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Abstract. — A theorem of Uchida asserts that every continuous isomorphism between
the Galois groups of solvably closed Galois extensions of number fields arises from a unique
isomorphism between the solvably closed Galois extensions. In particular, the isomorphism
class of a solvably closed Galois extension of a number field is completely determined by the
isomorphism class of the associated Galois group. On the other hand, neither the statement
of this theorem nor the proof of this theorem yields an “explicit reconstruction” of the given
solvably closed Galois extension. In the present paper, we establish a functorial “group-
theoretic” algorithm for reconstructing, from the Galois group of a solvably closed Galois
extension of a number field, the given solvably closed Galois extension equipped with the
natural Galois action.
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Introduction

Let us first recall the following result, i.e., a theorem of Uchida [cf. [8, Theorem]]:

For □ ∈ {◦, •}, let F□ be a number field and F̃□ a Galois extension of
F□ that is solvably closed, i.e., does not admit any nontrivial finite abelian

extension; write Q□
def
= Gal(F̃□/F□). Moreover, write

Isom(F̃•/F•, F̃◦/F◦)

for the set of isomorphisms F̃•
∼→ F̃◦ of fields that restrict to isomorphisms

F•
∼→ F◦ of subfields and

Isom(Q◦, Q•)

2020 Mathematics Subject Classification. — 11R32.
Key words and phrases. — mono-anabelian geometry, mono-anabelian reconstruction, number field,
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for the set of continuous isomorphisms Q◦
∼→ Q•. Then the natural map

Isom(F̃•/F•, F̃◦/F◦) // Isom(Q◦, Q•)

is bijective.

That is to say, every continuous isomorphism between the Galois groups of solvably
closed Galois extensions of number fields arises from a unique isomorphism between the
given solvably closed Galois extensions. In particular, it follows from the [surjectivity
portion of the] above result that the isomorphism class of a solvably closed Galois exten-
sion of a number field is completely determined by the isomorphism class of the associated
Galois group.

On the other hand, let us observe that neither the statement of the above result nor the
proof of the above result yields an “explicit reconstruction” of the given solvably closed
Galois extension. That is to say, the above result does not tell us how to reconstruct
explicitly the given solvably closed Galois extension. Put another way, the above result
yields only a bi-anabelian reconstruction, i.e., in the sense of [6, Introduction] [cf. also [6,
Remark 1.9.8]], of solvably closed Galois extensions of number fields. In the present paper,
we discuss a mono-anabelian reconstruction, i.e., in the sense of [6, Introduction] [cf. also
[6, Remark 1.9.8]], of solvably closed Galois extensions of number fields. In particular, we
concentrate on the task of establishing “group-theoretic software” [i.e., “group-theoretic
algorithms”] related to the Galois groups of solvably closed Galois extensions of number
fields.

We shall say that a field of characteristic zero is absolutely Galois if the field is Galois
over the [unique] minimal subfield of the field. We shall say that a profinite group is of
GSC-type (respectively, of AGSC-type) if the profinite group is isomorphic to the Galois
group of a solvably closed Galois extension (respectively, an absolutely Galois solvably
closed extension) of a number field [cf. [2, Definition 3.2]]. In [2], the author of the present
paper has established amono-anabelian reconstruction of absolutely Galois solvably closed
extensions of number fields. More concretely, in [2], the author of the present paper has
established a functorial “group-theoretic” algorithm [cf. [6, Remark 1.9.8] for more on the
meaning the terminology “group-theoretic”] for constructing, from a profinite group of
AGSC-type, a suitable absolutely Galois solvably closed field equipped with an action of
the profinite group. The purpose of the present paper is to generalize this reconstruction
result to the case of profinite groups of GSC-type. The main result of the present paper
may be summarized as follows [cf. Definition 3.8 and Theorem 3.9]:

SUMMARY. There exists a functorial [cf. Remark 3.9.1] “group-theoretic” algo-
rithm

G 7→
(
G ↷ F̃ (G)

)
for constructing, from a profinite group G of GSC-type, a solvably closed field F̃ (G)

equipped with an action of G such that the subfield F̃ (G)G ⊆ F̃ (G) of F̃ (G) of G-

invariants is a number field, and, moreover, the action of G on F̃ (G) determines a
continuous isomorphism

G
∼ // Gal

(
F̃ (G)/F̃ (G)G

)
.

We thus conclude from this reconstruction result that a profinite group isomorphic
to the Galois group of a solvably closed Galois extension of a number field admits a
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ring-theoretic basepoint [i.e., a “ring-theoretic interpretation” or a “ring-theoretic label”]
group-theoretically constructed from the given profinite group. Note that the above re-
sult of Uchida plays a crucial role in the establishment of our reconstruction result. In
particular, the proof of the reconstruction result given in the present paper does not yield
an alternative proof of the above result of Uchida.
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0. Notational Conventions

Monoids. — If M is a monoid, then we shall write M⊛ def
= M ∪ {∗M

def
= M}; we regard

M⊛ as a monoid, that contains M as a submonoid, by setting ∗M ·∗M
def
= ∗M , a·∗M

def
= ∗M ,

and ∗M · a
def
= ∗M for every a ∈M .

Modules. — If M is a module, then we shall write

M∧ def
= lim←−

n

M/nM

— where the projective limit is taken over the positive integers n.

Profinite Groups. — Let G be a profinite group. Then we shall say that G is slim
if the centralizer in G of an arbitrary open subgroup of G is trivial. If H ⊆ G is a
closed subgroup of G, then we shall write CG(H) ⊆ G for the commensurator of H in
G, i.e., the subgroup of G consisting of the elements g ∈ G such that the intersection
H ∩ gHg−1 ∩ g−1Hg is of finite index in H; we shall say that H is commensurably
terminal in G if the equality H = CG(H) holds. If n is an integer, and M is a topological
G-module, then we shall write Hn(G,M) for the n-th continuous group cohomology of
G with coefficients in M and

∞Hn(G,M)
def
= lim−→

H⊆G

Hn(H,M)

— where the injective limit is taken over the open subgroups H ⊆ G of G.

