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ABSTRACT. P. Deligne and D. Mumford proved that, for a smooth curve over the field of fractions
of a discrete valuation ring whose residue field is perfect, if the associated Jacobian has stable re-
duction over the discrete valuation ring, then the smooth curve has stable reduction over the discrete
valuation ring. Recently, I. Nagamachi proved a similar result over a connected normal Noetherian
scheme of dimension one. In the present paper, we prove a similar result over a Prüfer domain, i.e.,
a domain whose localization at each of the prime ideals is a valuation ring. Moreover, we also give
a counter-example in a situation over a higher dimensional base case. More precisely, we construct
an example of a smooth curve over the field of fractions of a complete strictly Henselian normal
Noetherian local domain of equal characteristic zero such that the associated Jacobian has good re-
duction over the local domain, but the smooth curve does not have stable reduction over the local
domain.

INTRODUCTION

Let g ≥ 2 be an integer. In the present paper, a smooth curve of genus g over a scheme B is
defined to be a stable curve of genus g over B in the sense of [2], Definition 1.1, whose structure
morphism is smooth. Let S be a connected normal scheme, and let X be a smooth curve of genus
g over the function field of S. Write J(X) for the Jacobian of X [cf., e.g., the discussion at the
beginning of [1], §9.2]. Then the present paper investigates the following question concerning the
existence of stable models of curves:

Question: Are the following two conditions equivalent?
(1) The smooth curve X has stable reduction over S, i.e., extends to a stable curve

over S.
(2) The abelian variety J(X) has stable reduction over S, i.e., extends to a semi-

abelian scheme over S.

Here, let us first recall that Deligne proved the implication (1) ⇒ (2) [cf., e.g., [1], §9.4, Theorem
1]. Moreover, let us also recall that Deligne and Mumford proved the implication (2) ⇒ (1) in
the case where S is the spectrum of a discrete valuation ring whose residue field is perfect [cf.
[2], Theorem 2.4]. Recently, Nagamachi developed the theory of minimal log regular models of
curves and proved, as an application of this theory, the implication (2) ⇒ (1) in the case where S
is Noetherian and of dimension one [cf. [9], Corollary 0.3].

The first main result of the present paper is as follows [cf. §1]:
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Theorem A. Suppose that S is the spectrum of a Prüfer domain [i.e., a domain whose localization
at each of the prime ideals is a valuation ring]. Then the implication (2) ⇒ (1), hence also the
equivalence (1)⇔ (2), holds.

Note that Theorem A generalizes the implication (2) ⇒ (1) in the case where S is the spec-
trum of a Dedekind domain [i.e., a Noetherian Prüfer domain] proved by Deligne, Mumford, and
Nagamachi.

On the other hand, in a higher dimensional base case, one may construct a counter-example of
the implication (2) ⇒ (1). The second main result of the present paper is as follows [cf. §2]:

Theorem B. There exist a complete strictly Henselian normal Noetherian local domain of equal
characteristic zero and a smooth curve over the field of fractions of this local domain such that the
Jacobian of the smooth curve extends to an abelian scheme over the local domain, but the smooth
curve does not extend to a stable curve over the local domain. In particular, the implication (2)⇒
(1) in the case where S is the spectrum of this local domain does not hold.

Acknowledgments. The first author was supported by JSPS KAKENHI Grant Number 21K03162.
This research was supported by the Research Institute for Mathematical Sciences, an International
Joint Usage/Research Center located in Kyoto University.

1. EQUIVALENCE OVER ARBITRARY PRÜFER DOMAINS

In the present §1, we give a proof of Theorem A. Let g ≥ 2 be an integer, and let R be a Prüfer
domain. Write K for the field of fractions of R. Let X be a smooth curve over K of genus g, and let
K be an algebraic closure of K. Write J(X) for the Jacobian of X , K̃ ⊆ K for the separable closure

of K in K, and GK
def
= Gal(K̃/K) for the absolute Galois group of K determined by the separable

closure K̃. In the present §1, to prove Theorem A, suppose that
the abelian variety J(X) extends to a semi-abelian scheme over R.

