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Abstract. — In the present paper, we first prove that, for an arbitrary reducible Hodge-
Tate p-adic representation of dimension two of the absolute Galois group of a p-adic local field
and an arbitrary continuous automorphism of the absolute Galois group, the p-adic Galois
representation obtained by pulling back the given p-adic Galois representation by the given
continuous automorphism is Hodge-Tate. Next, we also prove the existence of an irreducible
Hodge-Tate p-adic representation of dimension two of the absolute Galois group of a p-adic
local field and a continuous automorphism of the absolute Galois group such that the p-adic
Galois representation obtained by pulling back the given p-adic Galois representation by the
given continuous automorphism is not Hodge-Tate.
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Introduction

In the present paper, we study the intrinsic Hodge-Tate-ness of p-adic representations
of the absolute Galois group of a p-adic local field. In the present Introduction, let p
be a prime number, k a finite extension of Qp, and k an algebraic closure of k. Write

Gk
def
= Gal(k/k) for the absolute Galois group of k determined by the algebraic closure k.

For a given Qp-vector space V of finite dimension and a given continuous representation
ρ : Gk → AutQp(V ) of Gk, we shall say that ρ is Aut-intrinsically Hodge-Tate if, for an

arbitrary continuous automorphism α of Gk, the composite ρ ◦α : Gk
∼→ Gk → AutQp(V )

is Hodge-Tate [cf. Definition 1.3].
Let us first recall that the author of the present paper proved that

if p is odd, and k = Qp, then there exists a p-adic representation of Gk that
is Hodge-Tate but not Aut-intrinsically Hodge-Tate [cf. [1, Remark 3.3.1]].

Moreover, in the present paper, we establish a refinement of this result. That is to say,
we verify that
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there exists a p-adic representation of Gk that is Hodge-Tate but not Aut-
intrinsically Hodge-Tate whenever p is odd, i.e., without the assumption
that k = Qp [cf. Corollary 1.5].

On the other hand, let us also observe that it is likely to be well-known that

an arbitrary Hodge-Tate p-adic representation of dimension 1 of Gk is
Aut-intrinsically Hodge-Tate [cf. Theorem 2.7].

In this state of affairs, one may have the following question:

Is there a p-adic representation of dimension 2 of Gk that is Hodge-Tate
but not Aut-intrinsically Hodge-Tate?

In the present paper, we give an answer to this question.
First, we consider the case where a given continuous representation is reducible. The

first main result of the present paper is as follows [cf. Theorem 2.10]:

THEOREM A. — Let V be a Qp-vector space of dimension 2 and ρ : Gk → AutQp(V )
a continuous representation. Suppose that the continuous representation ρ is reducible.
Then ρ is Hodge-Tate if and only if ρ is Aut-intrinsically Hodge-Tate.

Next, we consider the case where a given continuous representation is irreducible. The
second main result of the present paper is as follows [cf. Corollary 3.4]:

THEOREM B. — Let p be an odd prime number. Then there exist a finite extension
K of Qp, an algebraic closure K of K, a Qp-vector space V of dimension 2, and
a continuous representation ρ : Gal(K/K) → AutQp(V ) that is irreducible, abelian,
crystalline [hence also Hodge-Tate], but not Aut-intrinsically Hodge-Tate.
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1. Aut-intrinsic Hodge-Tate-ness of Representations

In the present §1, we introduce the notion of Aut-intrinsic Hodge-Tate-ness of p-adic
representations [cf. Definition 1.3 below]. Moreover, we prove the existence of a p-adic rep-
resentation that is potentially crystalline [hence also Hodge-Tate] but not Aut-intrinsically
Hodge-Tate [cf. Corollary 1.5 below]. Finally, we also recall some basic facts concerning
abelian Hodge-Tate p-adic representations [cf. Lemma 1.8 below and Lemma 1.9 below].

DEFINITION 1.1. — We shall refer to a field isomorphic to a finite extension of Qp, for
some prime number p, as an MLF. Here, “MLF” is to be understood as an abbreviation
for “mixed-characteristic local field”.
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In the remainder of the present §1, let k be an MLF and k an algebraic closure of k.

Write Gk
def
= Gal(k/k).