Fields. — Let K be a field of characteristic zero. Then we shall say that

• the fieldK is an NF [where “NF” is to be understood as an abbreviation for “Number
Field”] if K is finite over the [unique] minimal subfield of K,

• the field K is absolutely Galois if K is Galois over the [unique] minimal subfield of
K, and

• the field K is solvably closed if there is no nontrivial finite abelian extension of K.

We shall writeK× for the multiplicative module of nonzero elements ofK andK×
def
= K×∪

{0} for the underlying multiplicative monoid of K. [So we have a natural isomorphism

(K×)⊛
∼→ K× of monoids that maps ∗K× ∈ (K×)⊛ to 0 ∈ K×.] If, moreover, the field K
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is solvably closed, then we shall write Λ(K) for the cyclotome associated to K, i.e.,

Λ(K)
def
= lim←−

n

µn(K)

— where the projective limit is taken over the positive integers n, and we write µn(K) ⊆
K× for the multiplicative submodule of n-th roots of unity in K. Thus, one verifies im-
mediately that the cyclotome has a natural structure of profinite, hence also topological,
module and is isomorphic, as an abstract topological module, to the profinite completion
of an infinite cyclic module.

1. Characterization of Minimal Solvably Closed Fields

In the present §1, we give a certain characterization of the minimal solvably closed
subfield of a given solvably closed field [cf. Lemma 1.4 below]. In the present §1, let F
be an NF and F̃ a Galois extension of F that is solvably closed. We shall write

• QF
def
= Gal(F̃ /F ) for the Galois group of the Galois extension F̃ /F ,

• VF̃ ↠ VF for the respective sets of nonarchimedean primes of F̃ , F ,

• Vd=1
F ⊆ VF for the subset consisting of nonarchimedean primes of F of degree one,

• IfinF for the group of finite idèles of F ,

• Fprm ⊆ F for the [unique] minimal subfield of F [i.e., the unique subfield of F of
PmF-type — cf. [2, Definition 2.1]], and

• F slv
prm ⊆ F̃ for the [unique] maximal prosolvable extension of Fprm in F̃ . [Note that

since F̃ is solvably closed, one verifies easily that F slv
prm is a solvable closure of Fprm.]

Moreover, for each v ∈ VF , we shall write

• Fv for the completion of F at v.

Observe that, for ṽ ∈ VF̃ , if one writes ṽ|F ∈ VF for the restriction of ṽ to F , then

since F̃ is solvably closed, it follows immediately from [5, Proposition 2.3, (iii)] [i.e., the

Grunwald-Wang theorem — cf., e.g., [7, Theorem 9.2.8]] that the pair (F̃ , ṽ) determines

an algebraic closure of Fṽ|F , together with a natural inclusion from F̃ into the algebraic
closure. For each ṽ ∈ VF̃ , we shall write

• F̃ṽ (⊇ F̃ ) for the algebraic closure of Fṽ|F determined by the pair (F̃ , ṽ).

DEFINITION 1.1. — We shall write

H×(F ) ⊆ IfinF
(
⊆

∏
v∈VF

F×
v

)
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for the Kummer container associated to F [cf. [2, Definition 3.9]], i.e., the module ob-
tained by forming the fiber product of the diagram of the natural inclusions of modules

IfinF� _

��

(F×)∧ �
� //

∏
v∈VF

(F×
v )∧.

Moreover, we shall write

H×(F )
def
= H×(F )⊛

[cf. [2, Definition 3.9]]. Thus, the natural inclusion F× ↪→ IfinF and the natural homomor-
phism F× → (F×)∧ determine an injective homomorphism F× ↪→ H×(F ), hence also an
injective homomorphism F× ↪→ H×(F ). Let us regard F×, F× as submonoids of H×(F ),
H×(F ) by means of these injective homomorphisms, respectively:

F× � � //
� _

��

F×� _

��
H×(F ) �

� // H×(F ).

LEMMA 1.2. — Let a be an element of H×(F ) and N a positive integer. If the N-th
power aN ∈ H×(F ) is contained in the submodule F× ⊆ H×(F ), then a ∈ H×(F ) is
contained in the submodule F× ⊆ H×(F ).

Proof. — Since [one verifies easily that] the natural homomorphism F× → (F×)∧

factors as the composite of the natural inclusion F× ↪→ H×(F ) and an injective homo-
morphism H×(F ) ↪→ (F×)∧, to verify Lemma 1.2, it suffices to verify the triviality of the
torsion submodule of the cokernel of the natural homomorphism F× → (F×)∧. On the
other hand, this triviality follows from [1, Lemma 5.29, (ii)]. This completes the proof of
Lemma 1.2. □

DEFINITION 1.3. — Let F ′ be an intermediate field of the extension F̃ /F finite over F .
[So F ′ is an NF.] Then, for each positive integer n, we shall define two subsets

G(F ′, n) ⊆ F(F ′, n) ⊆ F ′
×

(
⊆ H×(F

′)
)

of F ′
× as follows:

• We shall write G(F ′, 1)
def
= F(F ′, 1)

def
= (Fprm)× (⊆ F ′

×).

• If n ≥ 2, then we shall write G(F ′, n) ⊆ F ′
× for the subset of F ′

× consisting of the
elements a ∈ H×(F

′) that satisfy the following condition: There exists a positive integer
N such that the N -th power aN ∈ H×(F

′) is contained in the subset F(F ′, n − 1) ⊆
H×(F

′). [Observe that it follows from Lemma 1.2 that the inclusion F(F ′, n − 1) ⊆ F ′
×

implies the inclusion G(F ′, n) ⊆ F ′
×.]

