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Abstract. Let l be a prime number. In the present paper, we
prove that the geometric isomorphism class of a quasi-l-monodromically
full hyperbolic curve with small numerical invariants over a sub-l-
adic field is completely determined by the commensurability class
of the kernel of the associated pro-l outer Galois action.
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Introduction

In the present paper, we establish a Galois-theoretic characterization
of geometric isomorphism classes of quasi-monodromically full hyper-
bolic curves with small numerical invariants.

First, let us review the notion of [quasi-]monodromic fullness as fol-
lows: Let g and r be nonnegative integers such that 2g− 2+ r > 0, k a
field of characteristic zero, k an algebraic closure of k, l a prime number,
and X a hyperbolic curve of type (g, r) over k [cf. Definition 1.3, (iii)].

Write Gk
def
= Gal(k/k) for the absolute Galois group of k determined

by k and ∆l
X for the maximal pro-l quotient of the étale fundamental

group π1(X ×k k) of X ×k k. In particular, we have an exact sequence
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of profinite groups

1 // π1(X ×k k) // π1(X) // Gk
// 1,

which thus determines an outer continuous action

ρlX : Gk
// Out(∆l

X).

Write, moreover, Mg,r for the moduli stack [cf. [4], [14]] of [ordered]
r-pointed smooth proper curves of genus g over k [cf. Definition 1.3,
(ii)],Mg,[r] (←Mg,r) for the moduli stack of hyperbolic curves of type
(g, r) over k, Cg,[r] →Mg,[r] for the universal hyperbolic curve of type
(g, r) overMg,[r], ∆g,r for the kernel of the outer continuous surjective
homomorphism π1(Cg,[r]) ↠ π1(Mg,[r]) induced by the structure mor-
phism Cg,[r] →Mg,[r], and ∆l

g,r for the maximal pro-l quotient of ∆g,r.
In particular, we have an exact sequence of profinite groups

1 // ∆g,r
// π1(Cg,[r]) // π1(Mg,[r]) // 1,

which thus determines an outer continuous action

ρlg,r : π1(Mg,[r]) // Out(∆l
g,r).

Since ρlX factors, via the outer continuous homomorphismGk → π1(Mg,[r])
induced by the k-rational point of Mg,[r] that classifies X/k, through
ρlg,r, we have the following natural inclusions

ρlX(Gk) ⊆ ρlg,r
(
π1(Mg,[r])

)
⊇ ρlg,r

(
π1(Mg,r)

)
.

We shall say that X is l-monodromically full [cf. [6, Definition 2.2, (i)]]
(respectively, quasi-l-monodromically full [cf. [6, Definition 2.2, (iii)]])
if the closed subgroup ρlX(Gk) of ρ

l
g,r(π1(Mg,[r])) contains the [normal

open] subgroup ρlg,r(π1(Mg,r)) of ρ
l
g,r(π1(Mg,[r])) (respectively, is open

in ρlg,r(π1(Mg,[r]))). The property of being quasi-monodromically full
may be regarded as an analogue for hyperbolic curves of the property
of not admitting complex multiplication for elliptic curves [cf., e.g., [6,
Introduction], [8, Introduction]]. Moreover, one may prove that, as in
the case of elliptic curves that do not admit complex multiplication,
for an arbitrary prime number l, “many” hyperbolic curves are in fact
quasi-l-monodromically full [cf., e.g., Proposition 1.8]. The study of
[quasi-]monodromically full hyperbolic curves was initiated by M. Mat-
sumoto and A. Tamagawa in [15]. Moreover, some results concerning
[quasi-]monodromically full hyperbolic curves have been established in
[6], [7], [8] by the first author of the present paper.

Next, let us recall that S. Mochizuki proved the following theorem
[cf. [17, Theorem 1.1]].

Theorem A. Suppose that k is finite over the minimal subfield of
k. For each i ∈ {1, 2}, let Ei be an elliptic curve over k such that
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Ei ×k k does not have complex multiplication. Then the following two
conditions are equivalent:

• The elliptic curve E1 over k is isomorphic to the elliptic curve
E2 over k.
• For each positive integer n, if one writes E1(k)[n] ⊆ E1(k),
E2(k)[n] ⊆ E2(k) for the submodules of E1(k), E2(k) consisting
of n-torsion elements, respectively, then the kernel of the nat-
ural continuous action Gk → Aut(E1(k)[n]) coincides with the
kernel of the natural continuous action Gk → Aut(E2(k)[n]).

Moreover, let us also recall that the first author of the present paper
proved the following theorem [cf. [6, Theorem A]].

Theorem B. Suppose that k is finitely generated over the minimal
subfield of k. For each i ∈ {1, 2}, let ri ≥ 3 be an integer and Xi an
l-monodromically full hyperbolic curve of type (0, ri) over k. Suppose
that, for each i ∈ {1, 2}, every cusp of Xi is rational over k. Then the
following two conditions are equivalent:

• The hyperbolic curve X1 over k is isomorphic to the hyperbolic
curve X2 over k.
• The equality Ker(ρlX1

) = Ker(ρlX2
) holds.

Let us observe that these two theorems assert that, roughly speaking,
for a given object, if the “monodromy action” associated to the object
has a “big image”, then the isomorphism class of the given object is
completely determined by the kernel of the associated “monodromy
action”. In the present paper, we will give proofs of some assertions
in this direction. One main theorem of the present paper is as follows
[cf. Corollary 4.4 for more details]. Here, let us recall that we shall
say that two closed subgroups H1, H2 ⊆ G of a profinite group G are
commensurable if the intersection H1 ∩ H2 is open both in H1 and in
H2.

Theorem C. Suppose that k is sub-l-adic [cf. Definition 1.1, (i)]. Let
g and r be nonnegative integers such that

(g, r) ∈ {(0, 3), (0, 5), (0, 6), (0, 7), (1, 3), (1, 4), (2, 0), (2, 1)}.

For each i ∈ {1, 2}, let Xi be a quasi-l-monodromically full hyperbolic
curve of type (g, r) over k. Suppose that l = 2 whenever g ̸= 0. Then
the following two conditions are equivalent:

• The hyperbolic curve X1 ×k k over k is isomorphic to the hy-
perbolic curve X2 ×k k over k.
• The closed subgroups Ker(ρlX1

), Ker(ρlX2
) ⊆ Gk of Gk are com-

mensurable.

The present paper is organized as follows. In §1, we recall some
basic notational conventions that appear in the present paper. In §2,
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we prove a technical anabelian lemma [cf. Lemma 2.2], which will be
applied in the proof of the main result of the present paper. In §3,
we discuss the geometry of certain finite étale coverings of the moduli
stacks of hyperbolic curves [cf. Lemma 3.5], which play important roles
in the proof of the main result of the present paper. In §4, we give proofs
of the main results of the present paper [cf. Theorem 4.2, Corollary 4.4,
and Theorem 4.6]. In §5, we give some complements to the main results
of the present paper [cf. Remark 5.3].

Acknowledgments. The authors would like to thank Akio Tamagawa
for informing them of the arguments applied to prove Proposition 5.1.
The first author was supported by JSPS KAKENHI Grant Number
21K03162. The second author was supported by JSPS KAKENHI
Grant Number 20K14290. This research was supported by the Re-
search Institute for Mathematical Sciences, an International Joint Us-
age/Research Center located in Kyoto University.

1. Preliminaries

In the present §1, we recall some basic notational conventions that
appear in the present paper. In the present §1, let g and r be nonnega-
tive integers such that 2g− 2+ r > 0, k a field of characteristic zero, k

an algebraic closure of k, and l a prime number; write Gk
def
= Gal(k/k)

for the absolute Galois group of k determined by k.

Definition 1.1.

(i) We shall say that a field is sub-l-adic if the field is isomorphic to
a subfield of a field finitely generated over the l-adic completion
of the field of rational numbers.

(ii) Let G be a profinite group. Then we shall say that two closed
subgroups H1, H2 ⊆ G of G are commensurable if the inter-
section H1 ∩H2 is open both in H1 and in H2.

Definition 1.2. Let X be a scheme geometrically connected and of
finite type over k.

(i) We shall write ∆l
X for the maximal pro-l quotient of the étale

fundamental group π1(X×k k) of X×k k. Note that one has to
fix a basepoint of “(−)” to define the étale fundamental group
of “(−)”; however, since the étale fundamental group is, in an
immediate sense, independent, up to inner automorphisms, of
the choice of basepoint, we shall omit mention of basepoint
throughout the present paper.

(ii) We shall write

ρlX : Gk
// Out(∆l

X)
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for the outer continuous action determined by the well-known
exact sequence of profinite groups

1 // π1(X ×k k) // π1(X) // Gk
// 1.

We shall refer to ρlX as the pro-l outer Galois action associated
to X/k.

