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Abstract. — In the present paper, we study a continuous open homomorphism between the
Galois groups of solvably closed Galois extensions of number fields. We prove that a continuous
open homomorphism between the Galois groups of solvably closed Galois extensions of number
fields arises from a homomorphism between the given solvably closed Galois extensions if, and
only if, the continuous open homomorphism is compatible with the cyclotomic characters.
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Introduction

For □ ∈ {◦, •}, let F□ be a number field [i.e., a field that is of characteristic zero and

finite over the minimal subfield of F — cf. Definition 1.2, (ii)] and F̃□ a Galois extension
of F□ that is solvably closed [i.e., that does not have nontrivial abelian extension — cf.
Definition 3.2]. Let

α : Gal(F̃◦/F◦) // Gal(F̃•/F•)

be a continuous open homomorphism of profinite groups. K. Uchida posed the following
conjecture [cf. [9, Conjecture in p.595]].

CONJECTURE (Uchida). —There exists a uniquely determined homomorphism αF : F̃• ↪→
F̃◦ of fields compatible with the respective actions of Gal(F̃•/F•), Gal(F̃◦/F◦) relative

to the continuous open homomorphism α, i.e., such that, for each γ ∈ Gal(F̃◦/F◦), the
equality γ ◦ αF = αF ◦ α(γ) holds.

Uchida solved affirmatively this conjecture in the case where α is injective [cf. [8,
Theorem in p.359]]. Moreover, Uchida also gave, in [9], some interesting results concerning
this conjecture. For instance, Uchida proved
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• Conjecture in the case where the number field F◦ is isomorphic to the field of rational
numbers [cf. [9, Theorem 1]],

• Conjecture in the case where the homomorphism α satisfies a certain condition
concerning decomposition subgroups at nonarchimedean primes [cf. [9, Theorem 2]], and

• the uniqueness of a homomorphism “F̃• ↪→ F̃◦” as in the statement of Conjecture
[cf. [9, Proposition 2]].

The present paper discusses this conjecture. One main result of the present paper is as
follows [cf. Theorem 3.4].

THEOREM. — The following two conditions are equivalent:

• There exists a [necessarily unique— cf. [9, Proposition 2]] homomorphism αF : F̃• ↪→
F̃◦ of fields compatible with the respective actions of Gal(F̃•/F•), Gal(F̃◦/F◦) relative

to the continuous open homomorphism α, i.e., such that, for each γ ∈ Gal(F̃◦/F◦), the
equality γ ◦ αF = αF ◦ α(γ) holds.

• For each □ ∈ {◦, •}, write ρcycl□ : Gal(F̃□/F□) → Ẑ× for the cyclotomic character

on Gal(F̃□/F□). Then the equality

ρcycl◦ = ρcycl• ◦ α

holds.

Now let us recall that, for a continuous open homomorphism between the absolute
Galois groups of p-adic local fields [i.e., fields isomorphic to finite extensions of Qp], it
holds that the continuous open homomorphism arises from a homomorphism between the
given p-adic local fields if and only if the continuous open homomorphism preserves the
Hodge-Tate-ness of the p-adic representations [cf. [1, Theorem in pp.285-286]]. Observe
that the above theorem may be regarded as an analogue for number fields of this result
for p-adic local fields. We refer to Remark 3.4.1 for more details.

Finally, let us also recall that conditional results in the study of the function field
version of the above conjecture may be found in [6].
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1. A Sufficient Condition to be Fully Faithful

In the present §1, we establish a sufficient condition for a functor whose domain is
the category of number fields to be fully faithful [cf. Theorem 1.9 below]. Note that the
content of the present §1 is inspired by the work of H. Smit in [7].

DEFINITION 1.1.

(i) We shall write Primes for the set of prime numbers.
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(ii) Let S, T be sets; f , g : S → T maps of sets. Then we shall write Eq(f, g) ⊆ S for
the equalizer of f and g, i.e., the subset of S consisting of the elements s of S such that
f(s) = g(s).

(iii) We shall say that a subset of a set is cofinite if the complement in the set of the
subset is finite.

(iv) Let S be a set; S1, S2 subsets of S. Then we shall write S1

•
⊆ S2 if S2 contains a

cofinite subset of S1.

(v) Let S be a set. Then we shall write SetS for the category defined as follows:

• An object of SetS is defined to be an S-set [i.e., a set equipped with a map to S].

• A morphism in SetS is defined to be a map of S-sets [i.e., a map of sets over S
relative to the structure maps].

DEFINITION 1.2.

(i) Let F be a field. Then we shall write F prm ⊆ F for the prime field contained in
F , i.e., the [unique] minimal subfield of F .

(ii) We shall say that a field F is a number field if F is of characteristic zero and finite
over the subfield F prm.

(iii) We shall write NF for the category defined as follows:

• An object of NF is defined to be a number field.

• A morphism in NF is defined to be a homomorphism of fields.

DEFINITION 1.3. — Let F be a number field.

(i) Let p be a nonarchimedean prime of F . Then we shall write char(p) ∈ Primes for
the residue characteristic of p.

(ii) Let p be a nonarchimedean prime of F . Then we shall say that p is of absolute
degree one if the completion of F at p is isomorphic, as an abstract field, to the completion
of F prm at p|Fprm . Moreover, we shall say that p is of absolute residue degree one if the
residue field at p is of cardinality char(p).