DEFINITION 1.2. — We shall write

• k(d=1) ⊆ k for the [unique] minimal MLF contained in k [i.e., the unique subfield of
k isomorphic to Qp, for some prime number p],

• Ok ⊆ k for the ring of integers of k,

• pk for the characteristic of the residue field of Ok,

• dk for the extension degree of the [necessarily finite] extension k/k(d=1),

• (k×)∧ for the profinite completion of the multiplicative module k× of k,

• Gab
k for the topological abelianization of Gk, i.e., the quotient of Gk by the closure

of the commutator subgroup of Gk, and

• reck : (k
×)∧

∼→ Gab
k for the isomorphism induced by the reciprocity homomorphism

k× ↪→ Gab
k in local class field theory.

REMARK 1.2.1. — Let us recall the functorial assignment “O×(−)” of [4, Definition
3.10, (i)]. Observe that it follows from the functoriality of the assignment “O×(−)” that
each continuous automorphism of Gk naturally induces a continuous automorphism of
O×(Gk). In particular, by conjugating this continuous automorphism of O×(Gk) by the

continuous isomorphism O×
k

∼→ O×(Gk) of [4, Proposition 3.11, (i)], one concludes that
each continuous automorphism of Gk naturally induces a continuous automorphism of
O×

k .

DEFINITION 1.3. — Let V be a Qpk-vector space of finite dimension and ρ : Gk →
AutQpk

(V ) a continuous representation. Then we shall say that ρ is Aut-intrinsically
Hodge-Tate if, for an arbitrary continuous automorphism α of Gk, the composite ρ ◦
α : Gk

∼→ Gk → AutQpk
(V ) is Hodge-Tate.

The following result is a formal consequence of the main result of [1].

THEOREM 1.4. — For each □ ∈ {◦, •}, let k□ be an MLF and k□ an algebraic closure
of k□. Let α : Gal(k◦/k◦) → Gal(k•/k•) be an open continuous homomorphism [which
thus implies that pk◦ = pk• — cf., e.g., [3, Proposition 3.4, (iii)] and [4, Proposition 3.6]].
Then the following two conditions are equivalent:

(1) There exists an isomorphism k•
∼→ k◦ of fields that is compatible with the re-

spective natural actions of Gal(k•/k•), Gal(k◦/k◦) on k•, k◦ relative to the given open
continuous homomorphism α : Gal(k◦/k◦)→ Gal(k•/k•).

(2) For an arbitrary Qpk•
-vector space V• of finite dimension and an arbitrary con-

tinuous representation ρ• : Gal(k•/k•)→ AutQpk•
(V•), if ρ• is potentially crystalline,

then the composite ρ• ◦ α : Gal(k◦/k◦) → Gal(k•/k•) → AutQpk•
(V•) = AutQpk◦

(V•) is

Hodge-Tate.
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Proof. — The implication (1)⇒ (2) is immediate. To verify the implication (2)⇒ (1),
suppose that condition (2) is satisfied. Then it follows immediately from [9, Chapter
III, §A.4, Proposition 5], together with a similar argument to the argument applied
in the proof of [1, Lemma 1.4], that the open continuous homomorphism α is of HT-
qLT-type [cf. [1, Definition 1.3, (ii)]]. Thus, it follows from [1, Theorem 3.3] [cf. also
Remark 1.4.1 below] that condition (1) is satisfied, as desired. This completes the proof
of the implication (2)⇒ (1), hence also of Theorem 1.4. □

REMARK 1.4.1. — Unfortunately, the proof of [1, Theorem 3.3], which was applied in
the proof of Theorem 1.4 of the present paper, contains an inessential inaccuracy [cf. (i)
below]. In light of the importance of [1, Theorem 3.3] in the present paper, we thus pause
to discuss how this inaccuracy may be amended.

(i) In the final portion of the proof of [1, Claim 3.3.A], the author of the present paper
has claimed that βk•,k◦ is inertially compatible with α. However, it is not clear that βk•,k◦

is inertially compatible with α.

(ii) Thus, the statement of [1, Claim 3.3.A] should be replaced by the following text:

(∗) Suppose that k◦ is Galois over Qp. Then the field k◦ is isomorphic to the field
k•.

