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ABSTRACT. — In the present paper, we prove three results concerning indigenous bundles on
hyperbolic curves in characteristic three. The first result is a result concerning a relationship
between the square Hasse invariants of indigenous bundles and the torsor structure of the
Schwarz torsor in characteristic three. One immediate consequence of this first result is that the
isomorphism class of an indigenous bundle in characteristic three is completely determined by
the associated square Hasse invariant. The second result is a result concerning the ordinariness
of nilpotent admissible indigenous bundles in characteristic three. This result asserts that, for
a given nilpotent admissible indigenous bundle in characteristic three, it is ordinary if and only
if the associated Hasse defect is parabolically ordinary. The third result is a result concerning
a relationship between strongly spiked indigenous bundles and Tango curves in characteristic
three. One immediate consequence of this third result is that if a projective hyperbolic curve in
characteristic three admits a global differential whose square coincides with the square Hasse
invariant of a strongly spiked indigenous bundles, then the curve is a Tango curve.
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INTRODUCTION

Let us first recall that the notion of an indigenous bundle is one of the main notions in
the theory of hyperbolically ordinary curves [cf., e.g., [9], [10]]. In the present paper, we
prove three results concerning indigenous bundles on hyperbolic curves in characteristic
3. Throughout the present paper, let p be an odd prime number and (g,r) a pair of
nonnegative integers such that 2g — 2 + r is positive; moreover, we shall use the notation
“w” to denote the relative cotangent sheaf.

The first main result of the present paper is a result concerning a relationship between
the square Hasse invariants of indigenous bundles and the torsor structure of the Schwarz
torsor in characteristic 3. Write M for the moduli stack of hyperbolic curves of type
(g,7) in characteristic p, (C, D) for the universal hyperbolic curve of type (g,r) over M,
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m: C — M for the structure morphism of C over M, and
S—M

for the Schwarz torsor over M [cf. [10, Introduction, §0.4]], i.e., the moduli stack of
hyperbolic curves of type (g,r) in characteristic p equipped with indigenous bundles [cf.
9, Chapter I, Definition 2.2]]. Then it is well-known [cf. [9, Chapter I, Corollary 2.9],
[10, Introduction, §0.4]] that the Schwarz torsor S admits a natural structure of torsor

under G & W*(W?/QM (D)) over M. Write, moreover,

YV —M

for the vector bundle over M associated to the locally free coherent O,;-module ob-
tained by forming the O-dual of the [necessarily locally free coherent] Oj-module
7. (wepad(D)P0 D) and

sq-Hss: § —=V

for the morphism of stacks over M obtained by considering the square Hasse invariants
[cf. [9, Chapter II, Proposition 2.6, (1)]] of the indigenous bundles parametrized by the
Schwarz torsor. Now let us observe that if p = 3, then the natural inclusion Qg <
O¢(D) determines an injective homomorphism G = W*(W?fM (D)) — m(weym(D)®?) =
o (we/p(D)®P~Y). In particular, one obtains an action of G on the vector bundle V over
M whenever p = 3.

The first main result of the present paper is as follows [cf. Theorem 1.7].

THEOREM A. — Suppose that p = 3. Then the morphism of stacks over M
sq-Hss: § —=V

is compatible with the respective actions of G. In particular, this morphism is a closed
immersion.

One immediate consequence of Theorem A is that the isomorphism class of an indige-
nous bundle in characteristic 3 is completely determined by the associated square Hasse
invariant. Moreover, one may derive [1, Theorem A] from Theorem A [cf. Remark 1.7.2].

The second main result of the present paper is a result concerning the ordinariness of
nilpotent admissible indigenous bundles in characteristic 3. Let S be a noetherian scheme
over IF,, (X, D) a hyperbolic curve of type (g,7) over S, and (P, Vp) an indigenous bundle
on (X, D). Suppose that the indigenous bundle (P, Vp) is nilpotent [cf. [9, Chapter II,
Definition 2.4]] and admissible [cf. [9, Chapter II, Definition 2.4]]. Then let us recall from
[9, Chapter II, Proposition 2.6, (3)] that there exist a unique, up to isomorphism [cf. [9,
Chapter II, Proposition 2.6, (4)]], invertible sheaf H on X and a global section x of H
[i.e., the Hasse invariant of (P, Vp)] such that the global section xy®? of the square H®?
coincides with the square Hasse invariant of (P,Vp). We shall refer to the invertible
sheaf on X

HOmoX (OJX/S(D)®(p_1)/2, H)

as the Hasse defect of (P,Vp). One may verify that the square of the Hasse defect of
(P,Vp) is trivial [cf. Proposition 2.2].
The second main result of the present paper is as follows [cf. Theorem 2.4].
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THEOREM B. — Suppose that p = 3. Then the following two conditions are equivalent:

(1) The nilpotent admissible indigenous bundle (P,V p) is ordinary [cf. [9, Chapter
I1, Definition 3.1]].

(2) The Hasse defect of (P,V p) is parabolically ordinary [cf. [1, Definition A.7]].

Here, let us recall that if the scheme S is the spectrum of an algebraically closed field,
then condition (2) in the statement of Theorem B is the condition that either

e the Hasse defect of (P, Vp) is trivial, and the Jacobian variety of the curve X is an
ordinary abelian variety, or

e the Hasse defect of (P,Vp) is nontrivial, and the associated Prym variety is an
ordinary abelian variety.

Note that Theorem B generalizes [1, Proposition 4.4]. Moreover, one may derive, from
Theorem B, the assertion that the [necessarily nilpotent admissible] indigenous bundle
obtained by forming the projectivization of the relative first de Rham cohomology module,
equipped with the Gauss-Manin connection, of the universal stable curve of type (1,1)
over the modular curve over F3 associated to the congruence subgroup I'(32) C SLy(Z) is
not ordinary [cf. Remark 2.4.2]. Furthermore, one may also derive, from Theorem B, the
assertion that, for an arbitrary nilpotent admissible indigenous bundle on a hyperbolic
curve over an algebraically closed field of characteristic 3, there exists a finite flat tamely
ramified covering of the hyperbolic curve such that the pull-back by the cover of the
indigenous bundle is not ordinary [cf. Corollary 2.6]. Note that this result yields a negative
answer to the basic question in p-adic Teichmiiller theory given as [10, Introduction, §2.1,
@)

The third main result of the present paper is a result concerning a relationship between
strongly spiked indigenous bundles and Tango curves in characteristic 3. Let k£ be an
algebraically closed field of characteristic p and (X, D) a hyperbolic curve of type (g, )
over k. Then we shall say that a nilpotent active [cf. [10, Chapter II, Definition 1.1]]
indigenous bundle on (X, D) is strongly spiked if the indigenous bundle is mildly spiked
of strength (p—1)(2g —2+7) [cf. [10, Chapter II, Definition 3.1]]. Moreover, we shall say
that a global section s of the invertible sheaf wx (D) is strongly spiked if the global section
521 of the invertible sheaf wx,(D)®®~Y coincides with the square Hasse invariant of
a strongly spiked indigenous bundle on (X, D).

