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Abstract. Let p, l be distinct prime numbers. A tripod-degree over p at l is defined
to be an l-adic unit obtained by forming the image, by the l-adic cyclotomic character,
of some continuous automorphism of the geometrically pro-l fundamental group of a
split tripod over a finite field of characteristic p. The notion of a tripod-degree plays an
important role in the study of the geometrically pro-l anabelian geometry of hyperbolic
curves over finite fields, e.g., in the theory of cuspidalizations of the geometrically pro-l
fundamental groups of hyperbolic curves over finite fields. In the present paper, we study
the tripod-degrees. In particular, we prove that, under a certain condition, the group of
tripod-degrees over p at l coincides with the closed subgroup of the group of l-adic units
topologically generated by p. As an application of this result, we also conclude that,
under a certain condition, the natural homomorphism from the group of automorphisms
of the split tripod to the group of outer continuous automorphisms of the geometrically
pro-l fundamental group of the split tripod that lie over the identity automorphism of
the absolute Galois group of the basefield is surjective.
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Introduction

Let p, l be distinct prime numbers, and let Fp be an algebraic closure of the finite field

Fp
def
= Z/pZ with p elements. Write T for the hyperbolic curve over Fp defined by

T
def
= P1

Fp
\ {0, 1,∞},

i.e., a split tripod over Fp. Write, moreover, ΓFp

def
= Gal(Fp/Fp) for the absolute Galois

group of Fp determined by the algebraic closure Fp, ∆T for the pro-l geometric fun-
damental group of T [i.e., the maximal pro-l quotient of the étale fundamental group
πét
1 (T ×Fp Fp) of T ×Fp Fp], and ΠT for the geometrically pro-l fundamental group of T

[i.e., the quotient of the étale fundamental group πét
1 (T ) of T by the kernel of the natu-

ral surjective continuous homomorphism πét
1 (T ×Fp Fp) ↠ ∆T — cf., e.g., the discussion

2020 Mathematics Subject Classification. 14H30.
Key words and phrases. anabelian geometry, hyperbolic curve, tripod, finite field, tripod-degree,
Jacobi sum.
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entitled “Fundamental groups” in [1], §0]. Thus, we have a natural exact sequence of
profinite groups

1 // ∆T
// ΠT

// ΓFp
// 1.

Then one may prove [cf., e.g., Lemma 1.2, (iii)] that every continuous automorphism of
ΠT maps a cuspidal inertia subgroup of ∆T bijectively to a cuspidal inertia subgroup of
∆T . Write

Aut∗ΓFp
(ΠT ) ⊆ AutΓFp

(ΠT )

for the subgroup consisting of continuous automorphisms of ΠT over ΓFp that determine
the identity automorphism of the set of conjugacy classes of cuspidal inertia subgroups of
∆T . Moreover, one may also prove [cf., e.g., Remark 4.2.2] that, for each α ∈ Aut∗ΓFp

(ΠT ),

there exists a unique element CycT (α) ∈ Z×
l of Z×

l such that the continuous action of α
on the topological abelianization of ∆T is given by the multiplication by CycT (α). Thus,
we have a homomorphism

CycT : Aut
∗(ΠT ) // Z×

l ,

i.e., the l-adic cyclotomic character associated to ΠT [cf. Definition 1.3, (ii); also Re-
mark 4.2.2]. We shall write

Tpdp,l
def
= CycT

(
Aut∗ΓFp

(ΠT )
)
⊆ Z×

l

for the image of Aut∗ΓFp
(ΠT ) by CycT [cf. Definition 4.2] and refer to an element of Tpdp,l

as a tripod-degree over p at l [cf. [1], Definition 3.1]. The notion of a tripod-degree plays an
important role in the study of the geometrically pro-l anabelian geometry of hyperbolic
curves over finite fields, e.g., in the theory of cuspidalizations of the geometrically pro-l
fundamental groups of hyperbolic curves over finite fields [cf. [1], [5], [9]]. In the present
paper, we study the tripod-degrees. More precisely, in the present paper, we completely
determine the set of tripod-degrees under a certain condition. The main result of the
present paper is as follows [cf. Theorem 4.6]. Write

〈p〉 ⊆ Z×
l

for the closed subgroup topologically generated by p ∈ Z×
l :

Theorem A. Suppose that one of the following two conditions is satisfied:

• The equality 〈p〉 = Z×
l holds, or, equivalently, the group (Z/l2Z)× (respectively,

(Z/8Z)×) is generated by the image of p if l 6= 2 (respectively, l = 2).
• The element −1 ∈ Z×

l is not contained in the closed subgroup 〈p〉 ⊆ Z×
l .

Then the equality

Tpdp,l = 〈p〉
holds.

One main application of this main result of the present paper is the following result
concerning the geometrically pro-l anabelian geometry of split tripods over finite fields
[cf. Corollary 4.7]. Write

Aut(T )

for the group of automorphisms of T and

OutΓFp
(ΠT )

def
= AutΓFp

(ΠT )/Inn(ΠT )
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for the group of outer continuous automorphisms of ΠT that lie over the identity auto-
morphism of the abelian profinite group ΓFp .

Theorem B. Suppose that one of the following two conditions is satisfied:

• The equality 〈p〉 = Z×
l holds, or, equivalently, the group (Z/l2Z)× (respectively,

(Z/8Z)×) is generated by the image of p if l 6= 2 (respectively, l = 2).
• The element −1 ∈ Z×

l is not contained in the closed subgroup 〈p〉 ⊆ Z×
l .

Then the natural homomorphism

Aut(T ) // OutΓFp
(ΠT )

is an isomorphism.

Note that a similar bijectivity to the bijectivity discussed in this main application in
the case of étale fundamental groups (respectively, of geometrically pro-Σ fundamental
groups for suitable sets Σ of prime numbers) [i.e., as opposed to the case of geometrically
pro-l fundamental groups discussed in this main application] has been discussed in [8],
Theorem 0.6 (respectively, [7], Theorem D).
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1. Actions on Cusps and Cyclotomes

In the present §1, we discuss the continuous actions of a continuous automorphism of
the geometrically pro-l fundamental group of a hyperbolic curve over a finite field on the
set of cusps and on the associated cyclotome [cf. Definition 1.3 below].