(iii) Let Y → X be a connected finite étale covering of X. Then
we shall say that Y → X is a connected finite étale l-special
covering if the following condition is satisfied: If one writes
Z → X for the Galois closure of the finite étale covering Y →
X, then the restriction of the base-change Z ×k k → X ×k k
to some [or, alternatively, an arbitrary] connected component
of Z ×k k is of degree a power of l.

Definition 1.3. Let S be a scheme and C a scheme over S.

(i) We shall say that C is a smooth proper curve of genus g over S if
C is smooth and proper over S, and, moreover, every geometric
fiber of C over S is a [necessarily smooth and proper] connected
curve of genus g.

(ii) Let s1, . . . , sr : S → C be r sections of the structure morphism
C → S. Then we shall say that (C, s1, . . . , sr) is an r-pointed
smooth proper curve of genus g over S if C is a smooth proper
curve of genus g over S, and, moreover, the image of si does
not intersect the image of sj whenever i ̸= j.

(iii) We shall say that C is a hyperbolic curve of type (g, r) over S if
there exist a smooth proper curve C+ of genus g over S and a
[possibly empty] closed subschemeD ⊆ C+ of C+ such that the
composite D ↪→ C+ → S is finite, étale, and of degree r, and,
moreover, the complement C+ \D of D in C+ is isomorphic to
C over S.

Definition 1.4.

(i) We shall write Mg,r for the moduli stack [cf. [4], [14]] of r-
pointed smooth proper curves of genus g over k [cf. Defini-
tion 1.3, (ii)], (C+g,r, sM1 , . . . , sMr ) for the universal r-pointed
smooth proper curve of genus g overMg,r, and Cg,r ⊆ C+g,r for
the open substack of C+g,r obtained by forming the complement

of the images of the r sections sM1 , . . . , sMr .
(ii) We shall writeMg,[r] for the moduli stack of hyperbolic curves

of type (g, r) over k [cf. Definition 1.3, (iii)] and Cg,[r] →Mg,[r]

for the universal hyperbolic curve of type (g, r) overMg,[r].

In particular, it follows immediately from the various definitions in-
volved that we have an isomorphism overMg,r

Cg,r
∼ //Mg,r+1
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—where we regardMg,r+1 as a stack overMg,r by considering the mor-
phism obtained by forgetting the (r+1)-st splitting — and a cartesian
diagram of stacks

Cg,r //

��

Mg,r

��
Cg,[r] //Mg,[r]

— where each of the vertical arrows is the natural finite étale Galois
covering whose Galois group is isomorphic to the symmetric group on
r letters.

Definition 1.5.

(i) We shall write ∆g,r for the kernel of the outer continuous sur-
jective homomorphism π1(Cg,[r]) ↠ π1(Mg,[r]) induced by the
structure morphism Cg,[r] → Mg,[r] and ∆l

g,r for the maximal
pro-l quotient of ∆g,r. [Here, we define an outer continuous
homomorphism G → H between topological groups G and H
is defined to be an equivalence class of continuous homomor-
phisms G → H, where we say that two continuous homomor-
phisms f , g : G → H are equivalent if f coincides with the
composite of g with an inner automorphism of H.] Thus, the
cartesian diagram of stacks of Definition 1.4 induces a commu-
tative diagram of profinite groups

1 // ∆g,r
// π1(Cg,r) //

� _

��

π1(Mg,r) //
� _

��

1

1 // ∆g,r
// π1(Cg,[r]) // π1(Mg,[r]) // 1

— where the horizontal sequences are exact, and the vertical
arrows are open injective.

(ii) We shall write

ρlg,r : π1(Mg,[r]) // Out(∆l
g,r)

for the outer continuous action determined by the lower hori-
zontal exact sequence of the commutative diagram of (i).

(iii) We shall write

∆l,ab,+
g,r ∆l

g,r
oooo

for the quotient of ∆l
g,r by the normal closed subgroup nor-

mally topologically generated by the commutator subgroup of
∆l
g,r and the inertia subgroups associated to the irreducible

components of the complement C+g,r \Cg,r [cf. the left-hand ver-
tical equality of the commutative diagram of (i)].
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(iv) Let n be a positive integer. Then we shall write

Mg,r(l
n) //Mg,r

for the finite étale Galois covering of Mg,r that corresponds
to the normal open subgroup of π1(Mg,r) obtained by forming
the kernel of the continuous action of π1(Mg,r) on ∆l,ab,+

g,r ⊗Zl

(Z/lnZ) [i.e., determined by ρlg,r].

One famous result concerning the outer continuous action defined
in Definition 1.5, (ii), is the following result, which asserts that Oda’s
problem concerning the universal pro-l outer monodromy representa-
tion [cf., e.g., [15, §4.2], [20, §0]] has an affirmative answer.

Proposition 1.6. The image of Ker(ρlg,r) ⊆ π1(Mg,[r]) by the outer
continuous surjective homomorphism π1(Mg,[r]) ↠ Gk induced by the
structure morphismMg,[r] → Spec(k) does not depend on (g, r).

Proof. This assertion is [20, Theorem 0.5, (2)]. [Note that although
[20, Theorem 0.5, (2)] works in a situation where one takes the base
field “k” to be the field of rational numbers, since the commutative
diagram of Definition 1.5, (i), is compatible, in an immediate sense,
with base field extensions, one may conclude immediately the desired
assertion from [20, Theorem 0.5, (2)].] □
Definition 1.7. Let X be a hyperbolic curve of type (g, r) over k.
Thus, the k-rational point of Mg,[r] that classifies X/k induces an
outer continuous homomorphism Gk → π1(Mg,[r]) that fits, relative

to a suitable continuous isomorphism ι : ∆l
X

∼→ ∆l
g,r, into the following

commutative diagram of groups

Gk

ρlX //

��

Out(∆l
X)

≀ Out(ι)

��

π1(Mg,[r])
ρlg,r

// Out(∆l
g,r).

(i) We shall say that X is l-monodromically full [cf. [6, Definition
2.2, (i)]] if the image of the composite Out(ι) ◦ ρlX contains
ρlg,r(π1(Mg,r)).

(ii) We shall say that X is quasi-l-monodromically full [cf. [6, Def-
inition 2.2, (iii)]] if the image of the composite Out(ι) ◦ ρlX is
open in the image of ρlg,r.

Note that one verifies easily that the issue of whether or not each of
these two conditions is satisfied does not depend on the choice of ι as
above.

One fundamental result concerning the notions defined in Defini-
tion 1.7 is as follows.
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Proposition 1.8. Suppose that k is finitely generated over the minimal
subfield of k. Fix an inclusion k ↪→ C of fields. Then the subset of
Mg,[r](C) consisting of C-valued points s ∈ Mg,[r](C) that satisfy the
following condition (∗MF) is dense with respect to the complex topology
ofMg,[r](C):

(∗MF) There exist a finite extension K of k in C and a K-valued
point of Mg,[r] that maps to s ∈ Mg,[r](C) and classifies an
l-monodromically full hyperbolic curve of type (g, r) over K.

Proof. This assertion follows from [6, Theorem 2.3] [whose proof is
essentially the same as the proof of [15, Theorem 1.2]]. □
Definition 1.9. Let X1 and X2 be hyperbolic curves of type (g, r) over
k. Then we shall say thatX1 is moduli-correspondence-equivalent toX2

if there exist two connected finite étale coverings f1, f2 : N → Mg,[r]

of Mg,[r] and a k-rational point s ∈ N (k) of N such that, for each
i ∈ {1, 2}, the k-rational point ofMg,[r] obtained by forming the image
of s ∈ N (k) by fi classifies Xi/k.

Proposition 1.10. Suppose that 2g−2+ r > 2. Let X1 and X2 be hy-
perbolic curves of type (g, r) over k. Then X1 is moduli-correspondence-
equivalent to X2 if and only if X1 is isomorphic to X2 over k.

Proof. This assertion is a formal consequence of [16, Theorem C], which
is a trivial consequence of a famous theorem of Royden. □
Definition 1.11. Let G be a profinite group. Then we shall define

sb-rk(G) ∈ Z ∪ {∞}

to be the maximal integer n — or to be ∞ when such a maximal
integer does not exist — such that there exist a prime number p and a
continuous injective homomorphism from the direct product of n copies
of Zp into G.

Definition 1.12. Let d be a positive integer and X a hyperbolic poly-
curve [cf. [9, Definition 2.1, (ii)]] over k of dimension d. Then we shall
say that the hyperbolic polycurve X over k satisfies condition (∗)l if the
following condition is satisfied [cf. [19, Definition 3.10]]: There exists a
sequence of parametrizing morphisms

X = Xd
// Xd−1

// . . . // X2
// X1

// X0 = Spec(k)

[cf. [9, Definition 2.1, (ii)]] such that, for each integers 0 ≤ a ≤ b ≤ d,
the natural continuous outer homomorphism

Ker
(
π1(Xb ×k k)→ π1(Xa ×k k)

)
// Ker

(
∆l
Xb
→ ∆l

Xa

)
determines an outer continuous isomorphism of the maximal pro-l quo-
tient of the kernel Ker(π1(Xb ×k k) → π1(Xa ×k k)) with the kernel
Ker(∆l

Xb
→ ∆l

Xa
).
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Lemma 1.13. The following assertions hold:

(i) Let d be a positive integer and X a hyperbolic polycurve over k
of dimension d that satisfies condition (∗)l [cf. Definition 1.12].
Then sb-rk(∆l

X) ̸≥ d+ 1.
(ii) Suppose that k is algebraically closed. Let G be an open sub-

group of the image of ρlg,r. Then sb-rk(G) ≥ 3g − 3 + r.
(iii) Let G be a profinite group and H ⊆ G an open subgroup of G.