The third main result of the present paper is as follows [cf. Theorem 3.9].

THEOREM C. — Suppose that (p,r) = (3,0) [which thus implies that D = (]. Then a
global section of the invertible sheaf wx/p(D) = wx/i is strongly spiked if and only if
the global section may be written as the product of a primitive fourth root of unity and
the logarithmic differential of a Tango function of level 1 [cf. [7, Definition 1.3]]
on X.

One immediate consequence [cf. Corollary 3.10] of Theorem C is that if a projective
hyperbolic curve in characteristic 3 admits a strongly spiked global differential, then the
curve is a Tango curve [cf. [7, Definition 1.8, (ii)]]. In Remark 3.9.1, we discuss an
example of a Tango function of level 1 on a projective smooth curve of genus > 2 whose

logarithmic differential is reqular everywhere. In particular, it follows from Theorem C
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that if p = 3, then the product of a primitive fourth root of unity and this logarithmic
differential is a strongly spiked global differential on the curve.
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1. SQUARE HASSE INVARIANTS OF INDIGENOUS BUNDLES AND THE SCHWARZ
TORSOR

In the present §1, we prove a result concerning a relationship between the square
Hasse invariants of indigenous bundles and the torsor structure of the Schwarz torsor
in characteristic 3 [cf. Theorem 1.7 below]. One immediate consequence of this result
is that the isomorphism class of an indigenous bundle in characteristic 3 is completely
determined by the associated square Hasse invariant [cf. Remark 1.7.1 below].

Throughout the present paper, let p be an odd prime number and (g,7) a pair of
nonnegative integers such that 2¢g — 2 +r is positive; moreover, we shall use the notations

“,om

w”, “77 to denote the relative cotangent, tangent sheaves, respectively.

DEFINITION 1.1. — We shall write
M

for the moduli stack of hyperbolic curves of type (g,r) in characteristic p and

(C,D)
for the universal hyperbolic curve of type (g,r) over M. In particular, C is a stack over
M, and D is a closed substack of C such that

e the stack C is smooth, proper, geometrically connected, and of relative dimension 1

over M,

e cach geometric fiber of C over M is [a necessarily smooth projective curve| of genus
g, and

e the stack D is finite, étale, and of degree r over M.

Moreover, we shall write
. C——M

for the structure morphism of C over M.

DEFINITION 1.2. — We shall write
S—M

for the Schwarz torsor over M [cf. [10, Introduction, §0.4]], i.e., the moduli stack of
hyperbolic curves of type (g,7) in characteristic p equipped with indigenous bundles [cf.
[9, Chapter I, Definition 2.2]].



DEFINITION 1.3. — We shall write
G = m(wEfu(D)
and
y—M
for the vector bundle over M associated to the locally free coherent O,,-module ob-
tained by forming the O-dual of the [necessarily locally free coherent] Oj-module
T (We/m (D)®(P=1) i.e., the vector bundle over M such that, for each scheme S over M,

there exists a natural bijection between the set of splittings of the morphism V| — S
and the module T'(S, 7. (weym (D)2P D) g).

REMARK 1.3.1.

(i) Let us recall from [10, Introduction, §0.4] [cf. also [9, Chapter I, Corollary 2.9]]
that the Schwarz torsor & admits a natural structure of G-torsor over M.

(ii) Suppose that p = 3. Then the natural inclusion Og < O¢(D) determines an
injective homomorphism G = 7. (wg (D)) = mulwe/m(D)*?) = mo(we/m(D)*P~Y). In
particular, one obtains an action of G on the vector bundle V over M.

DEFINITION 1.4. — By considering the square Hasse invariants [cf. [9, Chapter 11, Propo-
sition 2.6, (1)]] of the indigenous bundles parametrized by the Schwarz torsor, we obtain
a morphism & — V of stacks over M. We shall write

sq-Hss: § —=V

for this morphism of stacks over M.

LEMMA 1.5. — Suppose that p = 3. Let S be a noetherian scheme over F,, (X,D) a
hyperbolic curve of type (g,7) over S, (£,Ve) an indigenous vector bundle on (X, D)
[cf. [9, Chapter I, Definition 2.2]], and F°(E) C € an Ox-submodule of rank 1 as in the
discussion following [9, Chapter I, Definition 2.2], i.e., an Ox-submodule of rank 1 such
that if one writes

Q= E/F°(E),

then the composite

FUE)—> € 5 tyy/5(D) ®oy € — wy/s(D) ®oy O

is an isomorphism of Ox-modules, by means of which let us identify wx,s(D) with
Home, (Q, F°(E)):

wx/s(D) = Homo, (Q, F°(E)).
Moreover, let x € X \ D be a closed point of X \ D, t € Ox a local parameter of
X/S at x [which thus determines local trivializations dt € wx/g(D), d/dt € Tx/5(=D)

of the invertible sheaves wx,s(D), Tx;s(—D) at x, respectively], and ep € F°(E) a local
trivialization of the invertible sheaf F°(E) at x. Thus, we have a local section of € at

e v,g(%)(eF) c&
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such that the pair (ep,eg) forms a local trivialization of the Ox-module £ at = [cf. the
above condition imposed on the Ox-submodule F°(E) C &]. Write eq € Q for the local
trivialization of the invertible sheaf Q at x obtained by forming the image of ec in the
quotient Q and fr, fe € Ox for the local functions on X at x such that the local section
Veles) € wx/s(D) ®oy € of wx/s(D) ®oy € at x is given by

dt @ (fr-er+ fe-eg).

