ON INTRINSIC HODGE-TATE-NESS OF GALOIS REPRESENTATIONS OF DIMENSION TWO

Yuichiro Hoshi

February 2023

ABSTRACT. — In the present paper, we first prove that, for an arbitrary reducible Hodge-Tate p-adic representation of dimension two of the absolute Galois group of a p-adic local field and an arbitrary continuous automorphism of the absolute Galois group, the p-adic Galois representation obtained by pulling back the given p-adic Galois representation by the given continuous automorphism is Hodge-Tate. Next, we also prove the existence of an irreducible Hodge-Tate p-adic representation of dimension two of the absolute Galois group of a p-adic local field and a continuous automorphism of the absolute Galois group such that the p-adic Galois representation obtained by pulling back the given p-adic Galois representation by the given continuous automorphism is not Hodge-Tate.

CONTENTS

INTRODUCTION	1
§1. Aut-intrinsic Hodge-Tate-ness of Representations	2
§2. The Case of Reducible Representations of Dimension Two	
§3. The Case of Irreducible Representations of Dimension Two	10
References	12

INTRODUCTION

In the present paper, we study the *intrinsic Hodge-Tate-ness* of *p*-adic representations of the absolute Galois group of a *p*-adic local field. In the present Introduction, let *p* be a prime number, *k* a finite extension of \mathbb{Q}_p , and \overline{k} an algebraic closure of *k*. Write $G_k \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{k}/k)$ for the absolute Galois group of *k* determined by the algebraic closure \overline{k} . For a given \mathbb{Q}_p -vector space *V* of finite dimension and a given continuous representation $\rho: G_k \to \operatorname{Aut}_{\mathbb{Q}_p}(V)$ of G_k , we shall say that ρ is *Aut-intrinsically Hodge-Tate* if, for an arbitrary continuous automorphism α of G_k , the composite $\rho \circ \alpha: G_k \to \operatorname{Aut}_{\mathbb{Q}_p}(V)$ is Hodge-Tate [cf. Definition 1.3].

Let us first recall that the author of the present paper proved that

if p is odd, and $k = \mathbb{Q}_p$, then there exists a p-adic representation of G_k that

is Hodge-Tate but not Aut-intrinsically Hodge-Tate [cf. [1, Remark 3.3.1]].

Moreover, in the present paper, we establish a refinement of this result. That is to say, we verify that

2020 Mathematics Subject Classification. - 11S20.

KEY WORDS AND PHRASES. — *p*-adic local field, *p*-adic Galois representation, Hodge-Tate, intrinsically Hodge-Tate, group of MLF-type.

there exists a *p*-adic representation of G_k that is *Hodge-Tate* but not Autintrinsically Hodge-Tate whenever *p* is odd, i.e., without the assumption that $k = \mathbb{Q}_p$ [cf. Corollary 1.5].

On the other hand, let us also observe that it is likely to be well-known that

an arbitrary Hodge-Tate p-adic representation of dimension 1 of G_k is Aut-intrinsically Hodge-Tate [cf. Theorem 2.7].

In this state of affairs, one may have the following question:

Is there a p-adic representation of dimension 2 of G_k that is Hodge-Tate but not Aut-intrinsically Hodge-Tate?

In the present paper, we give an answer to this question.

First, we consider the case where a given continuous representation is *reducible*. The first main result of the present paper is as follows [cf. Theorem 2.10]:

THEOREM A. — Let V be a \mathbb{Q}_p -vector space of dimension 2 and $\rho: G_k \to \operatorname{Aut}_{\mathbb{Q}_p}(V)$ a continuous representation. Suppose that the continuous representation ρ is reducible. Then ρ is Hodge-Tate if and only if ρ is Aut-intrinsically Hodge-Tate.

Next, we consider the case where a given continuous representation is *irreducible*. The second main result of the present paper is as follows [cf. Corollary 3.4]:

THEOREM B. — Let p be an odd prime number. Then there exist a finite extension K of \mathbb{Q}_p , an algebraic closure \overline{K} of K, a \mathbb{Q}_p -vector space V of dimension 2, and a continuous representation ρ : $\operatorname{Gal}(\overline{K}/K) \to \operatorname{Aut}_{\mathbb{Q}_p}(V)$ that is irreducible, abelian, crystalline [hence also Hodge-Tate], but not Aut-intrinsically Hodge-Tate.

Acknowledgments

This research was supported by JSPS KAKENHI Grant Number 21K03162 and by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

1. Aut-intrinsic Hodge-Tate-ness of Representations

In the present §1, we introduce the notion of *Aut-intrinsic Hodge-Tate-ness* of *p*-adic representations [cf. Definition 1.3 below]. Moreover, we prove the existence of a *p*-adic representation that is *potentially crystalline* [hence also *Hodge-Tate*] but *not Aut-intrinsically Hodge-Tate* [cf. Corollary 1.5 below]. Finally, we also recall some basic facts concerning abelian Hodge-Tate p-adic representations [cf. Lemma 1.8 below and Lemma 1.9 below].

DEFINITION 1.1. — We shall refer to a field isomorphic to a finite extension of \mathbb{Q}_p , for some prime number p, as an *MLF*. Here, "MLF" is to be understood as an abbreviation for "mixed-characteristic local field".

In the remainder of the present §1, let k be an MLF and \overline{k} an algebraic closure of k. Write $G_k \stackrel{\text{def}}{=} \text{Gal}(\overline{k}/k)$.