In the present §1, let p, l be distinct prime numbers, F a finite field of characteristic p,
and X a hyperbolic curve over F. Write

• X+ for the smooth compactification of X [so X+ is a projective smooth curve
over F],
• gX

def
= dimF(H

1(X+,OX+)) for the genus of X+,
• ΠX for the geometrically pro-l fundamental group of X relative to some choice of
basepoint,
• ΠX+ for the quotient of ΠX by the normal closed subgroup normally topologically
generated by the cuspidal inertia subgroups of ΠX [so ΠX+ is none other than the
geometrically pro-l fundamental group of X+ relative to an appropriate choice of
basepoint],
• F for the algebraic closure of F determined by the basepoint used so as to define
ΠX ,
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• ΓX
def
= Gal(F/F) for the absolute Galois group of F determined by the algebraic

closure F,
• SX

def
= X+(F) \X(F) for the set of [F-valued] cusps of X,

• rX
def
= #SX for the number of cusps of X [so 2− 2gX − rX < 0],

• ∆X
def
= Ker(ΠX ↠ ΓX), ∆X+

def
= Ker(ΠX+ ↠ ΓX) [so ∆X , ∆X+ are none other

than the pro-l geometric fundamental groups of X, X+ relative to appropriate
choices of basepoints, respectively], and

• ΛF for the pro-l cyclotome associated to F, i.e., ΛF
def
= lim←−N

µlN (F) — where the
projective limit is taken over the positive integers N .

Thus, we have a commutative diagram of profinite groups

1 // ∆X
//

����

ΠX
//

����

ΓX
// 1

1 // ∆X+ // ΠX+ // ΓX
// 1

— where the horizontal sequences are exact, and the vertical arrows are the natural
surjective continuous homomorphisms. Write, moreover,

• ρX : ΓX → Out(∆X) for the outer action determined by the upper horizontal
sequence of the above diagram and
• ΛX for the pro-l cyclotome associated to X, i.e., the cyclotome [cf. [3], Definition
3.8, (i)] associated to the semi-graph of anabelioids of pro-l PSC-type [with no
nodes] that arises from the hyperbolic curve X ×F F over F.

In particular:

(a) If rX = 0, then

ΛX
def
= HomZl

(
H2(∆X ,Zl),Zl

)
[cf. [3], Theorem 3.7, (i)].

(b) The outer action ρX : ΓX → Out(∆X) determines a natural structure of ΓX-
module on ΛX . Moreover, the cyclotome ΛX is isomorphic, as an abstract ΓX-
module, to the cyclotome ΛF [cf. [3], Corollary 3.9, (ii), (iii); also (a)], which thus
implies that the cyclotome ΛX is isomorphic, as an abstract module, to Zl.

Definition 1.1. We shall say that the hyperbolic curve X over F is split if the natural
inclusion X+(F) \X(F) ↪→ SX is bijective, i.e., every cusp of X is F-rational.

Lemma 1.2. The following assertions hold:

(i) The natural [necessarily surjective] map from SX to the set of ∆X-conjugacy
classes of cuspidal inertia subgroups of ∆X is bijective.

(ii) Every continuous automorphism of ΠX restricts to a continuous automorphism
of the closed subgroup ∆X ⊆ ΠX . In particular, every continuous automorphism
of ΠX is an automorphism over some continuous automorphism of ΓX .

(iii) Every continuous automorphism of ΠX determines an automorphism of the set
of cuspidal inertia subgroups of ∆X .

Proof. Assertion (i) follows immediately from the well-known structure of the pro-l geo-
metric fundamental group of a hyperbolic curve over a field of characteristic 6= l [cf. also
the exact sequence (1-5) given in the discussion preceding [8], Corollary 1.4]. Assertion
(ii) follows from a similar argument to the argument given in the discussion preceding
[1], Remark 5, i.e., from the fact that the quotient ΠX ↠ ΓX of ΠX may be characterized
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as the [uniquely determined] maximal abelian torsion-free quotient of ΠX . Assertion (iii)
follows — in light of the [easily verified] openness of the image, in Z×

l , of the l-adic cy-
clotomic character associated to a finite field of characteristic 6= l — from [4], Corollary
2.7, (i), together with assertion (ii). This completes the proof of Lemma 1.2. □
Definition 1.3.

(i) It follows from Lemma 1.2, (i), (ii), (iii), that we obtain a homomorphism

Aut(ΠX) // Aut(SX).

We shall write
CspX

for this homomorphism.
(ii) It follows from Lemma 1.2, (ii), (iii), that we obtain a homomorphism

Aut(ΠX) // Aut(ΛX) = Z×
l

[cf. (b) in the discussion preceding Definition 1.1]. We shall write

CycX

for this homomorphism and refer to CycX as the l-adic cyclotomic character
associated to ΠX .

Remark 1.3.1. One verifies easily that each of the two homomorphisms CspX , CycX
factors through the quotient Aut(ΠX)/Inn(∆X).

Definition 1.4.

(i) We shall write

Aut∗(ΠX)
def
= Ker(CspX)

⊇ Aut∗ΓX
(ΠX)

def
= Aut∗(ΠX) ∩ AutΓX

(ΠX).

(ii) We shall write

Out∗(∆X) ⊆ Out(∆X)

for the subgroup of Out(∆X) consisting of outer continuous automorphisms of
∆X which fix each of the ∆X-conjugacy classes of cuspidal inertia subgroups of
∆X .

Remark 1.4.1.

(i) It is well-known [cf., e.g., [8], Corollary 1.4, (ii); [8], Proposition 1.11] that ∆X

is center-free. Thus, it is also well-known [cf., e.g., [6], Corollary 1.5.7] that the
natural homomorphism

AutΓX
(ΠX)/Inn(∆X) // Out(∆X)

determines an isomorphism

AutΓX
(ΠX)/Inn(∆X)

∼ // ZOut(∆X)

(
Im(ρX)

)
.

(ii) It is immediate that the isomorphism of (i) restricts to an isomorphism

Aut∗ΓX
(ΠX)/Inn(∆X)

∼ // ZOut(∆X)

(
Im(ρX)

)
∩Out∗(∆X).
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Remark 1.4.2.