Definition 1.1. Let K1 be an algebraic extension field of K contained in K. Then we shall say
that K1 is admissible if the smooth curve X ×K K1 over K1 extends to a stable curve over the
normalization of R in K1.

Thus, to verify Theorem A, it suffices to verify that the trivial extension field K of K is admis-
sible. Now observe that one verifies immediately that, to verify the admissibility of K, we may
assume without loss of generality, by replacing R by a strict Henselization of the localization of R
at a prime ideal and applying étale descent, that

the ring R is a strictly Henselian valuation ring.

Definition 1.2. We shall write Mg ⊆ M g for the moduli stacks of smooth, stable curves of genus
g over R, respectively.

Lemma 1.3. Let K1, K2 be algebraic extension fields of K contained in K. Suppose that both K1
and K2 are admissible. Then the algebraic extension field of K obtained by forming the intersection
K1 ∩K2 is admissible.

Proof. Let i be an element of {1,2}. Write Ri ⊆Ki for the normalization of R in Ki. Then since Ki is
admissible, it follows that the composite Spec(Ki)→ Spec(K)→ M g — where the second arrow
is the K-valued point that classifies the smooth curve X over K — factors through the natural
morphism Spec(Ki) → Spec(Ri). Next, observe that it follows immediately from [2], Lemma
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1.12, that the image of the closed point of Spec(R1) by the resulting morphism Spec(R1)→ M g
coincides with the image of the closed point of Spec(R2) by the resulting morphism Spec(R2)→
M g. Let Spec(A)→ M g be an affine étale neighborhood of this image of the closed points. Then
since Ri is strictly Henselian, by pulling-back the resulting morphism Spec(Ri) → M g by this
affine étale neighborhood, we obtain a factorization

Spec(Ki) // Spec(Ri) // Spec(A) // M g

of the composite Spec(Ki)→ Spec(K)→ M g. Thus, one may conclude that the image of A in R1
[i.e., by the homomorphism of rings induced by the second arrow of the above display in the case
where we take the “i” to be 1] is contained in R1∩R2, which is the normalization of R in K1∩K2. In
particular, one may conclude that the composite Spec(K1∩K2)→ Spec(K)→M g factors through
the natural morphism Spec(K1 ∩K2) → Spec(R1 ∩R2), as desired. This completes the proof of
Lemma 1.3. □

If R is a discrete valuation ring, then Theorem A may be proved only essentially by means of
some results of [2] and some arguments concerning weakly unramified algebraic extension fields
of K. To this end, let us introduce some notions.

Definition 1.4. Write k for the residue field of R. [So k is separably closed.] Suppose that R is a
discrete valuation ring, and that k is of positive characteristic p > 0.

(i) Let S ⊆ R× be a subset of R×. Then we shall say that S is a p-basis-lifting of R if S ⊆ R×

maps bijectively onto a p-basis of k×.
(ii) Let S ⊆ R× be a subset of R×. Then we shall say that S is a sub-p-basis-lifting of R if S is

contained in a p-basis-lifting of R.
(iii) Let n be a positive integer, and let S be a sub-p-basis-lifting of R. Then we shall say

that an algebraic extension field of K is of type (n,S) (respectively, of type (∞,S)) if there
exist, for each s ∈ S, a pn-th root sn ∈ K of s ∈ S (respectively, a sequence (sn)n≥0 ⊆ K
that satisfies s = s0 and sp

n+1 = sn for each n ≥ 0) such that the extension field coincides
with the algebraic extension field obtained by adjoining, to K, the subset {sn}s∈S ⊆ K
(respectively, the subset {sn}s∈S,n≥0 ⊆ K). Note that one verifies easily that an arbitrary
algebraic extension field of K of type (n,S) or of type (∞,S) is weakly unramified over K.
Note also that if S is finite, then an arbitrary algebraic extension field of K of type (n,S)
is finite over K.