(iii) We shall write V(F ) for the set of nonarchimedean primes of F of absolute residue
degree one. Let us observe that one verifies easily that we have a natural identification
between V(F prm) andPrimes [i.e., determined by “char”]. In the remainder of the present
paper, let us identify V(F prm) with Primes by means of this natural identification:

V(F prm) = Primes

(iv) Let S be a subset of Primes. Then we shall write V|S(F ) ⊆ V(F ) for the subset
consisting of the elements of V(F ) of residue characteristic ∈ S. Let us observe that
one verifies immediately that the assignments “F ⇝ V(F )”, “F ⇝ V|S(F )” naturally
determine contravariant functors

V : NF // SetPrimes, V|S : NF // SetS,

respectively.
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(v) LetK be a number field that contains F . Then we shall write V∗(K/F ) ⊆ V(F ) for
the subset consisting of the elements of V(F ) that split completely in K and V∗(K/F )

def
=

V(F ↪→ K)−1(V∗(K/F )) ⊆ V(K).

LEMMA 1.4. — Let F , K be number fields; φ, ψ : F ↪→ K homomorphisms of fields. Then
it holds that the equality φ = ψ holds if and only if the intersection Eq(V(φ),V(ψ)) ∩
V∗(K/Kprm) is nonempty.

Proof. — It follows from Chebotarev’s density theorem [cf., e.g., [5, Chapter VII, The-
orem 13.4]] that V∗(K/Kprm) is nonempty. In particular, the necessity is immediate.
Next, we verify the sufficiency. Suppose that Eq(V(φ),V(ψ)) ∩ V∗(K/Kprm) 6= ∅. Let
p be an element of Eq(V(φ),V(ψ)) ∩ V∗(K/Kprm). Write Fp, Kp for the completions of
F , K at V(φ)(p) = V(ψ)(p), p, respectively. Write, moreover, φp, ψp : Fp ↪→ Kp for the
homomorphisms of fields induced by φ, ψ, respectively. Then since p ∈ V∗(K/Kprm),
one verifies easily that φp = ψp. Thus, one may conclude immediately from the various
definitions involved that φ = ψ, as desired. This completes the proof of Lemma 1.4. □

DEFINITION 1.5. — We shall say that a field F is absolutely Galois if F is Galois over
the subfield F prm.

LEMMA 1.6. — Let F , K, and L be number fields; φF : F ↪→ L, φK : K ↪→ L homomor-
phisms of fields; pL an element of V∗(L/Lprm); ι ∈ AutNF(L) an automorphism of the

field L. Write p
def
= char(pL) ∈ Primes for the residue characteristic of pL. Suppose that

L is absolutely Galois. Then the following two conditions are equivalent:

(1) The composite F
ϕF
↪→ L

ι
∼→ L factors through the homomorphism φK : K ↪→ L.

(2) There exists an element pF of V|{p}(F ) such that the image of V(φK)−1({V(φK)(pL)}) ⊆
V(L) by V(ι) is contained in V(φF )−1({pF}) ⊆ V(L).

Proof. — The implication (1) ⇒ (2) follows from the [easily verified] fact that the
assignment “F ⇝ V(F )” naturally determines a contravariant functor. Next, we verify
the implication (2) ⇒ (1). Suppose that condition (2) is satisfied. Then it is immediate
that V(ι)(pL) ∈ V(φF )−1({pF}). Thus, since L is absolutely Galois, condition (2) implies
the inclusion

{V(γK ◦ ι)(pL) | γK ∈ Gal(φK) } ⊆ {V(ι ◦ γF )(pL) | γF ∈ Gal(φF ) }

—where we write “Gal(−)” for the Galois group of the finite Galois extension determined
by “(−)”. Thus, since pL ∈ V∗(L/Lprm), it follows from Lemma 1.4 that we have an
inclusion Gal(φK) ⊆ ι ◦ Gal(φF ) ◦ ι−1, which thus implies condition (1). This completes
the proof of the implication (2) ⇒ (1), hence also of Lemma 1.6. □

DEFINITION 1.7. — Let F be a number field and S a subset of V(F ). Then we shall say
that S is thin if there exists an infinite sequence F = F1 ↪→ F2 ↪→ · · · of number fields
such that, for each positive integer n, the extension Fn of F is Galois, the homomorphism

Fn ↪→ Fn+1 is not an isomorphism, and, moreover, S
•
⊆ V∗(Fn/F ).
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LEMMA 1.8. — Let F be a number field. Then every subset of the union of finitely many
thin subsets of V(F ) is not of positive Dirichlet density.

Proof. — Let n be a positive integer; S1, . . . , Sn ⊆ V(F ) thin subsets of V(F ). Thus,
it follows from the definition of a thin subset that, for each i ∈ {1, . . . , n} and each
positive real number δ, there exists a finite Galois extension Ki/F of degree > n/δ such

that Si
•
⊆ V∗(Ki/F ). Now let us observe that it follows immediately from Chebotarev’s

density theorem [cf., e.g., [5, Chapter VII, Theorem 13.4]] [cf. also the easily verified
equality V∗(K/F ) ∩ V∗(L/F ) = V∗((K · L)/F ) for two finite Galois extensions K, L of
F in a fixed algebraic closure of F ] that the union

⋃n
i=1 V∗(Ki/F ) [admits a Dirichlet

density and] is of Dirichlet density ≤
∑n

i=1 1/[Ki : F ] < δ. Thus, one may conclude that

every subset of
⋃n
i=1 Si (

•
⊆

⋃n
i=1 V∗(Ki/F )) is not of positive Dirichlet density, as desired.