(i) Since ΓX is abelian, the subgroup Inn(ΠX) ⊆ Aut(ΠX) is contained in the sub-
group AutΓX

(ΠX) ⊆ Aut(ΠX):

Inn(ΠX) ⊆ AutΓX
(ΠX).

(ii) It follows from Remark 1.3.1 that the composite

ΠX
// // Inn(ΠX)

� � // AutΓX
(ΠX)

CspX // Aut(SX)

— where the first arrow is the natural surjective homomorphism, and the second
arrow is the inclusion discussed in (i) — factors through the natural surjective
continuous homomorphism ΠX ↠ ΓX . Moreover, one verifies immediately that
the following three conditions are equivalent:
• The resulting homomorphism ΓX → Aut(SX) is trivial.
• The image Im(ρX) ⊆ Out(∆X) is contained in Out∗(∆X).
• The hyperbolic curve X is split.

(iii) It follows from Remark 1.3.1 that the composite

ΠX
// // Inn(ΠX)

� � // AutΓX
(ΠX)

CycX // Z×
l

— where the first arrow is the natural surjective homomorphism, and the second
arrow is the inclusion discussed in (i) — factors through the natural surjective
continuous homomorphism ΠX ↠ ΓX . Moreover, as discussed in (b) in the
discussion preceding Definition 1.1, the resulting homomorphism ΓX → Z×

l is
none other than the usual l-adic cyclotomic character associated to F, i.e., the
unique continuous character that maps the #F-th power Frobenius element of
ΓX to #F ∈ Z×

l . In particular, the inclusions

〈#F〉 ⊆ CycX
(
AutΓX

(ΠX)
)
⊆ Z×

l

— where we write 〈#F〉 ⊆ Z×
l for the closed subgroup topologically generated

by #F ∈ Z×
l — hold.

Remark 1.4.3. It follows from [8], Remark 6.4, that every continuous automorphism
of the étale fundamental group πét

1 (X) of X [i.e., as opposed to the geometrically pro-
l fundamental group ΠX of X] lies over the identity automorphism of the “arithmetic
quotient”, i.e., over the quotient ΓX . On the other hand, it follows from [1], Remark 10,
(ii), that, in general, the equality Aut(ΠX) = AutΓX

(ΠX) does not hold.

2. Cuspidally Normalized and Cuspidally Quasi-normalized Functions

In the present §2, we introduce and consider the notion of a cuspidally normalized
function [cf. Definition 2.2, (i), below] and the notion of a cuspidally quasi-normalized
function [cf. Definition 2.2, (ii), below].
In the present §2, we maintain the notational conventions introduced at the beginning

of the preceding §1. In particular, we have distinct prime numbers p, l and a hyperbolic
curve X over a finite field F. Suppose, moreover, that

(a) the hyperbolic curve X is split [cf. Definition 1.1].

For each cusp x ∈ SX ,

(b) let us fix a cuspidal inertia subgroup Ix ⊆ ∆X associated to x ∈ SX .

Moreover,
6



(c) let us fix a(n) [necessarily ΓX-equivariant] isomorphism

ι : ΛF
∼ // ΛX

[cf. (b) in the discussion preceding Definition 1.1].

Definition 2.1.

(i) Let S and T be sets, and let φ : S → T be a map. Suppose that S is finite. Then
we shall write

[Im](φ)
def
=

(
#φ−1({t})

)
t∈T ∈

∏
T

Z.

Note that one verifies easily that if we write [Im](φ) = (nt)t∈T , then the equality
Im(φ) = { t ∈ T |nt 6= 0 } holds.

(ii) Let G be a finite abelian group. Then we shall write

G(l)

for the [uniquely determined] maximal quotient of G of order a power of l.

Definition 2.2. Let f be a rational function on X, and let S ⊆ SX be a subset of SX .

(i) We shall say that f is S-cuspidally normalized if the support of the principal
divisor determined by f is contained in S [which thus implies that the rational
function f is invertible on X — i.e., is contained in O×

X(X)], and, moreover, there
exists a cusp x ∈ S contained in S such that the equality f(x) = 1 holds. We
shall say that f is cuspidally normalized if f is SX-cuspidally normalized.

(ii) We shall say that f is S-cuspidally quasi-normalized if f is obtained by forming
the product of finitely many S-cuspidally normalized functions. We shall say
that f is cuspidally quasi-normalized if f is SX-cuspidally quasi-normalized.

Lemma 2.3. The following assertions hold:

(i) The natural surjective continuous homomorphism ΠX ↠ ΓX and the natural
inclusions Ix ↪→ ΠX [cf. (b) in the discussion preceding Definition 2.1] — where
x ranges over the elements of SX — determine an exact sequence of modules

0 // H1(ΓX ,ΛX) // H1(ΠX ,ΛX) / /
⊕
x∈SX

HomZl
(Ix,ΛX).

(ii) Let x0 ∈ SX be a cusp of X. Write Dx0

def
= NΠX

(Ix0) for the cuspidal decom-
position subgroup of ΠX associated to x0 determined by Ix0. Then the natural
continuous homomorphisms Ix0 ↪→ Dx0 ↪→ ΠX ↠ ΓX determine an exact se-
quence of modules

0 // H1(ΓX ,ΛX) // H1(Dx0 ,ΛX) // HomZl
(Ix0 ,ΛX).

(iii) In the situation of (ii), the synchronization isomorphism Ix0

∼→ ΛX discussed in
[3], Corollary 3.9, (v), determines an isomorphism

HomZl
(Ix0 ,ΛX)

∼ // Zl.
7



In particular, by (i) and (ii), we obtain a commutative diagram

0 // H1(ΓX ,ΛX) // H1(ΠX ,ΛX) //

��

⊕
x∈SX

Zl

��
0 // H1(ΓX ,ΛX) // H1(Dx0 ,ΛX) // Zl

— where the middle vertical arrow is the homomorphism induced by the nat-
ural inclusion Dx0 ↪→ ΠX , and the right-hand vertical arrow is the projection
homomorphism onto the factor labeled by x0 ∈ SX .

Proof. Assertion (i) follows immediately from [5], Proposition 2.1, (ii). Assertions (ii),
(iii) are immediate. □

Definition 2.4. Let x0 ∈ SX be a cusp of X.

