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ABSTRACT. In the present paper, we construct abundant explicit nongeometric pro-p Galois sec-
tions of certain punctured projective lines. Moreover, we also obtain an application to the theory of
Massey products.

INTRODUCTION

In the present Introduction, let p be a prime number, F a finite extension either of the field Q
of rational numbers or of the p-adic completion Qp of Q, and F an algebraic closure of F . Write

GF
def
= Gal(F/F) for the absolute Galois group [determined by the algebraic closure F ] of F , XF

for the punctured projective line over F obtained by forming the spectrum of the F-algebra

F
[
tX ,

1
tX
,

1
tX −1

]
— where tX is an indeterminate — and JF for the affine scheme over F obtained by forming the
spectrum of the F-algebra

F
[
t(J,1),

1
t(J,1)

, t(J,2),
1

t(J,2)

]
— where t(J,1), t(J,2) are indeterminates. Thus, we have a closed immersion over F

XF
� � // JF

determined by “(t(J,1), t(J,2)) 7→ (tX ,1− tX)”. For each □ ∈ {X ,J}, write, moreover, □F
def
= □F ×F

F ,

∆□
(

π1(□F)
)

oooo

for the pro-p geometric étale fundamental group of □F , i.e., the maximal pro-p quotient of π1(□F),
and

Π□
(

π1(□F)
)

oooo
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for the geometrically pro-p étale fundamental group of □F , i.e., the quotient of π1(□F) by the
kernel of the natural continuous surjective homomorphism π1(□F)↠ ∆□. Thus, we have a com-
mutative diagram of profinite groups

1 // ∆X //

��

ΠX //

��

GF // 1

1 // ∆J // ΠJ // GF // 1

— where the horizontal sequences are exact, and the left-hand (respectively, middle) vertical arrow
is the continuous outer homomorphism (respectively, ∆J-conjugacy class of continuous homomor-
phisms over GF ) induced by the above closed immersion XF ↪→ JF over F . Now let us recall [cf.
[2, Definition 1.1, (i)]] that a continuous section of the right-hand upper (respectively, lower) hor-
izontal arrow of this diagram is called a pro-p Galois section of XF (respectively, JF ). For each
□ ∈ {X ,J}, write

GalSect(□)

for the set of ∆□-conjugacy classes of pro-p Galois sections of □F . Here, let us observe that
one verifies immediately that, for each □ ∈ {X ,J}, by the functoriality of “π1”, an F-rational
point of □F [i.e., a section of the structure morphism □F → Spec(F)] gives rise to an element of
GalSect(□). In particular, by the above diagram and this observation, we obtain a commutative
diagram of sets

F \{0,1}
a7→(a,1−a)

��

XF(F) //tX
∼

oo GalSect(X)

��
F××F× JF(F) //

(t(J,1),(t(J,2))

∼
oo GalSect(J).

One main problem discussed in the present paper is as follows:
Find an element of F××F×, i.e., an F-rational point of JF [cf. the above diagram],
such that the associated ∆J-conjugacy class of pro-p Galois sections of JF lifts,
relative to the right-hand vertical arrow of the above diagram, to a ∆X -conjugacy
class of pro-p Galois sections of XF .

Write Ωp-unr⊆F for the [unique] maximal Galois extension of Q in F that satisfies the following
two conditions:

• The extension Ωp-unr/Q is unramified outside p.
• If ζp ∈ F is a primitive p-th root of unity, then ζp ∈ Ωp-unr, and, moreover, the extension

Ωp-unr/Q(ζp) is pro-p.
In the remainder of the present Introduction, let

x1,x2 ∈Ωp-unr∩F×

be two elements of Ωp-unr∩F×, which thus determine an F-rational point of JF

(x1,x2) ∈ F××F× JF(F).
(t(J,1),(t(J,2))

∼
oo

The first main result of the present paper is as follows [cf. Corollary 2.5]:

Theorem A. Suppose that the following three conditions are satisfied:
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(1) The prime number p is [odd and] regular.
(2) The field F contains a primitive p-th root of unity.
(3) Each of x1, x2 is a p-unit.