• If n ≥ 2, then we shall write F(F ′, n) ⊆ F ′
× for the [underlying set of the] subfield

of F ′ generated by G(F ′, n) ⊆ F ′
×.
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Moreover, we shall write

F(F ′,∞)
def
=

⋃
n

F(F ′, n) ⊆ F ′
×

— where the union is taken over the positive integers n.

LEMMA 1.4. — The equality, i.e., in F̃×,⋃
F ′

F(F ′,∞) = (F slv
prm)×

— where the union is taken over the intermediate fields F ′ of the extension F̃ /F finite
over F — holds.

Proof. — Let us first verify the inclusion⋃
F ′

F(F ′,∞) ⊆ (F slv
prm)×.

Now observe that one verifies immediately [cf. also the definition of the subset “F(F ′, 1)”]
that, to verify this inclusion, it suffices to verify the following assertion:

Claim 1.4.A. — For each intermediate field F ′ of F̃ /F finite over F and
each integer n ≥ 2, the inclusion F(F ′, n − 1) ⊆ (F slv

prm)× implies the

inclusion G(F ′, n) ⊆ (F slv
prm)×.

On the other hand, Claim 1.4.A follows immediately from the definition of the subset
“G(F ′, n)”.

Next, we verify the inclusion ⋃
F ′

F(F ′,∞) ⊇ (F slv
prm)×.

Now observe that one verifies immediately that, to verify this inclusion, it suffices to
verify the following assertion:

Claim 1.4.B. — For each subfield E ⊆ F slv
prm of F slv

prm finite and Galois over

Fprm, there exists an intermediate field F ′ of F̃ /F finite over F such that
the inclusion E ⊆ F(F ′,∞) holds.

To this end, let E ⊆ F slv
prm be a subfield of F slv

prm finite and Galois over Fprm. Then it

follows from [2, Lemma 5.6, (iii)] — i.e., in the case where we take the “(F, F̃ , E)” of
[2, Lemma 5.6, (iii)] to be (Fprm, F

slv
prm, E) — that, to verify Claim 1.4.B, we may assume

without loss of generality, by replacing E by a suitable finite extension of E in F slv
prm Galois

over Fprm, that there exists a finite sequence of finite extensions of Fprm contained in E

Fprm = F1 ⊆ F2 ⊆ . . . ⊆ Fn−1 ⊆ Fn = E

such that, for each i ∈ {2, . . . , n}, the extension Fi/Fi−1 is Galois, and, moreover, one of
the following two conditions is satisfied:

(1) The field Fi is obtained by adjoining a root of unity in F̃ to Fi−1.
6



(2) If one writes di for the degree of the finite extension Fi/Fi−1, then di is a prime
number, and, moreover, the field Fi−1 contains a primitive di-th root of unity.

In particular, one verifies immediately [cf. also the definition of the subset “F(F ′, 1)”]
that, to verify Claim 1.4.B, it suffices to verify the following assertion:

Claim 1.4.C. — For each i ∈ {2, . . . , n}, if one writes F ′ ⊆ F̃ for the

subfield of F̃ generated by E and F , then the inclusion Fi−1 ⊆ F(F ′, i−1)
implies the inclusion Fi ⊆ F(F ′, i).

On the other hand, Claim 1.4.C follows immediately from Kummer theory, together with
above conditions (1), (2). This completes the proof of Lemma 1.4. □

2. Reconstruction of Minimal Solvably Closed Fields

In the present §2, we establish a functorial “group-theoretic” algorithm for reconstruct-
ing, from the Galois group of a solvably closed Galois extension of an NF, the minimal
solvably closed subfield of the given solvably closed extension [cf. Definition 2.6 below
and Proposition 2.7 below]. In the present §2, let G be a profinite group of GSC-type,
i.e., a profinite group isomorphic to the Galois group of a solvably closed Galois extension
of an NF [cf. [2, Definition 3.2]]. Thus, by applying some functorial “group-theoretic”
algorithms established in [2, §3] to G, one obtains

• sets Ṽ(G) ↠ V(G) ⊇ Vd=1(G) [cf. [2, Proposition 3.5, (1), (2)]] and

• a monoid H×(G) [cf. [2, Proposition 3.11]].

Moreover, for each D ∈ Ṽ(G) that maps to D ∈ V(G), by applying some functorial
“group-theoretic” algorithms established in [2, §1] and [2, §3] to D and D, one obtains

• a prime number p(D) [cf. [2, Theorem 1.4, (1)]],

• a positive integer d(D) [cf. [2, Theorem 1.4, (2)]], and

• monoids k×(D)
∼→ k×(D) ⊆ k×(D) [cf. [2, Theorem 1.4, (8), (9)], [2, Proposition 3.7,

(2)]].

DEFINITION 2.1. — Let D be an element of Vd=1(G).

(i) For each D ∈ D, since d(D) = 1, we have a topological field k(D) and a natural
identification k(D)× = k×(D) [cf. [3, Definition 5.2]; also Remark 2.1.1 below]. Then it
follows from [2, Proposition 3.7, (i)] and [3, Theorem 5.4, (i)] that the topological field
structures of the various topological fields k(D) — where D ranges over the elements of
D — and the inclusion of monoids of [2, Proposition 3.7, (2)]

k×(D) ⊆
∏
D∈D

k×(D)

determine

• a topological field structure on the monoid k×(D), whose resulting topological field
we denote by

k(D),
7



• a natural identification k(D)× = k×(D), and

• an inclusion of topological rings

k(D) ⊆
∏
D∈D

k(D).