(i) We shall write

ordx0 : H
1(ΠX ,ΛX) // Zl

for the composite of the middle vertical arrow H1(ΠX ,ΛX) → H1(Dx0 ,ΛX)
of the diagram of the second display of Lemma 2.3, (iii), and the third arrow
H1(Dx0 ,ΛX)→ Zl of the lower sequence of the diagram of the second display of
Lemma 2.3, (iii).

(ii) We shall write

evx0 : Ker(ordx0) // H1(ΓX ,ΛX)

for the homomorphism determined by the middle vertical arrow H1(ΠX ,ΛX)→
H1(Dx0 ,ΛX) of the diagram of the second display of Lemma 2.3, (iii).

Definition 2.5. Let s be an element of H1(ΠX ,ΛX), and let S ⊆ SX be a subset of SX .

(i) We shall say that s is S-cuspidally normalized if the following two conditions are
satisfied:
• The inclusion s ∈ Ker(ordx) holds for each x ∈ SX \ S.
• There exists a cusp x0 ∈ SX contained in S such that the inclusions s ∈
Ker(ordx0) and s ∈ Ker(evx0) hold.

We shall say that s is cuspidally normalized if s is SX-cuspidally normalized.
(ii) We shall say that s is S-cuspidally quasi-normalized if s is obtained by forming the

product [i.e., if the module operation of H1(ΠX ,ΛX) is written multiplicatively]
of finitely many S-cuspidally normalized cohomology classes in H1(ΠX ,ΛX).
We shall say that s is cuspidally quasi-normalized if s is SX-cuspidally quasi-
normalized.

Lemma 2.6. Write

κX(ι) : O×
X(X) // H1

ét(X,ΛF)
∼ // H1(ΠX ,ΛX)

for the composite of the Kummer homomorphism O×
X(X) → H1

ét(X,ΛF) — i.e., the ho-
momorphism that arises from the Kummer exact sequences on X — and the isomorphism
H1

ét(X,ΛF)
∼→ H1(ΠX ,ΛX) induced by ι [cf. (c) in the discussion preceding Definition 2.1].

Let f ∈ O×
X(X) be an invertible regular function on X, and let x0 ∈ SX be a cusp of X.

Then the following assertions hold:
8



(i) The composite

F× � � // O×
X(X)

κX(ι)
// H1(ΠX ,ΛX)

factors through the natural surjective homomorphism F× ↠ F×(l) [cf. Defini-
tion 2.1, (ii)] and the second arrow H1(ΓX ,ΛX) ↪→ H1(ΠX ,ΛX) of the upper
horizontal sequence of the diagram of the second display of Lemma 2.3, (iii).
Moreover, the resulting homomorphism

F×(l) // H1(ΓX ,ΛX)

is an isomorphism.
(ii) The diagram

O×
X(X) //

κX(ι)
��

Z� _

��
H1(ΠX ,ΛX)

ordx0

// Zl

— where the upper horizontal arrow is the order homomorphism at x0, and the
right-hand vertical arrow is the natural inclusion — commutes up to multiplica-
tion by an element of Z×

l .
(iii) Suppose that the [rational function determined by the invertible regular] function

f is of order zero at x0 [i.e., that f(x0) ∈ F×], which thus implies [cf. (ii)] that
ordx0(κX(ι)(f)) = 0. Then, relative to the isomorphism of the final display of
(i), the equality

κX(ι)
(
f(x0)

)
= evx0

(
κX(ι)(f)

)
holds.

(iv) Let S ⊆ SX be a subset of SX . Suppose that the [rational function deter-
mined by the invertible regular] function f ∈ O×

X(X) is S-cuspidally normal-
ized (respectively, S-cuspidally quasi-normalized). Then the image κX(ι)(f) ∈
H1(ΠX ,ΛX) of f by κX(ι) is an S-cuspidally normalized (respectively, S-cuspidally
quasi-normalized) cohomology class.

Proof. Assertion (i) is a formal consequence of the Kummer theory for the finite field F.
Assertion (ii) follows immediately from the definition of “ordx” given in Definition 2.4,
(i). Assertion (iii) follows immediately from the functoriality of Kummer classes. Finally,
we verify assertion (iv). Let us first observe that it is immediate that, to verify assertion
(iv), it suffices to verify the “non-resp’d portion” of assertion (iv). On the other hand,
this “non-resp’d portion” is a formal consequence of assertions (ii), (iii). This completes
the proof of assertion (iv), hence also of Lemma 2.6. □

Definition 2.7. Let S ⊆ SX be a subset of SX . Then we shall say that an element of
the set

∏
F×(l) Z is S-cuspidally quasi-normalized if the element coincides with “[Im]” [cf.

Definition 2.1, (i)] of either

• the map given by the composite

X(F)
f // F× // // F×(l)

for some S-cuspidally quasi-normalized function f on X or
9



• the map given by the composite

SX \ S
f // F× // // F×(l)

for some S-cuspidally quasi-normalized function f on X.

We shall say that an element of the set
∏

F×(l) Z is cuspidally quasi-normalized if the
element is SX-cuspidally quasi-normalized.

Remark 2.7.1. Let us observe that F×(l) has a natural structure of Zl-module. Thus,
Z×

l naturally acts on F×(l), as well as the set
∏

F×(l) Z [i.e., that appears in Definition 2.7].

The following result is the main result of the present §2.

Theorem 2.8. Let S ⊆ SX be a subset of SX , and let α ∈ AutΓX
(ΠX) be a continuous

automorphism of ΠX over ΓX . Suppose that the automorphism CspX(α) ∈ Aut(SX) of
SX induces the identity automorphism of the subset S ⊆ SX . Then every S-cuspidally
quasi-normalized element of

∏
F×(l) Z is fixed by the natural action [cf. Remark 2.7.1] of

CycX(α) ∈ Z×
l on the set

∏
F×(l) Z.

Proof. We begin the proof of Theorem 2.8 with the following claim:

Claim A: Every S-cuspidally quasi-normalized cohomology class inH1(ΠX ,ΛX)
is fixed by the natural action of α on H1(ΠX ,ΛX).