This completes the proof of Lemma 1.8. □

THEOREM 1.9. — Let C be a category and

O : NF // C
a contravariant functor. Suppose that there exist

• a cofinite subset S of Primes,

• a covariant functor

V : C // SetS,
and

• a natural equivalence

θ : V|S
∼ // V ◦ O

that satisfy the following condition: For number fields F , K and morphisms α, β : O(K) →
O(F ) in C, it holds that the equality α = β holds if and only if the equalizer

Eq
(
V(α),V(β)

)
⊆ V

(
O(K)

)
V|S(K)∼

θ(K)
oo

of the two maps V(α), V(β) : V(O(K)) → V(O(F )) is not thin [i.e., as a subset of
V(K)]. Then the functor O is fully faithful.

Proof. — Let F , K be number fields. First, we verify the faithfulness of the functor
O. Let us observe that we have a sequence of sets

HomNF(F,K)
O // HomC

(
O(K),O(F )

)
// HomSetS

(
V|S(K),V|S(F )

)
— where the second arrow is the map of sets determined by V , θ(K), and θ(F ). Thus,
since this composite is injective [cf. Lemma 1.4], one may conclude that the functor O is
faithful, as desired.

Next, we verify the fullness of the functor O. Let α : O(K) → O(F ) be a morphism
in C. Now let us observe that it is immediate that there exist a number field L that
is absolutely Galois and homomorphisms φF : F ↪→ L, φK : K ↪→ L of fields. For each
ι ∈ AutNF(L), write E(ι) ⊆ V|S(L) for the equalizer of the two maps of sets

V|S(L)
V|S(ι)

∼
// V|S(L)

V|S(ϕF )
// V|S(F ),
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V|S(L)
V|S(ϕK)

// V|S(K)
θ(K)

∼
// V
(
O(K)

) V(α)
// V
(
O(F )

) θ(F )−1

∼
// V|S(F ).

Now let us observe that since L is absolutely Galois, one verifies easily that, for each p ∈
V∗(L/L

prm), the action of AutNF(L) on V(L) determines a transitive action of AutNF(L)
on V|{p}(L). Let us also observe that one verifies easily that, for each p ∈ V∗(L/L

prm),
the map V|{p}(L) → V|{p}(F ) induced by V|S(φF ) is surjective. In particular, one verifies
immediately that the inclusion

V|S(L) ∩ V∗(L/Lprm) ⊆
⋃

ι∈AutNF (L)

E(ι)

holds. Thus, since AutNF(L) is finite, it follows from Lemma 1.8, together with the well-
known fact that the subset V|S(L) ∩ V∗(L/Lprm) of V(L) is of Dirichlet density one [cf.,
e.g., the discussion of [5, p.543] preceding the definition of the natural density], that there
exists an automorphism ι0 ∈ AutNF(L) of L such that E(ι0) is not thin. In particular, it
follows from the condition in the statement of Theorem 1.9 that the diagram in C

O(L)
O(ϕK)

//

O(ι0) ≀
��

O(K)

α

��
O(L)

O(ϕF )
// O(F ),

hence also the diagram in SetS

V|S(L)
V|S(ϕK)

//

V|S(ι0) ≀
��

V|S(K)
θ(K)

∼
// V
(
O(K)

)
V(α)
��

V|S(L) V|S(ϕF )
// V|S(F )

θ(F )

∼ // V
(
O(F )

)
,

commutes. Thus, it follows immediately from Lemma 1.6 that the composite F
ϕF
↪→ L

ι0
∼→ L

factors through the homomorphism φK : K ↪→ L, which thus implies that the diagram in
SetS

V|S(L)
V|S(ϕK)

//

V|S(ι0) ≀
��

V|S(K)

V|S(ψ)
��

V|S(L) V|S(ϕF )
// V|S(F )

— where we write ψ : F ↪→ K for the resulting homomorphism of fields — commutes. In
particular, it follows from the commutativity of the last two diagrams that the equalizer
of the two maps

V|S(K)
θ(K)

∼
// V
(
O(K)

) V(α)
// V
(
O(F )

) θ(F )−1

∼
// V|S(F ), V|S(K)

V|S(ψ)// V|S(F )

contains the image of V|S(φK). Now observe that it follows from Chebotarev’s density
theorem [cf., e.g., [5, Chapter VII, Theorem 13.4]] that the image of V|S(φK) is of Dirichlet
density 1/[L : K]. In particular, it follows from Lemma 1.8 and the condition in the
statement of Theorem 1.9 that the equality α = O(ψ) holds. This completes the proof of
the fullness of the functor O, hence also of Theorem 1.9. □
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2. A Fully Faithful Functor

In the present §2, we construct a fully faithful functor whose domain is the category of
number fields by means of Theorem 1.9 [cf. Theorem 2.6 below].

In the present §2, let l be a prime number and S a cofinite subset of Primes.

DEFINITION 2.1. — Let F be a number field.

(i) We shall write Al(F )
def
= Gal(F ab/F )⊗Ẑ Z/lZ — where F ab is a maximal abelian

extension of F .

