)/p
N ]
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— where we write νx for the discrete valuation on the function field of X that corresponds
to the closed point x and maps a uniformizer of OX,x to 1 and “[−]” for the uniquely
determined maximal integer less than or equal to “(−)” [cf. [9, Definition 9]].

(ii) We shall say that X is a Tango curve if there exists a global section f ∈ Pgét(X)
of Pgét such that n(1; f) = (2g − 2)/p [cf., e.g., [9] and [8, §2.1]].

THEOREM 1.9. — Let f ∈ Pgét(X) be a global section of Pgét. Then the following
assertions hold:

(i) If f is a Tango function of level N , then the equality n(N ; f) = (2g − 2)/pN

holds.

(ii) It holds that f is a Tango function of level 1 if and only if the equality
n(N ; f) = (2g − 2)/p holds.

Proof. — These assertions follow immediately from Proposition 1.7, together with the
well-known fact that the relative cotangent sheaf of X/k is of degree 2g − 2. □

COROLLARY 1.10. — If X has a Tango function of level N of X, then 2g − 2 is
divisible by pN .

Proof. — This assertion is an immediate consequence of Theorem 1.9, (i). □

COROLLARY 1.11. — It holds that X is a Tango curve if and only if X has a Tango
function of level 1.

Proof. — This assertion is an immediate consequence of Theorem 1.9, (ii). □

2. Frobenius-affine Structures

In the present §2, we introduce and discuss the notion of Frobenius-affine structures [cf.
Definition 2.1 below]. Moreover, we also discuss a relationship between Frobenius-affine
structures and Tango functions [cf. Proposition 2.7 below]. In the present §2, we maintain
the notational conventions introduced at the beginning of the preceding §1.

DEFINITION 2.1. — We shall say that a subsheaf S ⊆ Aét of Aét is a Frobenius-affine
structure of level N on X if S is preserved by the action of B on Aét [cf. Remark 1.2.1,
(v)], and, moreover, the sheaf S forms, by the resulting action of B on S, a B-torsor on
X.

We shall write

FasN(X)

for the set of Frobenius-affine structures of level N on X.
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REMARK 2.1.1.

(i) One finds easily that the notion of Frobenius-affine structures may be regarded as
an “affine version” of the notion of Frobenius-projective structures [cf. [4, Definition 3.1]]
discussed in [4].

(ii) One also finds easily that the notion of Frobenius-affine structuresmay be regarded
as an analogue, in positive characteristic, of the notion of complex affine structures [cf.,
e.g., [1, §2]] in the classical theory of Riemann surfaces.

LEMMA 2.2. — Let S ⊆ Aét be a Frobenius-affine structure of level N on X. Then
the following assertions hold:

(i) Let U , V ⊆ X be open subschemes of X, fU ∈ S(U), and fV ∈ S(V ). Then the
global section of Pgét determined by fU ∈ S(U) [cf. Remark 1.2.1, (i)] is contained in
the Brtn-orbit of the global section of Pgét determined by fV ∈ S(V ).

(ii) The global section of Pgét determined by a local section of S is a Tango function
of level N .

Proof. — Since X is irreducible, assertion (i) follows from the fact that S is a B-torsor.
Assertion (ii) follows from assertion (i), together with the fact that S is contained in
Aét. □

DEFINITION 2.3. — Let S ⊆ Aét be a Frobenius-affine structure of level N on X. Then
it follows from Lemma 2.2, (i), (ii), that S determines a Brtn-orbit of Tango functions of
level N . We shall refer to this Brtn-orbit as the Tango-orbit of level N associated to S.
Thus, we obtain a map

FasN(X) // TfN(X)/Brtn.

LEMMA 2.4. — Let U ⊆ X be an open subscheme of X, f ∈ Aét(U), and g ∈ Brtn. Then
it holds that the result g(f) ∈ Pgét(U) of the action of g ∈ Brtn on f ∈ Aét(U) ⊆ Pgét(U)
[cf. Remark 1.2.1, (i), (iv)] is contained in the subset Aét(U) ⊆ Pgét(U) if and only if
g ∈ Brtn is contained in the subgroup B(U) ⊆ Brtn.

Proof. — The sufficiency follows from Remark 1.2.1, (v). To verify the necessity,
suppose that g 6∈ B(U). Write KX for the function field of X. Let x ∈ X be a closed
point of X such that x ∈ U , and, moreover, g 6∈ PGL2(OX,x) [if we regard g as an element

of PGL2(KX)]. Let us identify A
def
= k[[t]] with the completion ÔX,x of the local ring OX,x

by means of a fixed isomorphism A
∼→ ÔX,x over k. Then it is immediate that, to verify

the necessity, it suffices to verify that

(∗1): the composite of the natural morphism Spec(A)→ X with g(f) : X →
P1
k is not formally étale whenever this composite does not map the closed

point of Spec(A) to ∞k.

Next, let us identify the scheme Proj(k[u, v]) with P1
k by means of a fixed isomorphism

Proj(k[u, v])
∼→ P1

k over k that maps the point “(u, v) = (1, 0)” to the closed point ∞k.
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Write K for the field of fractions of A and

Proj(k[u, v]) Spec(A);oo (u, v) 7→ (fu, fv)

— where fu, fv ∈ A — for the composite of the natural morphism Spec(A) → X with

f : X → P1
k. Thus, there exist ag, bg, dg ∈ k[[tp

N
]] = ApN ⊆ A [which thus implies

that νA(ag), νA(bg), νA(dg) ∈ pNZ] such that agdg 6= 0, and, moreover, the composite of
the natural morphism Spec(A) → X with g(f) : X → P1

k coincides with the morphism
determined by the composite

Proj(k[u, v]) ←− Proj(K[u, v]) ←− Proj(K[u, v]) ←− Spec(K)
(u, v) 7→ (u, v)

(u, v) 7→ (agu+ bgv, dgv)
(u, v) 7→ (fu, fv).