Indeed, let us first observe that it follows immediately from the various definitions in-
volved that, to verify Claim A, it suffices to verify that every S-cuspidally normalized
cohomology class in H1(ΠX ,ΛX) is fixed by the natural action of α on H1(ΠX ,ΛX). Let
s ∈ H1(ΠX ,ΛX) be an S-cuspidally normalized cohomology class. Thus,

• the inclusion s ∈ Ker(ordx) holds for each x ∈ SX \ S, and
• there exists a cusp x0 ∈ SX contained in S such that the inclusions s ∈ Ker(ordx0)
and s ∈ Ker(evx0) hold.

Next, let us observe that it follows from the exactness of the upper horizontal sequence
of the diagram of the second display of Lemma 2.3, (iii), that the homomorphism∩

x∈(SX\S)∪{x0}

Ker(ordx)
(evx0 ,(ordx)x∈S\{x0}) // H1(ΓX ,ΛX)×

⊕
x∈S\{x0}

Zl

is injective. In particular, it is immediate that, to verify Claim A, the image of s ∈
H1(ΠX ,ΛX) by this injective homomorphism is fixed by the natural action of α, i.e., on the
codomain of this injective homomorphism. On the other hand, since s ∈ Ker(evx0), the
desired assertion follows formally from our assumption that the automorphism CspX(α) ∈
Aut(SX) of SX induces the identity automorphism of the subset S ⊆ SX . This completes
the proof of Claim A.

Write X◦ ⊆ X for the open subscheme of X obtained by forming the complement in
X of [the closed subset of X determined by the finite subset] X(F), i.e.,

X◦ = X \X(F).

Then since X is split [cf. (a) in the discussion preceding Definition 2.1], one verifies easily
that X◦ coincides with X+\X+(F), which thus implies that X◦ is a split hyperbolic curve
over F with SX◦ = X+(F). Moreover, since α is a continuous automorphism over ΓX , it

10



follows immediately from [9], Corollary 4.5, that there exists a continuous automorphism
α◦ of ΠX◦ which fits into a commutative diagram of profinite groups

ΠX◦
α◦

∼
//

����

ΠX◦

����
ΠX α

∼ // ΠX

— where each of the vertical arrows is the ∆X-conjugacy class of the surjective con-
tinuous homomorphisms ΠX◦ ↠ ΠX induced by the open immersion X◦ ↪→ X over F.
In particular, this diagram, together with the synchronization isomorphism ΛX◦

∼→ ΛX

discussed in [3], Corollary 3.9, (ii), induces a commutative diagram of modules

H1(ΠX◦ ,ΛX) H1(ΠX◦ ,ΛX)
Hα◦

∼
oo

H1(ΠX ,ΛX)
?�

OO

H1(ΠX ,ΛX)
?�

OO

Hα

∼oo

—where the upper, lower horizontal arrows are the natural actions of α◦, α onH1(ΠX◦ ,ΛX),
H1(ΠX ,ΛX), respectively, and the vertical arrows are injective [cf. Lemma 2.3, (i)].
Let z be an S-cuspidally quasi-normalized element of the set

∏
F×(l) Z. Thus, there

exists an S-cuspidally quasi-normalized function f on X such that the element z is given
by “[Im]” of either

• the map given by the composite

X(F)
f // F× // // F×(l)

or
• the map given by the composite

SX \ S
f // F× // // F×(l).

Now observe that one verifies immediately from the functoriality of Kummer classes that
the image of κX(ι)(f) ∈ H1(ΠX ,ΛX) in H1(ΠX◦ ,ΛX) coincides with κX◦(ι◦)(f |X◦) —

where we write ι◦ : ΛF
∼→ ΛX◦ for the composite of the fixed isomorphism ι : ΛF

∼→ ΛX

and the inverse of the synchronization isomorphism ΛX◦
∼→ ΛX discussed in [3], Corollary

3.9, (ii). Moreover, since f is S-cuspidally quasi-normalized, it follows from Lemma 2.6,
(iv), that the image κX(ι)(f) ∈ H1(ΠX ,ΛX) is S-cuspidally quasi-normalized. Thus,
it follows from Claim A that κX(ι)(f) ∈ H1(ΠX ,ΛX) is fixed by Hα, which thus [cf.
the above diagram of cohomology modules] implies that κX◦(ι◦)(f |X◦) ∈ H1(ΠX◦ ,ΛX) is
fixed by Hα◦ :

Hα◦
(
κX◦(ι◦)(f |X◦)

)
= κX◦(ι◦)(f |X◦).

Moreover, let us also observe that since α is a continuous automorphism over ΓX [which
thus implies that α◦ is a continuous automorphism over ΓX◦ = ΓX ], for each x ∈ X(F) ⊆
X+(F) = SX◦ , the diagram of modules

Ker(ordCspX◦ (x))
Hα◦

∼
//

evCspX◦ (x)

��

Ker(ordx)

evx
��

H1(ΓX ,ΛX)
CycX(α)

∼ // H1(ΓX ,ΛX)

11



commutes. In particular, it follows immediately from Lemma 2.6, (iii), together with the
various definitions involved, that z ∈

∏
F×(l) Z is fixed by the natural action of CycX(α) ∈

Z×
l on the set

∏
F×(l) Z, as desired. This completes the proof of Theorem 2.8. □

Corollary 2.9. Let α ∈ AutΓX
(ΠX) be a continuous automorphism of ΠX over ΓX .

Suppose that CspX(α) ∈ Aut(SX) is trivial. Then every cuspidally quasi-normalized
element of

∏
F×(l) Z is fixed by the natural action of CycX(α) ∈ Z×

l on the set
∏

F×(l) Z.

Proof. This assertion is none other than Theorem 2.8 in the case where we take the “S”
to be SX . □

3. Jacobi Sums

In the present §3, we recall a result concerning the field obtained by adjoining, to the
field of rational numbers, various Jacobi sums [cf. Theorem 3.2 below].

In the present §3, we maintain the notational conventions introduced at the beginning
of the preceding §2. In particular, we have distinct prime numbers p, l and a finite field
F of characteristic p. Write

• N for the [uniquely determined] nonnegative integer such that #F×(l) = lN ,
• K for the finite Galois extension of the field Q of rational numbers obtained by
adjoining, to Q, a primitive lN -th root of unity,

• G
def
= Gal(K/Q) for the Galois group of the finite Galois extension K/Q, and

• D ⊆ G for the decomposition subgroup associated to p.