Here, let us observe that the argument given in the proof of [1, Claim 3.3.A] proves this
assertion.

(iii) Next, suppose that we are in the situation of [1, Theorem 3.3]. Thus, we have

a continuous isomorphism α : Gk◦
∼→ Gk• [cf. the first paragraph of the proof of [1,

Theorem 3.3]]. For each □ ∈ {◦, •} and each positive real number ν, write Gν
k□ ⊆ Gk□

for the higher ramification subgroup of Gk□ associated to ν in the “upper numbering”.
Then let us observe that one verifies immediately from the various definitions involved
that, for each □ ∈ {◦, •} and each positive real number ν, if the MLF k□ is Galois over

Qp, then the fixed field (k□)
Gν

k□ of Gν
k□ is Galois over Qp, which thus implies that

Gν
k□ =

∩
K□

Gal(k□/K□)

— where the intersection is taken over the finite extensions K□ ⊆ k□ of k□ that are
Galois over Qp and contained in the fixed field (k□)

Gν
k□ . In particular, if the MLF k◦,

hence also the MLF k• [cf. the assertion (∗) of (ii)], is Galois over Qp, then, by applying
the assertion (∗) of (ii) [cf. also [1, Lemma 1.4]], one may conclude immediately that

α(Gν
k◦) = α

(∩
K◦

Gal(k◦/K◦)
)
=

∩
K◦

α
(
Gal(k◦/K◦)

)
=

∩
K◦

Gal(k•/(K◦)
†) = Gν

k•

— where the intersections are taken over the finite extensions K◦ ⊆ k◦ of k◦ that are
Galois over Qp and contained in the fixed field (k◦)

Gν
k◦ ; for each such an extension K◦,

we write (K◦)
† for the unique [cf. the assumption that the extension K◦/Qp is Galois ]

subfield of k• isomorphic to K◦. Thus, the conclusion of [1, Theorem 3.3] in the case
where k◦ is Galois over Qp, hence also the conclusion of [1, Theorem 3.3] for an arbitrary
k◦, follows immediately from [6, Theorem].
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COROLLARY 1.5. — Let k be an MLF and k an algebraic closure of k. Suppose that
pk is odd. Then there exist a Qpk-vector space V of finite dimension and a continuous

representation ρ : Gal(k/k) → AutQpk
(V ) that is potentially crystalline [hence also

Hodge-Tate] but not Aut-intrinsically Hodge-Tate.

Proof. — Let us first recall that if dk = 1 (respectively, dk 6= 1), then it follows from,
for instance, the discussion given at the final portion of [7, Chapter VII, §5] (respectively,
[4, Proposition 3.6] and [5, Corollary 1.6, (iv)]) that we have a continuous automorphism
of Gal(k/k) such that an arbitrary automorphism of the field k is not compatible with the
natural action of Gal(k/k) on k relative to the continuous automorphism of Gal(k/k).
Thus, Corollary 1.5 follows from Theorem 1.4. This completes the proof of Corollary 1.5.

□

REMARK 1.5.1. — The content of Corollary 1.5 in the case where dk = 1 is essentially
contained in [1, Remark 3.3.1].

In the remainder of the present §1, let us recall some basic facts concerning abelian
Hodge-Tate p-adic representations. Let E be either k or k(d=1). Suppose that E is
absolutely Galois, i.e., that the finite extension E/k(d=1) is Galois [cf. [3, Definition 4.2,
(i)]].

DEFINITION 1.6. — We shall write E+ for the Qpk-vector space [necessarily of finite
dimension] obtained by forming the underlying additive module of the MLF E. Thus,
we have a natural injective continuous homomorphism O×

E ↪→ AutQpk
(E+), i.e., by mul-

tiplication, by means of which we regard O×
E as a [necessarily closed] subgroup of the

topological group AutQpk
(E+):

O×
E ⊆ AutQpk

(E+).