(ii) We shall write

Fprm(D) ⊆ k(D)

for the [unique] minimal subfield of k(D). Note that since the topological field k(D) is of
characteristic zero [cf. [3, Remark 5.2.1]], the field Fprm(D) is of PmF-type.

(iii) Let E be an element of Vd=1(G). Then we shall write

ιprmD,E : Fprm(D)
∼ // Fprm(E)

for the unique [cf. (ii)] isomorphism of fields.

REMARK 2.1.1. — In light of the importance of the topological field “k(D)” that appears
in Definition 2.1, (i), we pause to give a brief review of the reconstruction algorithm of
this field structure on the monoid k×(D) in the case where d(D) = 1 as follows: Write
(Λ(D)(p(D)))pf for the topological D-module that “corresponds” to the topological Galois
module “Qp(D)(1)” [cf. [2, Theorem 1.4, (9), (iv)], [3, Definition 4.5, (i)]]. Then since we
are working with the assumption that d(D) = 1, by considering the character on D that
“corresponds” to the p(D)-adic cyclotomic character, we may construct an isomorphism of
the monoid k×(D) with the underlying multiplicative monoid End((Λ(D)(p(D)))pf)× of the
topological field End((Λ(D)(p(D)))pf) [isomorphic to the topological field “Qp(D)”] obtained

by forming the algebra of endomorphisms of the topological module (Λ(D)(p(D)))pf . In
particular, by transporting the additive structure of the field End((Λ(D)(p(D)))pf), we
obtain a field structure on the monoid k×(D).

DEFINITION 2.2. — Let us recall the natural inclusion of monoids [cf. [2, Proposition
3.11, (ii)]]

H×(G) ⊆
∏

D∈Vd=1(G)

k×(D).

We shall write

(Fprm)×(G) ⊆ H×(G)

for the subset of H×(G) consisting of the elements a ∈ H×(G) that satisfy the following
condition: For each D, E ∈ Vd=1(G), if one writes aD ∈ k×(D), aE ∈ k×(E) for the
images of a ∈ H×(G) in k×(D), k×(E), respectively, then aD ∈ Fprm(D)× (⊆ k×(D)),
aE ∈ Fprm(E)× (⊆ k×(E)), and, moreover, the equality ιprmD,E(aD) = aE holds.

PROPOSITION 2.3. — Suppose that we are in the situation at the beginning of the pre-
ceding §1. Then the isomorphism of monoids of [2, Proposition 3.11, (i)]

H×(F )
∼ // H×(QF )
8



restricts to a bijective map of subsets

(Fprm)×
∼ / / (Fprm)×(QF ).

Proof. — This assertion follows immediately from the various definitions involved. □

DEFINITION 2.4. — Let us recall the natural inclusions [cf. [2, Proposition 3.11, (ii)]]

(Fprm)×(G) ⊆ H×(G) ⊆
∏

D∈Vd=1(G)

k×(D) =
∏

D∈Vd=1(G)

k(D)×.

For each positive integer n, we shall define two subsets

G(G,n) ⊆ H×(G), F(G,n) ⊆
∏

D∈Vd=1(G)

k(D)×

as follows:

• We shall write G(G, 1)
def
= F(G, 1)

def
= (Fprm)×(G).

• If n ≥ 2, then we shall write G(G,n) ⊆ H×(G) for the subset of H×(G) consisting
of the elements a ∈ H×(G) that satisfy the following condition: There exists a positive
integer N such that the N -th power aN ∈ H×(G) is contained in the subset F(G,n−1) ⊆∏

D∈Vd=1(G) k(D)×.

• If n ≥ 2, then we shall write F(G,n) ⊆
∏

D∈Vd=1(G) k(D)× for the [underlying set of

the] subring of
∏

D∈Vd=1(G) k(D) generated by G(G,n).

Moreover, we shall write

F(G,∞)
def
=

⋃
n

F(G,n) ⊆
∏

D∈Vd=1(G)

k(D)×

— where the union is taken over the positive integers n.

PROPOSITION 2.5. — The following assertions hold:

(i) Suppose that we are in the situation at the beginning of the preceding §1. Then the
isomorphism of monoids [cf. [2, Proposition 3.5, (i), (ii)], [2, Proposition 3.7, (i)]]∏

v∈Vd=1
F

(Fv)×
∼ //

∏
D∈Vd=1(QF )

k×(D) =
∏

D∈Vd=1(QF )

k(D)×

restricts to a bijective map of subsets

F(F,∞)
∼ // F(QF ,∞).

(ii) The subset F(G,∞) ⊆
∏

D∈Vd=1(G) k(D)× is contained in the subset H×(G) ⊆∏
D∈Vd=1(G) k(D)×:

F(G,∞) ⊆ H×(G) ⊆
∏

D∈Vd=1(G)

k(D)×.
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Proof. — Assertion (i) follows immediately from Proposition 2.3, together with the
various definitions involved [cf. also [2, Proposition 3.11, (i)]]. Assertion (ii) is a formal
consequence of assertion (i) [cf. also [2, Proposition 3.11, (i)]]. □

DEFINITION 2.6. — We shall write

F slv
prm(G)

def
= lim−→

H⊆G

F(H,∞) ⊆ lim−→
H⊆G

H×(H)

[cf. Proposition 2.5, (ii)] — where the injective limits are taken over the open subgroups
H ⊆ G of G [cf. also [2, Proposition 3.11, (iii)]] — for the ring obtained by forming
the injective limit of the various rings F(H,∞). Note that since [it is immediate that]
the assignment “G 7→ F slv

prm(G)” is functorial with respect to isomorphisms of profinite

groups, the action of G on G by conjugation induces an action of G on the ring F slv
prm(G).