Then the square Hasse invariant — that is a global section of the invertible sheaf
wx/s(D)®P7Y = wy/s(D)®? = Homo, (TX/S< D)®* Homo, (F°(E), Q))

— of the indigenous bundle obtained by forming the projectivization of the indigenous
vector bundle (€,V¢) is given by

d _d d df e
a0a%q = (oo (e 1) eo)
at x.
PROOF. — Write P: 7x/s(—D)®* — Endo, (€) for the p-curvature of the connection

Ve. Then it follows from the “straightforward computation”

ve(d) veld)

er > eg fr-er+ fe-es

dfe

(%) <dfF +fFf5> er + <fF+ 7 +f§) “eg

that
P<i®i®i>( F) = (dfF+fFf$> €F+<fF+Cg +fg)

Thus, since the square Hasse invariant of the indigenous bundle obtained by forming the
projectivization of the indigenous vector bundle (£, V¢) is defined to be the homomor-
phism 7x/5(—D)®* — Home, (F°(E), Q) that maps a local section d € 7x/5(—D)®* of
Tx/5(—D)®® to the composite

P(9)

FO(&)S E £ Q,
we conclude that Lemma 1.5 holds. This completes the proof of Lemma 1.5. U

LEMMA 1.6. — In the situation of Lemma 1.5, let 6 € I'(X, w?}?S(D)) be a global section
of the invertible sheaf

W?ﬁs( ) = Homox(gan/S RPox FO(5)>

Let us identify the global section § with the homomorphism & — wx/s(D) ®o, € of
Ox-modules obtained by forming the composite

E — > Q LWX/S ®(9X FO((€>(—> wx/s(D) ®OX E.

Write V% for the connection on € [necessarily relative to (X, D)/S] such that the homo-

morphism €& = wx/s(D) ®oy € of Ox-modules given by ‘e — V%(e) — Ve(e)” coincides

with the homomorphism 0: € — wx/s(D)®oy € of Ox-modules, i.e., the connection on €
6



such that the pair (€,V%) forms an indigenous vector bundle, and, moreover, the indige-
nous bundle on (X, D) obtained by forming the projectivization of (£,V%) coincides with
the indigenous bundle obtained by forming the result of the action [cf. Remark 1.3.1, (i)]
of 0 on the indigenous bundle obtained by forming the projectivization of (£,Ve). Then
the difference between the square Hasse invariants — that is a global section of
the invertible sheaf

wX/S(D)@)(p—I) _ WX/S(D)®2

— of the indigenous bundles obtained by forming the projectivizations of (£,V%), (€, Ve)
coincides with the global section 6 of Wi74(D) (C wx/s(D)¥?).

PROOF. — Let us first observe that since the homomorphism 0: £ = wx;s(D) ®o, € of
Ox-modules annihilates the Ox-submodule FY(€) C &, it follows from the definition of
VY that V%(er) — Ve(er) = 0, which thus implies that the local section “eg” of £ at x of
Lemma 1.5 in the case where we take the “(£,V¢)” of Lemma 1.5 to be the indigenous
vector bundle (€, V%) is given by eg.

Write ¢ € Ox for the local function on X at x such that the global section 6 of the
invertible sheaf

w?ﬁs(D) = Homo, (Q,W)(/s RPox FO(S))

is given by
€9 — (b - dt X ep

at . Then it is immediate from the definition of V% that
V§(€g> — V5(€g) = ¢ -dt ® er.

Thus, we conclude that the pair “(fr, fe)” of Lemma 1.5 in the case where we take the
“(€,V¢e)” of Lemma 1.5 to be the indigenous vector bundle (€, V%) is given by (fr+¢, fe).
In particular, Lemma 1.6 follows immediately from Lemma 1.5. This completes the proof
of Lemma 1.6. O

The following theorem is the first main result of the present paper.

THEOREM 1.7. — Suppose that p = 3. Then the morphism of stacks over M
sq-Hss: S —=V

is compatible with the respective actions of G [cf. Remark 1.3.1, (i), (ii)]. In particular,
this morphism is a closed timmersion.

PROOF. — This assertion follows immediately, in light of [9, Chapter I, Proposition 2.6],
from Lemma 1.6. u

REMARK 1.7.1. — One immediate consequence of Theorem 1.7 is that the isomorphism
class of an indigenous bundle in characteristic 3 is completely determined by the associated
square Hasse invariant.



REMARK 1.7.2. — Suppose that (p,r) = (3,0). Then it is immediate that the injec-
tive homomorphism G = m(w?fM(D)) — To(we/m(D)®?) = mo(we/m(D)®P~V) of Re-
mark 1.3.1, (ii), is an isomorphism. Thus, it follows from Theorem 1.7 that the morphism
of stacks over M

sq-Hss: § —=V

is an isomorphism. In particular, we conclude that [1, Theorem A] may also be derived
from Theorem 1.7.

2. ORDINARINESS OF NILPOTENT ADMISSIBLE INDIGENOUS BUNDLES

In the present §2, we prove a result concerning the ordinariness of nilpotent admissible
indigenous bundles in characteristic 3. More precisely, we prove that, for a given nilpotent
admissible indigenous bundle in characteristic 3, the indigenous bundle is ordinary if and
only if the associated Hasse defect is parabolically ordinary [cf. Theorem 2.4 below].

In the present §2, let S be a noetherian scheme over F,, (X, D) a hyperbolic curve
of type (g,r) over S, and (P,Vp) an indigenous bundle on (X, D). Suppose that the
indigenous bundle (P, Vp) is nilpotent [cf. [9, Chapter II, Definition 2.4]] and admissible
[cf. [9, Chapter II, Definition 2.4]].

DEFINITION 2.1. — Let us recall from [9, Chapter II, Proposition 2.6, (3)] that there
exist a unique, up to isomorphism [cf. [9, Chapter II, Proposition 2.6, (4)]], invertible
sheaf H on X and a global section x of H [i.e., the Hasse invariant of (P, Vp)| such that
the global section x®? of the square H®? coincides with the square Hasse invariant of
(P,Vp). We shall refer to the invertible sheaf on X

Homox (WX/S(D)®(p_1)/2, H)
as the Hasse defect of (P, Vp).

REMARK 2.1.1. — Suppose that 7 = 0. Then one verifies immediately from [1, Propo-
sition B.4] that the Hasse defect of (P, Vp) in the sense of Definition 2.1 coincides with
the Hasse defect of (P, Vp) in the sense of [1, Definition B.2].

PROPOSITION 2.2. — The square of the Hasse defect of (P,Vp) is trivial.

PROOF. — This assertion follows from the fact that the square Hasse invariant of an
indigenous bundle on (X, D) is a global section of the invertible sheaf wy,/s(D)®®~1. O

LEMMA 2.3. — Suppose that S is the spectrum of an algebraically closed field [i.e., of
characteristic p]. Let x € X \ D be a closed point of X \ D and t € Ox a local parameter
of X/S at x [which thus determines a local trivialization dt € wx;s(D) of the invertible
sheaf wx/s(D) at x]. Write ¢ € Ox for the local function on X at x such that the square
Hasse invariant of (P,V p) [that is a global section of the invertible sheaf wx,s(D)®®~Y]
15 given by
¢ - dt®P=1)
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at x. Then the following two conditions are equivalent:

(1) The nilpotent admissible indigenous bundle (P,V p) is ordinary [cf. [9, Chapter
I1, Definition 3.1]].