(iv) Let S be a sub-p-basis-lifting of R. Then S is admissible if an arbitrary algebraic extension
field of K of type (∞,S) contained in K is admissible.

Lemma 1.5. In the situation of Definition 1.4, the following assertions hold:
(i) An arbitrary p-basis-lifting is admissible.
(ii) There exist a positive integer n, a finite sub-p-basis-lifting S, and an algebraic extension

field of K of type (n,S) contained in K that is admissible.
(iii) Suppose that K contains a primitive p-th root of unity [which thus implies that K is of

characteristic zero]. Let S be a p-basis-lifting of R, and let S1, S2 be subsets of S such that
S1 ∩S2 = /0. For each i ∈ {1,2}, let Ki be an algebraic extension field of K of type (∞,Si)
contained in K. Then the equality K = K1 ∩K2 holds.

Proof. First, we verify assertion (i). One verifies easily that if S is a p-basis-lifting of R, then the
residue field of the normalization of R in an arbitrary algebraic extension field of K of type (∞,S)
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is algebraically closed. Thus, it follows from [2], Theorem 2.4, that such an extension field is
admissible. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let T be a p-basis-lifting of R, and let KT be an algebraic extension
field of K of type (∞,T ) contained in K. Then observe that it follows immediately from [11],
Théorème 3.4.1, that an arbitrary stable curve over a Henselian local ring is of finite presentation
over the Henselian local ring. In particular, by descending, to the normalization of R in a suitable
intermediate field of KT/K, the stable curve over the normalization of R in KT that extends the
smooth curve X ×K KT over KT [cf. assertion (i)], one may conclude that assertion (ii) holds. This
completes the proof of assertion (ii). Assertion (iii) follows immediately from Kummer theory,
together with the various definitions involved. This completes the proof of Lemma 1.5. □

Now let us give a proof of Theorem A in the case where R is a discrete valuation ring only
essentially by means of some results of [2] and some arguments concerning weakly unramified
algebraic extension fields of K discussed in Lemma 1.5:

Proof of Theorem A in the case where R is a discrete valuation ring. Suppose that R is a discrete
valuation ring. Write k for the residue field of R and p for the characteristic of k. Thus, since [we
have assumed that] R is strictly Henselian, the field k is separably closed. If p = 0, then Theorem A
follows from [2], Theorem 2.4. Suppose that p > 0. Let S be a p-basis-lifting of R. For each sub-
p-basis-lifting U of R, let KU be an algebraic extension field of K of type (∞,U) contained in K.
Recall from Lemma 1.5, (i), that KS is admissible.

First, suppose that K is of positive characteristic. Then it is well-known [cf., e.g., [6], Chapter
10, Lemma 3.32] that there exists a separable algebraic extension field of K contained in K such
that the residue field of the normalization of R in this extension field is algebraically closed, which
thus [cf. [2], Theorem 2.4] implies that this extension field of K is admissible. Thus, since [it is
immediate that] the extension field KS is purely inseparable over K, it follows from Lemma 1.3 that
K is admissible, as desired.

Next, suppose that K is of characteristic zero. Let us first observe that it follows immediately
from Lemma 1.3 and Lemma 1.5, (ii), that, by considering the intersection of the admissible alge-
braic extension fields of K contained in K, one may conclude that there exists a unique minimal
admissible algebraic extension field of K contained in K, which is necessarily finite and weakly
unramified over K. In particular, it follows from Lemma 1.3 that, to verify the admissibility of
K, we may assume without loss of generality, by replacing K by the finite extension field of K
obtained by adjoining a primitive p-th root of unity in K, that K contains a primitive p-th root of
unity.

