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Abstract. — In the present paper, we study continuous open homomorphisms between
the Galois groups of solvably closed Galois field extensions of number fields. In particular,
we discuss Uchida’s conjecture that asserts that an arbitrary continuous open homomorphism
between the Galois groups of solvably closed Galois field extensions of number fields arises from
a homomorphism between the given Galois field extensions. In the present paper, we prove
that this conjecture is equivalent to the assertion that if the Galois group of a Galois field
extension of a number field is isomorphic to an open subgroup of the maximal prosolvable
quotient of the absolute Galois group of the field of rational numbers, then, for all prime
numbers l and all but finitely many prime numbers p, the given Galois extension field contains
l roots of the polynomial tl − p. Moreover, we prove that this conjecture is also equivalent
to the assertion that if the Galois group of a Galois field extension of an absolutely Galois
number field is isomorphic to an open subgroup of the maximal prosolvable quotient of the
absolute Galois group of the field of rational numbers, then the given Galois extension field is
absolutely Galois.

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

§1. Homomorphisms Between Topological Groups of MLF-type . . . . . . . . . . . . . . . . . 4

§2. The First Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

§3. The Second Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Introduction

In the present paper, we study continuous open homomorphisms between the Galois
groups of solvably closed Galois field extensions of number fields. We shall define

• a number field [cf. Definition 2.2, (i)] to be a field that is of characteristic zero and
is finite over the minimal subfield [i.e., the prime subfield] of the field,

• a solvably closed field [cf. Definition 2.2, (ii)] to be a field that admits no nontrivial
abelian field extension, and

• an absolutely Galois field [cf. Definition 3.3] to be a field that is [algebraic and] Galois
over the minimal subfield of the field.

2020 Mathematics Subject Classification. — 11R32.
Key words and phrases. — Galois group, number field, solvably closed.
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In the present paper, we discuss the following conjecture posed by K. Uchida [cf. [8,
Conjecture, p.595]]:

CONJECTURE A (Uchida). — Let F◦, F• be number fields, and let F̃◦, F̃• be Galois
extension fields of F◦, F•, respectively. Suppose that both F̃◦ and F̃• are solvably closed.
Let

α : Gal(F̃◦/F◦) // Gal(F̃•/F•)

be a continuous open homomorphism. Then there exists a homomorphism F̃• ↪→ F̃◦ of
rings from which the homomorphism α arises. Put another way, there exists a homomor-

phism αF̃ : F̃• ↪→ F̃◦ of rings that is compatible with the respective actions of Gal(F̃•/F•),

Gal(F̃◦/F◦), relative to the homomorphism α, i.e., such that, for each γ ∈ Gal(F̃◦/F◦),
the equality γ ◦ αF̃ = αF̃ ◦ α(γ) holds.

Let us first recall that Uchida solved affirmatively the assertion obtained by replacing
“a continuous open homomorphism” in the statement of Conjecture A by “a continuous
open injective homomorphism” [cf. [7, Theorem]]. Moreover, Uchida also gave, in [8],
some important results concerning Conjecture A. For instance, Uchida proved, in the
situation of Conjecture A,

• the existence of a homomorphism “αF̃” as in the statement of Conjecture A in the
case where the number field F◦ is isomorphic to the field of rational numbers [cf. [8,
Theorem 1]],

• the existence of a homomorphism “αF̃” as in the statement of Conjecture A in the
case where the homomorphism α satisfies a certain condition concerning decomposition
subgroups of nonarchimedean primes [cf. [8, Theorem 2]], and

• the uniqueness of a homomorphism “αF̃” as in the statement of Conjecture A [cf.
[8, Proposition 2]].

Moreover, the author of the present paper

• studied Conjecture A from a “group-theoretic algorithmic” point of view [cf. [2], [4]]
and

• proved the existence of a homomorphism “αF̃” as in the statement of Conjecture A
in the case where the homomorphism α is compatible with the cyclotomic characters [cf.
[5, Theorem]].

In the present paper, we give some necessary and sufficient conditions for a homomor-

phism “α” as in Conjecture A to arise from a homomorphism F̃• ↪→ F̃◦ of rings from the
point of view of the kernel of the homomorphism “α”. Suppose that we are given a homo-

morphism α as in Conjecture A. Write αF◦ ⊆ F̃◦ for the subfield of F̃◦ that corresponds to
the kernel of α. Then one immediate observation with respect to Conjecture A is that if
αF◦ is solvably closed, then one concludes immediately from [7, Theorem] [i.e., an affirma-
tive solution to the assertion obtained by replacing “a continuous open homomorphism”
in the statement of Conjecture A by “a continuous open injective homomorphism”] that