(2) For every nonzero global section of the invertible sheaf w}eﬁs(D), if v € Ox is the
local function on X at x such that the global section of w?}?s(D) s given by

Y- dt @ dt
at x, then the equality
dr—1
does not hold.
PROOF. — This assertion follows immediately from [9, Chapter II, Lemma 2.11] and
[9, Chapter 11, Proposition 2.12] [cf. also the discussion concerning the Cartier operator
given in [8, §2.1] — especially, the equality (2.1.13) in [8, §2.1]]. O

The following theorem is the second main result of the present paper.

THEOREM 2.4. — Suppose that p = 3. Then the following two conditions are equivalent:
(1) The nilpotent admissible indigenous bundle (P, Vp) is ordinary.

(2) The Hasse defect of (P,Vp) is parabolically ordinary [cf. Proposition 2.2;
[1, Definition A.7]].

PROOF. — Let us first observe that it follows immediately from the various definitions
involved [cf. also the proof of [9, Chapter 11, Proposition 3.4]] that, to verify Theorem 2.4,
we may assume without loss of generality, by replacing X by a geometric fiber of X/S,
that S is the spectrum of an algebraically closed field [i.e., of characteristic 3].

Write £ for the Hasse defect of (P,Vp), x € I'(X, L&o,wx/s(D)P~V/2) = T(X, L&o,
wx/s(D)) for the Hasse invariant of (P,Vp), and Eg for the supersingular divisor of
(P,Vp) [i.e., the divisor obtained by forming the zero locus of the Hasse invariant x —
cf. [9, Chapter II, Proposition 2.6, (3)]]. Fix a global trivialization © of the square of £
[cf. Proposition 2.2]. Let z € X \ D be a closed point of X \ D, t € Ox a local parameter
of X/S at x [which thus determines a local trivialization dt € wx,s(D) of the invertible
sheaf wy,s(D) at z], and | € £ a local trivialization of £ at x. Write ¢ € Ox for the
local function on X at x such that the Hasse invariant x is given by

G- l®dt

at z and § & O( ®1) € Of for the local unit on X at x determined by the global

trivialization © and the local trivialization [. Thus, it follows from Lemma 2.3 that, to
verify Theorem 2.4, it suffices to verify that condition (2) in the statement of Theorem 2.4
is equivalent to the following condition:

(1') For every nonzero global section of the invertible sheaf w?}?S(D), if ¢ € Ox is the
local function on X at x such that the global section of w% 4(D) is given by

V- dt @ dt
9



at z, then the equality
d? 9
5 (0%0) =0
does not hold.

Now let us verify the following assertion:
Claim 2.4.A: Let n be a global section of the invertible sheaf w%S(D).

Write ¢ € Ox for the local function on X at x such that the global
section 7 is given by

Y- dt @ dt
at x. Suppose that the equality
d2
5 (0%0) =0

holds. Then 7 is contained in the subspace I'( X, w%S(D—ESS)) CI'(X, w%S(D)).

To this end, let us first recall from [2, Proposition A.4] that the supersingular divisor E
is reduced, i.e., that ¢ is of order < 1 at x. Thus, since

B, Ao 2 B, A5, d%
0= 25(6%00) = —0u(Z0) = @0vT + s + 9?6
dpds — ,ds dip dé d)
aa Caa T wa

if z € Supp(FEy) [i-e., ¢(x) = 0], then x is contained in the zero locus of 7 [i.e., ¥ (x) = 0].
Thus, since Supp(FEss) does not intersect the closed subscheme D [cf. [2, Proposition A.4]],
by varying “x” and again by applying the reducedness of the divisor Fy, we conclude
that Claim 2.4.A holds. This completes the proof of Claim 2.4.A.

Next, let us observe that it follows immediately from Claim 2.4.A, together with the
definition of the supersingular divisor E, that condition (1’) is equivalent to the following
condition:

(1”) For every nonzero global section of the invertible sheaf £ ®o, wx/s, if ¥ € Ox is
the local function on X at x such that the global section of £ ®o, wx/s is given by

V-l ®dt

at z, then the equality
d2
5 (0%0%0) =0
does not hold.

On the other hand, in the situation of condition (1”), we have an equality

d? d?
25 (076%) = 9T (5710),

Thus, it follows from [1, Lemma A.9, (i)] that condition (1”) is equivalent to condition (2)
in the statement of Theorem 2.4, as desired. This completes the proof of Theorem 2.4. [J
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REMARK 2.4.1. — Note that Theorem 2.4 generalizes [1, Proposition 4.4].

REMARK 2.4.2. — Theorem 2.4 yields the following example of a nilpotent admissible in-
digenous bundle that arises from the universal elliptic curve over a modular curve but is
not ordinary: Write (Y (32), D(32)) for the hyperbolic curve over F3 obtained by consid-
ering the modular curve over Fy associated to the congruence subgroup I'(32) C SLy(Z).
Then the projectivization of the relative first de Rham cohomology module, equipped
with the Gauss-Manin connection, of the universal stable curve of type (1,1) over Y (32)
forms a nilpotent admissible indigenous bundle (P(32),Vpese)) on (Y (32), D(32)) [cf,
e.g., [2, Lemma 2 8] and the discussion preceding [9, Chapter II, Proposition 3.5] in which
“M%[2]” appears|. Write #(32) for the Hodge bundle on Y (32). Then let us recall that
the [classical] Hasse invariant associated to the modular curve (Y'(32), D(32)) [i.e., the
Hasse invariant of the nilpotent admissible indigenous bundle (P(32), V p(32))] is a modu-
lar form of weight p—1 = 2 [i.e., is a global section of the invertible sheaf #(32)®?]. Thus,
since the Kodaira-Spencer map determines an isomorphism H(32)%* = Wy (32)/F, (D(32))
of Oy (32)-modules, we conclude that

(a) the Hasse defect of (P(32), Vp(sg)) is trivial.

Next, let us recall that it is well-known that the elliptic curve “y? = z® — 2”7 over Q is

of conductor 32 and supersingular at 3. Thus, we conclude that the Jacobian variety of
Y (32) is not ordinary, or, alternatively,

(b) the structure sheaf Oy (s9) is not parabolically ordinary.