DEFINITION 1.7. —Let π ∈ Ok be a uniformizer ofOk and σ an element of Gal(E/k(d=1)).
If E = k (respectively, E = k(d=1)), then we shall write

Φσ : O×
k

// O×
E

for the continuous automorphism of O×
k determined by σ (respectively, the continuous

homomorphism O×
k → O

×
k(d=1) determined by the norm map with respect to the finite

extension k/k(d=1)). Moreover, we shall write

χπ,σ : G
ab
k ∼

rec−1
k // (k×)∧ // // O×

k

Φσ // O×
E

—where the second arrow is the surjective continuous homomorphism obtained by consid-
ering the quotient by the closed submodule of the topological module (k×)∧ topologically
generated by π ∈ k×.
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LEMMA 1.8. — Let π ∈ Ok be a uniformizer of Ok and φ : Gab
k → O×

E a continuous
homomorphism. Then the following two conditions are equivalent:

(1) The continuous representation obtained by forming the composite

Gk
// // Gab

k

ϕ // O×
E
� � // AutQpk

(E+)

— where the first arrow is the natural surjective continuous homomorphism, and the third
arrow is the natural inclusion — is Hodge-Tate.

(2) There exist an integer iσ for each σ ∈ Gal(E/k(d=1)) and an open subgroup J of
the inertia subgroup of Gk such that

• the restriction to J of the composite of the natural surjective continuous homo-
morphism Gk ↠ Gab

k and the given homomorphism φ : Gab
k → O×

E

coincides with

• the restriction to J of the composite of the natural surjective continuous homo-
morphism Gk ↠ Gab

k and the homomorphism∏
σ∈Gal(E/k(d=1))

χiσ
π,σ : G

ab
k

// O×
E .

Proof. — This assertion follows from [9, Chapter III, §A.5, Corollary]. □

LEMMA 1.9. — Let φ : Gab
k → O×

k be a continuous homomorphism. Suppose that the
continuous representation obtained by forming the composite

Gk
// // Gab

k

ϕ // O×
k
� � // AutQpk

(k+)

— where the first arrow is the natural surjective continuous homomorphism, and the
third arrow is the natural inclusion — is Hodge-Tate. Then the image of some open
submodule of O×

k(d=1) by the composite

O×
k(d=1)

� � // O×
k
� � reck // Gab

k

ϕ // O×
k

— where the first arrow is the natural inclusion — is contained in the submodule
O×

k(d=1) ⊆ O×
k .

Proof. — This assertion follows immediately from Lemma 1.8. □

2. The Case of Reducible Representations of Dimension Two

In the present §2, we introduce the notion of intrinsic Hodge-Tate-ness of p-adic rep-
resentations [cf. Definition 2.2 below]. Moreover, we prove that an arbitrary reducible
Hodge-Tate p-adic representation of dimension 2 is Aut-intrinsically Hodge-Tate [cf. The-
orem 2.10 below].

DEFINITION 2.1. — We shall refer to a group isomorphic to the absolute Galois group of
an MLF as a group of MLF-type [cf. [2, Definition 1.1]]. Here, “MLF” is to be understood
as an abbreviation for “mixed-characteristic local field”. Let us always regard a group
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of MLF-type as a profinite group by means of the profinite topology discussed in [2,
Proposition 1.2, (i)].

In the remainder of the present §2, let G be a group of MLF-type. Thus, by applying
various functorial group-theoretic reconstruction algorithms established in the study of
mono-anabelian geometry to the group G of MLF-type, we obtain

• a prime number p(G) [cf. [4, Definition 3.5, (i)]],

• a positive integer d(G) [cf. [4, Definition 3.5, (ii)]],

• a normal closed subgroup I(G) ⊆ G of G [cf. [4, Definition 3.5, (iii)]],

• topological modules O×(G) ⊆ k×(G) [cf. [4, Definition 3.10, (i), (iv)]], and

• a topological field Qp(G) [cf. [3, Definition 4.5, (iii)] and [3, Lemma 4.6, (i)]].

Moreover, in the remainder of the present §2, let V be a Qp(G)-vector space of finite
dimension and ρ : G→ AutQp(G)(V ) a continuous representation.