For t ∈ (Z/lNZ)×, we shall write

• σt ∈ G for the [uniquely determined] element that induces the t-th power map
on µlN (K).

In particular:

(a) The assignment “t 7→ σt” determines an isomorphism (Z/lNZ)× ∼→ G of groups.
(b) The subgroup D ⊆ G coincides with the subgroup 〈σp〉 ⊆ G generated by σp,

i.e., corresponds, via the isomorphism of (a), to the subgroup 〈p〉 ⊆ (Z/lNZ)×
generated by the image of p.

Moreover, let us fix a homomorphism

χ : F× // K×

whose image coincides with µlN (K) ⊆ K×, i.e., which factors through the natural sur-
jective homomorphism F× ↠ F×(l) and an injective homomorphism F×(l) ↪→ K×.
Following [10], let us define the notion of a Jacobi sum as follows.

Definition 3.1. Let a = (a1, a2) be a pair of integers. Then we shall write

ja
def
= −

∑
x∈F\{0,−1}

χ(x)a1 · χ(−1− x)a2

= −χ(−1)a1+a2
∑

x∈F\{0,1}

χ(x)a1 · χ(1− x)a2 ∈ K

for the Jacobi sum associated to χ and a = (a1, a2) [cf. [10], (I)].

The following result will play an important role in the next §4.
12



Theorem 3.2. Suppose that −1 ∈ (Z/lNZ)× is not contained in the subgroup generated
by the image of p. Suppose, moreover, that, for every proper subfield F′ ⊊ F, the inequality
#(F′)×(l) < lN holds [or, equivalently, the field F is isomorphic to the residue field of the
ring of integers of K by the maximal ideal of residue characteristic p]. Then the equality

Q({j(a1,a2)}a1, a2∈Z) = KD

holds. Put another way, for each t ∈ (Z/lNZ)×, the following two conditions are equiva-
lent:

(1) The element t ∈ (Z/lNZ)× is contained in the subgroup generated by the image
of p.

(2) For each pair a = (a1, a2) of integers, the automorphism σt ∈ G of the field K
fixes the element ∑

x∈F\{0,1}

χ(x)a1 · χ(1− x)a2 ∈ K.

Proof. This assertion is the content of [2], Theorem A, (ii). □

4. Tripod-degrees

In the present §4, we prove the main result of the present paper concerning tripod-
degrees [cf. Theorem 4.6 below]. Moreover, we also prove an application of this main
result to the study of geometrically pro-l anabelian geometry for tripods over finite fields
[cf. Corollary 4.7 below].
In the present §4, we maintain the notational conventions introduced at the beginning

of the preceding §3. In particular, we have distinct prime numbers p, l and a hyperbolic
curve X over a finite field F. Write

• F0 ⊆ F for the [uniquely determined] minimal subfield of F,
• T for the [necessarily split] tripod over F0 defined by

T
def
= P1

F0
\ {0, 1,∞},

• ΠT for the geometrically pro-l fundamental group of T relative to some choice of
basepoint,

• ΓT
def
= Gal(F/F0) for the absolute Galois group of F0 determined by the algebraic

closure F, and
• ∆T

def
= Ker(ΠT ↠ ΓT ) [so ∆T is none other than the pro-l geometric fundamental

group of T relative to an appropriate choice of basepoint].

Suppose, moreover, that the hyperbolic curve X over F is given by T ×F0 F, i.e.,

X = T ×F0 F,

which thus implies that the equality (X+, gX , rX) = (P1
F, 0, 3) holds. In particular, we

have a commutative diagram of profinite groups

1 // ∆X
//

≀
��

ΠX
//

� _

��

ΓX
//

� _

��

1

1 // ∆T
// ΠT

// ΓT
// 1

13



—where the horizontal sequences are exact, the vertical arrows are open injective, and the
right-hand square is cartesian. Let us identify ∆X with ∆T by the natural isomorphism,
i.e., the left-hand vertical arrow of this diagram:

∆X = ∆T .

Write, moreover,

• ρT : ΓT → Out(∆T ) = Out(∆X) for the outer action determined by the lower
horizontal sequence of the above diagram.

Proposition 4.1. The following assertions hold:

(i) The homomorphism

CspX : AutΓX
(ΠX) // Aut(SX)

is surjective.
(ii) The homomorphism

Aut∗ΓX
(ΠX)/Inn(∆X) // Z×

l

determined by CycX [cf. Remark 1.3.1] is injective.
(iii) The group Aut∗ΓX

(ΠX)/Inn(∆X) is abelian.
(iv) The restriction homomorphism

AutΓT
(ΠT ) // AutΓX

(ΠX)

[cf. the diagram in the discussion preceding Proposition 4.1] is an isomorphism.

Proof. Assertion (i) follows immediately from the well-known fact concerning automor-
phisms of X = P1

F \ {0, 1,∞} over F. Assertion (ii) is the content of [1], Remark 6, (iv)
[cf. also the proof of [6], Lemma 2.2.4]. Assertions (iii) is an immediate consequence of
assertion (ii).

Finally, we verify assertion (iv). Let us first observe that it follows from assertion
(i) that, to verify assertion (iv), it suffices to verify the bijectivity of the restriction
homomorphism Aut∗ΓT

(ΠT ) → Aut∗ΓX
(ΠX). Thus, it follows from Remark 1.4.1, (ii),

that, to verify assertion (iv), it suffices to verify that the immediate inclusion

ZOut∗(∆X)

(
Im(ρT )

)
⊆ ZOut∗(∆X)

(
Im(ρX)

)
[cf. also Remark 1.4.2, (ii)] is in fact an equality. On the other hand, it follows from asser-
tion (iii), together with Remark 1.4.1, (ii), that ZOut∗(∆X)(Im(ρX)) is abelian. Moreover,
since ΓT , hence also Im(ρT ), is abelian, the inclusion

Im(ρT ) ⊆ ZOut∗(∆X)

(
Im(ρX)

)
holds. Thus, we conclude that the above inclusion ZOut∗(∆X)

(
Im(ρT )

)
⊆ ZOut∗(∆X)

(
Im(ρX)

)
is an equality, as desired. This completes the proof of assertion (iv), hence also of Propo-
sition 4.1. □
Definition 4.2. We shall write

Tpd = Tpdp,l
def
= CycT

(
Aut∗ΓT

(ΠT )
)
⊆ Z×

l

for the image of Aut∗ΓT
(ΠT ) via CycT . We shall refer to an element of Tpd as a tripod-

degree [over p at l] [cf. [1], Definition 3.1].
14



Remark 4.2.1. It follows immediately from Proposition 4.1, (iv), that the equality

Tpd = CycX
(
Aut∗ΓX

(ΠX)
)

holds.