DEFINITION 1.2. — We shall write

• $k^{(d=1)} \subseteq k$ for the [unique] minimal MLF contained in k [i.e., the unique subfield of k isomorphic to \mathbb{Q}_p , for some prime number p],

- $\mathcal{O}_k \subseteq k$ for the ring of integers of k,
- p_k for the characteristic of the residue field of \mathcal{O}_k ,
- d_k for the extension degree of the [necessarily finite] extension $k/k^{(d=1)}$,
- $(k^{\times})^{\wedge}$ for the profinite completion of the multiplicative module k^{\times} of k,

• G_k^{ab} for the topological abelianization of G_k , i.e., the quotient of G_k by the closure of the commutator subgroup of G_k , and

• $\operatorname{rec}_k \colon (k^{\times})^{\wedge} \xrightarrow{\sim} G_k^{\operatorname{ab}}$ for the isomorphism induced by the reciprocity homomorphism $k^{\times} \hookrightarrow G_k^{\operatorname{ab}}$ in local class field theory.

REMARK 1.2.1. — Let us recall the *functorial* assignment " $\mathcal{O}^{\times}(-)$ " of [4, Definition 3.10, (i)]. Observe that it follows from the *functoriality* of the assignment " $\mathcal{O}^{\times}(-)$ " that each continuous automorphism of G_k naturally induces a continuous automorphism of $\mathcal{O}^{\times}(G_k)$. In particular, by conjugating this continuous automorphism of $\mathcal{O}^{\times}(G_k)$ by the continuous isomorphism $\mathcal{O}_k^{\times} \xrightarrow{\sim} \mathcal{O}^{\times}(G_k)$ of [4, Proposition 3.11, (i)], one concludes that each continuous automorphism of G_k naturally induces a continuous automorphism of \mathcal{O}_k^{\times} .

DEFINITION 1.3. — Let V be a \mathbb{Q}_{p_k} -vector space of finite dimension and $\rho: G_k \to \operatorname{Aut}_{\mathbb{Q}_{p_k}}(V)$ a continuous representation. Then we shall say that ρ is Aut-intrinsically Hodge-Tate if, for an arbitrary continuous automorphism α of G_k , the composite $\rho \circ \alpha: G_k \xrightarrow{\sim} G_k \to \operatorname{Aut}_{\mathbb{Q}_{p_k}}(V)$ is Hodge-Tate.

The following result is a formal consequence of the main result of [1].

THEOREM 1.4. — For each $\Box \in \{\circ, \bullet\}$, let k_{\Box} be an MLF and \overline{k}_{\Box} an algebraic closure of k_{\Box} . Let α : Gal $(\overline{k}_{\circ}/k_{\circ}) \rightarrow$ Gal $(\overline{k}_{\bullet}/k_{\bullet})$ be an **open** continuous homomorphism [which thus implies that $p_{k_{\circ}} = p_{k_{\bullet}}$ — cf., e.g., [3, Proposition 3.4, (iii)] and [4, Proposition 3.6]]. Then the following two conditions are equivalent:

(1) There exists an isomorphism $\overline{k}_{\bullet} \xrightarrow{\sim} \overline{k}_{\circ}$ of fields that is **compatible** with the respective natural actions of $\operatorname{Gal}(\overline{k}_{\bullet}/k_{\bullet})$, $\operatorname{Gal}(\overline{k}_{\circ}/k_{\circ})$ on \overline{k}_{\bullet} , \overline{k}_{\circ} relative to the given open continuous homomorphism $\alpha : \operatorname{Gal}(\overline{k}_{\circ}/k_{\circ}) \to \operatorname{Gal}(\overline{k}_{\bullet}/k_{\bullet})$.

(2) For an arbitrary $\mathbb{Q}_{p_{k_{\bullet}}}$ -vector space V_{\bullet} of finite dimension and an arbitrary continuous representation ρ_{\bullet} : $\operatorname{Gal}(\overline{k}_{\bullet}/k_{\bullet}) \to \operatorname{Aut}_{\mathbb{Q}_{p_{k_{\bullet}}}}(V_{\bullet})$, if ρ_{\bullet} is **potentially crystalline**, then the composite $\rho_{\bullet} \circ \alpha$: $\operatorname{Gal}(\overline{k}_{\circ}/k_{\circ}) \to \operatorname{Gal}(\overline{k}_{\bullet}/k_{\bullet}) \to \operatorname{Aut}_{\mathbb{Q}_{p_{k_{\bullet}}}}(V_{\bullet}) = \operatorname{Aut}_{\mathbb{Q}_{p_{k_{\circ}}}}(V_{\bullet})$ is **Hodge-Tate**. PROOF. — The implication $(1) \Rightarrow (2)$ is immediate. To verify the implication $(2) \Rightarrow (1)$, suppose that condition (2) is satisfied. Then it follows immediately from [9, Chapter III, §A.4, Proposition 5], together with a similar argument to the argument applied in the proof of [1, Lemma 1.4], that the open continuous homomorphism α is of HTqLT-type [cf. [1, Definition 1.3, (ii)]]. Thus, it follows from [1, Theorem 3.3] [cf. also Remark 1.4.1 below] that condition (1) is satisfied, as desired. This completes the proof of the implication (2) \Rightarrow (1), hence also of Theorem 1.4.

REMARK 1.4.1. — Unfortunately, the proof of [1, Theorem 3.3], which was applied in the proof of Theorem 1.4 of the present paper, contains an *inessential inaccuracy* [cf. (i) below]. In light of the importance of [1, Theorem 3.3] in the present paper, we thus pause to discuss how this inaccuracy may be amended.

(i) In the final portion of the proof of [1, Claim 3.3.A], the author of the present paper has claimed that $\beta_{k_{\bullet},k_{\circ}}$ is *inertially compatible* with α . However, it is not clear that $\beta_{k_{\bullet},k_{\circ}}$ is inertially compatible with α .

(ii) Thus, the statement of [1, Claim 3.3.A] should be replaced by the following text:

(*) Suppose that k_{\circ} is *Galois* over \mathbb{Q}_p . Then the field k_{\circ} is *isomorphic* to the field k_{\bullet} .

Here, let us observe that the argument given in the proof of [1, Claim 3.3.A] proves this assertion.