Now let us observe that, to verify (∗1), we may assume without loss of generality, by
replacing (ag, bg, dg) by t−min{νA(ag),νA(bg),νA(dg)} · (ag, bg, dg), that

(a) 0 ∈ {νA(ag), νA(bg), νA(dg)}.
Moreover, let us observe that since g 6∈ PGL2(OX,x), it holds that

(b) νA(agdg) ≥ pN .

Next, let us observe that, to verify (∗1), we may assume without loss of generality, by
replacing f by the composite of f and a suitable element of Autk(A1

k), that the image of
x ∈ X via f is the point “(u, v) = (0, 1)”, i.e., that

(c) νA(fu) = 1 [cf. our assumption that f ∈ Aét(U)], and fv = 1.

Moreover, let us observe that, to verify (∗1), we may assume without loss of generality,
by replacing g by the product of g and a suitable element of Autk(A1

k), that the image of
x ∈ X via g(f) is the point “(u, v) = (0, 1)”, i.e., that [cf. (c)]

(d) if we write

F
def
=

agfu + bg
dg

∈ K,

then F ∈ A, and, moreover, νA(F ) ≥ 1.

Thus, it is immediate that, to verify (∗1), it suffices to verify that

(∗2): νA(F ) 6= 1.

Here, let us verify that

(e) νA(bg) ≥ pN .

Indeed, if νA(bg) = 0, then it follows from (c) that νA(agfu + bg) = 0, which thus implies
that νA(F ) ≤ 0 — in contradiction to (d). This completes the proof of (e).

Next, suppose that νA(dg) = 0. Then it follows from (b) that νA(ag) ≥ pN . In
particular, it follows from (e) that νA(F ) = νA(agfu + bg) ≥ pN ≥ 2, as desired. Thus, to
verify (∗2), we may assume without loss of generality that

(f) νA(dg) ≥ pN .
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It follows from (a), (e), (f) that νA(ag) = 0. Thus, it follows from (c) and (e) that
νA(agfu + bg) = 1. In particular, it follows from (f) that νA(F ) = 1− νA(dg) ≤ −1 — in
contradiction to (d). This completes the proof of (∗2), hence also of Lemma 2.4. □

LEMMA 2.5. — Let f ∈ Pgét(X) be a Tango function of level N . Then the following
assertions hold:

(i) Write Sf ⊆ Aét for the subsheaf of Aét that assigns, to an open subscheme U ⊆ X,
the subset of Aét(U) obtained by forming the intersection of Aét(U) and the Brtn-orbit
(⊆ Pgét(U)) of f |U [cf. Remark 1.2.1, (i), (iv)]:

Sf (U)
def
= Aét(U) ∩ (Brtn · f |U).

Then the subsheaf Sf is a Frobenius-affine structure of level N on X.

(ii) Let g ∈ Pgét(X) be a global section of Pgét which is contained in the Brtn-orbit
of f ∈ Pgét(X). [So g is a Tango function of level N — cf. Remark 1.3.1.] Then
Sf = Sg [cf. (i)].

Proof. — Assertion (i) follows immediately from Lemma 2.4, together with the defini-
tion of a Tango function of level N . Assertion (ii) follows immediately from the definition
of “Sf”. □

DEFINITION 2.6. — Let f ∈ Pgét(X) be a Tango function of level N . Then it follows
from Lemma 2.5, (i), that f determines a Frobenius-affine structure of level N . We shall
refer to this Frobenius-affine structure of level N as the Frobenius-affine structure of level
Nassociated to f . Thus, we obtain a map

TfN(X)/Brtn // FasN(X)

[cf. Lemma 2.5, (ii)].

PROPOSITION 2.7. — The assignments of Definition 2.3 and Definition 2.6 determine a
bijective map

FasN(X)
∼ // TfN(X)/Brtn.

Proof. — This assertion follows immediately from the constructions of Lemma 2.2 and
Lemma 2.5. □

REMARK 2.7.1. — As observed in Remark 2.1.1, (ii), the notion of Frobenius-affine struc-
tures may be regarded as an analogue, in positive characteristic, of the notion of complex
affine structures in the classical theory of Riemann surfaces. Moreover, it is well-known
[cf., e.g., [1, Lemma 1]] that if a compact Riemann surface admits a complex affine
structure, then the compact Riemann surface is of genus 1. On the other hand, one
may conclude from Remark 1.7.2 and Proposition 2.7 that, for an arbitrary algebraically
closed field F of positive characteristic and an arbitrary positive integer N , there exists
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a projective smooth curve over F of genus ≥ 2 that has a Frobenius-affine structure of
level N .

LEMMA 2.8. — Let S ⊆ Aét be a Frobenius-affine structure of level N on X.
Then the subsheaf SG of P ét that assigns, to an open subscheme U ⊆ X, the subset of
P ét(U) obtained by forming the intersection of P ét(U) and the union of the Grtn-orbits
(⊆ Pgét(U)) of the elements of S(U) [cf. Remark 1.2.1, (i), (iv)]:

SG(U)
def
= P ét(U) ∩

(
Grtn · S(U)

)
.