Thus, it follows from Theorem 2.4, together with (a), (b), that the nilpotent admissible
indigenous bundle (P(32), Vpsy)) is not ordinary.

COROLLARY 2.5. — Suppose that p = 3. Suppose, moreover, that one of the following
three conditions is satisfied:

(1) The equality g = 0 holds.

(2) The equality g = 1 holds, and the family of elliptic curves over S obtained by
forming the Jacobian variety of X/S is ordinary.

(3) The equality g = 1 holds, and the Hasse defect of (P,Vp) is nontrivial.

Then the nilpotent admissible indigenous bundle (P,Vp) is ordinary. In particular, if
the hyperbolic curve (X, D) satisfies either (1) or (2) and, moreover, admits a nilpotent
admissible indigenous bundle, then the hyperbolic curve (X, D) is hyperbolically
ordinary [cf. [9, Chapter II, Definition 3.3]].

PrROOF. — This assertion follows from Theorem 2.4. O

REMARK 2.5.1. — Let us recall the following basic question in p-adic Teichmiiller theory
[cf. [10, Introduction, §2.1, (1)]]:

(x) Is an arbitrary hyperbolic curve over an algebraically closed field
of odd characteristic hyperbolically ordinary? Put another way, does an
arbitrary hyperbolic curve over an algebraically closed field of odd char-

acteristic admit a nilpotent ordinary indigenous bundle?
11



(i) One may easily find that Corollary 2.5 is closely related to this question (x). Now
let us also recall that some results on this question (x) may be found in, for instance, [2,
Theorem C] and [3, Theorem A] [cf. also the discussion following [2, Theorem C]].

(ii) Let us observe that since every nilpotent ordinary indigenous bundle is a nilpotent
admissible indigenous bundle [cf. [9, Chapter II, Proposition 3.2]], it follows from Theo-
rem 2.4 that an affirmative answer to this question (x) implies the following assertion:

(#%)  An arbitrary projective smooth curve over an algebraically closed
field of characteristic 3 admits an invertible sheaf that is [of order < 2 and]
parabolically ordinary. That is to say, for an arbitrary projective smooth
curve over an algebraically closed field of characteristic 3, either

e the Jacobian variety of the curve is an ordinary abelian variety, or

e there exists a connected finite étale covering of the curve of degree 2
whose Prym variety is an ordinary abelian variety.

Here, let us also recall that the author of the present paper already gave a proof of this
assertion (k) [cf. [6, Theorem 2.7, (ii)]]. In fact, this “implication” is one of the main
motivations for studying the assertion (k%) in [6].

COROLLARY 2.6. — Suppose that S s the spectrum of an algebraically closed field of
characteristic 3. Then there exist a hyperbolic curve (Y, E) over S and a finite flat tamely
ramified covering (Y, E) — (X, D) over S such that the [necessarily nilpotent admissible
— ¢f. [2, Lemma 2,8]] indigenous bundle (P,Vp)|xy.g on (Y, E) obtained by forming the
pull-back of (P,Vp) by the covering (Y, E) — (X, D) is not ordinary.

PROOF. — Let us first observe that we may assume without loss of generality, by replac-
ing X by the connected finite étale covering of X [i.e., of degree 1 or 2] that trivializes the
Hasse defect of (P, Vp), that the Hasse defect of (P, Vp) is trivial. Moreover, one verifies
easily that we may assume without loss of generality, by replacing (X, D) by a suitable
connected finite flat tamely ramified covering of (X, D), that ¢ > 2. Then it follows
from [11, Théoréme 2| that we may assume without loss of generality, by replacing X
by a suitable connected finite étale covering of X, that the Jacobian variety of X is not
ordinary. Then it follows from Theorem 2.4 that the indigenous bundle (P, Vp) is not
ordinary, as desired. This completes the proof of Corollary 2.6. U

REMARK 2.6.1.
(i) Note that Corollary 2.6 generalizes [1, Theorem C].

(ii) Note that Corollary 2.6 yields a negative answer to the basic question in p-adic
Teichmiiller theory given as [10, Introduction, §2.1, (2)].

DEFINITION 2.7. — We shall write
NCS

[cf. Definition 1.2] for the moduli stack of smooth nilcurves [cf. the discussion preceding

[10, Introduction, Theorem 0.1]] of type (g,r) in characteristic p, i.e., the moduli stack
12



of hyperbolic curves of type (g,r) in characteristic p equipped with nilpotent indigenous
bundles;

Nadm g N

for the admissible locus of N, i.e., the [necessarily open] substack of A/ that parametrizes
hyperbolic curves of type (g,r) in characteristic p equipped with nilpotent admissible
indigenous bundles;

Nord C Nadm

for the ordinary locus of N, i.e., the [necessarily open| substack of A/ that parametrizes
hyperbolic curves of type (g,r) in characteristic p equipped with nilpotent ordinary in-
digenous bundles.

DEFINITION 2.8. — We shall write
J —M
for the Jacobian variety of C/M and

Mpb—ord g M

for the parabolically ordinary locus of M [cf. the discussion following [9, Chapter II,
Definition 3.3]], i.e., the [unique] maximal open substack of M such that the geometric
fiber of J — M at each geometric point of MPP'd is an ordinary abelian variety. For a
positive integer n, we shall write

Jh T

for the [necessarily closed] substack of J obtained by forming the kernel of the endomor-
phism of J over M given by multiplication by n. Moreover, we shall write

TP € 712]

for the parabolically ordinary locus of J[2], i.e., the open substack of J[2]| defined to
be the union of the open substack J[2] \ J[1] and the open substack (7[2] — J —
M)~H(MPP-ord) (respectively, to be the open substack “J,[2]P>°™” of [1, Definition C.4])
if g <1 (respectively, > 2).

DEFINITION 2.9. — By considering the Hasse defects of the nilpotent admissible in-

digenous bundles parametrized by the admissible locus AN we obtain a morphism
Nadm s 7[2] of stacks over M [cf. Proposition 2.2]. We shall write

Hss-df : N2 —~ 7[2]

for this morphism of stacks over M.

REMARK 2.9.1. — It is immediate [cf. also Remark 2.1.1] that if » = 0, then the morphism
Hss-df : Nadm — 7[2] of Definition 2.9 coincides with the Hasse defect morphism defined
in [1, Definition C.1].

13



COROLLARY 2.10. — Suppose that p = 3. Then we have a cartesian diagram of stacks
over M
Nord j[2]pb-ord

L

Nadm - j[Q]

Hss-df
— where the vertical arrows are the natural open immersions.

PrRoOOF. — This assertion follows from Theorem 2.4. O

REMARK 2.10.1. — Note that Corollary 2.10 generalizes [1, Corollary 5.5].