Remark 4.2.2. One verifies immediately from [3], Corollary 3.9, (v), together with the
the well-known structure of the pro-l geometric fundamental group ∆T of the split tripod
T [cf. also the exact sequence (1-5) given in the discussion preceding [8], Corollary 1.4],
that, for each α ∈ Aut∗ΓT

(ΠT ), the tripod-degree CycT (α) ∈ Tpd is the unique element of

Z×
l such that the continuous action of α on the topological abelianization of ∆T is given

by the multiplication by CycT (α).

Proposition 4.3. Let C be a(n) [arbitrary] hyperbolic curve over a finite field FC of char-
acteristic p. Write FC (respectively, ΠC; ΓC; CycC) for the “FX” (respectively, “ΠX”;
“ΓX”; “CycX”) that occurs in the case where we take the “X” to be C. Then the inclu-
sions

〈#FC〉 �
� //

� _

��

CycC
(
AutΓC

(ΠC)
)

� _

��
〈p〉 � � // Tpd �

� // Z×
l

— where we write 〈#FC〉, 〈p〉 ⊆ Z×
l for the closed subgroups topologically generated by

#FC, p ∈ Z×
l , respectively — hold.

Proof. The inclusions 〈#FC〉 ⊆ 〈p〉, Tpd ⊆ Z×
l are immediate. The inclusions 〈#FC〉 ⊆

CycC(AutΓC
(ΠC)), 〈p〉 ⊆ Tpd follow from Remark 1.4.2, (iii). Thus, to verify Proposi-

tion 4.3, it suffices to verify the inclusion

CycC
(
AutΓC

(ΠC)
)
⊆ Tpd.

Let us observe that since ΠC is topologically finitely generated [cf., e.g., [8], Proposition
1.1, (ii)], one verifies immediately that there exists a characteristic open subgroup of ΠC

such that the “gX” for the connected finite étale covering of C that corresponds to the
characteristic open subgroup is ≥ 2. Thus, it follows immediately from [3], Corollary 3.9,
(iii), that, to verify the inclusion CycC(AutΓC

(ΠC)) ⊆ Tpd, we may assume without loss
of generality, by replacing C by the connected finite étale covering of C that corresponds
to such a characteristic open subgroup of ΠC , that the “gX” for C is ≥ 2. Next, let
us observe that it follows from [3], Corollary 3.9, (ii), together with Lemma 1.2, (iii),
that, to verify the inclusion CycC(AutΓC

(ΠC)) ⊆ Tpd, we may assume without loss of
generality, by replacing C by the “X+” for C, that the “rX” for C is = 0. On the
other hand, the inclusion CycC(AutΓC

(ΠC)) ⊆ Tpd is then — in light of Remark 4.2.1
— a formal consequence of [1], Lemma 4.17. This completes the proof of the inclusion
CycC(AutΓC

(ΠC)) ⊆ Tpd, hence also of Proposition 4.3. □
Definition 4.4. We shall write

Aut(X)

for the group of automorphisms of X [as an abstract scheme, i.e., not necessarily over F]
and

OutΓX
(ΠX)

def
= AutΓX

(ΠX)/Inn(ΠX)

[cf. Remark 1.4.2, (i)]. Thus, we have a natural homomorphism

Aut(X) // OutΓX
(ΠX).
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Proposition 4.5. The following assertions hold:

(i) The homomorphism

AutΓX
(ΠX)/Inn(∆X) // Aut(SX)× Tpd

determined by CspX and CycX [cf. Remark 1.3.1] is an isomorphism. In partic-
ular, we have an isomorphism

OutΓX
(ΠX)

∼ // Aut(SX)× (Tpd/〈#F〉)

— where we write 〈#F〉 ⊆ Tpd for the closed subgroup topologically generated by
#F ∈ Tpd [cf. Proposition 4.3].

(ii) The natural homomorphism Aut(X) → OutΓX
(ΠX) fits into an exact sequence

of finite groups

Aut(X) // OutΓX
(ΠX) // Tpd/〈p〉 // 1

— where we write 〈p〉 ⊆ Tpd for the closed subgroup topologically generated by
p ∈ Tpd [cf. Proposition 4.3].

Proof. Assertion (i) follows immediately from Proposition 4.1, (i), (ii), and Remark 4.2.1.
Assertion (ii) follows immediately from assertion (i), together with the well-known fact
concerning automorphisms of the abstract scheme X = P1

F \ {0, 1,∞}. □
Remark 4.5.1. One verifies easily from Proposition 4.5, (i), that, in general, the natural
homomorphism Aut(X)→ OutΓX

(ΠX) is not injective.

The following result is the main result of the present paper.

Theorem 4.6. Write 〈p〉 ⊆ Z×
l for the closed subgroup topologically generated by p ∈ Z×

l .
Suppose that one of the following two conditions is satisfied:

(1) The equality 〈p〉 = Z×
l holds, or, equivalently, the group (Z/l2Z)× (respectively,

(Z/8Z)×) is generated by the image of p if l 6= 2 (respectively, l = 2).
(2) The element −1 ∈ Z×

l is not contained in the closed subgroup 〈p〉 ⊆ Z×
l .

Then the equality

Tpdp,l = 〈p〉
holds.

Proof. Let us first observe that if condition (1) is satisfied, then the desired equality fol-
lows from Proposition 4.3. In the remainder of the present proof, suppose that condition
(2) is satisfied.

Next, let us observe that it follows from Remark 4.2.1 that, to verify the desired
equality, it suffices to verify the equality

CycX
(
Aut∗ΓX

(ΠX)
)
= 〈p〉.