Then the following assertions hold:

(i) There exists an element of GalSect(X) whose image in GalSect(J) coincides with the
element of GalSect(J) determined by the pair (x1,x2) ∈ F××F×.

(ii) Suppose that there is no pair (ζ1,ζ2) of roots of unity of F of order prime to p such that
1 = ζ1x1+ζ2x2. Then an element of GalSect(X) as in (i) is not contained in the image of
the map XF(F)→ GalSect(X).

(iii) In the situation of (ii), suppose, moreover, that neither x1 nor x2 is a root of unity of
order prime to p. Then an arbitrary pro-p Galois section of XF contained in an element
of GalSect(X) as in (i) is not geometric [cf. [2, Definition 1.1, (iii)]], i.e., the image of
an arbitrary pro-p Galois section of XF contained in an element of GalSect(X) as in (i)
is not contained in a decomposition subgroup of ΠX associated to an F-rational point of
the smooth compactification of XF .

By means of Theorem A, one may construct “abundant” and “explicit” nongeometric pro-p
Galois sections of the punctured projective line XF [cf., e.g., Remark 2.5.1].

By combining Theorem A with a result by K. Wickelgren, we obtain the following application
to the theory of Massey products [cf., e.g., [6, §2]]. Let r ≥ 2 be an integer less than p. Write
µpi(F)⊆ F× for the continuous GF -module of pi-th roots of unity in F for each positive integer i,

Zp(1)
def
= lim←−

i≥1
µpi(F)

— where the projective limit is taken over the positive integers i — Zp(r) for the continuous
GF -module obtained by forming the tensor product over Zp of r copies of Zp(1), and

κF : F× // H1(GF ,Zp(1)
)

for the natural homomorphism in Kummer theory.
The second main result of the present paper is as follows [cf. Corollary 2.6]:

Theorem B. Suppose that the three conditions (1), (2), (3) in the statement of Theorem A are
satisfied. Then, for an arbitrary map f : {1, . . . ,r} → {1,2} such that f−1({2}) is of cardinality
one, the r-th order Massey product in H2(GF ,Zp(r)) [cf. [6, Definition 2.3]]

〈κF(x f (1)), . . . ,κF(x f (r))〉

vanishes.

Acknowledgments. The first author was supported by JSPS KAKENHI Grant Number 21K03162.
This research was supported by the Research Institute for Mathematical Sciences, an International
Joint Usage/Research Center located in Kyoto University.
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1. PRO-p GALOIS SECTIONS OF PUNCTURED PROJECTIVE LINES

In the present §1, we discuss generalities on pro-p Galois sections of certain punctured projective
lines. In the present §1, let

• n≥ 2 be an integer,
• p a prime number,
• A a regular integral domain of dimension ≤ 1 in which p is invertible and whose field of

fractions is of characteristic zero, and
• a1, . . . ,an distinct n elements of A such that a1 = 0, a2 = 1, and, moreover, for each i,

j ∈ {1, . . . ,n}, the difference ai−a j ∈ A is invertible in A whenever i 6= j.
Write

• K for the field of fractions of A [necessarily of characteristic zero],
• X for the affine scheme over A obtained by forming the spectrum of the A-algebra

A
[
tX ,

1
tX −a1

, . . . ,
1

tX −an

]
— where tX is an indeterminate —
• J for the affine scheme over A obtained by forming the spectrum of the A-algebra

A
[
t(J,1),

1
t(J,1)

, . . . , t(J,n),
1

t(J,n)

]
— where t(J,1), . . . , t(J,n) are indeterminates — and
• ιX : X ↪→ J for the closed immersion over A determined by “t(J,i) 7→ ai− tX ” for each

i ∈ {1, . . . ,n}.