(ii) Let p be an element of V(F ). Then we shall write FLl(p) ⊆ Al(F ) for the
subset consisting of the liftings of the char(p)-th power Frobenius element at p — i.e.,
the subset consisting of the elements of the decomposition subgroup of Al(F ) at p whose
natural actions on the residue field of the valuation ring in the algebraic extension of
the completion of F determined by (F ab, p) are given by the char(p)-th power Frobenius
maps.

(iii) Let p be an element of V(F ). Then we shall write Φp for the set of continuous
[necessarily surjective] homomorphisms χ : Al(F ) → Z/lZ of profinite modules such that,
for each element q of V(F ) with char(q) ≤ char(p), the following two conditions are
satisfied:

• The image by χ of the inertia subgroup of Al(F ) at q is trivial.

• It holds that the image by χ of the decomposition subgroup of Al(F ) at q is
nontrivial if and only if the equality q = p holds.

LEMMA 2.2. — Let F be a number field. Then the following assertions hold:

(i) Let p be an element of V(F ). Then the set Φp is nonempty.

(ii) Let p, q be distinct elements of V(F ). Then the intersection FLl(p) ∩ FLl(q) is
empty.

(iii) Let H ⊆ Al(F ) be a finite closed submodule of Al(F ) [i.e., with respect to the
natural profinite topology of Al(F )]. Then the set consisting of the elements p of V(F )
that satisfy the following condition is finite: For an arbitrary χ ∈ Φp, the submodule H
is not annihilated by χ.

Proof. — Assertion (i) is an immediate consequence of the Grunwald-Wang theorem
[cf., e.g., [5, Chapter VI, §6, Exercise 7]]. Assertion (ii) is a formal consequence of assertion
(i). Next, we verify assertion (iii). Assume that the set consisting of the elements of V(F )
that satisfy the condition in the statement of assertion (iii) is infinite. Thus, we have an
infinite sequence p1, p2, . . . of elements of V(F ) such that, for each positive integer n,
the element pn satisfies the condition in the statement of assertion (iii), and, moreover,
the inequality char(pn) < char(pn+1) holds. For each positive integer n, fix an element
χn of Φpn [cf. assertion (i)]. Then one verifies easily from the definition of “Φp” that, for
positive integers m < n, the product χm ·χ−1

n is contained in Φpm , which thus implies that
the submodule H is not annihilated by χm ·χ−1

n . In particular, one may conclude that, for
positive integers m 6= n, the restriction χm|H does not coincide with the restriction χn|H .
However, this contradicts the finiteness of H. This completes the proof of assertion (iii),
hence also of Lemma 2.2. □
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REMARK 2.2.1. — The proof of Lemma 2.2, (iii), is essentially the same as the proof of
[7, Lemma 6.15].

DEFINITION 2.3. — We shall write CA,S for the category defined as follows:

• An object of CA,S is defined to be a collection (A, V, (FL(v))v∈V ) of data consisting
of a topological module A, an S-set V , and, for each v ∈ V , a subset FL(v) ⊆ A of A.

• Let (A1, V1, (FL(v1)1)v1∈V1), (A2, V2, (FL(v2)2)v2∈V2) be objects of CA,S. Then a mor-
phism (A1, V1, (FL(v1)1)v1∈V1) → (A2, V2, (FL(v2)2)v2∈V2) in CA,S is defined to be a pair
(αA, αV ) consisting of a continuous homomorphism αA : A1 → A2 of topological mod-
ules and a map αV : V1 → V2 of S-sets such that, for each v1 ∈ V1, the inclusion
αA(FL(v1)1) ⊆ FL(αV (v1))2 holds.

DEFINITION 2.4. — We shall write

OAl,S : NF // CA,S

for the contravariant functor defined as follows:

• Let F be a number field. Then the object OAl,S(F ) of CA,S is defined to be the
collection (Al(F ),V|S(F ), (FLl(p))p∈V|S(F )) of data.

• Let F , K be number fields; φ : F ↪→ K a homomorphism of fields. Then the
morphism OAl,S(φ) : OAl,S(K) → OAl,S(F ) in CA,S is defined to be the pair consisting of
the continuous homomorphism Al(K) → Al(F ) and the map V|S(K) → V|S(F ) induced
by the homomorphism φ : F ↪→ K.

LEMMA 2.5. — Let F , K be number fields; (αA, αV ), (βA, βV ) : OAl,S(K) → OAl,S(F )

morphisms in CA,S. Write H
def
= Im(αA · β−1

A ) ⊆ Al(F ) for the closed submodule of Al(F )
obtained by forming the image of the product αA · β−1

A : Al(K) → Al(F ). Let H ↠ Q be
a finite topological quotient of H. Write KQ ⊆ Kab for the finite Galois extension of
K in Kab that corresponds to the finite topological quotient Al(K) ↠ (H ↠) Q. Then

Eq(αV , βV )
•
⊆ V∗(KQ/K).