Let π be a prime element of R, U a sub-p-basis-lifting of R, and u an element of U . Write
F1

def
= {u}, F2

def
= {(1+π) · u}, V def

= U \F1, and W def
= V ∪F2. Then it is immediate that F1, F2, V ,

and W are sub-p-basis-liftings of R. Write RV for the normalization of R in KV . [So π ∈ R ⊆ RV is
a prime element of RV .] Now we claim that

if the sub-p-basis-liftings U and W are admissible, then the sub-p-basis-lifting V is
admissible.

Indeed, observe that, to verify the admissibility of KV , we may assume without loss of generality
that the extension fields KU , KW are obtained by adjoining, to KV , subsets {un}n≥0, {wm}m≥0 ⊆ K
that satisfy the conditions that u0 = u, up

n+1 = un, w0 = (1+π) ·u, wp
m+1 = wm for each n, m ≥ 0,

respectively. Next, let us observe that it follows from Lemma 1.3 that KU ∩KW is admissible.
Assume that KV ̸= KU ∩KW . Then it follows immediately from Kummer theory — together with
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our assumption that K, hence also KV , contains a primitive p-th root of unity — that the element
1+ π ∈ R×

V is contained in (K×
V )p. On the other hand, it follows immediately from the [easily

verified] injectivity of the p-th power endomorphism of the residue field of RV and the [easily
verified] fact that the module (1+πRV )/(1+π2RV ) is annihilated by p that 1+π /∈ (K×

V )p. In
particular, we obtain that KV = KU ∩KW , which thus implies that KV is admissible, as desired.

Next, we claim that
if F is a finite subset of S, then the sub-p-basis-lifting S\F is admissible.

Indeed, this claim follows immediately, by induction on #F , from Lemma 1.5, (i), and the claim of
the preceding paragraph, together with the observation that, in the preceding paragraph, if U = S,
then W is a p-basis-lifting of R.

Next, let us observe that it follows from Lemma 1.5, (ii), that there exists a finite subset S0 ⊆ S
of S such that KS0 is admissible. On the other hand, it follows from the claim of the preceding
paragraph that KS\S0 is admissible. In particular, it follows from Lemma 1.3 that KS0 ∩KS\S0 , hence
[cf. Lemma 1.5, (iii)] also K, is admissible, as desired. This completes the proof of Theorem A in
the case where R is a discrete valuation ring. □

Let us return to our discussion of Theorem A in the general situation.

Proposition 1.6. Let R0 be an excellent Henselian normal Noetherian local domain. Write K0 for
the field of fractions of R0. Let K̃0 be a separable closure of K0. Write GK0

def
= Gal(K̃0/K0) for the

absolute Galois group of K0 determined by the separable closure K̃0 and IK0 ⊆ GK0 for the inertia
subgroup of GK0 . Let A0 be an abelian variety over K0, and let l be a prime number invertible in
R0. Suppose that A0 extends to a semi-abelian scheme over R0. Then the natural continuous action
of IK0 on the group of l-torsion points A0[l](K̃0) of A0 is unipotent.

Proof. Write R̂0 for the completion of R0. Then since R0 is excellent, it follows from [4], Scholie
7.8.3, (iii), (v), that R̂0 is a [necessarily excellent] complete normal Noetherian local domain. Write
K̂0 for the field of fractions of R̂0, GK̂0

for the absolute Galois group of K̂0 determined by some

separable closure of K̂0 that contains K̃0, and IK̂0
⊆ GK̂0

for the inertia subgroup of GK̂0
. Now

observe that since the field K0 is separably closed in the extension field K̂0 [cf. our assumption
that R0 is Henselian], the natural homomorphism GK̂0

→ GK0 , hence [cf. our assumption that R0 is
Henselian] also the natural homomorphism IK̂0

→ IK0 , is surjective. Thus, to verify Proposition 1.6,

we may assume without loss of generality, by replacing R0 by R̂0, that R0 is complete. Then the
desired unipotency follows immediately from the theory of Raynaud extensions [cf., e.g., [3],
Chapter II, §1; [3], Chapter III, Corollary 7.3]. This completes the proof of Proposition 1.6. □
Proposition 1.7. Let A be an abelian variety over K, and let l be a prime number invertible in R.
Suppose that A extends to a semi-abelian scheme over R. Then the natural continuous action of
GK on the group of l-torsion points A[l](K̃) of A is unipotent. In particular, this natural continuous
action factors thorough a finite l-group of GK .