Then the subsheaf SG of P ét is a Frobenius-projective structure of level N on X
[cf. [4, Definition 3.1]].

Proof. — This assertion follows — in light of Remark 1.3.2 — from [4, Lemma 3.5,
(i)]. □

DEFINITION 2.9. — Let S ⊆ Aét be a Frobenius-affine structure of level N on X. Then
it follows from Lemma 2.8 that S determines a Frobenius-projective structure of level N .
We shall refer to this Frobenius-projective structure as the Frobenius-projective structure
of level N associated to S. Thus, we obtain a map

FasN(X) // FpsN(X)

[cf. [4, Definition 3.1]].

REMARK 2.9.1. — One verifies easily from the various definitions involved that the dia-
gram

TfN(X)/Brtn //

≀
��

pcdN(X)/Grtn
≀
��

FasN(X) // FpsN(X)

— where the upper horizontal arrow is the lower horizontal arrow of the diagram of
Remark 1.3.2, the lower horizontal arrow is the map of Definition 2.9, the left-hand
vertical arrow is the inverse of the bijective map of Proposition 2.7, and the right-hand
vertical arrow is the inverse of the bijective map of [4, Proposition 3.7] — is commutative.

3. Frobenius-affine-indigenous Structures

In the present §3, we introduce and discuss the notion of Frobenius-affine-indigenous
structures [cf. Definition 3.3 below]. Moreover, we also discuss a relationship between
Frobenius-affine-indigenous structures and Frobenius-affine structures [cf. Proposition 3.9
below].

In the present §3, we maintain the notational conventions introduced at the beginning
of §1. Write, moreover,

Xf
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for the “XF” in the case where N = 1 and

φ : X // Xf

for the “Φ” in the case where N = 1. Thus, the morphism Φ: X → XF factors as a
composite

X
ϕ // Xf // XF .

We shall write

Φf→F : X
f // XF

for the second arrow in this composite [i.e., the “Φ” in the case where we take the pair
“(X,N)” to be (Xf , N − 1)].

DEFINITION 3.1. — Let Z be a scheme that is smooth over XF . Thus, the base-change
Φ∗Z → X of the structure morphism Z → XF by the morphism Φ: X → XF may be
regarded as an object of the category SmSch of [6, Definition 1.7] in the case where we
take the “(S,X)” of [6] to be (Spec(k), X). Let us recall from [7, Proposition 3.3] that the
natural Frobenius-descent datum on Φ∗Z = φ∗(Φ∗

f→FZ) → X [i.e., the natural descent

datum on Φ∗Z = φ∗(Φ∗
f→FZ) → X with respect to the morphism φ : X → Xf — cf. [7,

Definition 3.2, (iv)]] gives rise to an Fr-stratification on Φ∗Z → X [cf. [5, Definition 4.6]
and [7, Definition 1.8]], which thus determines [cf. [5, Lemma 4.12, (i)] and [7, Proposition
1.11]] a PD-stratification on Φ∗Z → X [cf. [5, Definition 4.6] and [6, Definition 2.5]] —
i.e., in the case where we take the “(S,X)” of [5], [6], [7] to be (Spec(k), X). We shall
write

∇Φ∗Z

for the PD-connection on Φ∗Z → X [cf. [5, Definition 4.1, (iii)] and [6, Definition 2.5]]
determined by the resulting PD-stratification on Φ∗Z → X [cf. also [4, Definition 4.2, (i),
(ii)]].

DEFINITION 3.2. — Let Z be a scheme that is smooth over X and σ a section of
Z → X. Thus, the structure morphism Z → X may be regarded as an object of
the category SmSch of [6, Definition 1.7] in the case where we take the “(S,X)” of [6]
to be (Spec(k), X). Let ∇ be a PD-connection on Z → X [cf. [5, Definition 4.1, (iii)]
and [6, Definition 2.5]] — i.e., in the case where we take the “(S,X)” of [5], [6] to be
(Spec(k), X). Then, by considering the difference between the two deformations

PDP 1
(PDpr11)

∗σ
// (PDpr11)

∗Z, PDP 1
(PDpr12)

∗σ
// (PDpr12)

∗Z ∼
∇ // (PDpr11)

∗Z

[cf. [5, Definition 2.3, (ii)] and [6, Definition 2.5]] of the section σ, we have a global section
of the invertible sheaf on X

HomOX
(σ∗Ω1

Z/X ,Ω
1
X/k).

[Note that let us recall from elementary algebraic geometry that the set of deforma-
tions PDP 1 → (PDpr11)

∗Z of the section σ : X → Z forms a torsor under the module
Γ(X,HomOX

(σ∗Ω1
Z/X ,Ω

1
X/k)).] We shall refer to this global section as the Kodaira-Spencer

section of ∇ at σ [cf. also [4, Definition 4.3]].
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DEFINITION 3.3. — We shall say that a pair (A → XF , σ) consisting of an A1-bundle
A → XF over XF and a section σ of the pull-back Φ∗A → X is a Frobenius-affine-
indigenous structure of level N on X if the Kodaira-Spencer section [cf. Definition 3.2]
of the PD-connection ∇Φ∗A [cf. Definition 3.1] at σ is nowhere vanishing.
For two Frobenius-affine-indigenous structures I1 = (A1 → XF , σ1), I2 = (A2 →

XF , σ2) of level N on X, we shall say that I1 is isomorphic to I2 if there exists an

isomorphism A1
∼→ A2 over XF compatible with σ1 and σ2.