Proof. — Since H ↠ Q is a finite topological quotient of H, it is immediate that there
exists an open submodule U ⊆ Al(F ) of Al(F ) such that H ∩ U is contained in the
kernel of the natural continuous surjective homomorphism H ↠ Q. In particular, since
[it is immediate that] the quotient Al(F )/U has a natural structure of linear space over
Fl of finite dimension, by considering the composite of the natural continuous surjective
homomorphism Al(F )↠ Al(F )/U and a splitting of the natural inclusion H/(H ∩U) ↪→
Al(F )/U , one may conclude that there exist a finite topological quotient Al(F ) ↠ J of

Al(F ) and an isomorphism Q
∼→ J of modules that fits into the following commutative

diagram

H � � //

����

Al(F )

����
Q ∼

// J
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— where the upper horizontal arrow is the natural inclusion, and the vertical arrows are
the natural continuous surjective homomorphisms. Write FJ ⊆ F ab for the finite Galois
extension of F in F ab that corresponds to the finite topological quotientAl(F )↠ J . Next,
observe that it follows from the various definitions involved that, for each p ∈ V(K), if
the nonarchimedean prime αV (p) (respectively, βV (p)) of F is unramified in the finite
Galois extension FJ/F , then the image in J via αA (respectively, βA) of FLl(p) ⊆ Al(K)
coincides with the subset [necessarily of cardinality one] consisting of the unique lifting of
the char(p)-th power Frobenius element in J = Gal(FJ/F ) at αV (p) (respectively, βV (p)).
In particular, since [it is well-known that] the respective sets of nonarchimedean primes
of F , K ramified in the finite Galois extensions FJ/F , KQ/K are finite, there exists a
cofinite subset T of S such that, for each p ∈ V|T (K) ∩ Eq(αV , βV ), the image in J via
the product αA · β−1

A of FLl(p) ⊆ Al(K) is contained in the trivial submodule of J , and,
moreover, the nonarchimedean prime p is unramified in the finite Galois extensionKQ/K.
Thus, we conclude that the inclusion V|T (K) ∩ Eq(αV , βV ) ⊆ V∗(KQ/K), hence also

Eq(αV , βV )
•
⊆ V∗(KQ/K), holds, as desired. This completes the proof of Lemma 2.5. □

THEOREM 2.6. — The functor OAl,S is fully faithful.

Proof. — Let us first observe that it follows from Theorem 1.9 that, to verify The-
orem 2.6, it suffices to verify the following assertion: In the situation of Lemma 2.5,
if (αA, αV ) 6= (βA, βV ), then the equalizer Eq(αV , βV ) ⊆ V|S(K) is thin. To this end,
suppose that we are in the situation of Lemma 2.5, and that (αA, αV ) 6= (βA, βV ).

First, we consider the case where H is infinite. Then it is immediate that we have an
infinite sequence of finite topological quotients of H

H // // . . . // // Hn+1
// // Hn

// // . . . // // H2
// // H1

such that, for each positive integer n, the module Hn is of order ln. For each positive
integer n, write Kn ⊆ Kab for the finite Galois extension of K in Kab that corresponds
to the finite topological quotient Al(K) ↠ Hn. Then it follows from Lemma 2.5 that,

for each positive integer n, Eq(αV , βV )
•
⊆ V∗(Kn/K). Thus, one may conclude that the

subset Eq(αV , βV ) ⊆ V|S(K) is thin, as desired.
Next, we consider the case where H is finite. Write KH ⊆ Kab for the finite Galois

extension of K in Kab that corresponds to the finite topological quotient Al(K) ↠ H.
Then it follows from Lemma 2.2, (iii), that there exists a cofinite subset T of S such
that, for each p ∈ V|T (F ), the set Φp has an element χp that annihilates the submodule
H. Let q be an element of V|T (K) and χαV (q) an element of ΦαV (q) that annihilates
the submodule H. Now observe that it follows immediately from the various definitions
involved that

• the image of the subset FLl(q) ⊆ Al(K) by the composite of αA : Al(K) → Al(F )
and χαV (q) : Al(F ) → Z/lZ is nontrivial, and

• it holds that the image of the subset FLl(q) ⊆ Al(K) by the composite of βA : Al(K) →
Al(F ) and χαV (q) : Al(F ) → Z/lZ is nontrivial if and only if the equality αV (q) = βV (q)
holds.

Thus, one may conclude immediately, by considering the composite

Al(K)
αA·β−1

A // Al(F )
χαV (q)

// Z/lZ
9



— whose image is trivial [cf. our choice of χαV (q)] — that the inclusion V|T (K) ⊆
Eq(αV , βV ) holds. Thus, since [it is well-known that] V|T (K) is of Dirichlet density

one, and Eq(αV , βV )
•
⊆ V∗(KH/K) [cf. Lemma 2.5], it follows from Chebotarev’s density

theorem [cf., e.g., [5, Chapter VII, Theorem 13.4]] that K = KH , i.e., that αA = βA.
On the other hand, it follows from Lemma 2.2, (ii), that this equality αA = βA implies
the equality αV = βV , which contradicts our assumption that (αA, αV ) 6= (βA, βV ). This
completes the proof of Theorem 2.6. □

DEFINITION 2.7. — For □ ∈ {◦, •}, let F□ be a number field and F ab
□ a maximal abelian

extension of F□. Let

α : Gal(F ab
◦ /F◦)⊗Ẑ Z/lZ // Gal(F ab

• /F•)⊗Ẑ Z/lZ

be a continuous homomorphism of profinite modules. Then we shall say that α is
Frobenius-preserving if there exist a cofinite subset T ofPrimes and a map αV : V|T (F◦) →
V|T (F•) of sets over T such that, for each p ∈ V|T (F◦), the inclusion α(FLl(p)) ⊆
FLl(αV (p)) holds.

COROLLARY 2.8. — For □ ∈ {◦, •}, let F□ be a number field and F ab
□ a maximal abelian

extension of F□. Let

α : Gal(F ab
◦ /F◦)⊗Ẑ Z/lZ // Gal(F ab

• /F•)⊗Ẑ Z/lZ

be a continuous homomorphism of profinite modules. Suppose that α is Frobenius-
preserving. Then there exists a uniquely determined homomorphism F• ↪→ F◦ of
fields from which α arises.