3. STRONGLY SPIKED INDIGENOUS BUNDLES AND TANGO CURVES

In the present §3, we prove a result concerning a relationship between strongly spiked
indigenous bundles and Tango curves in characteristic 3 [cf. Theorem 3.9 below]. One im-
mediate consequence of this result is that if a projective hyperbolic curve in characteristic
3 admits a global differential whose square coincides with the square Hasse invariant of
a strongly spiked indigenous bundles, then the curve is a Tango curve [cf. Corollary 3.10
below].

In the present §3, let k& be an algebraically closed field of characteristic p and (X, D) a
hyperbolic curve of type (g,7) over k.

DEFINITION 3.1. — Let (P) be a property of an indigenous bundle [e.g., nilpotent, ad-
missible, or ordinary]. Then we shall say that a global section s of the invertible sheaf
wx/k(D) satisfies the property to be (IP), or, for simplicity, is (P), if the global section
s®(P=1) of the invertible sheaf w X/k(D)®(p’1) coincides with the square Hasse invariant of
an indigenous bundle on (X, D) that satisfies the property to be (P).

REMARK 3.1.1. — Suppose that p # 3. Then since [it is immediate that] an admissible
indigenous bundle on (X, D) is active [cf. [10, Chapter II, Definition 1.1]], it follows
from [2, Proposition A.5] that a global section of the invertible sheaf wx /(D) is never
nilpotent admissible [i.e., never satisfies the property to be nilpotent admissible — cf.
Definition 3.1].

Some results proved in [1, §2, §3, §4] may be summarized as follows.

PROPOSITION 3.2. — Suppose that (p,r) = (3,0) [which thus implies that D = 0]. Then
the following assertions hold:

(i) A global section of the invertible sheaf wx/(D) = wxyi is active (respectively,
dormant [cf. [10, Chapter 11, Definition 1.1]]) if and only if the global section is nonzero
(respectively, zero).

(ii) A global section of the invertible sheaf wx (D) = wxi is nilpotent if and only

if the global section may be written as the product of a primitive fourth root of unity and
14



the logarithmic differential of a [possibly constant| nonzero rational function
on X.

(iii) A global section of the invertible sheaf wx k(D) = wx /i is admissible if and only
if the zero locus of the global section is reduced.

(iv) A global section of the invertible sheaf wx(D) = wxi, is nilpotent ordinary
if and only if the global section is nilpotent admissible [cf. (ii), (iii)], and, moreover,
the Jacobian variety of X is an ordinary abelian variety over k.

PROOF. — Assertion (i) follows from [1, Corollary 2.4] [cf. also Theorem 1.7 of the
present paper]. Assertion (iii) (respectively, (iv)) follows, in light of [1, Corollary 2.4] [cf.
also Theorem 1.7 of the present paper]|, from [1, Proposition 3.1, (ii)] (respectively, [1,
Proposition 4.4]).

Finally, we verify assertion (ii). Let us first recall that it follows, in light of [1, Corollary
2.4] [cf. also Theorem 1.7 of the present paper], from [1, Proposition 4.1] [cf. also assertion
(i)] that a global section of the invertible sheaf wx (D) = wx/y is nilpotent if and only if

(%) the global section is either zero or a normalized Cartier eigenform [cf. [1, Definition
A.8, (i)]] associated to the square-trivialized invertible sheaf [cf. [1, Definition A.3]] on X
obtained by forming the pair consisting of Ox and the natural identification Ox®p, Ox =
Ox.

On the other hand, it is well-known [cf., e.g., [8, Théoréme 2.1.17]] that condition ()
is equivalent to the condition that the global section may be written as the product of
a primitive fourth root of unity and the logarithmic differential of a [possibly constant
nonzero rational function on X. This completes the proof of assertion (ii), hence also of
Proposition 3.2. U

PROPOSITION 3.3. — Let (P,Vp) be an indigenous bundle on (X, D). Suppose that the
indigenous bundle (P,V p) is nilpotent and active. Then the following four conditions
are equivalent:

(1) The indigenous bundle (P, V p) is mildly spiked of strength (p—1)(2g—2+r)
[¢f. [10, Chapter II, Definition 3.1]].

(2) The divisor on X obtained by forming the zero locus of the square Hasse in-
variant of (P,Vp) coincides with the spiked locus of (P,Vp) [cf. [10, Chapter II,
Definition 3.1]].

(3) The generalized supersingular divisor of (P,Vp) [cf. [2, Definition A.2, (iii)]]
1S zero.
(4) The image of the Hodge section of (P,Vp) [cf. [9, Chapter I, Proposition 2.4]|

does not intersect the image of the conjugate section of (P,Vp) [cf. |2, Definition
A2 (iD)]].

PROOF. — Write B, Egss, Eopk for the divisors on X obtained by forming the zero
locus of the square Hasse invariant of (P,Vp), the generalized supersingular divisor of
(P,Vp), and the spiked locus of (P, Vp), respectively. Then since

Espk < ESH? Qdeg(Egss) + deg<Espk) = deg(EsH) = (P - 1)(29 -2+ T)
15



cf. [2, Proposition A.3, (iii)], [2, Lemma A.7, (i)]], the equivalences (1) < (2) < (3) hold.
Moreover, it follows from the definition of E,q that the equivalence (3) < (4) holds. This
completes the proof of Proposition 3.3. U

The following notion is one central notion of the discussion of the present §3.

DEFINITION 3.4. — We shall say that an indigenous bundle on (X, D) is strongly spiked
if the indigenous bundle is nilpotent and active, and, moreover, one of the four conditions
in the statement of Proposition 3.3 is satisfied.

REMARK 3.4.1. — It follows from condition (2) in the statement of Proposition 3.3,
[2, Proposition A.3, (ii)], and [2, Lemma A.7, (i)] that if (X, D) has a strongly spiked
indigenous bundle, then 2g — 2 4 r is divisible by p.

LEMMA 3.5. — Let

b= 3 at k(1)

—00<1<00
be an element of the field k((t)). Write
ord(¢) € inf{i € Z | a; # 0}
< ord®%(g) inf{i €Z|a;#0 andi ¢ pZ} (€ ZU{o0}).

[So the assignment “ord” coincides with the t-adic valuation on k((t)) that mapst € k((t))
to 1 € Z.] Suppose that ¢ # 0 [which implies that ord(¢) is an integer]. Then the following
four conditions are equivalent:

(1)

(2) The inequality ord(¢) < ord®"”(¢) holds.

(3) The inequality ord(¢) < ord(d¢/dt) holds.