PROPOSITION 2.7. — The following assertions hold:

(i) Suppose that we are in the situation at the beginning of the preceding §1. Then the

various isomorphisms H×(F
′)

∼→ H×(Gal(F̃ /F ′)) of monoids [cf. [2, Proposition 3.11,

(i)]] — where F ′ ranges over the intermediate fields of the extension F̃ /F finite over F
— determine a QF -equivariant isomorphism of rings

F slv
prm

∼ // F slv
prm(QF ).

(ii) The ring F slv
prm(G) is a field that is absolutely Galois and solvably closed. In

particular, the group of automorphisms of the field F slv
prm(G) — equipped with the profinite

topology determined by the various subfields of F slv
prm(G) that are NF’s — is a profinite

group of AGSC-type [cf. [2, Definition 3.2]].

Proof. — Assertion (i) follows immediately from Lemma 1.4 and Proposition 2.5, (i),
together with the various definitions involved. Assertion (ii) is a formal consequence of
assertion (i). □

3. Mono-anabelian Reconstruction of Solvably Closed Galois
Extensions

In the present §3, we finish establishing a functorial “group-theoretic” reconstruction
algorithm for profinite groups of GSC-type [cf. Definition 3.8 below and Theorem 3.9
below]. In the present §3, we maintain the notational conventions introduced at the
beginning of the preceding §2.

DEFINITION 3.1. — Let D be an element of Ṽ(G).

(i) Write G0 for the profinite group of automorphisms of the field F slv
prm(G) [cf. Propo-

sition 2.7, (ii)]. Then it follows from the Grunwald-Wang theorem [cf., e.g., [7, Theorem
9.2.8]], together with Proposition 2.7, (i), and [2, Proposition 3.5, (i)], that the composite

D � � // G // G0
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of the natural inclusionD ↪→ G and the actionG→ G0 ofG on F slv
prm(G) [cf. Definition 2.6]

is injective. Moreover, it follows immediately from [5, Proposition 2.3, (v)] and a similar
argument to the argument applied in the proof of [7, Theorem 12.1.9], together with
Proposition 2.7, (i), and [2, Proposition 3.5, (i)], that if one writes C ⊆ G0 for the
commensurator of the image of D in G0 by the above displayed composite, then

• the subgroup C of G0 is an element of Ṽ(G0) [cf. Proposition 2.7, (ii), [2, Propo-
sition 3.5, (1)]], and

• the above displayed composite D ↪→ G0 factors through a continuous open injec-
tive homomorphism D ↪→ C.

Thus, we have a field k(C) and a natural identification k(C)× = k×(C) [cf. Proposi-
tion 2.7, (ii), [2, Theorem 1.4, (9)], [2, Proposition 5.8, (3)]]. Moreover, the field struc-

ture of the field k(C) and the isomorphism k×(D)
∼→ k×(C) of monoids induced by the

resulting continuous open injective homomorphism D ↪→ C [cf. [2, Theorem 1.4, (9)]]
determine

• a field structure on the monoid k×(D), whose resulting field we denote by

k(D),

and

• a natural identification k(D)× = k×(D).

(ii) We shall write

k(D)
def
= k(D)D

for the subfield of k(D) of D-invariants. Thus, it follows from [2, Theorem 1.4, (iv)] that
we have a natural identification k(D)× = k×(D).

PROPOSITION 3.2. — The following assertions hold:

(i) Suppose that we are in the situation at the beginning of §1. Let ṽ be an element

of VF̃ . Write v
def
= ṽ|F ∈ VF for the restriction of ṽ ∈ VF̃ to F and Dṽ ∈ Ṽ(QF ) for the

image of ṽ ∈ VF̃ by the bijective map of [2, Proposition 3.5, (i)]. Then the commutative
diagram of monoids

(Fv)×
� � //

≀
��

(F̃ṽ)×

≀
��

k×(Dṽ)
� � // k×(Dṽ)

— where the horizontal arrows are the natural inclusions, the left-hand vertical arrow is
the isomorphism of monoids of [2, Theorem 1.4, (iii)], and the right-hand vertical arrow
is the isomorphism of monoids of [2, Theorem 1.4, (iv)] — determines a commutative
diagram of fields

Fv
� � //

≀
��

F̃ṽ

≀
��

k(Dṽ)
� � // k(Dṽ)
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— where the horizontal arrows are the natural inclusions, and the right-hand vertical
arrow is Dṽ-equivariant.

(ii) Let D be an element of Ṽ(G). Then the action of D on the field k(D) determines
a continuous isomorphism

D
∼ // Gal

(
k(D)/k(D)

)
.

Proof. — Assertion (i) follows immediately from [2, Proposition 5.8], together with the
various definitions involved. Assertion (ii) is a formal consequence of assertion (i). □

DEFINITION 3.3. — Let D be an element of Ṽ(G). Then we shall say that a collection

F [D] ⊆ F̃ [D] ⊆ k(D)

of two subfields F [D] ⊆ F̃ [D] of k(D) is of standard type if the following four conditions
are satisfied:

(1) The field F [D] is an NF.

(2) The field F̃ [D] is Galois over F [D] and solvably closed.

(3) For each element ofD, the action of the element ofD on k(D) preserves the subfield

F̃ [D] ⊆ k(D) and induces the identity automorphism of the subfield F [D] ⊆ F̃ [D].

(4) There exists a continuous isomorphism Gal(F̃ [D]/F [D])
∼→ G [cf. (2)] such that

the composite of the resulting homomorphism D → Gal(F̃ [D]/F [D]) [cf. (3)] and the

isomorphism Gal(F̃ [D]/F [D])
∼→ G coincides with the natural inclusion D ↪→ G.