Then the equality sb-rk(G) = sb-rk(H) holds.

Proof. Assertion (i) follows immediately from a similar argument to the
argument applied in the proof of [13, Lemma 1.5]. Assertion (ii) follows
immediately, by considering a point ofMg,[r] that classifies a “totally
degenerate pointed stable curve of type (g, r)” [which has precisely
3g − 3 + r nodes ], from [12, Lemma 5.4, (ii)] and [12, Proposition 5.6,
(ii)]. Assertion (iii) is immediate. □

2. A Technical Lemma

In the present §2, we prove a technical anabelian lemma [cf. Lemma 2.2
below], which will be applied in the proof of the main result of the
present paper. In the present §2, we maintain the notational conven-
tions introduced in the preceding §1.

Lemma 2.1. Let

1 // ∆ //

����

Π
prΠ //

pΠ
����

G //

pG
� �� �

1

1 // ∆Γ
// Γ prΓ

// GΓ
// 1

be a commutative diagram of profinite groups, where the horizontal se-
quences are exact, and the vertical arrows are surjective. Write Π ↠ Π
for the quotient of Π by the normal closed subgroup ∆∩Ker(pΠ). Thus,
we have a commutative diagram of profinite groups

1 // ∆ //

����

Π
prΠ //

pΠ
����

G // 1

1 // ∆Γ
// Π

prΠ //

����

G //

pG
� �� �

1

1 // ∆Γ
// Γ prΓ

// GΓ
// 1

— where the horizontal sequences are exact, and the vertical arrows are
surjective. For each open subgroup Π◦ of Π and each open subgroup G◦

of G, write Π◦|G◦
def
= Π◦ ∩ pr−1

Π (G◦) ⊆ Π.
Let s1 and s2 be continuous splittings of the continuous surjective

homomorphism prΠ : Π ↠ G. For each i ∈ {1, 2}, write sΓi
def
= pΠ ◦
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si : G → Γ and si
def
= pΠ ◦ si : G → Π. Suppose that the following two

conditions are satisfied:

(1) The closed subgroups Ker(sΓ1 ), Ker(sΓ2 ) of G are commensu-
rable.

(2) For each i ∈ {1, 2}, the continuous homomorphism sΓi is open.

Then there exist

• an open subgroup Π◦ of Π,
• an open subgroup G◦ of G, and
• a continuous open injective homomorphism φ : Π◦|G◦ ↪→ Π|G◦

over G◦

such that the restriction s1|G◦ : G◦ → Π|G◦ factors through the open
embedding Π◦|G◦ ↪→ Π|G◦, and, moreover, the resulting continuous ho-
momorphism s1|G◦ : G◦ → Π◦|G◦ fits into the following commutative
diagram of profinite groups

G◦

s1|G◦

||xx
xx
xx
xx
x

s2|G◦

""E
EE

EE
EE

EE

Π◦|G◦
� �

ϕ
// Π|G◦ .

If, moreover, conditions (1), (2) may be replaced by the following
two conditions (1′), (2′), then one may take the above “(Π◦, G◦)” to be
(Π, G) and the above “φ” to be an isomorphism:

(1′) The equality Ker(sΓ1 ) = Ker(sΓ2 ) holds.
(2′) For each i ∈ {1, 2}, the continuous homomorphism sΓi is sur-

jective.

Proof. Let us first observe that, to verify Lemma 2.1, it follows from
condition (1) that we may assume without loss of generality, after re-
placing G by a suitable open subgroup of G if necessary [cf. also con-
dition (1′)], that

(a) the equality Ker(sΓ1 ) = Ker(sΓ2 ) holds.

Write

• N def
= Ker(sΓ1 ) = Ker(sΓ2 ) [cf. (a)],

• Γ1
def
= Im(sΓ1 ) ∩ Im(sΓ2 ) ⊆ Γ, and

• Γ2
def
= Im(sΓ2 ) (⊇ Γ1).

Moreover, for each i ∈ {1, 2}, write
• Gi ⊆ G for the inverse image of Γi ⊆ Γ by sΓi : G→ Γ,
• tΓi : Gi ↠ Γi for the [necessarily surjective] continuous homo-
morphism induced by sΓi : G→ Γ, and
• ιi : Gi/(N ∩Gi)

∼→ Γi for the continuous isomorphism induced
by tΓi : Gi ↠ Γi.

Then it follows from condition (2) that
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(b) the subgroups Γ1 ⊆ Γ2 ⊆ Γ of Γ and the subgroups G1 ⊆ G2 ⊆
G of G are open.

(b′) If, moreover, conditions (1′), (2′) are satisfied, then the equal-
ities Γ1 = Γ2 = Γ, G1 = G2 = G hold [cf. condition (2′)].

Moreover, since both s1 and s2 are splittings of prΠ : Π ↠ G, one
verifies easily that,