(iii) Next, suppose that we are in the situation of [1, Theorem 3.3]. Thus, we have a continuous isomorphism $\alpha \colon G_{k_{\circ}} \xrightarrow{\sim} G_{k_{\bullet}}$ [cf. the first paragraph of the proof of [1, Theorem 3.3]]. For each $\Box \in \{\circ, \bullet\}$ and each positive real number ν , write $G_{k_{\Box}}^{\nu} \subseteq G_{k_{\Box}}$ for the *higher ramification subgroup* of $G_{k_{\Box}}$ associated to ν in the "upper numbering". Then let us observe that one verifies immediately from the various definitions involved that, for each $\Box \in \{\circ, \bullet\}$ and each positive real number ν , if the MLF k_{\Box} is *Galois* over \mathbb{Q}_p , then the fixed field $(\overline{k}_{\Box})^{G_{k_{\Box}}^{\nu}}$ of $G_{k_{\Box}}^{\nu}$ is *Galois* over \mathbb{Q}_p , which thus implies that

$$G_{k_{\square}}^{\nu} = \bigcap_{K_{\square}} \operatorname{Gal}(\overline{k}_{\square}/K_{\square})$$

— where the intersection is taken over the finite extensions $K_{\Box} \subseteq \overline{k}_{\Box}$ of k_{\Box} that are *Galois* over \mathbb{Q}_p and *contained* in the fixed field $(\overline{k}_{\Box})^{G_{k_{\Box}}^{\nu}}$. In particular, if the MLF k_{\circ} , hence also the MLF k_{\bullet} [cf. the assertion (*) of (ii)], is *Galois* over \mathbb{Q}_p , then, by applying the assertion (*) of (ii) [cf. also [1, Lemma 1.4]], one may conclude immediately that

$$\alpha(G_{k_{\circ}}^{\nu}) = \alpha(\bigcap_{K_{\circ}} \operatorname{Gal}(\overline{k}_{\circ}/K_{\circ})) = \bigcap_{K_{\circ}} \alpha(\operatorname{Gal}(\overline{k}_{\circ}/K_{\circ})) = \bigcap_{K_{\circ}} \operatorname{Gal}(\overline{k}_{\bullet}/(K_{\circ})^{\dagger}) = G_{k_{\bullet}}^{\nu}$$

— where the intersections are taken over the finite extensions $K_{\circ} \subseteq \overline{k}_{\circ}$ of k_{\circ} that are *Galois* over \mathbb{Q}_p and *contained* in the fixed field $(\overline{k}_{\circ})^{G_{k_{\circ}}^{\nu}}$; for each such an extension K_{\circ} , we write $(K_{\circ})^{\dagger}$ for the *unique* [cf. the assumption that the extension K_{\circ}/\mathbb{Q}_p is *Galois*] subfield of \overline{k}_{\bullet} isomorphic to K_{\circ} . Thus, the conclusion of [1, Theorem 3.3] in the case where k_{\circ} is *Galois* over \mathbb{Q}_p , hence also the conclusion of [1, Theorem 3.3] for an *arbitrary* k_{\circ} , follows immediately from [6, Theorem].

COROLLARY 1.5. — Let k be an MLF and \overline{k} an algebraic closure of k. Suppose that p_k is odd. Then there exist a \mathbb{Q}_{p_k} -vector space V of finite dimension and a continuous representation ρ : $\operatorname{Gal}(\overline{k}/k) \to \operatorname{Aut}_{\mathbb{Q}_{p_k}}(V)$ that is potentially crystalline [hence also Hodge-Tate] but not Aut-intrinsically Hodge-Tate.

PROOF. — Let us first recall that if $d_k = 1$ (respectively, $d_k \neq 1$), then it follows from, for instance, the discussion given at the final portion of [7, Chapter VII, §5] (respectively, [4, Proposition 3.6] and [5, Corollary 1.6, (iv)]) that we have a continuous automorphism of $\operatorname{Gal}(\overline{k}/k)$ such that an arbitrary automorphism of the field \overline{k} is *not compatible* with the natural action of $\operatorname{Gal}(\overline{k}/k)$ on \overline{k} relative to the continuous automorphism of $\operatorname{Gal}(\overline{k}/k)$. Thus, Corollary 1.5 follows from Theorem 1.4. This completes the proof of Corollary 1.5.

REMARK 1.5.1. — The content of Corollary 1.5 in the case where $d_k = 1$ is essentially contained in [1, Remark 3.3.1].

In the remainder of the present §1, let us recall some basic facts concerning *abelian* Hodge-Tate p-adic representations. Let E be either k or $k^{(d=1)}$. Suppose that E is absolutely Galois, i.e., that the finite extension $E/k^{(d=1)}$ is Galois [cf. [3, Definition 4.2, (i)]].

DEFINITION 1.6. — We shall write E_+ for the \mathbb{Q}_{p_k} -vector space [necessarily of finite dimension] obtained by forming the underlying additive module of the MLF E. Thus, we have a natural injective continuous homomorphism $\mathcal{O}_E^{\times} \hookrightarrow \operatorname{Aut}_{\mathbb{Q}_{p_k}}(E_+)$, i.e., by multiplication, by means of which we regard \mathcal{O}_E^{\times} as a [necessarily closed] subgroup of the topological group $\operatorname{Aut}_{\mathbb{Q}_{p_k}}(E_+)$:

$$\mathcal{O}_E^{\times} \subseteq \operatorname{Aut}_{\mathbb{Q}_{p_k}}(E_+).$$

DEFINITION 1.7. — Let $\pi \in \mathcal{O}_k$ be a uniformizer of \mathcal{O}_k and σ an element of $\operatorname{Gal}(E/k^{(d=1)})$. If E = k (respectively, $E = k^{(d=1)}$), then we shall write

$$\Phi_{\sigma} \colon \mathcal{O}_k^{\times} \longrightarrow \mathcal{O}_E^{\times}$$

for the continuous automorphism of \mathcal{O}_k^{\times} determined by σ (respectively, the continuous homomorphism $\mathcal{O}_k^{\times} \to \mathcal{O}_{k^{(d=1)}}^{\times}$ determined by the norm map with respect to the finite extension $k/k^{(d=1)}$). Moreover, we shall write

$$\chi_{\pi,\sigma} \colon G_k^{\mathrm{ab}} \xrightarrow{\mathrm{rec}_k^{-1}} (k^{\times})^{\wedge} \longrightarrow \mathcal{O}_k^{\times} \xrightarrow{\Phi_{\sigma}} \mathcal{O}_E^{\times}$$