We shall write
FaisN(X)

for the set of isomorphism classes of Frobenius-affine-indigenous structures of level N on
X.

REMARK 3.3.1. — One finds easily that the notion of Frobenius-affine-indigenous struc-
tures may be regarded as an “affine version” of the notion of Frobenius-indigenous struc-
tures [cf. [4, Definition 4.4]].

LEMMA 3.4. — Let (A → XF , σ) be a Frobenius-affine-indigenous structure of
level N on X. Write P → XF for the P1-bundle over XF obtained by forming the
smooth compactification of A → XF . Then the pair of the P1-bundle P → XF and
the section of the P1-bundle P → XF determined by σ is a Frobenius-indigenous
structure of level N on X [cf. [4, Definition 4.4]].

Proof. — This assertion follows immediately from the various definitions involved. □

REMARK 3.4.1. — Let I = (A → XF , σ) be a Frobenius-affine-indigenous structure of
level N on X. Then it follows from Lemma 3.4 that I determines a Frobenius-indigenous
structure of level N . We shall refer to this Frobenius-indigenous structure of level N as
the Frobenius-indigenous structure of level N associated to I. Thus, we obtain a map

FaisN(X) // FisN(X)

[cf. [4, Definition 4.4]].

REMARK 3.4.2. — One verifies immediately from Lemma 3.4 that giving a Frobenius-
affine-indigenous structure of level N on X is “equivalent” to giving a collection (P →
XF , σ∞, σ) of data consisting of a P1-bundle P → XF over XF , a section σ∞ of the P1-
bundle P → XF , and a section σ of the pull-back Φ∗P → X that satisfies the following
two conditions:

(1) The image of Φ∗σ∞ does not intersect the image of σ.

(2) The Kodaira-Spencer section [cf. Definition 3.2] of the PD-connection ∇Φ∗P [cf.
Definition 3.1] at σ is nowhere vanishing.
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LEMMA 3.5. — Let S ⊆ Aét be a Frobenius-affine structure of level N on X. Thus,
the sheaf Φ∗S is a PGL∞

2,XF -torsor on XF . Write AS → XF for the A1-bundle associated

to the PGL∞
2,XF -torsor Φ∗S [i.e., the quotient of Φ∗S ×XF A1

XF by the diagonal action of

PGL∞
2,XF ]. For each local section s of Φ∗S, write σs for the local section of the trivial A1-

bundle A1
X → X that corresponds to s [cf. Remark 1.2.1, (ii)]. Then the pair consisting

of

(1) the A1-bundle AS → XF over XF and

(2) the section of Φ∗AS → X determined by the various pairs “(s, σs)” — where “s”
ranges over the local sections of Φ∗S —

is a Frobenius-affine-indigenous structure of level N on X.

Proof. — Write SG ⊆ P ét for the Frobenius-projective structure of level N associated
to S [cf. Definition 2.9], I = (P → XF , σ) for the Frobenius-indigenous structure of
level N associated to SG [cf. [4, Definition 4.8]], σ∞ for the section of the P1-bundle
P → XF determined by the “Borel subgroup” PGL∞

2,XF ⊆ PGL2,XF of PGL2,XF [cf.

also the construction of [4, Lemma 4.7]], and A → XF for the A1-bundle obtained by
forming the complement of the image of σ∞ in P . Then one verifies immediately from
the various definitions involved [cf. also the construction of [4, Lemma 4.7]] that there

exists an isomorphism AS
∼→ A over XF compatible with the section of (2) and σ. Thus,

Lemma 3.5 is a formal consequence of [4, Lemma 4.7]. This completes the proof of
Lemma 3.5. □

DEFINITION 3.6. — Let S ⊆ Aét be a Frobenius-affine structure of level N on X. Then
it follows from Lemma 3.5 that S determines a Frobenius-affine-indigenous structure of
level N . We shall refer to this Frobenius-affine-indigenous structure of level N as the
Frobenius-affine-indigenous structure of level N associated to S. Thus, we obtain a map

FasN(X) // FaisN(X).

REMARK 3.6.1. — One verifies easily from the various definitions involved that the dia-
gram

FasN(X) //

��

FpsN(X)

≀
��

FaisN(X) // FisN(X)

— where the upper horizontal arrow is the map of Definition 2.9, the lower horizontal
arrow is the map of Remark 3.4.1, the left-hand vertical arrow is the map of Definition 3.6,
and the right-hand vertical arrow is the bijective map of [4, Proposition 4.11] — is
commutative.
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LEMMA 3.7. — Let (A → XF , σ) be a Frobenius-affine-indigenous structure of
level N on X. Write (P → XF , σ∞, σ) for the collection of data discussed in Re-
mark 3.4.2 that corresponds to the Frobenius-affine-indigenous structure (A → XF , σ).
Then the following assertions hold:

(i) Let U ⊆ X be an open subscheme of X such that the restriction A|UF is isomor-
phic to the trivial A1-bundle over UF , which thus implies that there exists an isomor-
phism ιU : P |UF

∼→ P1
UF over UF compatible with the sections σ∞|UF and ∞UF . Write

fU,ιU ∈ P(U) for the section of P obtained by forming the composite

U
σ|U // (Φ∗P )|U

Φ∗ιU
∼

// P1
U P1

k ×k U
pr1 // P1

k.