(c) for each i ∈ {1, 2}, the diagram of profinite groups

Gi/(N ∩Gi)
ιi

∼
//

&&LL
LLL

LLL
LLL

Γi

~~~~
~~
~~
~~

GΓ

— where the left-hand diagonal arrow is the continuous ho-
momorphism induced by pG : G ↠ GΓ, and the right-hand
diagonal arrow is the continuous homomorphism induced by
prΓ : Γ ↠ GΓ — commutes.

Write

ι : Γ1 ∼
ι−1
1 // G1/(N ∩G1)

� � // G2/(N ∩G2) ∼
ι2 // Γ2

— where the second arrow is the [necessarily injective] continuous ho-
momorphism induced by the natural inclusion G1 ↪→ G2. Then it is
immediate that

(d) the diagram of profinite groups

G1
� � //

tΓ1 ����

G2

tΓ2����
Γ1

� �

ι
// Γ2

— where the upper horizontal arrow is the natural inclusion
— commutes.

Thus, it follows from (c), (d) that

(e) the diagram of profinite groups

Γ1
� � ι //

  B
BB

BB
BB

B
Γ2

~~||
||
||
||

GΓ

— where the diagonal arrows are the continuous homomor-
phisms induced by prΓ : Γ ↠ GΓ — commutes.

For each i ∈ {1, 2}, write Πi
def
= Γi ×GΓ

Gi ⊆ Π (= Γ ×GΓ
G) for

the fiber product of the composite Γi ↪→ Γ
prΓ↠ GΓ and the composite

Gi ↪→ G
pG↠ GΓ. Then it follows from (b) that
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(f) the subgroups Π1 ⊆ Π2 ⊆ Π of Π are open.
(f′) If, moreover, conditions (1′), (2′) are satisfied, then the equal-

ities Π1 = Π2 = Π hold [cf. (b′)].

Moreover, it follows from (e) that the continuous injective homomor-
phism ι : Γ1 ↪→ Γ2 and the natural inclusion G1 ↪→ G2 determine a
[necessarily injective] continuous homomorphism

ψ : Π1 (= Γ1 ×GΓ
G1)

� � // Π2 (= Γ2 ×GΓ
G2)

over G, i.e., relative to the second projections Π1 ↠ G1 (⊆ G), Π2 ↠
G2 (⊆ G). [Note that the surjectivity of these second projections Π1 ↠
G1, Π2 ↠ G2 may be verified easily from the definitions of Gi, Γi.] Now
observe that it follows from (d), together with the various definitions
involved, that,

(g) for each i ∈ {1, 2}, the restriction si|Gi
: Gi → Π factors

through the subgroup Πi ⊆ Π of Π, and, moreover, the re-
sulting continuous homomorphism si|Gi

: Gi → Πi fits into a
commutative diagram of profinite groups

G1
� � //

s1|G1

��

G2

s2|G2

��
Π1

� �

ψ
// Π2

— where the upper horizontal arrow is the natural inclusion.

Moreover, it follows from (b) that

(h) the continuous homomorphism ψ is open.
(h′) If, moreover, conditions (1′), (2′) are satisfied, then the contin-

uous homomorphism ψ is an isomorphism [cf. condition (b′)].

Thus, if one writes

• Π◦ def
= Π1,

• G◦ def
= G1, and

• φ : Π◦|G◦ → Π|G◦ for the composite of the continuous homo-
morphism Π◦|G◦ = Π1 → Π2|G◦ induced by ψ : Π◦|G◦ = Π1 →
Π2 and the natural inclusion Π2|G◦ ↪→ Π|G◦ ,

then it follows from (b), (b′), (f), (f′), (g), (h), (h′) that this collection
(Π◦, G◦, φ) of data satisfies the desired condition. This completes the
proof of Lemma 2.1. □

Lemma 2.2. Suppose that k is sub-l-adic. Let X be a hyperbolic poly-
curve over k and π1(X) ↠ Γ a topological quotient of π1(X). For each
i ∈ {1, 2}, let xi ∈ X(k) be a k-rational point of X and si : Gk → π1(X)
a continuous splitting that arises from xi ∈ X(k) of the natural con-
tinuous surjective homomorphism π1(X) ↠ Gk. For each i ∈ {1, 2},
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write sΓi : Gk → Γ for the composite of si : Gk → π1(X) and the natu-
ral continuous surjective homomorphism π1(X) ↠ Γ. Suppose that the
following four conditions are satisfied:

(1) The closed subgroups Ker(sΓ1 ), Ker(sΓ2 ) ⊆ Gk of Gk are com-
mensurable.

(2) For each i ∈ {1, 2}, the continuous homomorphism sΓi is open.
(3) The quotient of π1(X×kk) determined by the quotient π1(X) ↠

Γ coincides with the maximal pro-l quotient ∆l
X of π1(X ×k k)

[cf. Definition 1.2, (i)].
(4) The hyperbolic polycurve X over k is of dimension ≤ 4 and

satisfies condition (∗)l [cf. Definition 1.12].

Then there exist

• a finite extension K of k in k,
• a hyperbolic polycurve Y over K,
• two connected finite étale l-special coverings [cf. Definition 1.2,

(iii)] f1, f2 : Y → XK
def
= X ×k K over K, and

• a K-rational point y ∈ Y (K) of Y

such that, for each i ∈ {1, 2}, the image of y ∈ Y (K) by fi : Y → XK

coincides with the K-rational point of XK determined by xi ∈ X(k).

Proof. If F is a finite extension of k in k, and V is a scheme geometri-

cally connected and of finite type over F , then write GF
def
= Gal(k/F )

for the absolute Galois group of F determined by k and Πl
V for the

quotient of the étale fundamental group π1(V ) of V by the kernel of
the natural continuous surjective homomorphism π1(V ×F k) ↠ ∆l

V .
Thus, we have an exact sequence of profinite groups

1 // ∆l
V

// Πl
V

// GF
// 1.

Moreover, for each i ∈ {1, 2}, write si : Gk → Πl
X for the composite of

si : Gk → π1(X) and the natural continuous surjective homomorphism
π1(X) ↠ Πl

X . Then it follows from conditions (1), (2), (3) that, by
applying Lemma 2.1 [i.e., in the case where we take the “(1 → ∆ →
Π → G → 1,Π ↠ Γ, s1, s2)” of Lemma 2.1 to be (1 → π1(X ×k k) →
π1(X)→ Gk → 1, π1(X) ↠ Γ, s1, s2)], we obtain

• a finite extension K of k in k,
• a hyperbolic polycurve Y over K [cf. also [9, Proposition 2.3]],

• a connected finite étale l-special covering f1 : Y → XK
def
= X×k

K over K [which thus implies that Πl
Y may be regarded as an

open subgroup of Πl
XK

], and

• a continuous open injective homomorphism φ : Πl
Y ↪→ Πl

XK

over GK

such that the restriction s1|GK
: GK → Πl

XK
= Πl

X ×Gk
GK factors

through the open subgroup Πl
Y ⊆ Πl

XK
[i.e., determined by f1], and,
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moreover, the resulting continuous homomorphism s1|GK
: GK → Πl

Y

fits into the following commutative diagram of profinite groups

GK
s1|GK

~~||
||
||
|| s2|GK

""E
EE

EE
EE

E

Πl
Y
� �

ϕ
// Πl

XK
.

Now let us observe that since the connected finite étale covering f1 : Y →
X arises from an open subgroup of Πl

XK
, it follows from [19, Lemma

3.22, (i)], together with condition (4), that the hyperbolic polycurve
Y over K is of dimension ≤ 4 and satisfies condition (∗)l [cf. Defini-
tion 1.12]. Thus, it follows from [19, Theorem 1.1], together with condi-
tion (4), that the continuous open injective homomorphism φ : Πl

Y ↪→
Πl
XK

over GK arises from a connected finite étale l-special covering
f2 : Y → XK over K. Then one verifies immediately from [19, Propo-
sition 4.2, (ii)], together with the various definitions involved, that the
conclusion of Lemma 2.2 holds, as desired. This completes the proof
of Lemma 2.2. □

Lemma 2.3. In the situation of Lemma 2.2, suppose, moreover, that
the following two conditions are satisfied:

(1′) The equality Ker(sΓ1 ) = Ker(sΓ2 ) holds.
(2′) For each i ∈ {1, 2}, the continuous homomorphism sΓi is sur-

jective.

Then one may take the “(K,Y )” of Lemma 2.2 to be (k,X) and, more-
over, the two connected finite étale l-special coverings “f1” and “f2” of
Lemma 2.2 to be isomorphisms.

Proof. This assertion follows immediately from a similar argument to
the argument applied in the proof of Lemma 2.2, together with the
final portion of Lemma 2.1. □

3. Certain Finite Étale Coverings of Moduli Spaces of
Curves

In the present §3, we discuss the geometry of certain finite étale
coverings of the moduli stacks of hyperbolic curves [cf. Lemma 3.5
below], which play important roles in the proof of the main result
of the present paper. In the present §3, we maintain the notational
conventions introduced in §1.

Definition 3.1. We shall write r0(g)
def
= 3 (respectively, 1; 0) if g = 0

(respectively, = 1; ≥ 2). Moreover, we shall write r1(g)
def
= 3g + r0(g).
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Lemma 3.2. Let r ≥ 3 be an integer. Write

A0,r
def
= k

[
x1, . . . , xr−1,

∏
1≤i<j≤r−1

1

xi − xj

]
/(xr−2, xr−1 − 1)

— where x1, . . . , xr−1 are indeterminates. Then there exists an isomor-
phism over k

M0,r
∼ // Spec(A0,r).

In particular, the stackM0,3 is isomorphic to Spec(k).

Proof. This assertion follows from the well-known structure of the stack
M0,r [cf., e.g., [6, Lemma 4.1, (i)]]. □
In the remainder of the present paper, let us fix an isomorphism as

in Lemma 3.2.

Definition 3.3.