Proof. Let us first observe that it follows immediately from [11], Théorème 3.4.1, that an arbitrary
semi-abelian scheme over a Henselian local ring is of finite presentation over the Henselian local
ring. Thus, one verifies immediately [cf., e.g., [4], Scholie 7.8.3, (ii), (iii)] that there exist an
excellent Noetherian domain R0, an injective homomorphism R0 ↪→ R of rings, a semi-abelian
scheme B0 over R0, and an isomorphism A ∼→ B0 ×R0 K over K. Since R is normal, and R0 is
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excellent, we may assume without loss of generality [cf. [4], Scholie 7.8.3, (ii), (vi)], by replacing
R0 by the normalization of R0, that R0 is normal. Moreover, we may also assume without loss of
generality [cf. [4], Scholie 7.8.3, (ii)], by replacing R0 by the localization of R0 at the prime ideal
determined by the maximal ideal of R, that the ring R0 is local, and the homomorphism R0 ↪→ R
is local. In particular, since R is Henselian, we may also assume without loss of generality [cf.
[5], Théorème 18.6.6, (v); [5], Théorème 18.6.9, (i); [5], Corollaire 18.7.6], by replacing R0 by the
Henselization of R0, that R0 is Henselian. Then the desired unipotency follows immediately from
Proposition 1.6. This completes the proof of Proposition 1.7. □
Definition 1.8. If l is an odd prime number invertible in R, then we shall write Mg[l] for the moduli
stack of smooth curves of genus g over R equipped with Teichmüller structures of level l and M g[l]
for the normalization of M g in the function field of Mg[l]. Recall that it is well-known [cf., e.g.,
[10], Remark 2.3.7] that the stack M g[l] is a scheme and is proper over R.

We complete the proof of Theorem A as follows:

Proof of Theorem A. Let l1, l2 be distinct odd prime numbers invertible in R. Let i be an element
of {1,2}. Write J(X)[li] for the finite étale group scheme over K of li-torsion points of J(X). Then
it follows from Proposition 1.7 that there exists a finite extension field Ki of K of degree a power
of li contained in K such that J(X)[li]×K Ki is a constant group scheme over Ki. In particular, we
obtain a Ki-valued point of Mg[li] that lifts the Ki-valued point of Mg that classifies the smooth
curve X ×K Ki over Ki. Write Ri for the normalization of R in Ki. Then since M g[li] is a proper
scheme over R, it follows from the valuative criterion for properness that this resulting Ki-valued
point of Mg[li] extends to an Ri-valued point of M g[li], which thus implies that the finite extension
field Ki of K is admissible. Now since [it is immediate from the fact that the extension degree of
Ki/K is a power of li that] the equality K = K1 ∩K2 holds, we conclude from Lemma 1.3 that K is
admissible, as desired. This completes the proof of Theorem A. □

2. COUNTER-EXAMPLE IN A HIGHER DIMENSIONAL BASE CASE

In the present §2, we give a proof of Theorem B. Let g ≥ 3 be an integer, and let k be an
algebraically closed field of characteristic zero.

Definition 2.1. We shall write
• M g for the moduli stack of stable curves of genus g over k,
• Mg ⊆ M g for the open substack of M g that classifies smooth curves of genus g over k,
• X ⊆ M g for the open substack of M g that classifies stable curves of genus g over k

whose dual graphs are trees,
• Ag for the moduli stack of principally polarized abelian varieties of dimension g over k,

and
• T : X → Ag for the [extended] Torelli map [cf., e.g., [7], §1.3].