— where the second arrow is the surjective continuous homomorphism obtained by considering the quotient by the closed submodule of the topological module $(k^{\times})^{\wedge}$ topologically generated by $\pi \in k^{\times}$.

LEMMA 1.8. — Let $\pi \in \mathcal{O}_k$ be a uniformizer of \mathcal{O}_k and $\phi: G_k^{ab} \to \mathcal{O}_E^{\times}$ a continuous homomorphism. Then the following two conditions are equivalent:

(1) The continuous representation obtained by forming the composite

$$G_k \longrightarrow G_k^{\mathrm{ab}} \xrightarrow{\phi} \mathcal{O}_E^{\times} \longrightarrow \operatorname{Aut}_{\mathbb{Q}_{p_k}}(E_+)$$

— where the first arrow is the natural surjective continuous homomorphism, and the third arrow is the natural inclusion — is **Hodge-Tate**.

(2) There exist an integer i_{σ} for each $\sigma \in \text{Gal}(E/k^{(d=1)})$ and an open subgroup J of the inertia subgroup of G_k such that

• the restriction to J of the composite of the natural surjective continuous homomorphism $G_k \to G_k^{ab}$ and the given homomorphism $\phi: G_k^{ab} \to \mathcal{O}_E^{\times}$

coincides with

• the restriction to J of the composite of the natural surjective continuous homomorphism $G_k \to G_k^{ab}$ and the homomorphism

$$\prod_{\sigma \in \operatorname{Gal}(E/k^{(d=1)})} \chi^{i_{\sigma}}_{\pi,\sigma} \colon G_k^{\operatorname{ab}} \longrightarrow \mathcal{O}_E^{\times}.$$

PROOF. — This assertion follows from [9, Chapter III, §A.5, Corollary].

LEMMA 1.9. — Let $\phi: G_k^{ab} \to \mathcal{O}_k^{\times}$ be a continuous homomorphism. Suppose that the continuous representation obtained by forming the composite

$$G_k \longrightarrow G_k^{\mathrm{ab}} \xrightarrow{\phi} \mathcal{O}_k^{\times} \hookrightarrow \operatorname{Aut}_{\mathbb{Q}_{p_k}}(k_+)$$

— where the first arrow is the natural surjective continuous homomorphism, and the third arrow is the natural inclusion — is **Hodge-Tate**. Then the image of some open submodule of $\mathcal{O}_{k(d=1)}^{\times}$ by the composite

$$\mathcal{O}_{k^{(d=1)}}^{\times} \overset{\longleftarrow}{\longrightarrow} \mathcal{O}_{k}^{\times} \overset{\operatorname{rec}_{k}}{\longrightarrow} G_{k}^{\operatorname{ab}} \overset{\phi}{\longrightarrow} \mathcal{O}_{k}^{\times}$$

— where the first arrow is the natural inclusion — is **contained** in the submodule $\mathcal{O}_{k^{(d=1)}}^{\times} \subseteq \mathcal{O}_{k}^{\times}$.

PROOF. — This assertion follows immediately from Lemma 1.8.

2. The Case of Reducible Representations of Dimension Two

In the present §2, we introduce the notion of *intrinsic Hodge-Tate-ness* of *p*-adic representations [cf. Definition 2.2 below]. Moreover, we prove that an arbitrary *reducible Hodge-Tate p*-adic representation of dimension 2 is Aut-intrinsically Hodge-Tate [cf. Theorem 2.10 below].

DEFINITION 2.1. — We shall refer to a group isomorphic to the absolute Galois group of an MLF as a group of *MLF-type* [cf. [2, Definition 1.1]]. Here, "MLF" is to be understood as an abbreviation for "mixed-characteristic local field". Let us always regard a group

of MLF-type as a profinite group by means of the profinite topology discussed in [2, Proposition 1.2, (i)].

In the remainder of the present $\S2$, let G be a group of MLF-type. Thus, by applying various functorial group-theoretic reconstruction algorithms established in the study of mono-anabelian geometry to the group G of MLF-type, we obtain

- a prime number p(G) [cf. [4, Definition 3.5, (i)]],
- a positive integer d(G) [cf. [4, Definition 3.5, (ii)]],
- a normal closed subgroup $I(G) \subseteq G$ of G [cf. [4, Definition 3.5, (iii)]],
- topological modules $\mathcal{O}^{\times}(G) \subseteq k^{\times}(G)$ [cf. [4, Definition 3.10, (i), (iv)]], and
- a topological field $\mathbb{Q}_p(G)$ [cf. [3, Definition 4.5, (iii)] and [3, Lemma 4.6, (i)]].

Moreover, in the remainder of the present §2, let V be a $\mathbb{Q}_p(G)$ -vector space of finite dimension and $\rho: G \to \operatorname{Aut}_{\mathbb{Q}_p(G)}(V)$ a continuous representation.