Then fU,ιU ∈ P ét(U).

(ii) The collection of sections fU,ιU ∈ P ét(U) [cf. (i)] — where (U, ιU) ranges over the
pairs as in (i) — determines a Frobenius-affine structure of level N on X.

Proof. — Assertion (i) follows immediately from [4, Lemma 4.9, (i)]. Assertion (ii)
follows immediately from assertion (i). □

DEFINITION 3.8. — Let I be a Frobenius-affine-indigenous structure of level N on X.
Then it follows from Lemma 3.7, (ii), that I determines a Frobenius-affine structure of
level N . We shall refer to this Frobenius-affine structure of level N as the Frobenius-affine
structure of level N associated to I. Thus, we obtain a map

FaisN(X) // FasN(X).

PROPOSITION 3.9. — The assignments of Definition 3.6 and Definition 3.8 determine a
bijective map

FasN(X)
∼ // FaisN(X).

Proof. — This assertion follows immediately from the constructions of Lemma 3.5 and
Lemma 3.7. □

The main result of the present paper is as follows.

THEOREM 3.10. — There exist bijective maps

TfN(X)/Brtn
∼ // FasN(X)

∼ // FaisN(X).

Proof. — This assertion follows from Proposition 2.7 and Proposition 3.9. □

REMARK 3.10.1. — If (p,N) 6= (2, 1), then the bijective maps of Theorem 3.10 are com-
patible with the bijective maps of [4, Theorem 4.13] [cf. Remark 2.9.1 and Remark 3.6.1].



Frobenius-affine Structures and Tango Curves 21

4. Relationship Between Certain Frobenius-destabilized Bundles

In the present §4, we discuss a relationship between Frobenius-affine-indigenous struc-
tures and certain Frobenius-destabilized bundles over XF [cf. Proposition 4.7 below]. In
the present §4, we maintain the notational conventions introduced at the beginning of
the preceding §3. Suppose, moreover, that

g ≥ 2.

DEFINITION 4.1. — Let S be a scheme. For each i ∈ {1, 2}, let Ei be an OS-module and
Fi ⊆ Ei an OS-submodule of Ei. Then we shall say that the pair (E1,F1) is P-equivalent
to (E2,F2) if there exist an invertible sheaf L on S and an isomorphism E1 ⊗OS

L ∼→ E2
of OS-modules that restricts to an isomorphism F1 ⊗OS

L ∼→ F2. We shall write

(E1,F1) ∼P (E2,F2)

if (E1,F1) is P-equivalent to (E2,F2).

REMARK 4.1.1. — In the situation of Definition 4.1, it is immediate that if (E1,F1) is
P-equivalent to (E2,F2) [in the sense of Definition 4.1], then E1 is P-equivalent to E2 in
the sense of [4, Definition 5.1].

DEFINITION 4.2. — Let d be a positive integer, E a locally free coherent OXF -module of
rank 2, and L ⊆ E an invertible subsheaf of E . Then we shall say that the pair (E ,L) is
(N, d)-Frobenius-splitting if the following two conditions are satisfied:

(1) The locally free coherent OXf -module Φ∗
f→FE of rank 2 is stable. [In particular,

the locally free coherent OXF -module E of rank 2 is stable.]

(2) There exist an invertible sheafM on X of degree pN

2
·deg(E)+d = 1

2
·deg(Φ∗E)+d

and a locally split injective homomorphism M ↪→ Φ∗E of OX-modules such that the
inclusions Φ∗L,M ↪→ Φ∗E determine an isomorphism Φ∗L⊕M ∼→ Φ∗E of OX-modules.
[In particular, the locally free coherent OX-module Φ∗E = φ∗Φ∗

f→FE of rank 2 is not
semistable.] Note that one verifies easily that the quotient, which is an invertible sheaf

on X, of Φ∗E byM is of degree pN

2
· deg(E)− d = deg(M)− 2d.

We shall write

FspN(X)

for the set of P-equivalence classes [cf. Remark 4.2.1 below] of (N, g − 1)-Frobenius-
splitting pairs on X.

REMARK 4.2.1. — For each i ∈ {1, 2}, let Ei be a locally free coherent OXF -module of
rank 2 and Li ⊆ Ei an invertible subsheaf of Ei. Suppose that (E1,L1) ∼P (E2,L2). Then
one verifies easily that (E1,L1) is (N, g − 1)-Frobenius-splitting if and only if (E2,L2) is
(N, g − 1)-Frobenius-splitting.
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REMARK 4.2.2. — Let (E ,L) be an (N, g − 1)-Frobenius-splitting pair on X. Then it is
immediate that the locally free coherentOXF -module E is (N, g−1)-Frobenius-destabilized
[cf. [4, Definition 5.2]]. In particular, we have a map

FspN(X) // FdsN(X)

[cf. Remark 4.1.1 and [4, Definition 5.2]].

REMARK 4.2.3. — Suppose that p 6= 2, and that N = 1. Then one verifies immediately
from the various definitions involved [cf. also Remark 4.2.2 and the proof of [4, Lemma
5.3]] that giving an (N, g − 1)-Frobenius-splitting pair on X is “equivalent” to giving a
dormant Miura GL2-oper [cf. [10, Definition 4.2.1] and [10, Definition 4.2.2]].