DEFINITION 2.2. — We shall say that the given continuous representation ρ is intrinsi-
cally Hodge-Tate if, for an arbitrary MLF-envelope (k, k, α : Gal(k/k)

∼→ G) of G [cf. [2,
Definition 1.1]], the continuous [cf. [2, Proposition 1.2, (ii)]] representation obtained by

forming the composite ρ ◦α : Gal(k/k)
∼→ G→ AutQp(G)(V ) = AutQpk

(V ) [cf. [3, Lemma
4.6, (i)] and [4, Proposition 3.6]] is Hodge-Tate.

REMARK 2.2.1. — In the situation of Definition 1.3, it is immediate that the implications

ρ is intrinsically Hodge-Tate =⇒ ρ is Aut-intrinsically Hodge-Tate

=⇒ ρ is Hodge-Tate

hold.

DEFINITION 2.3. — Let V ′ be a Qp(G)-vector space of finite dimension and ρ′ : G →
AutQp(G)(V

′) a continuous representation. Then we shall say that ρ is inertially isomor-
phic to ρ′ if there exists an open subgroup J ⊆ I(G) of I(G) such that the restriction of
ρ to J ⊆ (I(G) ⊆) G is isomorphic to the restriction of ρ′ to J ⊆ (I(G) ⊆) G.

DEFINITION 2.4. — Let w be an integer. Then we shall say that the continuous represen-
tation ρ is w-cyclotomic if ρ is isomorphic to the continuous representation of dimension
1 obtained by considering the w-th power of the character G → Qp(G)× determined by
the maximal pro-p(G) quotient of the cyclotome Λ(G) associated to G [cf. [4, Definition
4.1, (iii)]].

REMARK 2.4.1. — Let k be an MLF and k an algebraic closure of k. Write Gk
def
=

Gal(k/k).

(i) Let us recall from [4, Proposition 3.6] that the normal closed subgroup I(Gk) ⊆ Gk

of Gk coincides with the inertia subgroup of Gk.
7



(ii) Let us recall from [4, Proposition 4.2, (iv)] that the character Gk → Qp(Gk)
× ∼←

Q×
pk

[cf. [3, Lemma 4.6, (i)] and [4, Proposition 3.6]] determined by the maximal pro-
p(Gk), i.e., pro-pk [cf. [4, Proposition 3.6]], quotient of the cyclotome Λ(Gk) associated
to Gk coincides with the pk-adic cyclotomic character of Gk.

LEMMA 2.5. — Let k be an MLF, k an algebraic closure of k, V a Qpk-vector space of

dimension 1, and ρ : Gal(k/k) → AutQpk
(V ) a continuous representation. Then the

following two conditions are equivalent:

(1) The continuous representation ρ is Hodge-Tate.

(2) The continuous representation ρ is inertially isomorphic to the w-cyclotomic
representation of Gal(k/k) for some integer w.

Proof. — This assertion follows — in light of Remark 2.4.1, (i), (ii) — from Lemma 1.8,
together with [9, Chapter III, §A.4, Corollary]. □

THEOREM 2.6. — Let G be a group of MLF-type, V a Qp(G)-vector space of dimen-
sion 1, and ρ : G → AutQp(G)(V ) a continuous representation. Then the following two
conditions are equivalent:

(1) The continuous representation ρ is intrinsically Hodge-Tate.

(2) The continuous representation ρ is inertially isomorphic to the w-cyclotomic
representation of G for some integer w.

Proof. — This assertion follows from Lemma 2.5. □

THEOREM 2.7. — Let k be an MLF, k an algebraic closure of k, V a Qpk-vector space

of dimension 1, and ρ : Gal(k/k)→ AutQpk
(V ) a continuous representation. Then the

following three conditions are equivalent:

(1) The continuous representation ρ is Hodge-Tate.

(2) The continuous representation ρ is intrinsically Hodge-Tate.

(3) The continuous representation ρ is Aut-intrinsically Hodge-Tate.