DEFINITION 2.2. — We shall say that the given continuous representation ρ is *intrinsi*cally Hodge-Tate if, for an arbitrary MLF-envelope $(k, \overline{k}, \alpha: \operatorname{Gal}(\overline{k}/k) \xrightarrow{\sim} G)$ of G [cf. [2, Definition 1.1]], the continuous [cf. [2, Proposition 1.2, (ii)]] representation obtained by forming the composite $\rho \circ \alpha: \operatorname{Gal}(\overline{k}/k) \xrightarrow{\sim} G \to \operatorname{Aut}_{\mathbb{Q}_p(G)}(V) = \operatorname{Aut}_{\mathbb{Q}_{p_k}}(V)$ [cf. [3, Lemma 4.6, (i)] and [4, Proposition 3.6]] is Hodge-Tate.

REMARK 2.2.1. — In the situation of Definition 1.3, it is immediate that the implications

 ρ is intrinsically Hodge-Tate $\implies \rho$ is Aut-intrinsically Hodge-Tate $\implies \rho$ is Hodge-Tate

hold.

DEFINITION 2.3. — Let V' be a $\mathbb{Q}_p(G)$ -vector space of finite dimension and $\rho' \colon G \to \operatorname{Aut}_{\mathbb{Q}_p(G)}(V')$ a continuous representation. Then we shall say that ρ is *inertially isomorphic* to ρ' if there exists an open subgroup $J \subseteq I(G)$ of I(G) such that the restriction of ρ to $J \subseteq (I(G) \subseteq) G$ is isomorphic to the restriction of ρ' to $J \subseteq (I(G) \subseteq) G$.

DEFINITION 2.4. — Let w be an integer. Then we shall say that the continuous representation ρ is w-cyclotomic if ρ is isomorphic to the continuous representation of dimension 1 obtained by considering the w-th power of the character $G \to \mathbb{Q}_p(G)^{\times}$ determined by the maximal pro-p(G) quotient of the cyclotome $\Lambda(G)$ associated to G [cf. [4, Definition 4.1, (iii)]].

REMARK 2.4.1. — Let k be an MLF and \overline{k} an algebraic closure of k. Write $G_k \stackrel{\text{def}}{=} \text{Gal}(\overline{k}/k)$.

(i) Let us recall from [4, Proposition 3.6] that the normal closed subgroup $I(G_k) \subseteq G_k$ of G_k coincides with the *inertia subgroup* of G_k .

(ii) Let us recall from [4, Proposition 4.2, (iv)] that the character $G_k \to \mathbb{Q}_p(G_k)^{\times} \stackrel{\sim}{\leftarrow} \mathbb{Q}_{p_k}^{\times}$ [cf. [3, Lemma 4.6, (i)] and [4, Proposition 3.6]] determined by the maximal pro $p(G_k)$, i.e., pro- p_k [cf. [4, Proposition 3.6]], quotient of the cyclotome $\Lambda(G_k)$ associated to G_k coincides with the p_k -adic cyclotomic character of G_k .

LEMMA 2.5. — Let k be an MLF, \overline{k} an algebraic closure of k, V a \mathbb{Q}_{p_k} -vector space of dimension 1, and ρ : $\operatorname{Gal}(\overline{k}/k) \to \operatorname{Aut}_{\mathbb{Q}_{p_k}}(V)$ a continuous representation. Then the following two conditions are equivalent:

(1) The continuous representation ρ is **Hodge-Tate**.

(2) The continuous representation ρ is inertially isomorphic to the *w*-cyclotomic representation of Gal(\overline{k}/k) for some integer *w*.

PROOF. — This assertion follows — in light of Remark 2.4.1, (i), (ii) — from Lemma 1.8, together with [9, Chapter III, \S A.4, Corollary].

THEOREM 2.6. — Let G be a group of MLF-type, V a $\mathbb{Q}_p(G)$ -vector space of dimension 1, and $\rho: G \to \operatorname{Aut}_{\mathbb{Q}_p(G)}(V)$ a continuous representation. Then the following two conditions are equivalent:

(1) The continuous representation ρ is intrinsically Hodge-Tate.

(2) The continuous representation ρ is *inertially isomorphic* to the *w*-cyclotomic representation of G for some integer w.

PROOF. — This assertion follows from Lemma 2.5.

THEOREM 2.7. — Let k be an MLF, \overline{k} an algebraic closure of k, V a \mathbb{Q}_{p_k} -vector space of dimension 1, and ρ : $\operatorname{Gal}(\overline{k}/k) \to \operatorname{Aut}_{\mathbb{Q}_{p_k}}(V)$ a continuous representation. Then the following three conditions are equivalent:

- (1) The continuous representation ρ is **Hodge-Tate**.
- (2) The continuous representation ρ is intrinsically Hodge-Tate.
- (3) The continuous representation ρ is Aut-intrinsically Hodge-Tate.

PROOF. — It follows from Remark 2.2.1 that, to verify Theorem 2.7, it suffices to verify the implication $(1) \Rightarrow (2)$. On the other hand, the implication $(1) \Rightarrow (2)$ follows from Lemma 2.5 and Theorem 2.6. This completes the proof of Theorem 2.7.

LEMMA 2.8. — Let k be an MLF, \overline{k} an algebraic closure of k, V a \mathbb{Q}_{p_k} -vector space of dimension 2, and $\rho: G_k \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{k}/k) \to \operatorname{Aut}_{\mathbb{Q}_{p_k}}(V)$ a continuous representation. Suppose that the continuous representation ρ is reducible. Then the continuous representation ρ is Hodge-Tate if and only if there exist integers w, w' and a G_k -stable \mathbb{Q}_{p_k} -subspace $W \subseteq V$ of V of dimension 1 such that the continuous representations $G_k \to \operatorname{Aut}(W)$, $G_k \to \operatorname{Aut}(V/W)$ determined by ρ are, respectively, inertially isomorphic to the wcyclotomic, w'-cyclotomic representations of G_k , and, moreover, one of the following two conditions is satisfied:

(1) There exists an open subgroup J of the inertia subgroup of G_k such that the natural surjective homomorphism $V \twoheadrightarrow V/W$ has a **J**-equivariant splitting.