(4) The logarithmic derivative (dg/dt)/¢ is contained in the subring k[[t]] C k((t)).

PROOF. — Let us observe that the equality ord(d¢/dt) = ord®%(¢) — 1 holds. Thus,
Lemma 3.5 is immediate. 4

The integer ord(¢) is divisible by p.

LEMMA 3.6. — Suppose that (p,r) = (3,0) [which thus implies that D = 0]. Let (P,Vp)
be an indigenous bundle on (X, D). Suppose, moreover, that the indigenous bundle
(P, Vp) is nilpotent and active. Write Egy, Eyss, Espx for the divisors on X obtained
by forming the zero locus of the square Hasse invariant of (P,Vp), the generalized
supersingular divisor of (P,Vp), and the spiked locus of (P,Vp), respectively. Let
x € X be a closed point of X and t € Ox a local parameter of X/k at x [which thus
determines local trivializations dt € wxyk, d/dt € Txyy of the invertible sheaves wx i, Tx/k

at x, respectively]. Write § € T'(X, w?;%_l)(D)) = I'(X, w?}?k) for the square Hasse

tnvariant of the indigenous bundle (P,Vp) and ¢ € Ox for the [necessarily nonzero
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— cf. [1, Proposition 3.2]] local function on X at x such that the global section 0 of the
invertible sheaf pr V(D) = w%k is given by

¢-dt @ dt
at x [which thus implies that the equality
ord,(Esy) = ord,(¢)

holds.] Then the following assertions hold:

(i) The following three conditions are equivalent:
(i-1) The closed point x € X is contained in Supp(Fsy) C X.
(i-2) The inequality ord,(¢) > 0 holds.
(i-3) The inequality ord,(¢) > 1 holds.

(ii) The following two conditions are equivalent:
ii-1) The closed point x € X is contained in Supp(Eqpx) C X.
ii-2) The inequality ord,(¢) > 2 holds.

111-

(ii
(ii
(iii) The following three conditions are equivalent:
(iii The closed point x € X is contained in Supp(Lys) C X.
(ii

1)
iii-2) The inequalities 0 < ord,(d¢/dt) < ord,(¢) hold.
(iii-3) The integer ord,(¢) — 2 is divisible by 3.

PROOF. — Let us first recall from [9, Chapter I, Proposition 2.6] that there exists
an indigenous vector bundle (€,V¢) on (X, D) whose projectivization is (P, Vp). Let
FY(&) C &€ be an Ox-submodule of rank 1 as in the discussion following [9, Chapter I,
Definition 2.2], i.e., an Ox-submodule of rank 1 such that the composite

FOE) > €~ wx i Qoy £ —= wxp Qo (E/F°(E))

is an isomorphism of O x-modules. Moreover, let us also recall that it follows immediately
from the discussion at the beginning of [1, §3] [cf. also [1, Remark 2.4.1]], together with
[1, Proposition 3.2], that we may assume without loss of generality that there exists a
local trivialization (ep, eg) of the Ox-module £ at x such that

(a) the local section ep € £ of £ at x is contained in the Ox-submodule F°(&) C &
and forms a local trivialization of the invertible sheaf FY(€) at z, and, moreover,

(b) the p-curvature 7';??5 — Endp, (€) of the connection Vg is given by

goacm 0 (ene (Frorro (@ gh) -G e))

at z.

First, we verify assertion (i). The equivalence (i-1) < (i-2) is immediate from the
definition of the local function ¢. Moreover, since ord,(¢) # 1 [cf. [1, Lemma 3.5]], the
equivalence (i-2) < (i-3) holds. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first recall from [2, Lemma A.11, (ii)] that

condition (ii-1) is equivalent to the condition that the image of the restriction of the
17



p-curvature of the connection V¢ to [the spectrum of the residue field at] z is zero. Thus,
it follows from (b) that condition (ii-1) is equivalent to the condition that

_dé| _ 4%
Cdt e de?

In particular, the equivalence (ii-1) < (ii-2) holds. This completes the proof of assertion
(ii).

Next, we verify the equivalence (iii-1) < (iii-2). Let us first recall from [2, Lemma A.10,
(ii)] that it follows from (a) that condition (iii-1) is equivalent to the condition that the
restriction to [the spectrum of the residue field at] = of the local section ep is contained
in the restriction to [the spectrum of the residue field at] = of the conjugate filtration of

(€,Ve), i.e., the unique maximal horizontal invertible subsheaf of £ [cf. the discussion
def

following [2, Lemma A.7]]. Write dy = min{ord,(¢),ord,(d¢/dt)}. Then one verifies
immediately — by considering the unique maximal invertible subsheaf of £ “annihilated
by the p-curvature” [cf. our assumption that the endomorphism of the O x-module £ given
by the image by the p-curvature of an arbitrary element of T;‘??S is nilpotent] — from (b)

= 0.

T

Pl

that the conjugate filtration of (£, V¢) is generated by the local section at x

t_do-(%-ep—l—qﬁ-eg) ef.

Thus, we conclude that condition (iii-1) is equivalent to the condition that

(1 %) A0 () =0,

or, alternatively, the condition that ord,(d¢/dt) < ord,(¢). On the other hand, since
ord;(¢) # 1 [cf. [1, Lemma 3.5]], the inequality 0 (< ord(d¢/dt)) < ord,(¢) implies the
inequality 0 < ord,(d¢/dt). This completes the proof of the equivalence (iii-1) < (iii-2).

Finally, we verify the equivalence (iii-2) < (iii-3). First, suppose that condition (iii-2)
is satisfied. Then it follows from Lemma 3.5 that ord,(¢) is not divisible by 3. Thus, since
ord,(¢)—1is not divisible by 3 [cf. [1, Lemma 3.5]], condition (iii-3) holds. Next, suppose
that condition (iii-3) is satisfied. Then it follows from Lemma 3.5 that ord,(d¢/dt) <
ord,(¢). Thus, since ord,(¢) # 1 [cf. [1, Lemma 3.5]], the inequality 0 (< ord,(d¢/dt))
< ord,(¢) implies the inequality 0 < ord,(d¢/dt), hence also condition (iii-2). This
completes the proof of assertion (iii), hence also of Lemma 3.6. O

PROPOSITION 3.7. — Suppose that (p,r) = (3,0). Let (P,Vp) be an indigenous bundle
on (X,D). Suppose, moreover, that the indigenous bundle (P,Vp) is nilpotent and
active. Write Egn, Eys, Espi for the divisors on X obtained by forming the zero locus
of the square Hasse invariant of (P,Vp), the generalized supersingular divisor
of (P,Vp), and the spiked locus of (P,Vp), respectively. Then the equality

ESH = 2Z?gss + Espk
holds.