Proof. — This assertion is a formal consequence of Theorem 2.6 [cf. also Lemma 2.2,
(ii)]. □

3. Homomorphisms Between Global Solvably Closed Galois Groups

In the present §3, we study the conjecture by Uchida stated in Introduction of the
present paper.

LEMMA 3.1. — Let F be a number field and p a nonarchimedean prime of F . Write

p
def
= char(p) ∈ Primes for the residue characteristic of p and k for the completion of F

at p. Let k be an algebraic closure of k. Write

ρcyclk : Gal(k/k) // Ẑ×

for the cyclotomic character on Gal(k/k). Then the following assertions hold:

(i) Suppose that p is of absolute degree one. Then the image by ρcyclk of every pro-2

Sylow subgroup of the inertia subgroup of Gal(k/k) is nontrivial.

(ii) Let l be a prime number. Then it holds that the equality l = p holds if and only if

the image of ρcyclk contains a closed subgroup isomorphic to the direct product of two
copies of Zl.

10



(iii) It holds that p is of absolute residue degree one if and only if the image of
the composite

Gal(k/k)
ρcyclk // Ẑ×

∏
l∈Primes

Z×
l

// //
∏

l∈Primes\{p}

Z×
l

— where the second arrow is the natural continuous surjective homomorphism — con-

tains the image of p ∈ Z ⊆ Ẑ.
(iv) Suppose that p is odd, and that p is of absolute residue degree one. Write

kab ⊆ k for the maximal abelian extension of k in k. Then the subset of Gal(kab/k) ⊗Ẑ
Z/2Z consisting of the liftings of the p-th power Frobenius element coincides with the
subset of Gal(kab/k)⊗Ẑ Z/2Z consisting of the elements whose images by the homomor-

phism induced by ρcyclk

Gal(kab/k)⊗Ẑ Z/2Z //
( ∏
l∈Primes\{p}

Z×
l

)
⊗Ẑ Z/2Z

are nontrivial.

Proof. — Let us first recall that it is well-known [cf., e.g., [5, Chapter V, §1]] that if p
is of absolute degree one, then there exists a commutative diagram of profinite modules

Gal(kab/k) //

≀

��

Ẑ×

≀

��

Z×
p × Ẑ � � // Z×

p ×
( ∏
l∈Primes\{p}

Z×
l

)
— where the upper horizontal arrow is the continuous homomorphism induced by ρcyclk ,
the lower horizontal arrow is the continuous injective homomorphism given by “(a, n) 7→
(a, pn)”, and the vertical arrows are continuous isomorphisms — such that the image in

the left-hand lower profinite module Z×
p × Ẑ of the inertia subgroup of Gal(k/k) is given

by Z×
p ×{0} ⊆ Z×

p × Ẑ. Thus, assertions (i), (ii), (iii) are immediate. Moreover, assertion
(iv) follows immediately from the well-known fact that there exists a prime number l such
that p is not a quadratic residue modulo l. This completes the proof of Lemma 3.1. □

DEFINITION 3.2. — We shall say that a field F is solvably closed if there is no nontrivial
abelian extension of F .

LEMMA 3.3. — For □ ∈ {◦, •}, let F□ be a number field and F̃□ a Galois extension of
F□ that is solvably closed; write

ρcycl□ : Gal(F̃□/F□) // Ẑ×

for the cyclotomic character on Gal(F̃□/F□). Let

α : Gal(F̃◦/F◦) // Gal(F̃•/F•)
11



be a continuous homomorphism of profinite groups. Suppose that the following two con-
ditions are satisfied:

(1) The equality

ρcycl◦ = ρcycl• ◦ α
holds:

Gal(F̃◦/F◦)
α //

ρcycl◦ % %JJ
JJJ

JJJ
JJJ

Gal(F̃•/F•)

ρcycl•yyttt
ttt

ttt
tt

Ẑ×

(2) The number field F• is totally imaginary.

Then the following assertions hold:

(i) Let p◦ be an element of V(F◦) and D◦ ⊆ Gal(F̃◦/F◦) a decomposition subgroup of

Gal(F̃◦/F◦) at p◦. Suppose that p◦ is of odd residue characteristic and of absolute
degree one. Then there exist a unique nonarchimedean prime p• of F• and a unique
decomposition subgroup D• ⊆ Gal(F̃•/F•) of Gal(F̃•/F•) at p• that satisfy the following
three conditions:

(a) The image of D◦ ⊆ Gal(F̃◦/F◦) by α is contained in D• ⊆ Gal(F̃•/F•).

(b) The equality char(p◦) = char(p•) holds.

(c) The nonarchimedean prime p• is of absolute residue degree one, i.e., is
contained in V(F•).

(ii) For □ ∈ {◦, •}, write F ab
□ ⊆ F̃□ for the maximal abelian extension of F□ in F̃□.

Then the continuous homomorphism of profinite modules induced by α

Gal(F ab
◦ /F◦)⊗Ẑ Z/2Z // Gal(F ab

• /F•)⊗Ẑ Z/2Z

is Frobenius-preserving.