REMARK 4.2.4. — Write FrX : X → X for the p-th power Frobenius endomorphism of
X. Then one verifies easily that the assignment “(E ,L) 7→ (W∗E ,W∗L)” determines a
bijective map of the set FspN(X) with the set of P-equivalence classes of pairs (F ,G)
of locally free coherent OX-modules F of rank 2 and invertible subsheaves G ⊆ F that
satisfy the following condition: If, for a nonnegative integer i, we write

Gi
def
=

i︷ ︸︸ ︷
Fr∗X · · ·Fr∗X G ⊆ Fi

def
=

i︷ ︸︸ ︷
Fr∗X · · ·Fr∗X F ,

then

• the locally free coherent OX-module FN−1, hence also F , is stable, but

• there exist an invertible sheafM onX of degree pN

2
·deg(F)+g−1 = 1

2
·deg(FN)+g−1

and a locally split injective homomorphism M ↪→ FN of OX-modules such that the
inclusions GN ,M ↪→ FN determine an isomorphism GN ⊕M

∼→ FN of OX-modules. [In
particular, the locally free coherent OX-module FN is not semistable.]

LEMMA 4.3. — Let (E ,L) be an (N, g − 1)-Frobenius-splitting pair on X. Write
P(E) → XF for the projectivization of E and σ∞(L) for the section of P(E) → XF

determined by L ⊆ E [cf. condition (2) of Definition 4.2]. Then there exists a [uniquely
determined — cf. Remark 4.2.2 and [4, Lemma 4.6]] section σ of Φ∗P(E) → X such
that the collection (P(E) → XF , σ∞(L), σ) of data is a collection of data discussed in
Remark 3.4.2 that corresponds to a Frobenius-affine-indigenous structure of level
N on X.

Proof. — This assertion follows — in light of Remark 4.2.2 — from [4, Lemma 5.3] [cf.
also the proof of [4, Lemma 5.3]]. □

DEFINITION 4.4. — Let (E ,L) be an (N, g − 1)-Frobenius-splitting pair on X. Then it
follows from Lemma 4.3 that (E ,L) determines a Frobenius-affine-indigenous structure
of level N . We shall refer to this Frobenius-affine-indigenous structure of level N as the
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Frobenius-affine-indigenous structure of level N associated to (E ,L). Thus, we obtain a
map

FspN(X) // FaisN(X).

REMARK 4.4.1. — One verifies easily from the various definitions involved that the dia-
gram

FspN(X) //

��

FdsN(X)

≀
��

FaisN(X) // FisN(X)

— where the upper horizontal arrow is the map of Remark 4.2.2, the lower horizontal
arrow is the map of Remark 3.4.1, the left-hand vertical arrow is the map of Defini-
tion 4.4, and the right-hand vertical arrow is the bijective map of [4, Proposition 5.7] —
is commutative.

LEMMA 4.5. — Let (P → XF , σ∞, σ) be a collection of data discussed in Remark 3.4.2
that corresponds to a Frobenius-affine-indigenous structure of level N on X and
E a locally free coherent OXF -module of rank 2 whose projectivization is isomorphic to
P over XF . Write L ⊆ E for the invertible subsheaf of E determined by the section σ∞.
Then the pair (E ,L) is (N, g − 1)-Frobenius-splitting.

Proof. — This assertion follows — in light of Remark 4.2.2 — from [4, Lemma 5.5] [cf.
also the proof of [4, Lemma 5.5]]. □

DEFINITION 4.6. — Let I be a Frobenius-affine-indigenous structure of level N on X.
Then it follows from Lemma 4.5 that I determines a P-equivalence class of (N, g − 1)-
Frobenius-splitting pair. We shall refer to this P-equivalence class as the (N, g − 1)-
Frobenius-splitting class associated to I. Thus, we obtain a map

FaisN(X) // FspN(X).

PROPOSITION 4.7. — The assignments of Definition 4.4 and Definition 4.6 determine a
bijective map

FspN(X)
∼ // FaisN(X).

Proof. — This assertion follows immediately from the constructions of Lemma 4.3 and
Lemma 4.5. □

COROLLARY 4.8. — Suppose that g ≥ 2. Then there exist bijective maps

TfN(X)/Brtn
∼ // FasN(X)

∼ // FaisN(X)
∼ // FspN(X).

Proof. — This assertion follows from Theorem 3.10 and Proposition 4.7. □
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REMARK 4.8.1. — If (p,N) 6= (2, 1), then the bijective maps of Corollary 4.8 are com-
patible with the bijective maps of [4, Corollary 5.8] [cf. Remark 3.10.1 and Remark 4.4.1].

REMARK 4.8.2. — Suppose that p 6= 2. Then it follows from Corollary 4.8 that the
existence of a Tango function of level N is equivalent to the existence of an (N, g − 1)-
Frobenius-splitting pair. In particular, by applying this equivalence to the case where
N = 1, we conclude from Corollary 1.11 and Remark 4.2.3 that X is a Tango curve if
and only if X has a dormant Miura GL2-oper [cf. [10, Definition 4.2.1] and [10, Definition
4.2.2]]. On the other hand, this equivalence [i.e., in the case where N = 1] is an immediate
consequence of [10, Theorem A, (i)]. Thus, one concludes that Corollary 4.8 may be
regarded as a “higher level version” of this equivalence [i.e., in the case where N = 1]
derived from [10, Theorem A, (i)].