PROOF. — Let us first observe that it follows from [2, Proposition A.3, (iii)] that, to
verify Proposition 3.7, it suffices to verify that, for each closed point x € X of X, the
inequality
ord, (Egpk) < ord,(Esn) — 20rd, (Egss)
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holds. Moreover, let us also observe that, again by [2, Proposition A.3, (iii)], if x € X is
not contained in Supp(Fgss), then the desired inequality holds.

Let x € Supp(FE,ss) be a closed point of X contained in the support of Eu. Thus, it
follows from Lemma 3.6, (iii), that

(a) the integer ord,(Eg) — 2 is divisible by 3.

Now let us recall from [2, Proposition A.3, (ii)] that
(b) the integer ord,(Esy) is divisible by 3,

which thus [cf. (a), [2, Proposition A.3, (iii)]] implies that
(c) the inequality ord,(Fspy) < ord,(Esm) holds.

Thus, we conclude immediately from (a), (b), (c) that ord,(Egk) < ord,(Fsa) — 2 =
ord, (Esn) — 20rd,(Eyss) [cf. [2, Proposition A.3, (i)]], as desired. This completes the
proof of Proposition 3.7. U

PROPOSITION 3.8. — In the situation of Proposition 3.7, the following three conditions
are equivalent:

(1) The indigenous bundle (P,Vp) is strongly spiked.
(2) There exists a divisor Esg on X such that the equality Eqy = 3Esm holds.
(3) The order of Esy is divisible by 3 at each closed point of X.

PRrROOF. — The implication (1) = (2) follows from [2, Proposition A.3, (ii)] and condition
(2) of Proposition 3.3. The implication (2) = (3) is immediate. The implication (3) = (1)
follows from [2, Proposition A.3, (iii)], condition (3) of Proposition 3.3, and Lemma 3.6,
(iii). This completes the proof of Proposition 3.8. O

The following theorem is the third main result of the present paper.

THEOREM 3.9. — Suppose that (p,r) = (3,0) [which thus implies that D = (]. Then a
global section of the invertible sheaf wx (D) = wxyi is strongly spiked if and only if
the global section may be written as the product of a primitive fourth root of unity and
the logarithmic differential of a Tango function of level 1 [cf. [7, Definition 1.3]]
on X.

PROOF. — Let us first observe that it follows from Proposition 3.2, (i), (ii), and Propo-
sition 3.8 that, to verify Theorem 3.9, it suffices to verify that, for a nonzero rational
function f on X such that

(%) the logarithmic differential of f is nonzero and contained in I'(X, wx i),
the following two conditions are equivalent:

(1) The order of the logarithmic differential of f is divisible by 3 at each closed point
of X.

(2) The rational function f is a Tango function of level 1.

Write div(f), div(df) for the divisors on X associated to the rational function f, the

rational differential df, respectively. Then it follows from Lemma 3.5 that condition (x)
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implies that the integer ord,(div(f)) is divisible by 3 at each closed point z € X of X.
Thus, condition (1) is equivalent to the condition that

(1') the integer ord,(div(df)) is divisible by 3 at each closed point = € X of X.

On the other hand, it follows immediately from [7, Theorem 1.9, (ii)] that condition (1’)
is equivalent to condition (2), as desired. This completes the proof of Theorem 3.9. [

REMARK 3.9.1. — Suppose that we are in the proof of [5, Theorem 3]. Suppose, moreover,
that the integer “N” is equal to 1, and that the integer “n” is positive. Then it follows
from [5, Lemma 9] and [5, Remark 10] that the rational function “f” on the projective
smooth curve “C” gives an example of a Tango function of level 1 on a projective smooth
curve of genus > 2 whose logarithmic differential is reqular everywhere. In particular, it
follows from Theorem 3.9 that if p = 3, then the product of a primitive fourth root of
unity and this logarithmic differential is a strongly spiked global differential on the curve.

REMARK 3.9.2. — Suppose that = 0. Let us first recall from [7, Theorem B] that

e giving a certain class of Tango functions of level 1 on X is equivalent to giving a
Frobenius-affine-indigenous structure of level 1 on X [cf. [7, Definition 3.3]].

Next, let us recall that

e a Frobenius-affine-indigenous structure of level 1 on X is defined to be a pair consist-
ing of a dormant indigenous bundle (P,Vp) on (X, D) and a splitting of the P'-bundle
P — X which is horizontal [i.e., with respect to Vp] and whose image does not intersect
the image of the Hodge section of (P, Vp) [cf. [7, Lemma 3.4], [7, Remark 3.4.2], and [4,
Remark 4.4.1, (ii)]].

In particular, one may conclude that

the notion of a Tango function of level 1 is closely related to the notion of
a dormant indigenous bundle on (X, D).

On the other hand, one may also conclude from Theorem 3.9 [cf. also Theorem 1.7] that

a suitable Tango function of level 1 naturally yields a strongly spiked in-
digenous bundle on (X, D) whenever p = 3.

[Now let us observe that it is immediate that

a strongly spiked indigenous bundle is never dormant.

COROLLARY 3.10. — Suppose that (p,r) = (3,0). If the hyperbolic curve (X, D) has a
strongly spiked global section of the invertible sheaf wx/x(D), then the projective smooth
curve X is a Tango curve [cf. [7, Definition 1.8, (ii)]].

PROOF. — This assertion follows from Theorem 3.9 and [7, Theorem A]. g

COROLLARY 3.11. — Suppose that r = 0. Then the following two conditions are equiv-
alent:

(1) The moduli stack of hyperbolic curves of type (g,r) in characteristic 3 equipped
with strongly spiked indigenous bundles is of dimension 3g — 3, smooth over

F3, and flat and quasi-finite over M [cf. Definition 1.1].
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(2) The integer g — 1 is divisible by 3.

PROOF. — The implication (1) = (2) follows from Remark 3.4.1. Next, to verify the
implication (2) = (1), suppose that condition (2) is satisfied. Then it follows from [5,
Lemma 9] and [5, Remark 10] that there exists a projective smooth curve of genus ¢ in
characteristic 3 that admits a Tango function of level 1 whose logarithmic differential is
reqular everywhere. Thus, condition (1) follows immediately from Theorem 3.9 and [10,
Chapter II, Theorem 3.9] [cf. also condition (1) in the statement of Proposition 3.3]. This
completes the proof of the implication (2) = (1), hence also of Corollary 3.11. d
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