Proof. — First, we verify assertion (i). Let T◦ ⊆ D◦ be a pro-2 Sylow subgroup of

D◦. Write I◦ ⊆ D◦ for the inertia subgroup of D◦ and T I◦
def
= I◦ ∩ T◦ ⊆ I◦ for the pro-2

Sylow subgroup of I◦ determined by the pro-2 Sylow subgroup T◦ [cf., e.g., the well-
known structure of T◦ explained in [9, p.596]]. Then [since the profinite group D◦ may be
naturally identified with the Galois group of a suitable Galois extension of the completion

of F◦ at p◦] it follows from Lemma 3.1, (i), that the image by ρcycl◦ of T I◦ ⊆ Gal(F̃◦/F◦) is

nontrivial. Thus, it follows from condition (1) that the image by α of T I◦ ⊆ Gal(F̃◦/F◦)
is nontrivial. Now observe that since [we have assumed that] F• is totally imaginary [cf.

condition (2)], the profinite group Gal(F̃•/F•) has no element of order two [cf., e.g., the
argument given in [9, pp.596-597]]. Thus, since [it is well-known that] T I◦ is isomorphic,
as an abstract profinite group, to Z2, it follows from the nontriviality of the image by α

of T I◦ ⊆ Gal(F̃◦/F◦) already verified above that the restriction of α to T I◦ ⊆ Gal(F̃◦/F◦)
is injective. In particular, it follows immediately from the well-known structure of T◦
[cf., e.g., the classification of the topological quotients of T◦ given in [9, p.596]] that the

restriction of α to T◦ ⊆ Gal(F̃◦/F◦) is injective. Thus, it follows from the argument given
in [9, pp.595-596] that there exist a unique nonarchimedean prime p• of F• and a unique

decomposition subgroup D• ⊆ Gal(F̃•/F•) of Gal(F̃•/F•) at p• that satisfy condition
(a). In particular, [since the profinite group D• may be naturally identified with the

12



Galois group of a suitable Galois extension of the completion of F• at p•] it follows from
Lemma 3.1, (ii), together with conditions (1), (a), that condition (b) is satisfied. Thus,
since [we have assumed that] p◦ is of absolute degree one [hence also of absolute residue
degree one], it follows from Lemma 3.1, (iii), together with conditions (1), (a), (b), that
condition (c) is satisfied. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that one verifies easily from assertion
(i), together with the various definitions involved [cf. also the well-known finiteness of
the set of nonarchimedean primes of F prm

◦ ramified in the finite extension F◦/F
prm
◦ ], that,

to verify assertion (ii), it suffices to verify the following assertion: In the situation of
assertion (i), the image by the composite

D◦
� � // Gal(F̃◦/F◦)

α // Gal(F̃•/F•) // // Gal(F ab
• /F•)⊗Ẑ Z/2Z

— where the first arrow is the natural inclusion, and the third arrow is the natural
continuous surjective homomorphism — of a lifting of the char(p◦)-th power Frobenius
element in D◦ is a lifting of the char(p•)-th power Frobenius element in Gal(F ab

• /F•)⊗Ẑ
Z/2Z at p•. On the other hand, this assertion follows immediately from Lemma 3.1, (iv),
and assertion (i), together with condition (1). This completes the proof of assertion (ii),
hence also of Lemma 3.3. □

THEOREM 3.4. — For □ ∈ {◦, •}, let F□ be a number field and F̃□ a Galois extension
of F□ that is solvably closed. Let

α : Gal(F̃◦/F◦) // Gal(F̃•/F•)

be a continuous open homomorphism of profinite groups. Then the following two condi-
tions are equivalent:

(1) There exists a homomorphism F̃• ↪→ F̃◦ of fields compatible with the respective

actions of Gal(F̃•/F•), Gal(F̃◦/F◦) relative to the continuous open homomorphism α.

(2) For each □ ∈ {◦, •}, write ρcycl□ : Gal(F̃□/F□) → Ẑ× for the cyclotomic char-

acter on Gal(F̃□/F□). Then the equality

ρcycl◦ = ρcycl• ◦ α

holds.

Proof. — The implication (1) ⇒ (2) is immediate. Next, we verify the implication (2)
⇒ (1). Suppose that condition (2) is satisfied. Now let us observe that since [we have
assumed that] the continuous homomorphism α is open, to verify condition (1), we may

assume without loss of generality, by replacing Gal(F̃•/F•) by the image of α, that α is
surjective.

Let K• ⊆ F̃• be a finite Galois extension of F• contained in F̃• that is totally imaginary.

Write K◦ ⊆ F̃◦ for the finite Galois extension of F◦ contained in F̃◦ that corresponds to

the normal open subgroup of Gal(F̃◦/F◦) obtained by forming the inverse image by the

continuous surjective homomorphism α of Gal(F̃•/K•) ⊆ Gal(F̃•/F•). Thus, we have a
13



commutative diagram of profinite groups

1 // Gal(F̃◦/K◦) //

����

Gal(F̃◦/F◦) //

α
����

Gal(K◦/F◦) //

αK≀
��

1

1 // Gal(F̃•/K•) // Gal(F̃•/F•) // Gal(K•/F•) // 1

— where the horizontal sequences are exact, the vertical arrows are surjective, and the

right-hand vertical arrow is an isomorphism. Now, for each □ ∈ {◦, •}, write Kab
□ ⊆ F̃□

for the maximal abelian extension of K□ in F̃□. Write, moreover,

Aut∗
(
Gal(Kab

◦ /K◦)⊗Ẑ Z/2Z
)
⊆ Aut

(
Gal(Kab

◦ /K◦)⊗Ẑ Z/2Z
)

for the subgroup consisting of the continuous automorphisms of Gal(Kab
◦ /K◦) ⊗Ẑ Z/2Z

that preserve the kernel of the continuous surjective homomorphism Gal(Kab
◦ /K◦) ⊗Ẑ