Let us fix an algebraic closure K of K. Write, moreover, GK
def
= Gal(K/K) for the absolute Galois

group [determined by the algebraic closure K] of K and, for each □ ∈ {X ,J},

□K
def
= □×A K, □K

def
= □×A K.

Thus, for each □ ∈ {X ,J}, we have a natural exact sequence of profinite groups

1 // π1(□K)
// π1(□K) // GK // 1

[cf. [7, Exposé IX, Théorème 6.1]].

Definition 1.1. Let □ be either X or J. Then we shall write

∆□
(

π1(□K)
)

oooo

for the pro-p geometric étale fundamental group of □K , i.e., the maximal pro-p quotient of π1(□K),
and

Π□
(

π1(□K)
)

oooo

for the geometrically pro-p étale fundamental group of □K , i.e., the quotient of π1(□K) by the ker-
nel of the natural continuous surjective homomorphism π1(□K)↠ ∆□. Thus, the exact sequence
preceding the present Definition 1.1 determines an exact sequence of profinite groups

1 // ∆□ // Π□ // GK // 1.
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In particular, we have a continuous outer action of GK on ∆□, which we denote by

ρ□ : GK // Out(∆□).

Moreover, we shall write

ιΠ
X : ΠX // ΠJ

for the ∆J-conjugacy class of continuous homomorphisms over GK induced by the closed immer-
sion ιX over A and

ι∆
X : ∆X // ∆J

for the continuous outer homomorphism induced by the closed immersion ιX .

Lemma 1.2. The following assertions hold:
(i) The profinite group ∆X is center-free.
(ii) The profinite group ∆J is isomorphic, as an abstract profinite group, to the direct product

of n copies of Zp. Moreover, the continuous outer action ρJ : GK → Out(∆J) = GLn(Zp)
coincides with the direct product of n copies of the p-adic cyclotomic character of GK .

(iii) Write ∆ab
X for the topological abelianization of the profinite group ∆X . Then the continuous

outer homomorphism ι∆
X : ∆X → ∆J determines a continuous isomorphism ∆ab

X
∼→ ∆J .

Proof. These assertions follow immediately from the well-known structures of the étale fundamen-
tal groups of curves and tori over fields of characteristic zero. □

Definition 1.3. Let □ be either X or J. Then we shall write

GalSect(□)

for the set of conjugacy classes of pro-p Galois sections of □K [cf. [2, Definition 1.1, (i)]], i.e., the
set of ∆□-conjugacy classes of continuous sections of the continuous surjective homomorphism
Π□ ↠ GK ,

□(K)

for the set of K-rational points of □, and

gs□ : □(K) // GalSect(□)

for the map that sends a K-rational point of □ to the associated conjugacy class of pro-p Galois
sections of □K [cf. [2, Definition 1.1, (ii)]].

Proposition 1.4. The following assertions hold:
(i) Write

(K×)(p) def
= lim←−

i≥1

(
K×⊗Z (Z/piZ)

)
— where the projective limit is taken over the positive integers i. Then there exists a
bijective map

κJ : GalSect(J) ∼ //
n

∏
i=1

(K×)(p)
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that satisfies the following condition: The bijective maps

tX : X(K)
∼ // K \{a1, . . . ,an}, (t(J,1), . . . , t(J,n)) : J(K)

∼ //
n

∏
i=1

K×

determined by the regular functions tX ∈Γ(X ,OX), t(J,1), . . . , t(J,n) ∈Γ(J,OJ), respectively,
fit into a commutative diagram of sets

K \{a1, . . . ,an}� _

a 7→(ai−a)n
i=1 ��

X(K)∼
tXoo

gsX // GalSect(X)

ιΠ
X

��n

∏
i=1

K× J(K)∼
(t(J,i))

n
i=1oo

gsJ // GalSect(J) ∼
κJ //

n

∏
i=1

(K×)(p)

such that the composite of the three lower horizontal arrows coincides with the natural
homomorphism

n

∏
i=1

K× //
n

∏
i=1

(K×)(p).