COROLLARY 4.9. — Suppose that p 6= 2, that g ≥ 2, and that N = 1. Suppose, moreover,
that there exists a projective smooth curve over k of genus g that has a Tango function
of level N [which thus implies that g − 1 is divisible by p — cf. Corollary 1.10]. Then
there exists a closed subscheme of the coarse moduli space of projective smooth curves
over k of genus g of pure codimension (g − 1)(p− 2)/p such that if the curve X is
parametrized by the closed subscheme, then the four sets

TfN(X), FasN(X), FaisN(X), FspN(X)

are nonempty

Proof. — This assertion follows from [10, Theorem B], together with Corollary 4.8. □

5. Some Results in Small Characteristic Cases

In the present §5, we prove some results related to Frobenius-affine structures in the
case where p ≤ 3. In the present §5, we maintain the notational conventions introduced
at the beginning of §3.

PROPOSITION 5.1. — Suppose that (p,N) = (2, 1). Then the following assertions hold:

(i) The collection of data consisting of

• the P1-bundle P → XF over XF obtained by forming the projectivization of the
locally free coherent OXF -module Φ∗OX of rank 2,

• the section of P → XF determined by the invertible subsheaf OXF ⊆ Φ∗OX

obtained by forming the image of the homomorphism OXF → Φ∗OX of OXF -modules
induced by Φ, and

• the section of Φ∗P → X determined by the [necessarily surjective] homomorphism
Φ∗Φ∗OX ↠ OX of OX-modules obtained by multiplication

is a collection of data discussed in Remark 3.4.2 that corresponds to a Frobenius-affine-
indigenous structure of level N on X.
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(ii) Every Frobenius-affine-indigenous structure of level N on X is isomorphic to
the Frobenius-affine-indigenous structure of level N of (i).

Proof. — Assertion (i) follows from [4, Lemma 6.2]. Assertion (ii) follows from Re-
mark 1.7.1 and Theorem 3.10. □

COROLLARY 5.2. — Suppose that (p,N) = (2, 1), and that g ≥ 2. Then every (N, g−1)-
Frobenius-splitting pair on X is P-equivalent to the pair (Φ∗OX ,OXF ) consisting of the
locally free coherent OXF -module Φ∗OX of rank 2 and the invertible subsheaf OXF ⊆
Φ∗OX obtained by forming the image of the homomorphism OXF → Φ∗OX of OXF -
modules induced by Φ.

Proof. — This assertion follows from Corollary 4.8 and Proposition 5.1, (ii). □

LEMMA 5.3. — Suppose that p = 2, that g ≥ 2, and that N ≥ 2. Let E be a locally free
coherent OXF -module of rank 2. Then the following assertions hold:

(i) Suppose that g is odd. Then it holds that E is (N, g−1)-Frobenius-destabilized
[cf. [4, Definition 5.2]] if and only if Φ∗

f→FE is P-equivalent [cf. [4, Definition 5.1]] to
φ∗OX .

(ii) Suppose that E is (N, g − 1)-Frobenius-destabilized. Then the following two
conditions are equivalent:

(1) There exists an invertible subsheaf L ⊆ E such that the pair (E ,L) is (N, g−1)-
Frobenius-splitting.

(2) There exist invertible sheaves M, Q on XF , a surjective homomorphism

E ⊗O
XF
M↠ Q of OXF -modules, and an isomorphism φ∗OX

∼→ Φ∗
f→F (E ⊗O

XF
M) of

OXf -modules such that Q is of degree (2g − 2)/pN .

If, moreover, one of conditions (1), (2) is satisfied, then g is odd.

Proof. — First, we verify assertion (i). Let us first observe that since p = 2, and
N ≥ 2, the OXf -module Φ∗

f→FE is of even degree. Next, let us observe that since g is
odd, it follows from [4, Proposition 5.7], [4, Lemma 6.4, (ii)], and [4, Proposition 6.6, (iii)]
that every (1, g− 1)-Frobenius-destabilized locally free coherent OXf -module of rank 2 of
even degree is P-equivalent to φ∗OX . Thus, assertion (i) follows from [4, Remark 5.2.2,
(i)]. This completes the proof of assertion (i).

Next, we verify assertion (ii). First, to verify the implication (1) ⇒ (2), let L be
as in condition (1). Then since N ≥ 2, it follows immediately from Corollary 1.10 and
Corollary 4.8 that g−1 is divisible by 2N−1, which thus implies that g is odd. In particular,
since E is (N, g− 1)-Frobenius-destabilized [cf. condition (1) and Remark 4.2.2], it follows
from assertion (i) that Φ∗

f→FE is P-equivalent to φ∗OX . Thus, since the locally free
coherent OXf -module φ∗OX of rank 2 is of degree g− 1 [cf., e.g., [4, Lemma 6.4, (ii)]], we
may assume without loss of generality, by replacing E by the tensor product of E and a
suitable invertible sheaf on XF , that Φ∗

f→FE is isomorphic to φ∗OX , and, moreover, the

quotient E/L of E by L ⊆ E is of degree (2g − 2)/pN [cf. condition (2) of Definition 4.2],
as desired. This completes the proof of the implication (1) ⇒ (2).
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Next, to verify the implication (2) ⇒ (1), let M, Q be as in condition (2). Then
since the locally free coherent OXf -module φ∗OX of rank 2 is of degree g − 1 [cf., e.g.,
[4, Lemma 6.4, (ii)]], one verifies immediately from assertion (i), together with the proof
of [4, Lemma 5.3], that if one writes K ⊆ E ⊗O

XF
M for the kernel of the surjective

homomorphism E ⊗O
XF
M ↠ Q of condition (2), then the pair (E ,K ⊗O

XF
M−1) is

(N, g− 1)-Frobenius-splitting, as desired. This completes the proof of the implication (2)
⇒ (1).