(2) The equality w = w' does not hold.

PROOF. — First, we verify sufficiency. Suppose that there exist w, w', W as in the statement of Lemma 2.8. If condition (1) is satisfied, then it follows immediately — in light of Remark 2.4.1, (i), (ii), and [9, Chapter III, §A.1, Corollary 2] — from Lemma 2.5 that the continuous representation ρ is *Hodge-Tate*. If condition (2) is satisfied, then it follows immediately — in light of Remark 2.4.1, (i), (ii), and [9, Chapter III, §A.1, Corollary 2] — from [10, Proposition 8, (b)] that the continuous representation ρ is *Hodge-Tate*. This completes the proof of sufficiency.

Next, we verify necessity. Suppose that the continuous representation ρ is Hodge-Tate. Then since [we have assumed that] the continuous representation ρ is reducible and of dimension 2, there exists a G_k -stable \mathbb{Q}_{p_k} -subspace $W \subseteq V$ of V of dimension 1. Now since ρ is Hodge-Tate, and both W and V/W are of dimension 1, it follows from Lemma 2.5 that there exist integers w, w' such that the continuous representations $G_k \to \operatorname{Aut}(W), G_k \to \operatorname{Aut}(V/W)$ determined by ρ are, respectively, inertially isomorphic to the w-cyclotomic, w'-cyclotomic representations of G_k . Now suppose that condition (2) is not satisfied. Then it follows immediately from [8, Corollary 1] that condition (1) is satisfied, as desired. This completes the proof of necessity, hence also of Lemma 2.8. \Box

THEOREM 2.9. — Let G be a group of MLF-type, V a $\mathbb{Q}_p(G)$ -vector space of dimension 2, and $\rho: G \to \operatorname{Aut}_{\mathbb{Q}_p(G)}(V)$ a continuous representation. Suppose that ρ is reducible. Then the continuous representation ρ is intrinsically Hodge-Tate if and only if there exist integers w, w' and a G-stable $\mathbb{Q}_p(G)$ -subspace $W \subseteq V$ of V of dimension 1 such that the continuous representations $G \to \operatorname{Aut}(W)$, $G \to \operatorname{Aut}(V/W)$ determined by ρ are, respectively, inertially isomorphic to the w-cyclotomic, w'-cyclotomic representations of G, and, moreover, one of the following two conditions is satisfied:

(1) There exists an open subgroup $J \subseteq I(G)$ of $I(G) (\subseteq G)$ such that the natural surjective homomorphism $V \twoheadrightarrow V/W$ has a **J**-equivariant splitting.

(2) The equality w = w' does not hold.

PROOF. — This assertion follows — in light of Remark 2.4.1, (i) — from Lemma 2.8. \Box

THEOREM 2.10. — Let k be an MLF, \overline{k} an algebraic closure of k, V a \mathbb{Q}_{p_k} -vector space of dimension 2, and ρ : $\operatorname{Gal}(\overline{k}/k) \to \operatorname{Aut}_{\mathbb{Q}_{p_k}}(V)$ a continuous representation. Suppose that the continuous representation ρ is **reducible**. Then the following three conditions are equivalent:

- (1) The continuous representation ρ is **Hodge-Tate**.
- (2) The continuous representation ρ is intrinsically Hodge-Tate.
- (3) The continuous representation ρ is Aut-intrinsically Hodge-Tate.

PROOF. — It follows from Remark 2.2.1 that, to verify Theorem 2.10, it suffices to verify the implication $(1) \Rightarrow (2)$. On the other hand, the implication $(1) \Rightarrow (2)$ follows — in light of Remark 2.4.1, (i) — from Lemma 2.8 and Theorem 2.9. This completes the proof of Theorem 2.10.

3. The Case of Irreducible Representations of Dimension Two

In the present §3, we prove the existence of an *irreducible crystalline* [hence also *Hodge-Tate*] *p*-adic representation of dimension 2 that is not Aut-intrinsically Hodge-Tate [cf. Corollary 3.4 below].

In the present §3, let k be an MLF and \overline{k} an algebraic closure of k. Write $G_k \stackrel{\text{def}}{=} \text{Gal}(\overline{k}/k)$. We shall also apply the notational conventions introduced in Definition 1.2.

LEMMA 3.1. — Suppose that p_k is **odd**, and that $d_k = 2$. Write Nm: $k^{\times} \to (k^{(d=1)})^{\times}$ for the norm map with respect to the finite extension $k/k^{(d=1)}$. Then the following assertions hold:

(i) There exists an **open** submodule $U \subseteq \mathcal{O}_k^{\times}$ of \mathcal{O}_k^{\times} such that

(1) the topological module U has a natural structure of free \mathbb{Z}_{p_k} -module of rank 2, and, moreover,

(2) the submodule $U \subseteq \mathcal{O}_k^{\times}$ is **preserved** by an arbitrary continuous automorphism of \mathcal{O}_k^{\times} .

(ii) Let $U \subseteq \mathcal{O}_k^{\times}$ be as in (i). Then the topological modules $U \cap \mathcal{O}_{k^{(d=1)}}^{\times}$, $U \cap \text{Ker}(\text{Nm})$ have natural structures of **free** \mathbb{Z}_{p_k} -modules of rank 1, respectively.

(iii) Let $U \subseteq \mathcal{O}_k^{\times}$ be as in (i). Then the **equality** $U \cap \mathcal{O}_{k^{(d=1)}}^{\times} \cap \operatorname{Ker}(\operatorname{Nm}) = \{1\}$ holds.

(iv) Let $U \subseteq \mathcal{O}_k^{\times}$ be as in (i). Then the closed submodule of U topologically generated by the closed submodules $U \cap \mathcal{O}_{k(d=1)}^{\times}$ and $U \cap \text{Ker}(\text{Nm})$ is **open**.