Proof. — It follows from Remark 2.2.1 that, to verify Theorem 2.7, it suffices to verify
the implication (1) ⇒ (2). On the other hand, the implication (1) ⇒ (2) follows from
Lemma 2.5 and Theorem 2.6. This completes the proof of Theorem 2.7. □

LEMMA 2.8. — Let k be an MLF, k an algebraic closure of k, V a Qpk-vector space of di-

mension 2, and ρ : Gk
def
= Gal(k/k)→ AutQpk

(V ) a continuous representation. Suppose
that the continuous representation ρ is reducible. Then the continuous representation
ρ is Hodge-Tate if and only if there exist integers w, w′ and a Gk-stable Qpk-subspace
W ⊆ V of V of dimension 1 such that the continuous representations Gk → Aut(W ),
Gk → Aut(V/W ) determined by ρ are, respectively, inertially isomorphic to the w-
cyclotomic, w′-cyclotomic representations of Gk, and, moreover, one of the following
two conditions is satisfied:
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(1) There exists an open subgroup J of the inertia subgroup of Gk such that the natural
surjective homomorphism V ↠ V/W has a J-equivariant splitting.

(2) The equality w = w′ does not hold.

Proof. — First, we verify sufficiency. Suppose that there exist w, w′, W as in the
statement of Lemma 2.8. If condition (1) is satisfied, then it follows immediately — in
light of Remark 2.4.1, (i), (ii), and [9, Chapter III, §A.1, Corollary 2] — from Lemma 2.5
that the continuous representation ρ is Hodge-Tate. If condition (2) is satisfied, then
it follows immediately — in light of Remark 2.4.1, (i), (ii), and [9, Chapter III, §A.1,
Corollary 2] — from [10, Proposition 8, (b)] that the continuous representation ρ is
Hodge-Tate. This completes the proof of sufficiency.

Next, we verify necessity. Suppose that the continuous representation ρ is Hodge-
Tate. Then since [we have assumed that] the continuous representation ρ is reducible
and of dimension 2, there exists a Gk-stable Qpk-subspace W ⊆ V of V of dimension
1. Now since ρ is Hodge-Tate, and both W and V/W are of dimension 1, it follows
from Lemma 2.5 that there exist integers w, w′ such that the continuous representations
Gk → Aut(W ), Gk → Aut(V/W ) determined by ρ are, respectively, inertially isomorphic
to the w-cyclotomic, w′-cyclotomic representations of Gk. Now suppose that condition
(2) is not satisfied. Then it follows immediately from [8, Corollary 1] that condition (1) is
satisfied, as desired. This completes the proof of necessity, hence also of Lemma 2.8. □

THEOREM 2.9. — Let G be a group of MLF-type, V a Qp(G)-vector space of dimension
2, and ρ : G → AutQp(G)(V ) a continuous representation. Suppose that ρ is reducible.
Then the continuous representation ρ is intrinsically Hodge-Tate if and only if there
exist integers w, w′ and a G-stable Qp(G)-subspace W ⊆ V of V of dimension 1
such that the continuous representations G → Aut(W ), G → Aut(V/W ) determined
by ρ are, respectively, inertially isomorphic to the w-cyclotomic, w′-cyclotomic
representations of G, and, moreover, one of the following two conditions is satisfied:

(1) There exists an open subgroup J ⊆ I(G) of I(G) (⊆ G) such that the natural
surjective homomorphism V ↠ V/W has a J-equivariant splitting.

(2) The equality w = w′ does not hold.

Proof. — This assertion follows — in light of Remark 2.4.1, (i) — from Lemma 2.8. □

THEOREM 2.10. — Let k be an MLF, k an algebraic closure of k, V a Qpk-vector space

of dimension 2, and ρ : Gal(k/k) → AutQpk
(V ) a continuous representation. Suppose

that the continuous representation ρ is reducible. Then the following three conditions
are equivalent:

(1) The continuous representation ρ is Hodge-Tate.

(2) The continuous representation ρ is intrinsically Hodge-Tate.

(3) The continuous representation ρ is Aut-intrinsically Hodge-Tate.

Proof. — It follows from Remark 2.2.1 that, to verify Theorem 2.10, it suffices to verify
the implication (1) ⇒ (2). On the other hand, the implication (1) ⇒ (2) follows — in
light of Remark 2.4.1, (i) — from Lemma 2.8 and Theorem 2.9. This completes the proof
of Theorem 2.10. □
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3. The Case of Irreducible Representations of Dimension Two

In the present §3, we prove the existence of an irreducible crystalline [hence also Hodge-
Tate] p-adic representation of dimension 2 that is not Aut-intrinsically Hodge-Tate [cf.
Corollary 3.4 below].