(i) We shall write

L0,3
def
= C0,3.

Thus, it is obvious that the natural morphism

L0,3
//M0,3

determines a structure on L0,3 of hyperbolic curve of type (0, 3)
overM0,3.

(ii) We shall write

L1,1
def
= Spec

(
A0,4[s, t]/

(
s2 − t(t− 1)(t− x1)

))
— where s and t are indeterminates. Thus, one verifies easily
that the natural morphism

L1,1
//M0,4

determines a structure on L1,1 of hyperbolic curve of type (1, 1)
overM0,4.

(iii) We shall write

L2,6
def
= Spec

(
A0,6

[
s, t,

1

s

]
/
(
s2 − t(t− 1)(t− x1)(t− x2)(t− x3)

))
— where s and t are indeterminates. Thus, one verifies easily
that the natural morphism

L2,6
//M0,6

determines a structure on L2,6 of hyperbolic curve of type (2, 6)
overM0,6. Moreover, we shall write

L2,0
//M0,6
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for the hyperbolic curve of type (2, 0) over M0,6 obtained by
forming the smooth compactification of the hyperbolic curve
L2,6 of type (2,6) overM0,6.

In particular, for each g ∈ {0, 1, 2}, we have a hyperbolic curve of type
(g, r0(g)) overM0,r1(g)

Lg,r0(g) //M0,r1(g).

Let us observe that it is obvious that the morphismM0,r1(g) →Mg,[r0(g)]

that classifies this hyperbolic curve of type (g, r0(g)) over M0,r1(g)

uniquely lifts to a morphism over k

M0,r1(g)
//Mg,r0(g),

i.e., relative to the natural finite étale Galois covering Mg,r0(g) →
Mg,[r0(g)].

Definition 3.4. Suppose that g ∈ {0, 1, 2}. Let us recall that r0(g)
def
=

3 (respectively, 1; 0) if g = 0 (respectively, = 1; ≥ 2); r1(g)
def
= 3g+r0(g)

[cf. Definition 3.1].

(i) We shall writeMg,r0(g)
def
= M0,r1(g).

(ii) We shall write

Φg,r0(g) :Mg,r0(g)
//Mg,r0(g)

for the unique lifting [cf. Definition 3.3] of the morphismMg,r0(g) =
M0,r1(g) →Mg,[r0(g)] that classifies the hyperbolic curve Lg,r0(g) →
M0,r1(g) of type (g, r0(g)) overM0,r1(g).

(iii) We shall write

Φg,r :Mg,r
//Mg,r

for the base-change of the morphism Φg,r0(g) :Mg,r0(g) →Mg,r0(g)

by the morphismMg,r →Mg,r0(g) obtained by forgetting the
last r − r0(g) splitting(s):

Mg,r
//

Φg,r

��

Mg,r0(g)

Φg,r0(g)

��
Mg,r

//Mg,r0(g).

[Note that since [we have assumed that] the inequality 2g −
2 + r > 0 holds, the integer r − r0(g) is always nonnegative.]

Lemma 3.5. Suppose that g ∈ {0, 1, 2}. Then the following assertions
hold:
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(i) The morphism Φg,r :Mg,r → Mg,r and the finite étale cover-
ings Mg,r(4) → Mg,r(2) → Mg,r [cf. Definition 1.5, (iv)] fit
into a sequence of finite étale coverings

Mg,r(4) //Mg,r
//Mg,r(2) //Mg,r.

(ii) The stackMg,r0(g) is isomorphic to the (r1(g)− 3)-rd configu-
ration space [cf., e.g., [18, Definition 2.1, (i)]] of the hyperbolic
curve C0,3 of type (0, 3) overM0,3 = Spec(k) [cf. Lemma 3.2].

(iii) Write

Φ∗
g,rCg,r //Mg,r

for the base-change of Cg,r → Mg,r by Φg,r : Mg,r → Mg,r.
Then there exists an isomorphism overMg,r

Φ∗
g,rCg,r

∼ //Mg,r+1.

In particular, the natural morphism

Mg,r+1
//Mg,r

determines a structure on Mg,r+1 of hyperbolic curve of type
(g, r) overMg,r.

(iv) The stackMg,r is isomorphic to the (r−r0(g))-th configuration
space of the hyperbolic curve Mg,r0(g)+1 of type (g, r0(g)) over
Mg,r0(g) [cf. (iii)].

(v) The sequence of schemes [cf. (iv), Lemma 3.2]

Mg,r
//Mg,r−1

// . . . //Mg,r0(g)

M0,r1(g)
//M0,r1(g)−1

// . . . //M0,3 Spec(k)

determines a structure on Mg,r of hyperbolic polycurve of di-
mension 3g − 3 + r over k.

Proof. First, we verify assertion (i). If g = 0, then assertion (i) is
immediate. Suppose that g ̸= 0. Next, let us observe that it follows
immediately from the various definitions involved that, to verify asser-
tion (i), it suffices to verify assertion (i) in the case where r = r0(g).
On the other hand, assertion (i) in the case where r = r0(g) follows
immediately from [2, Proposition 3.3] and [2, Remark 3.4], together
with the explicit construction in Definition 3.3 of the hyperbolic curve
Lg,r0(g) → M0,r1(g) of type (g, r0(g)) over M0,r1(g) [cf. also the discus-
sion following [2, Remark 3.4]]. This completes the proof of assertion
(i).

Assertion (ii) is well-known [cf., e.g., [6, Lemma 4.1, (i)]]. Assertions
(iii), (iv) follow immediately from the definition of the stackMg,r. As-
sertion (v) follows from Lemma 3.2 and assertion (iii). This completes
the proof of Lemma 3.5. □
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Proposition 3.6. Let X1 and X2 be hyperbolic curves of type (2, 0)
over k. Then X1 is moduli-correspondence-equivalent to X2 if and only
if X1 is isomorphic to X2 over k.

Proof. The sufficiency is immediate. We verify the necessity. Suppose
that X1 is moduli-correspondence-equivalent to X2. For each i ∈ {1, 2},
write Pi for the scheme-theoretic quotient of Xi by the hyperelliptic
involution of Xi and Di ⊆ Pi for the branch locus of the resulting finite
flat covering Xi → Pi [necessarily of degree two].

Next, let us observe that it follows immediately from [16, Theorem
C], together with Lemma 3.5, (i), that there exists a finite étale covering
M2,0 ×k k →M0,[6] ×k k over k that fits into a commutative diagram

of stacks over k

M2,0 ×k k

Φ2,0

��

M0,6 ×k k

��

M2,0 ×k k //M0,[6] ×k k

— where the right-hand vertical arrow is the natural finite étale Galois
covering. In particular, again by [16, Theorem C], it follows immedi-
ately from the definition of the terminology “moduli-correspondence-
equivalent” and the definition of Φ2,0 that there exists an isomorphism

P1
∼→ P2 over k that maps D1 to D2. Thus, one may conclude that X1

is isomorphic to X2 over k, as desired. This completes the proof of the
necessity, hence also of Proposition 3.6. □

4. Galois-theoretic Characterization

In the present §4, we establish a Galois-theoretic characterization of
geometric isomorphism classes of quasi-monodromically full hyperbolic
curves with small numerical invariants [cf. Corollary 4.4 below]. In the
present §4, we maintain the notational conventions introduced in §1.

Lemma 4.1. Suppose that the following two conditions are satisfied:

• The inclusion g ∈ {0, 1, 2} holds.
• The equality l = 2 holds whenever g ̸= 0.

Then the following assertions hold:

(i) Suppose that k is algebraically closed. Then the quotient of
π1(Mg,r) determined by the composite

π1(Mg,r)
� � π1(Φg,r) // π1(Mg,r)

� � // π1(Mg,[r])
ρlg,r // Out(∆l

g,r)

coincides with the maximal pro-l quotient of π1(Mg,r).
(ii) The hyperbolic polycurveMg,r over k [cf. Lemma 3.5, (v)] sat-

isfies condition (∗)l [cf. Definition 1.12].
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(iii) Suppose that k is algebraically closed. Let G be an open sub-
group of the image of ρlg,r. Then sb-rk(G) = 3g − 3 + r [cf.
Definition 1.11].

Proof. First, we verify assertion (i). Assertion (i) in the case where
g = 0 follows from Remark at the end of [1, §1]. Next, let us consider
assertion (i) in the case where g ∈ {1, 2} [which implies that l = 2].
Then since [one verifies easily that] the kernel of the natural surjective
homomorphism GL2g(Z/4Z) ↠ GL2g(Z/2Z) is of order a power of 2,
it follows immediately from Lemma 3.5, (i), that, to verify assertion (i)
in the case where g ∈ {1, 2}, it suffices to verify that the quotient of
π1(Mg,r(2)) determined by the composite

π1
(
Mg,r(2)

)
� � // π1(Mg,r)

� � // π1(Mg,[r])
ρ2g,r // Out(∆2

g,r)

coincides with themaximal pro-2 quotient of π1(Mg,r(2)). On the other
hand, if g = 1 (respectively, 2), then this assertion follows from [10,
Theorem A, (i)] (respectively, [3, Theorem 1.4, (ii)]). This completes
the proof of assertion (i) in the case where g ∈ {1, 2}, hence also of
assertion (i).

Next, we verify assertion (ii). Let us first observe that, to verify
assertion (ii), we may assume without loss of generality, by replacing k
by k, that k is algebraically closed. Write

π1(Mg,r;Mg,r0(g)) ⊆ π1(Mg,r)

for the kernel of the outer continuous surjective homomorphism π1(Mg,r) ↠
π1(Mg,r0(g)) induced by the natural morphism Mg,r → Mg,r0(g) [i.e.,
determined by the morphismMg,r →Mg,r0(g) obtained by forgetting
the last r − r0(g) splitting(s)],

Qr π1(Mg,r;Mg,r0(g))oooo