(ii) Let x1, . . . ,xn be n elements of K×. Write σJ ∈ GalSect(J) for the conjugacy class of
pro-p Galois sections of JK that arises from the K-rational point of JK [cf. [2, Definition
1.1, (ii)]] determined by “t(J,i) 7→ xi” for each i ∈ {1, . . . ,n}. Consider the following four
conditions:
(1) There exists a K-rational point of X whose image in GalSect(J), relative to the dia-

gram of (i), coincides with the conjugacy class σJ ∈ GalSect(J).
(2) There exists an element a ∈ K \ {a1, . . . ,an} such that, for each i ∈ {1, . . . ,n}, the

element (ai−a)/xi ∈ K× is p-divisible.
(3) There exists a conjugacy class of geometric [cf. [2, Definition 1.1, (iii)]] pro-p Galois

sections of XK whose image in GalSect(J), relative to the diagram of (i), coincides
with the conjugacy class σJ ∈ GalSect(J).

(4) There exists an element i0 ∈ {1, . . . ,n} such that, for each i ∈ {1, . . . ,n} \ {i0}, the
element (ai−ai0)/xi ∈ K× is p-divisible.

Then we have the following implications:

(1) ks +3 (2) +3 (3) ks +3 either (2) or (4)

Proof. Assertion (i) follows immediately from [3, Lemma 5.28, (ii)], together with the various
definitions involved. Next, we verify assertion (ii). The implications

(1) ks +3 (2) +3 (3) +3 either (2) or (4)

follow immediately from assertion (i), together with the [easily verified] fact that the kernel of the
natural homomorphism K× → (K×)(p) is given by the subgroup of K× consisting of p-divisible
elements. Finally, we verify the implication (4)⇒ (3). Suppose that condition (4) is satisfied. Let
Dai0
⊆ΠX be a decomposition subgroup associated to the K-rational point of the smooth compact-

ification of XK determined by “tX 7→ ai0”. Write (Ji0)K for the affine scheme over K obtained by
6



forming the spectrum of the K-algebra

K
[
t(J,i0),

1
t(J,i0)

]
— where t(J,i0) is an indeterminate — and Qi0 for the geometrically pro-p étale fundamental group
[cf. Definition 1.1] of (Ji0)K . Then one verifies immediately from the well-known structures of the
étale fundamental groups of curves and tori over fields of characteristic zero that the composite

Dai0

� � // ΠX
ιΠ
X // ΠJ // Qi0

— where the third arrow is the Ker(Qi0 ↠ GK)-conjugacy class of continuous homomorphisms
over GK induced by the natural inclusion of K-algebras

K
[
t(J,i0),

1
t(J,i0)

]
� � // K

[
t(J,1),

1
t(J,1)

, . . . , t(J,n),
1

t(J,n)

]
— is a Ker(Qi0 ↠GK)-conjugacy class of continuous isomorphisms over GK . Thus, this composite
and a pro-p Galois section of (Ji0)K that arises from the K-rational point of (Ji0)K determined
by “t(J,i0) 7→ xi0” give rise to a Ker(Dai0

↠ GK)-conjugacy class of continuous sections of the
continuous surjective homomorphism Dai0

↠ GK , hence also a conjugacy class of [necessarily
geometric] pro-p Galois section of XK . Moreover, one verifies immediately from condition (4) and
assertion (i), together with the [easily verified] fact that the kernel of the natural homomorphism
K×→ (K×)(p) is given by the subgroup of K× consisting of p-divisible elements, that the resulting
conjugacy class of pro-p Galois sections of XK satisfies condition (3). This completes the proof of
the implication (4)⇒ (3), hence also of assertion (ii). □

2. PROOFS

In the present §2, we prove the main results of the present paper. In the present §2, we maintain
the notational conventions introduced at the beginning of the preceding §1.