Finally, since N ≥ 2, the final assertion follows from Corollary 1.10 and Corollary 4.8.
This completes the proof of assertion (ii), hence also of Lemma 5.3. □

LEMMA 5.4. — Suppose that p = 3, and that g ≥ 2. Write

BXf
def
= Coker(OXf → φ∗OX)

for the OXf -module obtained by forming the cokernel of the homomorphism OXf → φ∗OX

of OXf -modules induced by φ. Let E be a locally free coherent OXF -module of rank 2. Then
the following assertions hold:

(i) It holds that E is (N, g − 1)-Frobenius-destabilized if and only if Φ∗
f→FE is

P-equivalent to BXf .

(ii) Suppose that E is (N, g − 1)-Frobenius-destabilized. Then the following two
conditions are equivalent:

(1) There exists an invertible subsheaf L ⊆ E such that the pair (E ,L) is (N, g−1)-
Frobenius-splitting.

(2) There exist invertible sheaves M, Q on XF , a surjective homomorphism

E ⊗O
XF
M ↠ Q of OXF -modules, and an isomorphism BXf

∼→ Φ∗
f→F (E ⊗O

XF
M) of

OXf -modules such that Q is of degree (4g − 4)/pN .

Proof. — First, we verify assertion (i). Let us first observe that it follows from [4,
Corollary 5.8] and [2, Theorem A] [cf. also [3, §1]], together with [4, Remark 4.4.1, (ii)]
and the construction of [4, Lemma 5.5], that every (1, g−1)-Frobenius-destabilized locally
free coherent OXf -module of rank 2 is P-equivalent to BXf . Thus, assertion (i) follows
from [4, Remark 5.2.2, (i)]. This completes the proof of assertion (i).

Next, we verify assertion (ii). First, to verify the implication (1) ⇒ (2), let L be as
in condition (1). Then since E is (N, g − 1)-Frobenius-destabilized [cf. condition (1) and
Remark 4.2.2], it follows from assertion (i) that Φ∗

f→FE is P-equivalent to BXf . Now let
us observe that it follows from Corollary 1.10 and Corollary 4.8 that 2g−2 is divisible by
pN . Thus, since the locally free coherent OXf -module BXf of rank 2 is of degree 2g − 2
[cf., e.g., [2, Lemma 1.2]], we may assume without loss of generality, by replacing E by
the tensor product of E and a suitable invertible sheaf on XF , that Φ∗

f→FE is isomorphic

to BXf , and, moreover, the quotient E/L of E by L ⊆ E is of degree (4g − 4)/pN [cf.
condition (2) of Definition 4.2], as desired. This completes the proof of the implication
(1) ⇒ (2).

Next, to verify the implication (2) ⇒ (1), letM, Q be as in condition (2). Then since
the locally free coherent OXf -module BXf of rank 2 is of degree 2g−2 [cf., e.g., [2, Lemma
1.2]], one verifies immediately from assertion (i), together with the proof of [4, Lemma
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5.3], that if one writes K ⊆ E ⊗O
XF
M for the kernel of the surjective homomorphism

E ⊗O
XF
M↠ Q of condition (2), then the pair (E ,K⊗O

XF
M−1) is (N, g−1)-Frobenius-

splitting, as desired. This completes the proof of the implication (2) ⇒ (1), hence also of
assertion (ii). □

COROLLARY 5.5. — Suppose that g ≥ 2. Suppose, moreover, that N ≥ 2 whenever
p = 2. Write

BXf
def
= Coker(OXf → φ∗OX)

for the OXf -module obtained by forming the cokernel of the homomorphism OXf → φ∗OX

of OXf -modules induced by φ. Then the following assertions hold:

(i) Suppose that p = 2 (respectively, p = 3). Suppose, moreover, that g is odd
whenever p = 2. Then it holds that X has a pseudo-coordinate of level N [cf. [4,
Definition 2.3]] if and only if there exists a locally free coherent OXF -module E of rank 2
such that φ∗OX (respectively, BXf ) is P-equivalent to Φ∗

f→FE.
(ii) Suppose that p = 2 (respectively, p = 3). Then it holds that X has a Tango

function of level N if and only if there exist a locally free coherent OXF -module E of
rank 2, an invertible sheaf Q on XF of degree (2g−2)/pN (respectively, (4g−4)/pN ),

a surjective homomorphism E ↠ Q of OXF -modules, and an isomorphism φ∗OX
∼→

Φ∗
f→FE (respectively, BXf

∼→ Φ∗
f→FE) of OXf -modules.

Proof. — First, we verify assertion (i). Let us first observe that it follows from [4,
Corollary 5.8] that X has a pseudo-coordinate of level N if and only if there exists an
(N, g − 1)-Frobenius-destabilized locally free coherent OXF -module of rank 2. Thus, as-
sertion (i) follows from Lemma 5.3, (i), and Lemma 5.4, (i). This completes the proof of
assertion (i).

Next, we verify assertion (ii). Let us first observe that it follows from Corollary 4.8
that X has a Tango function of level N if and only if there exists an (N, g−1)-Frobenius-
splitting pair on X. Thus, assertion (ii) follows from Lemma 5.3, (ii), and Lemma 5.4,
(ii). This completes the proof of assertion (ii), hence also of Corollary 5.5. □
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