In the present §3, let k be an MLF and k an algebraic closure of k. Write Gk
def
=

Gal(k/k). We shall also apply the notational conventions introduced in Definition 1.2.

LEMMA 3.1. — Suppose that pk is odd, and that dk = 2. Write Nm: k× → (k(d=1))× for
the norm map with respect to the finite extension k/k(d=1). Then the following assertions
hold:

(i) There exists an open submodule U ⊆ O×
k of O×

k such that

(1) the topological module U has a natural structure of free Zpk
-module of rank

2, and, moreover,

(2) the submodule U ⊆ O×
k is preserved by an arbitrary continuous automorphism

of O×
k .

(ii) Let U ⊆ O×
k be as in (i). Then the topological modules U ∩O×

k(d=1), U ∩Ker(Nm)
have natural structures of free Zpk

-modules of rank 1, respectively.

(iii) Let U ⊆ O×
k be as in (i). Then the equality U ∩O×

k(d=1) ∩Ker(Nm) = {1} holds.

(iv) Let U ⊆ O×
k be as in (i). Then the closed submodule of U topologically generated

by the closed submodules U ∩ O×
k(d=1) and U ∩Ker(Nm) is open.

(v) There exists a continuous automorphism α of Gk such that, for an arbitrary
nonzero integer n, if one writes αn

× for the continuous automorphism of O×
k induced by

αn [cf. Remark 1.2.1], then the intersection αn
×(O×

k(d=1))∩O×
k(d=1) is not open in O×

k(d=1).

In particular, the continuous automorphism αn
× of O×

k does not preserve the submodule
O×

k(d=1) ⊆ O×
k .

Proof. — Assertions (i), (ii) follow from [4, Lemma 1.2, (i)] [cf. also our assumption
that dk = 2]. Assertion (iii) is immediate [cf. the fact that U is torsion-free — cf.
condition (1) of assertion (i)]. Assertion (iv) follows from assertions (ii), (iii), together
with condition (1) of assertion (i).

Finally, we verify assertion (v). Let α be a continuous automorphism of Gk as in the
discussion preceding [5, Theorem 1.5]. [Note that since p(Gk) = pk 6= 2, d(Gk) = dk =
2 > 1 — cf. [4, Proposition 3.6] — we are in the situation of the discussion preceding
[5, Theorem 1.5].] Write β for the continuous automorphism of the submodule U ⊆ O×

k

obtained by forming the restriction of αn
× [cf. condition (2) of assertion (i)]. Thus, since

it follows from [5, Theorem 1.5] [cf. also [4, Definition 3.10, (vi)]] that

(a†) the automorphism of O×
k ⊗Z Q induced by αn

× is not the identity automorphism,
but

(b†) the image of the square of the endomorphism of O×
k ⊗Z Q induced by the endo-

morphism of O×
k given by “a 7→ αn

×(a) · a−1” consists of the identity element of O×
k ⊗ZQ,

one concludes that

(a) the continuous automorphism β is not the identity automorphism of U , but
10



(b) the image of the square of the endomorphism of U given by “a 7→ β(a) · a−1”
consists of the identity element of U .

Moreover, it follows immediately from [5, Lemma 2.3, (i)] that

(c) the continuous automorphism β preserves the submodule U ∩Ker(Nm) of U .

Thus, it follows immediately from assertion (iv) [cf. also condition (1) of assertion (i)],
together with (b) and (c), that if the continuous automorphism β preserves some open
submodule of the submodule U ∩ O×

k(d=1) , then β is the identity automorphism of U —
in contradiction to (a). In particular, the continuous automorphism β does not preserve
any open submodule of the submodule U ∩ O×

k(d=1) , which thus implies [cf. assertion (ii)]

that β(U ∩ O×
k(d=1)) ∩ U ∩ O×

k(d=1) = {1}. Thus, it follows immediately from [4, Lemma

1.2, (i)] that αn
×(O×

k(d=1)) ∩ O×
k(d=1) is not open in O×

k(d=1) , as desired. This completes the
proof of assertion (v), hence also of Lemma 3.1. □

REMARK 3.1.1. — One may conclude from the final portion of Lemma 3.1, (v), that it
is impossible to establish a functorial group-theoretic reconstruction algorithm for con-
structing, from an arbitrary group H of MLF-type, a closed submodule of the topolog-
ical module O×(H) which “corresponds” to the closed submodule O×

k(d=1) ⊆ O×
k of the

topological module O×
k . Put another way, one may conclude from the final portion of

Lemma 3.1, (v), that the closed submodule O×
k(d=1) ⊆ O×

k should be considered to be “not
group-theoretic”.