Z/2Z ↠ Gal(Kab
• /K•) ⊗Ẑ Z/2Z induced by the left-hand vertical arrow of the above

diagram. Then the above diagram determines a commutative diagram of groups

Gal(K◦/F◦) //

αK ≀
��

Aut∗
(
Gal(Kab

◦ /K◦)⊗Ẑ Z/2Z
)

��

Gal(K•/F•) // Aut
(
Gal(Kab

• /K•)⊗Ẑ Z/2Z
)

— where the horizontal arrows are the respective natural continuous actions, and the
right-hand vertical arrow is the homomorphism induced by the left-hand vertical arrow of
the above diagram. In particular, since [it is immediate that] the left-hand vertical arrow

Gal(F̃◦/K◦)↠ Gal(F̃•/K•) of the above diagram satisfies a similar condition to condition
(2), one may conclude immediately from Corollary 2.8 and Lemma 3.3, (ii), together with

the commutativity of this diagram, that the isomorphism αK : Gal(K◦/F◦)
∼→ Gal(K•/F•)

arises from a uniquely determined homomorphism K• ↪→ K◦ of fields. Thus, by allowing
“K•” to vary, it follows that the continuous open homomorphism α arises from a homo-

morphism F̃• ↪→ F̃◦ of fields, as desired. This completes the proof of the implication (2)
⇒ (1), hence also of Theorem 3.4. □

REMARK 3.4.1.

(i) Let p be a prime number. For □ ∈ {◦, •}, let k□ be a p-adic local field [i.e., a field
isomorphic to a finite extension of Qp] and k□ an algebraic closure of k□. Let

α : Gal(k◦/k◦) // Gal(k•/k•)

be a continuous open homomorphism of profinite groups. Then it follows from [1, Corol-
lary 3.4] that the following three conditions are equivalent:

(1) There exists an isomorphism k•
∼→ k◦ of fields compatible with the respective

actions of Gal(k•/k•), Gal(k◦/k◦) relative to the continuous open homomorphism α.

(2) Let n be a positive integer and ρ : Gal(k•/k•) → GLn(Qp) a Hodge-Tate repre-

sentation of Gal(k•/k•). Then the representation of Gal(k◦/k◦) obtained by forming the

composite Gal(k◦/k◦)
α→ Gal(k•/k•)

ρ→ GLn(Qp) is Hodge-Tate.
14



(3) The continuous open homomorphism α is of HT-qLT-type, i.e., roughly speaking,
for each open subgroups H◦ ⊆ Gal(k◦/k◦), H• ⊆ Gal(k•/k•) such that α(H◦) ⊆ H• and
each character χ on H•, if χ satisfies a certain condition, then the character χ ◦ α on H◦
is Hodge-Tate [cf. [1, Definition 1.3, (ii)]].

Moreover, let us observe that a key step in the proof of the implication (3) ⇒ (1) is to
prove that α is “compatible” with various open subgroups of Gal(k◦/k◦), Gal(k•/k•) that
correspond to finite extensions of k◦, k• which are Galois over the minimal p-adic local
fields contained in k◦, k•, respectively [cf. the proof of [1, Theorem 3.3]; also [4, Remark
1.4.1]].

(ii) Let us also recall that a key step in the proof of the implication (2) ⇒ (1)
of Theorem 3.4 of the present paper is to prove that α is “compatible” with various

decomposition subgroups of Gal(F̃◦/F◦), Gal(F̃•/F•) at nonarchimedean primes of F◦,
F•, respectively [cf. the proof of Lemma 3.3, (i), (ii)].

(iii) By the discussions of (i) and (ii), the proof of the implication (3) ⇒ (1) of (i) and
the proof of the implication (2) ⇒ (1) of Theorem 3.4 may be summarized that

the compatibility with suitable characters that arise from arithmetic of the
fields under consideration implies the compatibility with suitable closed
subgroups that arise from arithmetic of the fields under consideration.

From this point of view, Theorem 3.4 may be regarded as an analogue for number fields
of the equivalences of (i) for p-adic local fields.

Finally, we give an interpretation of Theorem 3.4 from the point of view of mono-
anabelian reconstruction algorithms established in [2], [3] as follows.

COROLLARY 3.5. — Let G◦, G• be profinite groups of GSC-type [cf. [2, Definition 3.2]];
α : G◦ → G• a continuous open homomorphism. Then the following two conditions are
equivalent:

• There exists a homomorphism F̃ (G•) ↪→ F̃ (G◦) of fields [cf. [3, Definition 3.7],
[3, Theorem 3.8, (i)]] compatible with the respective actions of G•, G◦ relative to the
continuous open homomorphism α.

• The topological G◦-module obtained by forming the cyclotome associated to G◦ [2,
Proposition 3.7, (4)] is isomorphic to the topological G◦-module obtained by regarding
the cyclotome associated to G• as a topological G◦-module by α.

Proof. — This assertion is a formal consequence of [2, Proposition 3.7, (iii)], [3, Theo-
rem 3.8, (i), (ii), (iii)], and Theorem 3.4. □
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