PROPOSITION 3.4 (Uchida). — For □ ∈ {◦, •}, let F□ be an NF and F̃□ a Galois exten-

sion of F□ that is solvably closed; write Q□
def
= Gal(F̃□/F□). Moreover, write

Isom(F̃•/F•, F̃◦/F◦)

for the set of isomorphisms F̃•
∼→ F̃◦ of fields that restrict to isomorphisms F•

∼→ F◦ of
subfields and

Isom(Q◦, Q•)

for the set of continuous isomorphisms Q◦
∼→ Q•. Then the natural map

Isom(F̃•/F•, F̃◦/F◦) // Isom(Q◦, Q•)

is bijective.

Proof. — This assertion follows from [8, Theorem]. □

LEMMA 3.5. — The following assertions hold:

(i) In the situation of Proposition 3.4, let ṽ◦, ṽ• be elements of VF̃◦
, VF̃•

, respec-

tively. Write D◦ ∈ Ṽ(Q◦), D• ∈ Ṽ(Q•) for the respective images of ṽ◦, ṽ• by the bijective

map of [2, Proposition 3.5, (i)]. Let α, β be continuous isomorphisms Q◦
∼→ Q• such
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that the equalities α(D◦) = β(D◦) = D• hold, and, moreover, the resulting continu-

ous isomorphism α|D◦ : D◦
∼→ D• coincides with the resulting continuous isomorphism

β|D◦ : D◦
∼→ D•. Then the equality α = β holds.

(ii) A continuous isomorphism Gal(F̃ [D]/F [D])
∼→ G as in condition (4) of Defini-

tion 3.3 is unique.

Proof. — First, we verify assertion (i). Write αF , βF for the respective isomorphisms

F̃•
∼→ F̃◦ of fields that correspond to α, β by the bijective map of Proposition 3.4. Then

since α(D◦) = β(D◦) = D•, one verifies easily that the isomorphisms αF , βF determine

isomorphisms (F̃•)ṽ•
∼→ (F̃◦)ṽ◦ of fields that restrict to isomorphisms (F•)ṽ•|F•

∼→ (F◦)ṽ◦|F◦

of subfields, respectively. Write αF,v, βF,v for these isomorphisms (F̃•)ṽ•
∼→ (F̃◦)ṽ◦ , respec-

tively; αD, βD for the continuous isomorphisms D◦
∼→ D• induced by the isomorphisms

αF,v, βF,v : (F̃•)ṽ•
∼→ (F̃◦)ṽ◦ , respectively. Now observe that it follows immediately from

the various definitions involved that the equalities α|D◦ = αD, β|D◦ = βD hold. Thus,
it follows from our assumption that αD = βD, which thus [cf., e.g., [4, Proposition 2.1]]
implies that αF,v = βF,v. In particular, one may conclude that αF = βF , which thus
implies that α = β, as desired. This completes the proof of assertion (i).

Assertion (ii) is a formal consequence of assertion (i) [cf. also [2, Proposition 3.5, (i)]].
This completes the proof of Lemma 3.5. □

LEMMA 3.6. — The following assertions hold:

(i) Suppose that we are in the situation at the beginning of §1. Let D be an element of

Ṽ(QF ). Write ṽD ∈ VF̃ for the image of D ∈ Ṽ(QF ) by the bijective map of [2, Proposition

3.5, (i)]. Thus, it follows from Proposition 3.2, (i), that we have an isomorphism F̃ṽD
∼→

k(D) of fields. Then the collection consisting of the two subfields of k(D) obtained by

forming the images of the two subfields F ⊆ F̃ of F̃ṽD by the above isomorphism F̃ṽD
∼→

k(D) is of standard type [i.e., with respect to the profinite group QF of GSC-type].

(ii) Let D be an element of Ṽ(G). Then there exists a unique collection of two
subfields of k(D) of standard type.

Proof. — Assertion (i) follows immediately from Proposition 3.2, (i), together with
the various definitions involved. Next, we verify assertion (ii). The existence portion
of assertion (ii) is a formal consequence of assertion (i) [cf. also Proposition 3.2, (i), [2,
Proposition 3.5, (i)]]. To verify the uniqueness portion of assertion (ii), let

F [D]◦ ⊆ F̃ [D]◦ ⊆ k(D), F [D]• ⊆ F̃ [D]• ⊆ k(D)

be two collections of standard type. Now I claim the following assertion:

Claim 3.6.A. — There exists a D-equivariant [cf. condition (3) of Defini-
tion 3.3] isomorphism of fields

ιF̃ : F̃ [D]◦
∼ // F̃ [D]•

that restricts to an isomorphism F [D]◦
∼→ F [D]• of subfields.

To this end, let us observe that it follows immediately from Proposition 3.4, together with

conditions (1), (2), (4) of Definition 3.3, that there exists an isomorphism ιF̃ : F̃ [D]◦
∼→
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F̃ [D]• of fields that restricts to an isomorphism F [D]◦
∼→ F [D]• of subfields such that

the composite

G Gal(F̃ [D]•/F [D]•)
∼oo ∼ // Gal(F̃ [D]◦/F [D]◦)

∼ // G

— where the first and third arrows are the respective unique [cf. Lemma 3.5, (ii)] iso-
morphisms of condition (4) of Definition 3.3, and the second arrow is the isomorphism
obtained by conjugating by ιF̃ — is the identity automorphism of G. Then one verifies
immediately from condition (4) of Definition 3.3, together with the various definitions
involved, that the isomorphism ιF̃ is D-equivariant, as desired. This completes the proof
of Claim 3.6.A.