Definition 2.1. Let □ be either X or J. Then we shall write

Πp-ét
□

(
Π□

)
oooo

for the quotient [cf. [7, Exposé V, Proposition 8.2]] of Π□ obtained by forming the maximal pro-p
quotient of π1(□) and

Gp-unr
K

(
GK

)
oooo

for the quotient of GK that corresponds to the [unique] maximal Galois extension of K in K that
is pro-p over K and unramified at each of the discrete valuations of K associated to the nonzero
maximal ideals of A, i.e., the quotient of GK obtained by forming the maximal pro-p quotient of
π1(Spec(A)). Moreover, we shall write

ιΠp-ét

X : Πp-ét
X

// Πp-ét
J

for the Ker(Πp-ét
J ↠ Gp-unr

K )-conjugacy class of continuous homomorphisms over Gp-unr
K induced

by the closed immersion ιX over A.
7



Lemma 2.2. Suppose that K contains a primitive p-th root of unity. Write ZΠX (∆X) for the
centralizer of ∆X in ΠX . Then the following assertions hold:

(i) The quotient ΠX ↠ ΠX/ZΠX (∆X) is pro-p.
(ii) The quotient ΠX ↠ ΠX/ZΠX (∆X) factors through the quotient ΠX ↠ Πp-ét

X :

ΠX // // Πp-ét
X

// // ΠX/ZΠX (∆X).

(iii) The exact sequence of the third display of Definition 1.1 in the case where □ = X and
the natural continuous surjective homomorphisms ΠX ↠ Πp-ét

X and GK ↠ Gp-unr
K fit into

a commutative diagram of profinite groups

1 // ∆X // ΠX //

����

GK //

����

1

1 // ∆X // Πp-ét
X

// Gp-unr
K

// 1

— where the horizontal sequences are exact.
(iv) The exact sequence of the third display of Definition 1.1 in the case where □ = J and

the natural continuous surjective homomorphisms ΠJ ↠ Πp-ét
J and GK ↠ Gp-unr

K fit into a
commutative diagram of profinite groups

1 // ∆J // ΠJ //

����

GK //

����

1

1 // ∆J // Πp-ét
J

// Gp-unr
K

// 1

— where the horizontal sequences are exact.
(v) The two squares of the commutative diagram of profinite groups

ΠX
ιΠ
X // //

����

ΠJ // //

����

GK

����
Πp-ét

X
ιΠp-ét
X

// // Πp-ét
J

// // Gp-unr
K

— where the vertical arrows are the natural continuous surjective homomorphisms — are
cartesian.

Proof. First, we verify assertion (i). Let us first observe that it is immediate that, to verify assertion
(i), it suffices to verify that the continuous action of ΠX on ∆X by conjugation factors through a
pro-p quotient of ΠX . Write ∆ab

X for the topological abelianization of the profinite group ∆X . Thus,
since the kernel of the natural homomorphism Aut(∆X)→ Aut(∆ab

X ) is pro-p [cf. [1, Theorem 6]],
to verify assertion (i), it suffices to verify that the continuous action of ΠX on ∆ab

X by conjugation
factors through a pro-p quotient of ΠX . On the other hand, since [we have assumed that] K contains
a primitive p-th root of unity, this follows from Lemma 1.2, (ii), (iii). This completes the proof of
assertion (i).

Next, we verify assertion (ii). If A is of dimension zero, then assertion (ii) is an immediate
consequence of assertion (i). In the remainder of the proof of assertion (ii), suppose that A is of
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dimension one. Let us first observe that it follows from [7, Exposé V, Proposition 8.2] and [7,
Exposé X, Théorème de pureté 3.1] that the kernel of the natural continuous surjective homomor-
phism ΠX ↠ Πp-ét