We shall also write
• A for the moduli stack of principally polarized abelian varieties of dimension g over k

equipped with level three structures,
• X def

= X ×Ag A for the fiber product of the Torelli map X → Ag and the natural finite
étale covering A → Ag,

• T : X → A for the base-change of T by the natural finite étale covering A → Ag, and
6



• M for the normalization of M g in the function field of X .
In particular, we have a commutative diagram of stacks over k

A

��

XToo � � //

��

M

��

Ag X
T

oo � � // Mg

— where the vertical arrows are finite, and the right-hand horizontal arrows are the natural open
immersions. Observe that the stacks A and M are schemes [cf., e.g., [3], Chapter IV, Remarks 6.2,
(c); [10], Remark 2.3.7], which thus implies that the stack X is a scheme.

Let us recall the following well-known facts:

Lemma 2.2. For a k-valued point x ∈ M g(k) of M g, write C(x) for the stable curve classified
by x ∈ M g(k) and J(x) for the Jacobian of the stable curve C(x) [cf., e.g., the discussion at the
beginning of [1], §9.2]. Then the following assertions hold:

(i) Let x be a k-valued point of M g. Then the Jacobian J(x) is an abelian variety over k if
and only if x is a k-valued point of X . Moreover, in this situation, the Jacobian J(x) is
isomorphic, as a principally polarized abelian variety over k, to the fiber product over
k of the Jacobians of the irreducible components [each of which is necessarily a smooth
curve over k] of the stable curve C(x).

(ii) Let x1, x2 be k-valued points of X . Suppose that the normalization of C(x1) is isomorphic
to the normalization of C(x2) over k. Then J(x1) is isomorphic, as a principally polarized
abelian variety over k, to J(x2).

(iii) The Torelli map T : X → Ag is proper and restricts to a quasi-finite morphism Mg →
Ag. In particular, the morphism T : X → A is proper and generically quasi-finite.

(iv) There exists a k-valued point of Ag at which the fiber of the Torelli map T : X → Ag is
of positive dimension.

Proof. Assertion (i) follows from [1], §9.2, Example 8. Assertion (ii) is an immediate consequence
of assertion (i). Assertion (iii) follows from [7], §1.3, and the Torelli theorem.

Finally, we verify assertion (iv). Let us recall that we have assumed that g ≥ 3. Thus, by
considering various stable curves of genus g over K [necessarily classified by k-valued points of
X ] obtained by glueing two fixed smooth curves of genus 1, g− 1 over K, one may conclude
that this assertion follows immediately from assertion (ii), together with the well-known [cf., e.g.,
[2], Theorem 1.11] finiteness of the automorphism groups of smooth curves of genus ≥ 2. This
completes the proof of assertion (iv), hence also of Lemma 2.2. □

We complete the proof of Theorem B as follows:

Proof of Theorem B. Write Z → A for the finite morphism obtained by forming the normalization
in the function field of X of the scheme-theoretic image of T : X → A. In particular, the proper
morphism T : X → A admits a factorization

X
TZ // Z // A

— where the first arrow TZ is proper and birational [cf. Lemma 2.2, (iii)]. Thus, it follows from
Lemma 2.2, (iv), that there exists a closed point z ∈ Z at which the fiber of TZ is of positive
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dimension. Write R def
= OZ,z, S def

= Spec(R), η for the generic point of S, R̂ for the completion of R,

Ŝ def
= Spec(R̂), and η̂ for the generic point of Ŝ. Then it follows immediately from the fact that TZ is

birational, together with the various definitions involved, that there exists a commutative diagram
of schemes

η̂ //

��

η //

��

X

TZ
��

T

��=
==

==
==

=

Ŝ // S // Z // A.