PROPOSITION 3.2. — Suppose that pk is odd, and that dk is even. Suppose, moreover,
that k is absolutely abelian, i.e., that k is absolutely Galois, and the Galois group
Gal(k/k(d=1)) is abelian [cf. [3, Definition 4.2, (ii)]]. Then there exists a continuous auto-
morphism α of Gk such that, for an arbitrary nonzero integer n, if one writes αn

× for the
continuous automorphism of O×

k induced by αn [cf. Remark 1.2.1], then the intersection
αn
×(O×

k(d=1)) ∩ O×
k(d=1) is not open in O×

k(d=1).

Proof. — Let us first observe that since dk is even, and k is absolutely abelian, one
verifies easily that there exists a quadratic extension of k(d=1) contained in k. Moreover,
since k is absolutely abelian, it follows immediately from the implication (1) ⇒ (2) of
[3, Theorem F, (i)] that Gk is a characteristic subgroup of the absolute Galois group of
the quadratic extension of k(d=1) determined by the algebraic closure k. Thus, one may
conclude that we may assume without loss of generality, by applying a similar argument
to the argument applied in the proof of [5, Lemma 2.6, (ii)] and replacing k by the
quadratic extension of k(d=1), that dk = 2. On the other hand, if dk = 2, then the desired
conclusion follows form Lemma 3.1, (v). This completes the proof of Proposition 3.2. □

THEOREM 3.3. — Let k be an MLF and k an algebraic closure of k. Suppose that pk is
odd, that dk is even, and that k is absolutely abelian. Then there exist a Qpk-vector

space V of dimension dk and a continuous representation ρ : Gal(k/k) → AutQpk
(V )

that is irreducible, abelian, crystalline [hence also Hodge-Tate], but not Aut-
intrinsically Hodge-Tate.
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Proof. — Let π ∈ Ok be a uniformizer of Ok. Write ρ for the continuous representation

of Gk
def
= Gal(k/k) [necessarily of dimension dk] obtained by forming the composite

Gk
// // Gab

k

χπ,idk // O×
k
� � // AutQpk

(k+)

— where the first arrow is the natural surjective continuous homomorphism, and the third
arrow is the natural inclusion. Then one verifies easily that this continuous representation
ρ is irreducible and abelian. Moreover, it follows immediately from [9, Chapter III, §A.4,
Proposition 5] that this continuous representation ρ is crystalline.
Next, to verify that the continuous representation ρ is not Aut-intrinsically Hodge-

Tate, let us recall that it follows immediately from the various definitions involved that
the composite

O×
k
� � reck // Gab

k

χπ,idk // O×
k

is an automorphism that restricts to an automorphism of the submodule O×
k(d=1) ⊆ O×

k .
In particular, if α is a continuous automorphism of Gk as in Proposition 3.2, then it
follows immediately from Lemma 1.9, together with the various definitions involved, that
the composite ρ ◦ α : Gk

∼→ Gk → AutQpk
(k+) is not Hodge-Tate, which thus implies

that the continuous representation ρ is not Aut-intrinsically Hodge-Tate, as desired. This
completes the proof of Theorem 3.3. □

COROLLARY 3.4. — Let p be an odd prime number. Then there exist an MLF K such
that pK = p, an algebraic closure K of K, a QpK -vector space V of dimension 2, and
a continuous representation ρ : Gal(K/K) → AutQpK

(V ) that is irreducible, abelian,
crystalline [hence also Hodge-Tate], but not Aut-intrinsically Hodge-Tate.

Proof. — This assertion is a formal consequence of Theorem 3.3. □
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