(v) There exists a continuous automorphism α of G_k such that, for an arbitrary nonzero integer n, if one writes α_{\times}^n for the continuous automorphism of \mathcal{O}_k^{\times} induced by α^n [cf. Remark 1.2.1], then the intersection $\alpha_{\times}^n(\mathcal{O}_{k^{(d=1)}}^{\times}) \cap \mathcal{O}_{k^{(d=1)}}^{\times}$ is **not open** in $\mathcal{O}_{k^{(d=1)}}^{\times}$. In particular, the continuous automorphism α_{\times}^n of \mathcal{O}_k^{\times} does **not preserve** the submodule $\mathcal{O}_{k^{(d=1)}}^{\times} \subseteq \mathcal{O}_k^{\times}$.

PROOF. — Assertions (i), (ii) follow from [4, Lemma 1.2, (i)] [cf. also our assumption that $d_k = 2$]. Assertion (iii) is immediate [cf. the fact that U is torsion-free — cf. condition (1) of assertion (i)]. Assertion (iv) follows from assertions (ii), (iii), together with condition (1) of assertion (i).

Finally, we verify assertion (v). Let α be a continuous automorphism of G_k as in the discussion preceding [5, Theorem 1.5]. [Note that since $p(G_k) = p_k \neq 2$, $d(G_k) = d_k = 2 > 1$ — cf. [4, Proposition 3.6] — we are in the situation of the discussion preceding [5, Theorem 1.5].] Write β for the continuous automorphism of the submodule $U \subseteq \mathcal{O}_k^{\times}$ obtained by forming the restriction of α_{\times}^n [cf. condition (2) of assertion (i)]. Thus, since it follows from [5, Theorem 1.5] [cf. also [4, Definition 3.10, (vi)]] that

(a[†]) the automorphism of $\mathcal{O}_k^{\times} \otimes_{\mathbb{Z}} \mathbb{Q}$ induced by α_{\times}^n is not the identity automorphism, but

(b[†]) the image of the square of the endomorphism of $\mathcal{O}_k^{\times} \otimes_{\mathbb{Z}} \mathbb{Q}$ induced by the endomorphism of \mathcal{O}_k^{\times} given by " $a \mapsto \alpha_{\times}^n(a) \cdot a^{-1}$ " consists of the identity element of $\mathcal{O}_k^{\times} \otimes_{\mathbb{Z}} \mathbb{Q}$, one concludes that

(a) the continuous automorphism β is not the identity automorphism of U, but

(b) the image of the square of the endomorphism of U given by " $a \mapsto \beta(a) \cdot a^{-1}$ " consists of the identity element of U.

Moreover, it follows immediately from [5, Lemma 2.3, (i)] that

(c) the continuous automorphism β preserves the submodule $U \cap \text{Ker}(\text{Nm})$ of U.

Thus, it follows immediately from assertion (iv) [cf. also condition (1) of assertion (i)], together with (b) and (c), that if the continuous automorphism β preserves some open submodule of the submodule $U \cap \mathcal{O}_{k^{(d=1)}}^{\times}$, then β is the *identity automorphism* of U — in contradiction to (a). In particular, the continuous automorphism β does not preserve any open submodule of the submodule $U \cap \mathcal{O}_{k^{(d=1)}}^{\times}$, which thus implies [cf. assertion (ii)] that $\beta(U \cap \mathcal{O}_{k^{(d=1)}}^{\times}) \cap U \cap \mathcal{O}_{k^{(d=1)}}^{\times} = \{1\}$. Thus, it follows immediately from [4, Lemma 1.2, (i)] that $\alpha_{\alpha}^{n}(\mathcal{O}_{k^{(d=1)}}^{\times}) \cap \mathcal{O}_{k^{(d=1)}}^{\times}$ is not open in $\mathcal{O}_{k^{(d=1)}}^{\times}$, as desired. This completes the proof of assertion (v), hence also of Lemma 3.1.

REMARK 3.1.1. — One may conclude from the final portion of Lemma 3.1, (v), that it is *impossible* to establish a functorial group-theoretic reconstruction algorithm for constructing, from an *arbitrary* group H of MLF-type, a closed submodule of the topological module $\mathcal{O}^{\times}(H)$ which "corresponds" to the closed submodule $\mathcal{O}_{k^{(d=1)}}^{\times} \subseteq \mathcal{O}_{k}^{\times}$ of the topological module \mathcal{O}_{k}^{\times} . Put another way, one may conclude from the final portion of Lemma 3.1, (v), that the closed submodule $\mathcal{O}_{k^{(d=1)}}^{\times} \subseteq \mathcal{O}_{k}^{\times}$ should be considered to be "not group-theoretic".

PROPOSITION 3.2. — Suppose that p_k is **odd**, and that d_k is **even**. Suppose, moreover, that k is **absolutely abelian**, i.e., that k is absolutely Galois, and the Galois group $\operatorname{Gal}(k/k^{(d=1)})$ is abelian [cf. [3, Definition 4.2, (ii)]]. Then there exists a continuous automorphism α of G_k such that, for an arbitrary nonzero integer n, if one writes α_{\times}^n for the continuous automorphism of \mathcal{O}_k^{\times} induced by α^n [cf. Remark 1.2.1], then the intersection $\alpha_{\times}^n(\mathcal{O}_{k(d=1)}^{\times}) \cap \mathcal{O}_{k(d=1)}^{\times}$ is **not open** in $\mathcal{O}_{k(d=1)}^{\times}$.