In the remainder of the present proof, we verify this equality.
Next, let us observe that one verifies easily from Proposition 4.1, (iv), that, to verify

the equality CycX(Aut
∗
ΓX

(ΠX)) = 〈p〉, we may assume without loss of generality, by

replacing F by a suitable finite extension field of F in F, that the nonnegative integer N
introduced in the discussion at the beginning of the preceding §3 [i.e., the nonnegative
integer N such that #F×(l) = lN ] satisfies the condition that

Ker
(
Z×

l ↠ (Z/lNZ)×
)
⊆ 〈p〉.
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Moreover, let us also observe that one verifies easily from Proposition 4.1, (iv), that, to
verify the equality CycX(Aut

∗
ΓX

(ΠX)) = 〈p〉, we may assume without loss of generality,
by replacing F by a suitable subfield of F, that, for every proper subfield F′ ⊊ F, the
inequality #(F′)×(l) < lN holds.

Next, let us observe that since 〈p〉 ⊆ CycX(Aut
∗
ΓX

(ΠX)) [cf. Remark 4.2.1 and Propo-
sition 4.3], one verifies easily that, to verify the equality CycX(Aut

∗
ΓX

(ΠX)) = 〈p〉, it
suffices to verify the following claim:

Claim A: For each α ∈ Aut∗ΓX
(ΠX), the image of CycX(α) ∈ Z×

l in

(Z/lNZ)× ∼→ G [cf. (a) in the discussion preceding Definition 3.1] is con-

tained in the subgroup of G generated by the image of p in (Z/lNZ)× ∼→
G, i.e., in D ⊆ G [cf. (b) in the discussion preceding Definition 3.1].

Recall the fixed homomorphism χ : F× → K×. Write

χ(l) : F×(l)
∼ // µlN (K)

for the isomorphism induced by χ [cf. the discussion preceding Definition 3.1]. Then since
[we have assumed that] condition (2) is satisfied, it follows from Theorem 3.2 that, to
verify Claim A, it suffices to verify the following claim:

Claim B: For each α ∈ Aut∗ΓX
(ΠX) and each pair (a1, a2) of integers, the

automorphism of the field K given by the image of CycX(α) ∈ Z×
l in

(Z/lNZ)× ∼→ G = Gal(K/Q) fixes the element∑
x∈F\{0,1}

χ(x)a1 · χ(1− x)a2 ∈ K.

In order to verify Claim B, let us fix a continuous automorphism α ∈ Aut∗ΓX
(ΠX) and

a pair (a1, a2) of integers. Moreover, let us also fix a regular function t ∈ OX(X) on X
which determines an isomorphism of schemes over F

X
∼ // Spec

(
F
[
t,
1

t
,

1

1− t

])
.

Then one verifies easily that the [rational function determined by the] invertible regular
functions t, 1−t ∈ O×

X(X) are cuspidally normalized [cf. Definition 2.2, (i)]. In particular,
the [rational function determined by the] invertible regular function ta1(1− t)a2 ∈ O×

X(X)
is cuspidally quasi-normalized [cf. Definition 2.2, (ii)]. Thus, it follows from Corollary 2.9
that

(a) the natural action of CycX(α) ∈ Z×
l on

∏
F×(l) Z fixes the element [Im](φ) ∈∏

F×(l) Z — where we write φ for the map given by

X(F) F \ {0, 1}
ta1 (1−t)a2

// F× // // F×(l).

Now let us consider the map ∏
F×(l)

Z // K

(na)a∈F×(l)
� //

∑
a∈F×(l)

na · χ(l)(a).

Then one verifies easily that
17



(b) this map is compatible — relative to the natural surjective homomorphisms Z×
l ↠

(Z/lNZ)× ∼→ G — with the natural action of Z×
l on

∏
F×(l) Z and the natural

action of G on K, and that
(c) the image of the element [Im](φ) ∈

∏
F×(l) Z via this map is given by∑

x∈F\{0,1}

χ(x)a1 · χ(1− x)a2 ∈ K.

In particular, Claim B follows from (a), (b), (c). This completes the proof of Theorem 4.6.
□

Remark 4.6.1. Observe that Theorem 4.6 yields infinitely many examples of pairs
“(p, l)” such that

Tpdp,l 6= Z×
l

[cf. [1], Remark 6, (iii)]. For instance, if p ≡ 2 mod 7, then Tpdp,7 6= Z×
7 .

Corollary 4.7. Suppose that one of conditions (1), (2) in the statement of Theorem 4.6
is satisfied. Then the natural homomorphism

Aut(X) // OutΓX
(ΠX)

is surjective [cf. also Remark 4.5.1]. If, moreover, F = F0, then this natural homomor-
phism is an isomorphism.

Proof. This assertion follows from Theorem 4.6, together with Proposition 4.5, (i), (ii),
together with the well-known fact concerning automorphisms of the abstract scheme
T = P1

F0
\ {0, 1,∞}. □

Remark 4.7.1. A similar surjectivity to the surjectivity discussed in Corollary 4.7 in
the case of étale fundamental groups (respectively, of geometrically pro-Σ fundamental
groups for suitable sets Σ of prime numbers) [i.e., as opposed to the case of geometrically
pro-l fundamental groups discussed in Corollary 4.7] has been discussed in [8], Theorem
0.6 (respectively, [7], Theorem D).

Corollary 4.8. Suppose that one of conditions (1), (2) in the statement of Theorem 4.6
is satisfied. Let C be a(n) [arbitrary] hyperbolic curve over the finite field with p elements.
Write ΠC (respectively, ΓC; CycC) for the “ΠX” (respectively, “ΓX”; “CycX”) that occurs
in the case where we take the “X” to be C. Then the equality

CycC
(
AutΓC

(ΠC)
)
= 〈p〉

— where we write 〈p〉 ⊆ Z×
l for the closed subgroup topologically generated by p ∈ Z×

l —
holds.

Proof. This assertion follows from Theorem 4.6, together with Proposition 4.3. □
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[10] A. Weil, Jacobi sums as “Grössencharaktere”, Trans. Amer. Math. Soc. 73, (1952). 487-495.

(Yuichiro Hoshi) Research Institute for Mathematical Sciences, Kyoto University, Ky-
oto 606-8502, JAPAN

Email address: yuichiro@kurims.kyoto-u.ac.jp

19


	web-title
	preprint_1972