for the maximal pro-l quotient of π1(Mg,r;Mg,r0(g)), and

Qr π1(Mg,r)oooo

for the quotient of π1(Mg,r) by the kernel of the natural continuous
surjective homomorphism π1(Mg,r;Mg,r0(g)) ↠ Qr. Thus, we have a
commutative diagram of profinite groups

1 // π1(Mg,r;Mg,r0(g)) //

����

π1(Mg,r) //

����

π1(Mg,r0(g)) // 1

1 // Qr
// Qr

// π1(Mg,r0(g)) // 1
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— where the horizontal sequences are exact, and the vertical arrows
are surjective. Write

ρQr : π1(Mg,r0(g)) // Out(Qr)

for the outer continuous action determined by the lower horizontal ex-
act sequence of this commutative diagram. Now let us recall from [19,
Example 3.13] that a hyperbolic polycurve isomorphic to the config-
uration space of a hyperbolic curve over a field of characteristic zero
satisfies condition (∗)l [cf. Definition 1.12]. Thus, by applying a similar
argument to the argument applied in the proof of [5, Proposition 1.2],
one concludes immediately from Lemma 3.5, (ii), (iv), together with
the various definitions involved, that, to verify assertion (ii), it suffices
to verify that the outer continuous action ρQr factors through a pro-l
quotient of π1(Mg,r0(g)).
Next, let us observe that it follows immediately from Lemma 3.5,

(iii), that

(1) there exists a continuous isomorphism ι : ∆l
g,r0(g)

∼→ Qr0(g)+1

such that the diagram of groups

Out(∆l
g,r0(g)

)

≀ Out(ι)

��

π1(Mg,r0(g))

ρl
g,r0(g)

77nnnnnnnnnnnn

ρQ
r0(g)+1 ((PP

PPP
PPP

PPP
P

Out(Qr0(g)+1)

commutes.

Moreover, one also verifies immediately from Lemma 3.5, (iv), that

(2) the profinite group Qr has a natural structure of pro-l con-
figuration space group [cf. [18, Definition 2.3, (i)]] with re-
spect to which, for each integer r0(g) ≤ r′ ≤ r, the kernel of
the natural Qr′-conjugacy class of continuous surjective homo-
morphisms Qr ↠ Qr′ [i.e., induced by the natural morphism
Mg,r → Mg,r′ ] is a fiber subgroup of length r − r′ [cf. [18,
Definition 2.3, (iii)]].

In particular, it follows from (1) and assertion (i) that the outer con-

tinuous action ρQr0(g)+1 factors through a pro-l quotient of π1(Mg,r0(g)).

Thus, we conclude immediately from (2) and [20, Theorem 0.1] [cf. also
[11, Theorem B]] that the outer continuous action ρQr factors through
a pro-l quotient of π1(Mg,r0(g)), as desired. This completes the proof
of assertion (ii).

Finally, we verify assertion (iii). It follows from Lemma 1.13, (ii),
that sb-rk(G) ≥ 3g − 3 + r. Next, let us observe that, it follows from
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Lemma 1.13, (iii), that, to verify assertion (iii), we may assume without
loss of generality that G is the image of the composite in the statement
of assertion (i). Then it follows from assertions (i), (ii), together with
Lemma 1.13, (i), and Lemma 3.5, (v), that sb-rk(G) ̸≥ 3g−2+r. This
completes the proof of assertion (iii). □
One main result of the present paper is as follows.

Theorem 4.2. Let l be a prime number, k a sub-l-adic field [cf. Defi-

nition 1.1, (i)], and k an algebraic closure of k. Write Gk
def
= Gal(k/k)

for the absolute Galois group of k determined by k. For each i ∈ {1, 2},
let gi and ri be nonnegative integers such that 2gi−2+ ri > 0 and Xi a
hyperbolic curve of type (gi, ri) over k [cf. Definition 1.3, (iii)]; write ρlXi

for the pro-l outer Galois action associated to Xi/k [cf. Definition 1.2,
(ii)]. Suppose that the following five conditions are satisfied:

(1) The closed subgroups Ker(ρlX1
), Ker(ρlX2

) ⊆ Gk of Gk are com-
mensurable [cf. Definition 1.1, (ii)].

(2) For each i ∈ {1, 2}, the hyperbolic curve Xi over k is quasi-l-
monodromically full [cf. Definition 1.7, (ii)].

(3) Either the inequality 3g1 − 3 + r1 < 5 or the inequality 3g2 −
3 + r2 < 5 holds.

(4) The equality l = 2 holds whenever g1g2 ̸= 0.
(5) Either the equality g1 = g2 or the equality r1 = r2 holds.

Then the equality (g1, r1) = (g2, r2) holds. Moreover, the hyperbolic
curve X1 ×k k over k is moduli-correspondence-equivalent [cf. Defini-
tion 1.9] to the hyperbolic curve X2 ×k k over k.

Proof. Let us first observe that, to verify Theorem 4.2, it follows from
condition (1) that we may assume without loss of generality, by re-
placing k by a suitable finite extension of k in k, that the equality
Ker(ρlX1

) = Ker(ρlX2
) holds. In particular, one may conclude immedi-

ately from Proposition 1.6, together with condition (2), that

(a) an open subgroup of ρlg1,r1(π1(Mg1,[r1] ×k k)) is isomorphic to

an open subgroup of ρlg2,r2(π1(Mg2,[r2] ×k k)).
Thus, if gi = 0 for some i ∈ {1, 2}, then it follows from Lemma 1.13,
(ii), and Lemma 4.1, (iii), that, for the unique j ∈ {1, 2} \ {i}, the
inequality 3gj − 3 + rj ≤ 3gi − 3 + ri, hence also [cf. condition (5)] the
inequality gj ≤ gi = 0, holds. In particular, one may conclude that

(b) the equality g1g2 = 0 is equivalent to the equality (g1, g2) =
(0, 0).

Next, let us also observe that, to verify Theorem 4.2, it follows from
condition (3) that we may assume without loss of generality, by replac-
ing (X1, X2) by (X2, X1) if necessary, that

(c) the inequality 3g1 − 3 + r1 < 5, hence also the inclusion g1 ∈
{0, 1, 2}, holds.
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Thus, it follows from Lemma 1.13, (ii), and Lemma 4.1, (iii), together
with (a), (b) [cf. also condition (4)], that the inequality 3g2 − 3 + r2 ≤
3g1 − 3 + r1 holds. In particular, it follows from (c) that

(d) the inequality 3g2 − 3 + r2 < 5, hence also the inclusion g2 ∈
{0, 1, 2}, holds.

Now one may conclude from Lemma 4.1, (iii), together with (a), (b),
(c), (d) [cf. also condition (4)], that the equality 3g1−3+r1 = 3g2−3+r2,
hence also [cf. condition (5)] the equality (g1, r1) = (g2, r2), holds. In

the remainder of the present proof, write (g, r)
def
= (g1, r1) = (g2, r2).

Next, let us observe that, to verify Theorem 4.2, we may assume
without loss of generality, by replacing k by a suitable finite extension of
k in k, that, for each i ∈ {1, 2}, the k-rational point ofMg,[r] that classi-
fies Xi/k lifts to a k-rational point xi ofMg,r, relative to the composite

Mg,r
Φg,r→ Mg,r → Mg,[r] of the finite étale coverings [cf. Lemma 3.5,

(i)]. For each i ∈ {1, 2}, let si : Gk → π1(Mg,r) be a continuous split-
ting that arises from xi ∈Mg,r(k) of the natural continuous surjective
homomorphism π1(Mg,r) ↠ Gk. Then it follows from Lemma 3.5,
(v), and Lemma 4.1, (i), (ii), together with conditions (1), (2), (3),
(4), that, by applying Lemma 2.2 [i.e., in the case where we take the
“(X, x1, x2, s1, s2)” of Lemma 2.2 to be (Mg,r, x1, x2, s1, s2) and the
“π1(X) ↠ Γ” of Lemma 2.2 to be the quotient of π1(Mg,r) deter-
mined by the restriction of ρlg,r : π1(Mg,[r])→ Out(∆l

g,r) to π1(Mg,r) ⊆
π1(Mg,[r])], we obtain

• a hyperbolic polycurve Y over k,

• two connected finite étale coverings f1, f2 : Y → (Mg,r)k
def
=

Mg,r ×k k over k, and

• a k-rational point y ∈ Y (k) of Y

such that, for each i ∈ {1, 2}, the image of y ∈ Y (k) by fi : Y →
(Mg,r)k coincides with the k-rational point of (Mg,r)k determined by
xi ∈ Mg,r(k). In particular, we conclude that the hyperbolic curve

X1 ×k k over k is moduli-correspondence-equivalent to the hyperbolic
curve X2 ×k k over k, as desired. This completes the proof of Theo-
rem 4.2. □

Remark 4.3. Let us recall that the following fact [i.e., proved in
Lemma 4.1, (i)] plays an important role in the proof of Theorem 4.2:

Suppose that k is algebraically closed. Then, for each
positive integer r, the quotient of π1(M1,r) determined
by the composite

π1(M1,r)
� � π1(Φ1,r) // π1(M1,r)

� � // π1(M1,[r])
ρ21,r // Out(∆2

1,r)

coincides with themaximal pro-2 quotient of π1(M1,r).
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On the other hand, let us also recall that the following assertion may
be regarded as an immediate consequence of [10, Theorem A, (ii)]:

Suppose that k is algebraically closed, and that the
inequality l > 7 holds. Then, for an arbitrary posi-
tive integer r and an arbitrary connected finite étale
covering N →M1,[r] ofM1,[r], the quotient of π1(N )
determined by the composite

π1(N ) �
� // π1(M1,[r])