X is topologically generated by
• the kernel of the natural continuous surjective homomorphism from ΠX onto the maximal

pro-p quotient of ΠX and
• the inertia subgroups of ΠX associated to the irreducible divisors on X obtained by form-

ing the pull-backs of the closed points of the spectrum of A.
Thus, it follows from assertion (i) that the desired conclusion is equivalent to the assertion that
each of such inertia subgroups of ΠX is contained in ZΠX (∆X). In particular, we may assume
without loss of generality, by replacing A by the strict henselization of A with respect to a suitable
geometric point of the spectrum of A, that A is strictly henselian. Then since [we have assumed
that] p is invertible in A, it follows from the well-known theory of specialization homomorphisms
of étale fundamental groups of [7, Exposé XIII] [cf. also our assumption imposed on the ai’s] that
the composite ∆X ↪→ΠX ↠ Πp-ét

X is a continuous isomorphism, which thus implies that the natural
inclusions from Ker(ΠX ↠Πp-ét

X ) and ∆X into ΠX determine a continuous isomorphism Ker(ΠX ↠
Πp-ét

X )×∆X
∼→ ΠX . In particular, it follows from the center-free-ness of ∆X [cf. Lemma 1.2, (i)]

that the centralizer of ∆X in ΠX coincides with Ker(ΠX ↠ Πp-ét
X )⊆ΠX , which thus implies that the

quotient ΠX ↠ ΠX/ZΠX (∆X) coincides with the quotient ΠX ↠ Πp-ét
X , as desired. This completes

the proof of assertion (ii).
Next, we verify assertion (iii). Let us first observe that one verifies immediately from [7, Exposé

V, Proposition 8.2] and [7, Exposé X, Théorème de pureté 3.1] that, to verify assertion (iii), it
suffices to verify that the composite ∆X ↪→ΠX ↠ Πp-ét

X is injective. On the other hand, the desired
injectivity follows from assertion (ii), together with the center-free-ness of ∆X [cf. Lemma 1.2, (i)].
This completes the proof of assertion (iii). Assertion (iv) follows immediately from assertion (iii),
together with Lemma 1.2, (iii). Assertion (v) follows from assertions (iii), (iv). This completes the
proof of Lemma 2.2. □
Definition 2.3. If F is a field of characteristic zero, and F is an algebraic closure of F , then we
shall write F0 ⊆ F for the [unique] minimal subfield of F and

Ωp-unr ⊆ F

for the [unique] maximal Galois extension of F0 in F that satisfies the following two conditions:
• The extension Ωp-unr/F0 is unramified outside p.
• If ζp ∈ F is a primitive p-th root of unity, then ζp ∈ Ωp-unr, and, moreover, the extension

Ωp-unr/F0(ζp) is pro-p.

Theorem 2.4. In the notational conventions introduced at the beginning of the preceding §1, let

x1, . . . ,xn ∈Ωp-unr∩K

be n elements of Ωp-unr ∩K [which thus implies that each of x1, . . . ,xn is an algebraic number].
Suppose that the following four conditions are satisfied:

(1) The prime number p is [odd and] regular.
(2) The field K contains a primitive p-th root of unity.
(3) Each of the algebraic numbers x1, . . . ,xn is a p-unit.

9



(4) The elements a1, . . . ,an ∈ A are contained in Ωp-unr [which thus implies that each of
a1, . . . ,an is an algebraic number], and, moreover, for each i, j ∈ {1, . . . ,n}, the alge-
braic number ai−a j is a p-unit whenever i 6= j.

Then an arbitrary pro-p Galois section of JK that arises from the K-rational point of JK determined
by “t(J,i) 7→ xi” for each i ∈ {1, . . . ,n} [cf. (3)] lifts, relative to the ∆J-conjugacy class ιΠ

X : ΠX →
ΠJ of continuous homomorphisms over GK , to a pro-p Galois section of XK .