PROOF. — Let us first observe that since d_k is even, and k is absolutely abelian, one verifies easily that there exists a quadratic extension of $k^{(d=1)}$ contained in k. Moreover, since k is absolutely abelian, it follows immediately from the implication $(1) \Rightarrow (2)$ of [3, Theorem F, (i)] that G_k is a characteristic subgroup of the absolute Galois group of the quadratic extension of $k^{(d=1)}$ determined by the algebraic closure \overline{k} . Thus, one may conclude that we may assume without loss of generality, by applying a similar argument to the argument applied in the proof of [5, Lemma 2.6, (ii)] and replacing k by the quadratic extension of $k^{(d=1)}$, that $d_k = 2$. On the other hand, if $d_k = 2$, then the desired conclusion follows form Lemma 3.1, (v). This completes the proof of Proposition 3.2.

THEOREM 3.3. — Let k be an MLF and \overline{k} an algebraic closure of k. Suppose that p_k is odd, that d_k is even, and that k is absolutely abelian. Then there exist a \mathbb{Q}_{p_k} -vector space V of dimension d_k and a continuous representation ρ : $\operatorname{Gal}(\overline{k}/k) \to \operatorname{Aut}_{\mathbb{Q}_{p_k}}(V)$ that is irreducible, abelian, crystalline [hence also Hodge-Tate], but not Autintrinsically Hodge-Tate. PROOF. — Let $\pi \in \mathcal{O}_k$ be a uniformizer of \mathcal{O}_k . Write ρ for the continuous representation of $G_k \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{k}/k)$ [necessarily of dimension d_k] obtained by forming the composite

$$G_k \longrightarrow G_k^{\mathrm{ab}} \xrightarrow{\chi_{\pi,\mathrm{id}_k}} \mathcal{O}_k^{\times} \longrightarrow \mathrm{Aut}_{\mathbb{Q}_{p_k}}(k_+)$$

— where the first arrow is the natural surjective continuous homomorphism, and the third arrow is the natural inclusion. Then one verifies easily that this continuous representation ρ is *irreducible* and *abelian*. Moreover, it follows immediately from [9, Chapter III, §A.4, Proposition 5] that this continuous representation ρ is *crystalline*.

Next, to verify that the continuous representation ρ is not Aut-intrinsically Hodge-Tate, let us recall that it follows immediately from the various definitions involved that the composite

$$\mathcal{O}_k^{\times} \xrightarrow{\operatorname{rec}_k} G_k^{\operatorname{ab}} \xrightarrow{\chi_{\pi,\operatorname{id}_k}} \mathcal{O}_k^{\times}$$

is an *automorphism* that restricts to an *automorphism* of the submodule $\mathcal{O}_{k^{(d=1)}}^{\times} \subseteq \mathcal{O}_{k}^{\times}$. In particular, if α is a continuous automorphism of G_k as in Proposition 3.2, then it follows immediately from Lemma 1.9, together with the various definitions involved, that the composite $\rho \circ \alpha \colon G_k \xrightarrow{\sim} G_k \to \operatorname{Aut}_{\mathbb{Q}_{p_k}}(k_+)$ is not Hodge-Tate, which thus implies that the continuous representation ρ is not Aut-intrinsically Hodge-Tate, as desired. This completes the proof of Theorem 3.3.

COROLLARY 3.4. — Let p be an odd prime number. Then there exist an MLF K such that $p_K = p$, an algebraic closure \overline{K} of K, a \mathbb{Q}_{p_K} -vector space V of dimension 2, and a continuous representation ρ : $\operatorname{Gal}(\overline{K}/K) \to \operatorname{Aut}_{\mathbb{Q}_{p_K}}(V)$ that is irreducible, abelian, crystalline [hence also Hodge-Tate], but not Aut-intrinsically Hodge-Tate.

PROOF. — This assertion is a formal consequence of Theorem 3.3.

References

- Y. Hoshi: A note on the geometricity of open homomorphisms between the absolute Galois groups of p-adic local fields. Kodai Math. J. 36 (2013), no. 2, 284–298.
- [2] Y. Hoshi: Mono-anabelian reconstruction of number fields. On the examination and further development of inter-universal Teichmüller theory, 1–77, RIMS Kôkyûroku Bessatsu, B76, Res. Inst. Math. Sci. (RIMS), Kyoto, 2019.
- [3] Y. Hoshi: Topics in the anabelian geometry of mixed-characteristic local fields. *Hiroshima Math. J.* 49 (2019), no. 3, 323–398.
- [4] Y. Hoshi: Introduction to mono-anabelian geometry. Publications mathématiques de Besançon. Algèbre et théorie des nombres. 2021, 5–44, Publ. Math. Besançon Algèbre Théorie Nr., 2021, Presses Univ. Franche-Comté, Besançon, [2022].
- [5] Y. Hoshi and Y. Nishio: On the outer automorphism groups of the absolute Galois groups of mixedcharacteristic local fields. *Res. Number Theory* 8 (2022), no. 3, Paper No. 56, 13 pp.
- [6] S. Mochizuki: A version of the Grothendieck conjecture for p-adic local fields. Internat. J. Math. 8 (1997), no. 4, 499–506.
- [7] J. Neukirch, A. Schmidt, and K. Wingberg: *Cohomology of number fields*. Second edition. Grundlehren der Mathematischen Wissenschaften, **323**. Springer-Verlag, Berlin, 2008.
- [8] S. Sen: Lie algebras of Galois groups arising from Hodge-Tate modules. Ann. of Math. (2) 97 (1973), 160–170.
- [9] J.-P. Serre: Abelian l-adic representations and elliptic curves. With the collaboration of Willem Kuyk and John Labute. Revised reprint of the 1968 original. Research Notes in Mathematics, 7. A K Peters, Ltd., Wellesley, MA, 1998.

[10] J.-T. Tate: p-divisible groups. 1967 Proc. Conf. Local Fields (Driebergen, 1966) pp. 158–183 Springer, Berlin.

(Yuichiro Hoshi) RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN

Email address: yuichiro@kurims.kyoto-u.ac.jp