ρl1,r // Out(∆l
1,r)

does not coincide with the maximal pro-l quotient of
π1(N ).

In particular, one may conclude that at least a “naive imitation” of the
above proof of Theorem 4.2 in the case where g = 1 and l > 7 does not
work.

Corollary 4.4. Let l be a prime number, k a sub-l-adic field [cf. Defi-

nition 1.1, (i)], and k an algebraic closure of k. Write Gk
def
= Gal(k/k)

for the absolute Galois group of k determined by k. For each i ∈ {1, 2},
let gi and ri be nonnegative integers such that 2gi−2+ ri > 0 and Xi a
hyperbolic curve of type (gi, ri) over k [cf. Definition 1.3, (iii)]; write ρlXi

for the pro-l outer Galois action associated to Xi/k [cf. Definition 1.2,
(ii)]. Suppose that the following four conditions are satisfied:

(1) For each i ∈ {1, 2}, the hyperbolic curve Xi over k is quasi-l-
monodromically full [cf. Definition 1.7, (ii)].

(2) The intersection

{(g1, r1), (g2, r2)} ∩ {(0, 3), (0, 5), (0, 6), (0, 7), (1, 3), (1, 4), (2, 0), (2, 1)}

is nonempty.
(3) The equality l = 2 holds whenever g1g2 ̸= 0.
(4) Either the equality g1 = g2 or the equality r1 = r2 holds.

Then the following two conditions are equivalent:

(a) The hyperbolic curve X1 ×k k over k is isomorphic to the hy-
perbolic curve X2 ×k k over k.

(b) The closed subgroups Ker(ρlX1
), Ker(ρlX2

) ⊆ Gk of Gk are com-
mensurable [cf. Definition 1.1, (ii)].

Proof. The implication (a) ⇒ (b) is immediate. Next, we verify the
implication (b) ⇒ (a). Suppose that condition (b) is satisfied. Then
it follows from Theorem 4.2, together with conditions (1), (2), (3), (4),
that the equality (g1, r1) = (g2, r2) holds, and, moreover, the hyper-
bolic curve X1 ×k k over k is moduli-correspondence-equivalent to the
hyperbolic curve X2 ×k k over k. Now observe that the implication
(b) ⇒ (a) in the case where (g1, r1) (= (g2, r2)) = (0, 3) follows from
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Lemma 3.2. Suppose that (g1, r1) (= (g2, r2)) ̸= (0, 3). Then it fol-
lows from Proposition 1.10 and Proposition 3.6 that condition (a) is
satisfied. This completes the proof of Corollary 4.4. □

A similar result to Corollary 4.4 for [once-punctured] elliptic curves
may be established as follows.

Definition 4.5. Let S be a connected scheme of finite type over k,
s ∈ S(k) a k-rational point of S, andX a hyperbolic curve of type (g, r)
over S. Thus, the k-rational point s ∈ S(k) and the S-valued point
ofMg,[r] that classifies X/S induce outer continuous homomorphisms
Gk → π1(S) → π1(Mg,[r]). Then we shall say that s ∈ S(k) is l-
monodromically full with respect to X/S [cf. [6, Definition 2.1, (i)]] if

the image of the composite Gk → π1(S) → π1(Mg,[r])
ρlg,r→ Out(∆l

g,r)

contains the image of the composite π1(T ) ↪→ π1(S) → π1(Mg,[r])
ρlg,r→

Out(∆l
g,r) — where T → S is a connected finite étale covering of S

obtained by considering a connected component of the fiber product
of the S-valued point S → Mg,[r] that classifies X/S and the natural
finite étale Galois coveringMg,r →Mg,[r].

Theorem 4.6. Let k be a sub-2-adic field [cf. Definition 1.1, (i)] and
x1, x2 two k-rational points of M1,1 [cf. Definition 3.4, (i)]. For each
i ∈ {1, 2}, write Xi for the hyperbolic curve of type (1, 1) over k [cf.
Definition 1.3, (iii)] obtained by forming the fiber of the hyperbolic curve
L1,1 → M1,1 of type (1, 1) over M1,1 [cf. Definition 3.3, (ii)] at xi ∈
M1,1(k), ρ

2
Xi

for the pro-2 outer Galois action associated to Xi/k [cf.
Definition 1.2, (ii)], and Ei for the elliptic curve over k associated to
Xi. Suppose that, for each i ∈ {1, 2}, the k-rational point xi of M1,1

is 2-monodromically full with respect to L1,1/M1,1 [cf. Definition 4.5].
Then the following two conditions are equivalent:

(1) The elliptic curve E1 over k is isomorphic to the elliptic curve
E2 over k.

(2) The equality Ker(ρ2X1
) = Ker(ρ2X2

) holds.

Proof. The implication (1) ⇒ (2) is immediate. Next, we verify the
implication (2) ⇒ (1). Suppose that condition (2) is satisfied. Let
us first observe that it follows immediately from a similar argument
to the argument applied in the proof of Theorem 4.2, together with
Lemma 2.3, that there exists an automorphism f ofM1,1 over k such
that the equality f ◦ x1 = x2 holds. Thus, it follows from [6, Lemma
4.1, (ii)] and the explicit construction in Definition 3.3, (ii), of the
hyperbolic curve L1,1 →M0,4 =M1,1 of type (1, 1) overM0,4 =M1,1

that the elliptic curve E1 over k is isomorphic to the elliptic curve E2

over k, as desired. This completes the proof of Theorem 4.6. □
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5. Complements

In the present §5, we give some complements to the contents of Corol-
lary 4.4 and Theorem 4.6. In the present §5, we maintain the notational
conventions introduced in §1. The main purpose of the present §5 is
to prove the following two propositions, i.e., Proposition 5.1 below and
Proposition 5.2 below [cf. also Remark 5.3 below].

Proposition 5.1. Suppose that k is finitely generated over the min-
imal subfield of k. Then there exist a finite extension K of k in k
and hyperbolic curves X1 and X2 of type (1, 1) over K that satisfy the
following three conditions:

• For each i ∈ {1, 2}, the hyperbolic curve Xi over K is quasi-l-
monodromically full.
• The closed subgroups Ker(ρlX1

), Ker(ρlX2
) of Gal(k/K) are com-

mensurable.
• The hyperbolic curve X1 ×K k over k is not isomorphic to the
hyperbolic curve X2 ×K k over k.

Proposition 5.2. Suppose that k is finitely generated over the min-
imal subfield of k. Then there exist a finite extension K of k in k
and hyperbolic curves X1 and X2 of type (0, 4) over K that satisfy the
following three conditions:

• For each i ∈ {1, 2}, the hyperbolic curve Xi over K is quasi-2-
monodromically full.
• The closed subgroups Ker(ρ2X1

), Ker(ρ2X2
) of Gal(k/K) are com-

mensurable.
• The hyperbolic curve X1 ×K k over k is not isomorphic to the
hyperbolic curve X2 ×K k over k.

Remark 5.3.

(i) Let us observe that the objects discussed in Proposition 5.1
yield a “counter-example” of the assertion obtained by replac-
ing condition (2) in the statement of Corollary 4.4 by the con-
dition that (g1, r1) = (g2, r2) = (1, 1). Moreover, let us ob-
serve that the objects discussed in Proposition 5.1 also yield a
“counter-example” of a “quasi-monodromically full-version” of
Theorem 4.6 [cf. also the implication (2)⇒ (4) of Lemma 5.10
below].

(ii) Let us observe that the objects discussed in Proposition 5.2
yield a “counter-example” of the assertion obtained by replac-
ing condition (2) in the statement of Corollary 4.4 by the con-
dition that (g1, r1) = (g2, r2) = (0, 4). Moreover, let us ob-
serve that the objects discussed in Proposition 5.2 also yield
a “counter-example” of a “quasi-monodromically full-version”
of Theorem B.
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Lemma 5.4. Let X1 and X2 be hyperbolic curves of type (1, 1) over k.
Write E1 and E2 for the respective elliptic curves over k associated to
X1 and X2. Suppose that there exists an isogeny E1 → E2 over k of
degree a power of l. Then the closed subgroups Ker(ρlX1

), Ker(ρlX2
) ⊆

Gk of Gk are commensurable.

Proof. Let us observe that an isogeny f : E1 → E2 over k of degree a
power of l determines a sequence of hyperbolic curves over k

X1 E1 \Ker(f)? _oo
f |E1\Ker(f) // X2

— where the first arrow is the natural open immersion, and the second
arrow is a connected finite étale l-special covering over k. Thus, it fol-
lows immediately from [7, Lemma 23, (i), (ii), (iii)], together with [18,
Remark 1.2.2] and [18, Proposition 1.4], that we may assume without
loss of generality, by replacing Gk by a suitable open subgroup of Gk,
that Ker(ρlX2

) ⊆ Ker(ρlX1
). In particular, by applying a similar argu-

ment to this argument to the dual isogeny E2 → E1 of f , one may
conclude that the closed subgroups Ker(ρlX1

), Ker(ρlX2
) ⊆ Gk of Gk are

commensurable, as desired. This completes the proof of Lemma 5.4. □
Definition 5.5. Let N →M1,1(l) be a connected finite étale covering
of M1,1(l), hence also of M1,1, such that the stack N has a natural