For each □ ∈ {◦, •}, write

ι□ : F̃ [D]×□
// ∞H1

(
D,Λ

(
k(D)

))
for the homomorphism obtained by forming the composite

F̃ [D]×□ = lim−→
H

(F̃ [D]×□)
H // lim−→

H

H1
(
H,Λ(F̃ [D]□)

)
= ∞H1

(
Gal(F̃ [D]□/F [D]□),Λ(F̃ [D]□)

) ∼ // ∞H1
(
G,Λ(F̃ [D]□)

)
// ∞H1

(
D,Λ

(
k(D)

))
— where the injective limits are taken over the open subgroups H ⊆ Gal(F̃ [D]□/F [D]□)

of Gal(F̃ [D]□/F [D]□), we write (F̃ [D]×□)
H ⊆ F̃ [D]×□ for the submodule of F̃ [D]×□ of H-

invariants, the first arrow is the homomorphism obtained by forming the injective limit of
the various homomorphisms of [2, Lemma 3.10, (vi)], the second arrow is the isomorphism
induced by the unique [cf. Lemma 3.5, (ii)] isomorphism of condition (4) of Definition 3.3,
and the third arrow is the homomorphism induced by the natural inclusion D ↪→ G and

the natural identifications Λ(F̃ [D]□) = Λ(k(D)). Now I claim the following assertion:

Claim 3.6.B. — To complete the verification of the uniqueness portion
of assertion (ii), it suffices to verify the commutativity of the diagram of
modules

F̃ [D]×◦
ι◦

''OO
OOO

OOO
OOO

O

ι
F̃
|
F̃ [D]×◦

≀

��

∞H1
(
D,Λ

(
k(D)

))
.

F̃ [D]×•

ι•

77oooooooooooo

To this end, let us observe that it is immediate that, for each □ ∈ {◦, •}, the homo-

morphism ι□ factors as the composite of the natural inclusion F̃ [D]×□ ↪→ k(D)× and the
homomorphism

k(D)× = lim−→
H⊆D

(
k(D)×

)H // lim−→
H⊆D

H1
(
H,Λ

(
k(D)

))
= ∞H1

(
D,Λ

(
k(D)

))
— where the injective limits are taken over the open subgroups H ⊆ D of D, and we
write (k(D)×)H ⊆ k(D)× for the submodule of k(D)× of H-invariants — obtained by
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forming the injective limit of the various homomorphisms of [2, Lemma 1.3, (x)] [cf. also
Proposition 3.2, (ii)]. Thus, Claim 3.6.B follows from the injectivity proved in [2, Lemma
1.3, (x)]. This completes the proof of Claim 3.6.B.

Since the cyclotome Λ(k(D)) associated to k(D) is isomorphic, as an abstract topolog-

ical module, to the profinite completion Ẑ of the infinite cyclic module Z, the automor-
phism

Λ
(
k(D)

)
= Λ(F̃ [D]◦)

∼ // Λ(F̃ [D]•) = Λ
(
k(D)

)
induced by the isomorphism ιF̃ is given by multiplication by an element of Ẑ×, which we

denote by a ∈ Ẑ×. Now I claim the following assertion:

Claim 3.6.C. — To complete the verification of the uniqueness portion of
assertion (ii), it suffices to verify that a = 1.

To this end, let us observe that it follows immediately from Claim 3.6.A that we have a
commutative diagram of modules

F̃ [D]×◦
ι◦ //

ι
F̃
|
F̃ [D]×◦

≀
��

∞H1
(
D,Λ

(
k(D)

))
≀
��

F̃ [D]×• ι•
// ∞H1

(
D,Λ

(
k(D)

))
— where the right-hand vertical arrow is the automorphism given by multiplication by

a ∈ Ẑ×. Thus, Claim 3.6.C follows from Claim 3.6.B. This completes the proof of
Claim 3.6.C.
For each □ ∈ {◦, •}, write F̃ [D]D□ for the subfield of F̃ [D]□ of D-invariants. Then it

follows immediately from Claim 3.6.A that we have a commutative diagram of modules

(F̃ [D]D◦ )
×

ι◦|(F̃ [D]D◦ )×
//

ι
F̃
|
(F̃ [D]D◦ )× ≀

��

H1
(
D,Λ

(
k(D)

))
≀
��

(F̃ [D]D• )
×

ι•|(F̃ [D]D• )×

// H1
(
D,Λ

(
k(D)

))
— where the right-hand vertical arrow is the automorphism given by multiplication by

a ∈ Ẑ×. Thus, it follows immediately from Proposition 3.2, (ii) [cf. also [2, Lemma 1.5,
(i)]], that we have a commutative diagram of modules

(F̃ [D]D◦ )
× //

ι
F̃
|
(F̃ [D]D◦ )× ≀

��

Z // Ẑ
≀
��

(F̃ [D]D• )
× // Z // Ẑ

— where the left-hand upper, lower horizontal arrows are the [necessarily nontrivial ]

valuations on F̃ [D]D◦ , F̃ [D]D• obtained by forming the restrictions of a p(D)-adic valu-

ation on k(D), respectively, the right-hand horizontal arrows Z → Ẑ are the natural
homomorphisms, and the right-hand vertical arrow is the automorphism given by multi-

plication by a ∈ Ẑ×. Thus, since ιF̃ is an isomorphism of fields [which thus implies that

ιF̃ maps p(D) ∈ F̃ [D]D◦ to p(D) ∈ F̃ [D]D• ], one may conclude that a = 1, which thus [cf.
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Claim 3.6.C] implies the uniqueness portion of assertion (ii). This completes the proof
of the uniqueness portion of assertion (ii), hence also of assertion (ii). □

DEFINITION 3.7. — Let D, E be elements of Ṽ(G) and

F [D] ⊆ F̃ [D] ⊆ k(D), F [E] ⊆ F̃ [E] ⊆ k(E)

respective unique [cf. Lemma 3.6, (ii)] collections of two subfields of k(D), k(E) of stan-
dard type [cf. Lemma 3.6, (ii)]. Then it follows immediately from Proposition 3.4, to-
gether with conditions (1), (2), (4) of Definition 3.3, that there exists an isomorphism

F̃ [D]
∼→ F̃ [E] of fields that restricts to an isomorphism F [D]

∼→ F [E] of subfields such
that the composite

G Gal(F̃ [E]/F [E])
∼oo ∼ // Gal(F̃ [D]/F [D])

∼ // G

— where the first and third arrows are the respective unique [cf. Lemma 3.5, (ii)] iso-
morphisms of condition (4) of Definition 3.3, and the second arrow is the isomorphism

obtained by conjugating by the isomorphism F̃ [D]
∼→ F̃ [E] — is the identity automor-

phism of G. Observe that it follows from Proposition 3.4 that such an isomorphism is
unique. We shall write

ιD,E : F̃ [D]
∼ // F̃ [E]

for the unique isomorphism as above.