Proof. Let us first observe that one verifies immediately that, to verify Theorem 2.4, we may
assume without loss of generality — by replacing A by the normalization of the subring of K
generated by A⊆ K and x1, . . . ,xn ∈ Ωp-unr∩K — that x1, . . . ,xn ∈ A. Moreover, one also verifies
immediately that, to verify Theorem 2.4, we may assume without loss of generality — by replacing
A by the normalization of the subring of A generated by 1/p ∈ A, a primitive p-th root of unity
in A [cf. condition (2)], and a1, . . . ,an,x1, . . . ,xn ∈ A — that K is a number field [i.e., finite over
the minimal subfield of K] contained in Ωp-unr, and A is the subring of K generated by the ring
of integers of K and 1/p ∈ K [cf. conditions (3), (4)]. In particular, one verifies easily [cf. also
condition (2)] that the two quotients Gp-unr

K and Gal(Ωp-unr/K) of GK coincide.
Let σJ be a pro-p Galois section of JK that arises from the K-rational point of JK determined

by “t(J,i) 7→ xi” for each i ∈ {1, . . . ,n} [cf. condition (3)]. Now let us observe that since p is
invertible in A, it follows from condition (3) that xi ∈ A× for each i ∈ {1, . . . ,n}. Thus, one verifies
immediately from the various definitions involved that there exists a continuous section σ p-ét

J of
the continuous surjective homomorphism Πp-ét

J ↠ Gp-unr
K such that the pull-back [cf. the right-

hand cartesian square of the diagram of Lemma 2.2, (v)] of σ p-ét
J by the continuous surjective

homomorphism GK ↠ Gp-unr
K coincides with σJ . In particular, since Gp-unr

K =Gal(Ωp-unr/K) is free
pro-p [cf., e.g., [2, Lemma 3.2], also condition (1)], the continuous section σ p-ét

J lifts, relative to

the Ker(Πp-ét
J ↠ Gp-unr

K )-conjugacy class ιΠp-ét

X : Πp-ét
X ↠ Πp-ét

J of continuous homomorphisms over
Gp-unr

K , to a continuous section σ p-ét
X of the continuous surjective homomorphism Πp-ét

X ↠ Gp-unr
K .

Then it follows from the various definitions involved that the pro-p Galois section of XK obtained
by forming the pull-back [cf. the two cartesian squares of the diagram of Lemma 2.2, (v)] of σ p-ét

X
by the continuous surjective homomorphism GK ↠ Gp-unr

K lifts, relative to the ∆J-conjugacy class
ιΠ
X : ΠX → ΠJ of continuous homomorphisms over GK , the pro-p Galois section σJ of JK . This

completes the proof of Theorem 2.4. □
Corollary 2.5. Let p be a prime number and F a finite extension either of the field Q of rational
numbers or of the p-adic completion Qp of Q. Write XF for the punctured projective line over F
obtained by forming the spectrum of the F-algebra

F
[
tX ,

1
tX
,

1
tX −1

]
— where tX is an indeterminate — and JF for the affine scheme over F obtained by forming the
spectrum of the F-algebra

F
[
t(J,1),

1
t(J,1)

, t(J,2),
1

t(J,2)

]
— where t(J,1), t(J,2) are indeterminates. Let x1, x2 be elements of Ωp-unr ∩F. Suppose that the
following three conditions are satisfied:
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(1) The prime number p is [odd and] regular.
(2) The field F contains a primitive p-th root of unity.
(3) Each of x1, x2 is a p-unit.

Then the following assertions hold:
(i) An arbitrary pro-p Galois section of JF that arises from the F-rational point of JF de-

termined by “t(J,i) 7→ xi” for each i ∈ {1,2} [cf. (3)] lifts, relative to an arbitrary con-
tinuous homomorphism between the geometrically pro-p étale fundamental groups of XF ,
JF induced by the closed immersion XF ↪→ JF over F determined by “(t(J,1), t(J,2)) 7→
(tX ,1− tX)”, to a pro-p Galois section of XF .

(ii) Suppose that there is no pair (ζ1,ζ2) of roots of unity of F of order prime to p such that
1 = ζ1x1 +ζ2x2. Then the resulting pro-p Galois section of XF of (i) does not arise from
any F-rational point of XF .