structure of scheme. Write C1,1|N → N (respectively, C+1,1|N → N ) for
the base-change of the natural morphism C1,1 → M1,1 (respectively,
C+1,1 → M1,1) by the finite étale covering N → M1,1. [So the stack

C+1,1|N over N , equipped with the splitting determined by the split-

ting sM1 of Definition 1.4, (i), has a natural structure of elliptic curve
over N .] Let s(l) be a nontrivial l-torsion splitting of the elliptic curve
C+1,1|N → N . [Note that such a splitting always exists by the definition
ofM1,1(l) →M1,1.] Write Q+ → N for the elliptic curve over N ob-
tained by forming the quotient of the elliptic curve C+1,1|N → N by the
subgroup scheme generated by the torsion splitting s(l) and Q ⊆ Q+

for the open subscheme of Q+ obtained by forming the complement in

Q+ of the image of the composite N s(l)→ C+1,1|N ↠ Q+. [So we have a

natural isogeny C+1,1|N ↠ Q+ over N of degree l; moreover, the natural
morphism Q → N determines a structure on Q of hyperbolic curve of
type (1, 1) over N .]

Lemma 5.6. In the situation of Definition 5.5, suppose that k is
finitely generated over the minimal subfield of k, i.e., over the unique
subfield of k isomorphic to the field of rational numbers. Fix an inclu-
sion k ↪→ C of fields. Then the subset of N (C) consisting of C-valued
points s ∈ N (C) that satisfy the following condition (∗MF) is dense
with respect to the complex topology of N (C):

(∗MF) There exist a finite extension K of k in k (⊆ C) and a K-valued
point of N that maps to s ∈ N (C) and is l-monodromically
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full [cf. Definition 4.5] both with respect to C1,1|N/N and with
respect to Q/N .

Proof. Write ∆Q/N for the kernel of the outer continuous surjective
homomorphism π1(Q) ↠ π1(N ) induced by the structure morphism
Q → N and ∆l

Q/N for the maximal pro-l quotient of ∆Q/N . Thus, we
have natural exact sequences of profinite groups

1 // ∆1,1
// π1(C1,1|N ) // π1(N ) // 1,

1 // ∆Q/N // π1(Q) // π1(N ) // 1.

Write

ρlC : π1(N ) // Out(∆l
1,1), ρlQ : π1(N ) // Out(∆l

Q/N )

for the respective outer continuous actions determined by the above
upper, lower exact sequences. Then it follows from [6, Lemma 2.5],
together with the separatedness and the smoothness ofM1,1 over k [cf.
[14, Theorem 2.7]], that the respective images of ρlC, ρ

l
Q are topologically

finitely generated. Thus, it follows from [15, Proposition 3.1] that there
exists a finite étale Galois covering N ′ → N of N that satisfies the
following condition: For a given finite extension K of k and a given K-
valued point s of N , if the fiber of N ′ → N at s ∈ N (K) is connected,
then the K-valued point s ∈ N (K) is l-monodromically full both with
respect to C1,1|N/N and with respect to Q/N . In particular, since
[it is well-known that] k is Hilbertian, Lemma 5.6 follows immediately
from a similar argument to the argument applied in the proof of [15,
Theorem 1.2]. This completes the proof of Lemma 5.6. □
Lemma 5.7. Suppose that k is finitely generated over the minimal
subfield of k. Then there exist a finite extension K of k in k and
hyperbolic curves X1 and X2 of type (1, 1) over K such that if one
writes E1 and E2 for the elliptic curves over K associated to X1 and
X2, respectively, then the following three conditions are satisfied:

(1) For each i ∈ {1, 2}, the hyperbolic curve Xi over K is quasi-l-
monodromically full.

(2) There exists an isogeny E1 → E2 over K of degree l.
(3) For each i ∈ {1, 2}, the elliptic curve Ei ×K k over k does not

have complex multiplication.

Proof. Now let us recall that it follows from [6, Remark 3.7.1] and [6,
Proposition 3.8] that condition (1) implies condition (3). Thus, this
assertion is an immediate consequence of Lemma 5.6. □
Proof of Proposition 5.1. Let us observe that, for two elliptic curves
E1 and E2 over k that admit an isogeny E1 → E2 over k of degree
l, one may conclude immediately, by considering the ring of endomor-
phisms of E1 over k, that E1 is not isomorphic to E2 over k under
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the assumption that E1 does not have complex multiplication. Thus,
Proposition 5.1 follows from Lemma 5.4 and Lemma 5.7. This com-
pletes the proof of Proposition 5.1. □
Remark 5.8. The authors would like to thank Akio Tamagawa for
explaining to them the arguments applied to prove Proposition 5.1.

Lemma 5.9. The kernel of the composite

π1(M1,1)
� � π1(Φ1,1) // π1(M1,1)

∼ // π1(M1,[1])
ρ21,1 // Out(∆2

1,1)

coincides with the kernel of the composite

π1(M1,1) π1(M0,4)
� � // π1(M0,[4])

ρ20,4 // Out(∆2
0,4).

Proof. Write N1, N2 ⊆ π1(M1,1) for the kernels of the composites of
the first, second displays of the statement of Lemma 5.9, respectively.
Write, moreover, J1, J2 for the quotients of Gk by the normal closed
subgroups of Gk obtained by forming the images of N1, N2 ⊆ π1(M1,1)
by the outer continuous surjective homomorphism π1(M1,1) ↠ Gk in-
duced by the structure morphismM1,1 → Spec(k), respectively.
First, we verify the assertion that the quotient J1 of Gk coincides

with the quotient J2 of Gk. To this end, let us first recall from Propo-
sition 1.6 that the image of Ker(ρ21,1) ⊆ π1(M1,[1]) in Gk coincides with

the image of Ker(ρ20,4) ⊆ π1(M0,[4]) in Gk. Thus, the desired assertion
follows from Lemma 3.5, (i), together with the [easily verified] fact that,
for each integer r ≥ r0(g), the closed subgroup Ker(ρ2g,r) ⊆ π1(Mg,[r])
of π1(Mg,[r]) is contained in the normal open subgroup π1(Mg,r(4)) ⊆
π1(Mg,[r]) of π1(Mg,[r]). This completes the proof of the desired asser-
tion.
Next, we verify the inclusion N1 ⊆ N2 (respectively, N2 ⊆ N1). Let

us first observe that it follows immediately from a similar argument to
the argument applied in the proof of [10, Theorem 2.10] that the image
of N1 ⊆ π1(M1,1) (respectively, N2 ⊆ π1(M1,1)) by the composite of
the second (respectively, first) display of the statement of Lemma 5.9
is finite [cf. also the commutative diagram of k-algebras which appear
in Lemma 3.2 and Definition 3.3, (ii),

A0,4 = k
[
x1,

1

x1(x1 − 1)

]
� � //

� _

��

A0,5 = A0,4

[
x2,

1

x2(x2 − 1)(x1 − x2)

]
� _

��

B
def
= A0,4[s, t]/

(
s2 − t(t− 1)(t− x1)

)
� � // B

[1
s

]
— where the right-hand vertical arrow is the homomorphism of A0,4-

algebras that maps x2 to t]. Thus, since the image of π1(M0,4 ×k k) ⊆
π1(M0,4) = π1(M1,1) by the composite of the second (respectively,
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first) display of the statement of Lemma 5.9 is torsion-free [cf. [18,
Remark 1.2.2], Lemma 3.2, and Lemma 4.1, (i)], to verify the desired
inclusion, it suffices to verify that the image of N1 ⊆ π1(M1,1) (re-
spectively, N2 ⊆ π1(M1,1)) in J2 (respectively, J1) is trivial. On the
other hand, the desired triviality is a formal consequence of the asser-
tion that the quotient J1 of Gk coincides with the quotient J2 of Gk,
already verified above. This completes the proof of Lemma 5.9. □
Lemma 5.10. Let λ be an element of k\{0, 1}. Consider the following
four conditions:

(1) The hyperbolic curve of type (0, 4) over k

Spec
(
k
[
x,

1

x
,

1

x− 1
,

1

x− λ

])
— where x is an indeterminate — is 2-monodromically full.

(2) The k-rational point of M1,1 = M0,4 given by “x1 = λ” [cf.
Lemma 3.2] is 2-monodromically full with respect to L1,1/M1,1.

(3) The hyperbolic curve of type (0, 4) over k

Spec
(
k
[
x,

1

x
,

1

x− 1
,

1

x− λ

])
— where x is an indeterminate — is quasi-2-monodromically
full.

(4) The hyperbolic curve of type (1, 1) over k

Spec
(
k[s, t]/

(
s2 − t(t− 1)(t− λ)

))
— where s and t are indeterminates — is quasi-2-monodromically
full.

Then the following implications hold:

(1) ks +3 (2) +3 (3) ks +3 (4).

Proof. The implication (1) ⇒ (3) is immediate. The equivalences (1)
⇔ (2) and (3) ⇔ (4) follow immediately from Lemma 5.9 [cf. also
Lemma 3.5, (i)]. This completes the proof of Lemma 5.10. □
Proof of Proposition 5.2. Proposition 5.2 follows immediately from Propo-
sition 5.1, Lemma 5.9, and the implication (4) ⇒ (3) of Lemma 5.10.

□
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