DEFINITION 3.8. — For each D ∈ Ṽ(G), let F [D] ⊆ F̃ [D] ⊆ k(D) be a unique [cf.
Lemma 3.6, (ii)] collection of two subfields of k(D) of standard type [cf. Lemma 3.6, (ii)].
Then we shall write

F̃ (G) ⊆
∏

D∈Ṽ(G)

F̃ [D]

for the subset of the ring
∏

D∈Ṽ(G) F̃ [D] consisting of the elements (aD)D such that,

for each D1, D2 ∈ Ṽ(G), the equality ιD1,D2(aD1) = aD2 holds. Note that since [it is

immediate that] the assignment “G 7→ F̃ (G)” is functorial with respect to isomorphisms
of profinite groups, the action of G on G by conjugation induces an action of G on the

set F̃ (G). We shall write

F (G)
def
= F̃ (G)G

for the subset of F̃ (G) of G-invariants.

THEOREM 3.9. — The following assertions hold:

(i) The subset F̃ (G) of the ring
∏

D∈Ṽ(G) F̃ [D] [cf. Definition 3.8] forms a subring.
Moreover, the resulting ring is a solvably closed field.

(ii) The subset F (G) of the field F̃ (G) [cf. (i)] forms a subfield. Moreover, the
resulting field is an NF.
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(iii) The action of G on F̃ (G) determines a continuous isomorphism

G
∼ // Gal

(
F̃ (G)/F (G)

)
.

(iv) Suppose that we are in the situation at the beginning of §1. Then the isomorphism
of rings [cf. Proposition 3.2, (i), [2, Proposition 3.5, (i)]]∏

ṽ∈V
F̃

F̃ṽ
∼ //

∏
D∈Ṽ(QF )

k(D)

determines a commutative diagram of fields

F � � //

≀
��

F̃

≀
��

F (QF )
� � // F̃ (QF )

— where the horizontal arrows are the natural inclusions, and the right-hand vertical
arrow is QF -equivariant.

(v) Let D be an element of Ṽ(G). Then the natural inclusion D ↪→ G determines a
commutative diagram of fields

F (G) �
� //

� _

��

F̃ (G)
� _

��

k(D) �
� // k(D)

— where the horizontal arrows are the natural inclusions, and the right-hand vertical
arrow is D-equivariant.

Proof. — These assertions follow immediately from Proposition 3.2, (i), and Lemma 3.6,
(i), (ii), together with the various definitions involved. □

REMARK 3.9.1. — Let G◦, G• be profinite groups of GSC-type and α : G◦ → G• a
continuous open homomorphism.

(i) Suppose that α is injective. Then one verifies immediately that the homomorphism
α determines a commutative diagram of fields

F (G•)
� � //

� _

��

F̃ (G•)

≀
��

F (G◦)
� � // F̃ (G◦)

— where the horizontal arrows are the natural inclusions, and the right-hand vertical
arrow is an isomorphism compatible with the respective actions of G•, G◦ relative to α.

(ii) Suppose that α is surjective, and that Ker(α) has no nontrivial finite abelian

quotient. Then one verifies immediately that the subfield F̃ (G◦)
Ker(α) of F̃ (G◦) of Ker(α)-

invariants is solvably closed. Thus, it follows immediately from the construction of “F̃ (−)”
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that the homomorphism α determines a commutative diagram of fields

F (G•)
� � //

≀
��

F̃ (G•)

≀
��

F
(
G◦/Ker(α)

)
� � //

≀
��

F̃
(
G◦/Ker(α)

)
� _

��

F (G◦)
� � // F̃ (G◦)

— where the horizontal arrows are the natural inclusions, the upper vertical arrows are
the isomorphisms induced by the isomorphism G◦/Ker(α)

∼→ G• determined by α, and
the right-hand upper vertical arrow is compatible with the respective actions of G•, G◦
relative to α.

(iii) Suppose that Ker(α) has no nontrivial finite abelian quotient. Then it follows
from (i), (ii) that the homomorphism α determines a commutative diagram of fields

F (G•)
� � //

� _

��

F̃ (G•)� _

��

F (G◦)
� � // F̃ (G◦)

— where the horizontal arrows are the natural inclusions, and the right-hand vertical
arrow is compatible with the respective actions of G•, G◦ relative to α. In particular, one
may assert that the “group-theoretic” algorithm

G 7→
(
G ↷ F̃ (G)

)
established in the present paper is functorial with respect to continuous open homomor-
phisms of profinite groups of GSC-type whose kernels have no nontrivial finite abelian
quotients.

REMARK 3.9.2. — Note that, in the establishment of our reconstruction result, Uchida’s
theorem [i.e., Proposition 3.4] plays a crucial role [cf., e.g., the proof of Lemma 3.6, (ii)].
In particular, the proof of this reconstruction result does not yield an alternative proof
of Uchida’s theorem.

REMARK 3.9.3. — We thus conclude from the reconstruction result obtained in the
present paper that a profinite group of GSC-type admits a ring-theoretic basepoint [i.e., a
“ring-theoretic interpretation” or a “ring-theoretic label”] group-theoretically constructed
from the given profinite group.
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