Write

C // η̂

for the smooth curve classified by the composite η̂ → η → X (→ X ⊆ M g). Then one verifies
easily from the commutativity of the above diagram that the abelian scheme over Ŝ classified by the
composite Ŝ → S → A (→ Ag) restricts to the Jacobian of this smooth curve C → η̂ . In particular,
to verify Theorem B, it suffices to verify that the smooth curve C over η̂ does not extend to a stable
curve over Ŝ. To this end, in the remainder of the present proof, assume that

the smooth curve C over η̂ extends to a stable curve over Ŝ.

Next, let us observe that it follows immediately from Lemma 2.2, (i), that the resulting stable
curve over Ŝ [i.e., that extends the smooth curve C over η̂ ] determines a morphism Ŝ → X over
Z, hence also a splitting s : Ŝ → Ŷ of the left-hand vertical arrow of the following commutative
diagram of schemes

Ŷ def
= Ŝ×Z X //

��

Y def
= S×Z X //

��

X

TZ

��
Ŝ // S // Z

— where the squares are cartesian. Write Y for the fiber of TZ at z ∈ Z. Then Y is of positive
dimension [cf. our choice of z ∈ Z] and may be identified with the fibers at the closed points of
S, Ŝ of the morphisms Y → S, Ŷ → Ŝ [i.e., that appear in the above diagram], respectively. Write,
moreover, y0 ∈ Y for the image of the closed point of Ŝ by the splitting s. [So Im(s)∩Y = {y0}.]
Fix a closed point y1 of Y \{y0} [which is nonempty — cf. the fact that Y is of positive dimension].

Next, let us observe that since TZ is birational, there exists a nonempty open subscheme V ⊆ Z
such that TZ induces an isomorphism T−1

Z (V )
∼→ V . Fix such an open subscheme V ⊆ Z and a

closed point x ∈ T−1
Z (V ). Then since X is irreducible [cf. [2], Theorem 5.2], it follows immediately

from a similar argument to the argument applied in the proof of [8], p.56, Lemma [i.e., essentially
proved by Bertini’s theorem], that there exists an irreducible closed subscheme D⊆X of dimension
one such that y0 ̸∈ D, y1 ∈ D, and x ∈ D. Write ηD for the generic point of D. Now we have the

8



following commutative diagram of schemes

DŜ
def
= Ŝ×Z D //

� _

��

DS
def
= S×Z D //

� _

��

D� _

��
Y � � //

��

Ŷ //

��

Y //

��

X

TZ

��
Spec(k(z)) �

� // Ŝ // S // Z

— where we write k(z) for the residue field of Z at z, and the squares are cartesian, and the upper
vertical and left-hand horizontal arrows are the natural closed immersions.

Next, let us observe that since y1 ∈ D, the inclusion ηD ∈ DS (⊆ D) holds. On the other hand,
since x ∈ D, the inclusion ηD ∈ T−1

Z (V ) holds. In particular, since the morphism TZ induces an
isomorphism T−1

Z (V )
∼→V , one verifies immediately, by considering the base-change of the above

diagram by the natural open immersion V ↪→ Z, that every point η ′ ∈ DŜ (⊆ Ŷ ) that maps to
ηD ∈ DS by the morphism DŜ → DS is contained in the image of the splitting s : Ŝ → Ŷ . Fix such
a point η ′ ∈ DŜ and write F ⊆ DŜ for the closure of η ′. Note that since TZ is proper, the morphism
Ŷ → Ŝ is proper. Thus, the image Im(s) ⊆ Ŷ is a closed subset, which thus [cf. the inclusion
η ′ ∈ Im(s)] implies the inclusion F ⊆ Im(s). Moreover, the properness of the morphism Ŷ → Ŝ
also implies that F ∩Y ̸= /0. In particular, we obtain that /0 ̸= F ∩Y ⊆ Im(s)∩Y = {y0}, which
thus implies that y0 ∈ F ∩Y ⊆ DŜ ∩Y = D∩Y ⊆ D. However, this contradicts our choice of D.
Therefore, we conclude that the smooth curve C over η̂ does not extend to a stable curve over Ŝ.
This completes the proof of Theorem B. □
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