(iii) In the situation of (ii), suppose, moreover, that neither x1 nor x2 is a root of unity of order
prime to p. Then the resulting pro-p Galois section of XF of (i) is not geometric.

Proof. One verifies immediately that we are in the situation of Theorem 2.4, i.e., by taking the
“(n,A,K)” of Theorem 2.4 to be (2,F,F). Thus, assertion (i) follows from Theorem 2.4. Asser-
tions (ii), (iii) follow immediately from Proposition 1.4, (ii), together with the [easily verified] fact
that, for each element of F×, it holds that the element is p-divisible if and only if the element is a
root of unity of order prime to p. This completes the proof of Corollary 2.5. □
Remark 2.5.1. Suppose that we are in the situation of Corollary 2.5. Let n1, n2 be two nonzero
integers. Then it is immediate that both pn1 and pn2 are p-units. In particular, it follows from
Corollary 2.5, (i), that an arbitrary pro-p Galois section of JF that arises from the F-rational point
of JF determined by “t(J,i) 7→ pni” for each i∈ {1,2} lifts to a pro-p Galois section of XF . Moreover,
one verifies easily that the pair (pn1, pn2) satisfies conditions imposed on the pair “(x1,x2)” in the
statements of Corollary 2.5, (ii), (iii). In particular, it follows from Corollary 2.5, (iii), that the
resulting pro-p Galois section of XF is not geometric.

Remark 2.5.2. Suppose that we are in the situation of Corollary 2.5. Let d be a positive integer
and C a hyperbolic curve over F . Then it follows from [5, Theorem 0.4] [cf. also [4, Theorem C,
(i)]] that the kernel of the continuous outer action “ρ□” defined in Definition 1.1 for the hyperbolic
curve C over F coincides with the kernel of the continuous outer action “ρ□” defined in Defini-
tion 1.1 for the d-th configuration space of the hyperbolic curve C over F . One verifies immediately
from this fact that the construction of nongeometric pro-p Galois sections given in Corollary 2.5,
(iii) [and, moreover, the proof of the existence of nongeometric pro-p Galois sections given in [2,
§4]], may also be applied to the case of the d-th configuration space of suitable hyperbolic curves.
We leave the routine details to the interested reader.

Remark 2.5.3. One open problem concerning nongeometric Galois sections of hyperbolic curves
is the following: Are there an irregular prime number l and a nongeometric pro-l Galois section
of a hyperbolic curve over a finite extension of the field Q of rational numbers or of the l-adic
completion Ql of Q? It is not clear to the authors at the time of writing whether or not this
question may be answered in the affirmative.

Corollary 2.6. Let r≥ 2 be an integer, p a prime number greater than r, F a finite extension either
of the field Q of rational numbers or of the p-adic completion Qp of Q, and F an algebraic closure

of F. Write GF
def
= Gal(F/F) for the absolute Galois group [determined by the algebraic closure

11



F ] of F, µpi(F) ⊆ F× for the continuous GF -module of pi-th roots of unity in F for each positive
integer i,

Zp(1)
def
= lim←−

i≥1
µpi(F)

— where the projective limit is taken over the positive integers i — Zp(r) for the continuous GF -
module obtained by forming the tensor product over Zp of r copies of Zp(1), and

κF : F× // H1(GF ,Zp(1)
)

for the natural homomorphism in Kummer theory. Let x1, x2 be elements of Ωp-unr∩F. Suppose
that the following three conditions are satisfied:

(1) The prime number p is [odd and] regular.
(2) The field F contains a primitive p-th root of unity.
(3) Each of x1, x2 is a p-unit.

Then, for an arbitrary map f : {1, . . . ,r} → {1,2} such that f−1({2}) is of cardinality one, the
r-th order Massey product in H2(GF ,Zp(r)) [cf. [6, Definition 2.3]]

〈κF(x f (1)), . . . ,κF(x f (r))〉

[cf. (3)] vanishes.

Proof. This assertion is a formal consequence of Corollary 2.5, (i), and [6, Corollary 7]. □
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