α arises from a homomorphism F̃• ↪→ F̃◦ of rings, as desired. In the present paper, we
give results related to this observation, i.e., the relationship between the kernel of α and
the “field-theoreticity/geometricity” of α [cf. Theorem 2.7, Theorem 3.4]. Moreover, as
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applications of these results, we conclude the following result, which is the main result of
the present paper:

THEOREM B. — Let Q be an algebraic closure of Q. Write Qslv ⊆ Q for the maximal
prosolvable extension field of Q in Q. Then the following three assertions are equivalent:

(1) Let F◦, F• be number fields, and let F̃◦, F̃• be Galois extension fields of F◦, F•,

respectively. Suppose that both F̃◦ and F̃• are solvably closed. Let

α : Gal(F̃◦/F◦) // Gal(F̃•/F•)

be a continuous open homomorphism. Then there exists a homomorphism F̃• ↪→ F̃◦ of

rings compatible with the respective actions of Gal(F̃•/F•), Gal(F̃◦/F◦), relative to the
homomorphism α.

(2) Let F ⊆ K ⊆ Q be subfields of Q such that the field extension F/Q is finite,
and, moreover, the field extension K/F is Galois. Suppose that the topological group
Gal(K/F ) is isomorphic to an open subgroup of Gal(Qslv/Q). Then, for all prime
numbers l and all but finitely many prime numbers p, every l-th power root of p in
Q is contained in K ⊆ Q.

(3) Let F ⊆ K ⊆ Q be subfields of Q such that the field extension F/Q is finite and
Galois, and, moreover, the field extension K/F is Galois. Suppose that the topological
group Gal(K/F ) is isomorphic to an open subgroup of Gal(Qslv/Q). Then the field
extension K/Q is Galois.

In §1 of the present paper, we prove a technical lemma concerning continuous ho-
momorphisms between topological groups of MLF-type [cf. Lemma 1.3]. This technical
lemma may be regarded as a partial generalization of a result that was obtained in the
study of the anabelian geometry of mixed-characteristic local fields [cf. Remark 1.3.1].

In §2 of the present paper, we prove the equivalence (1) ⇔ (2) of Theorem B. To
explain one main observation in the proof of the implication (2) ⇒ (1) of Theorem B,

suppose that we are given a homomorphism α as in Conjecture A, and write αF◦ ⊆ F̃◦ for

the subfield of F̃◦ that corresponds to the kernel of α. Then one main observation in the
proof of the implication (2) ⇒ (1) of Theorem B is that, under some mild assumptions, if,
for all prime numbers l and all but finitely many prime numbers p, every l-th power root

of p in F̃◦ is contained in αF◦ ⊆ F̃◦, then the homomorphism Gal(F◦/F◦)
ab ⊗Ẑ Z/2Z →

Gal(F•/F•)
ab ⊗Ẑ Z/2Z determined by α is Frobenius-preserving [cf. [5, Definition 2.7]].

This observation will be essentially verified in Lemma 2.6.
In §3 of the present paper, we prove the equivalence (1) ⇔ (3) of Theorem B. To

explain one main observation in the proof of the implication (3) ⇒ (1) of Theorem B,

suppose that we are given a homomorphism α as in Conjecture A, and write αF◦ ⊆ F̃◦
for the subfield of F̃◦ that corresponds to the kernel of α. Then one main observation in

the proof of the implication (3) ⇒ (1) of Theorem B is that if F̃◦ is algebraically closed,
and αF◦ is Galois over the minimal subfield of αF◦, then the homomorphism α extends
to a homomorphism from the absolute Galois group of the minimal subfield of αF◦. This
observation will be verified in the proof of Theorem 3.4.

Finally, let us observe that assertions (2), (3) that appear in the statement of Theo-
rem B may be considered to be purely “field-theoretic”, hence also be independent of the
study of anabelian geometry. Moreover, at least the author of the present paper does
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not have any immediate proof of the equivalence (2) ⇔ (3) of Theorem B. In particular,
the equivalence (2) ⇔ (3) of Theorem B may be regarded as an application to the purely
“field-theoretic” study of number fields, i.e., of the study of the anabelian geometry of
number fields.
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1. Homomorphisms Between Topological Groups of MLF-type

In the present §1, we prove a technical lemma concerning continuous homomorphisms
between topological groups of MLF-type [cf. Lemma 1.3 below]. This technical lemma
may be regarded as a partial generalization of a result that was obtained in the study of
the anabelian geometry of mixed-characteristic local fields [cf. Remark 1.3.1 below].

DEFINITION 1.1. — Let D be a topological group of MLF-type [cf. [2, Definition 1.1], [2,
Proposition 1.2, (i), (ii)]], i.e., a topological group such that there exist

• a prime number p,

• a finite extension field k of Qp,

• an algebraic closure k of k, and

• an isomorphism αD : Gal(k/k)
∼→ D of topological groups.

(i) Let us recall the positive integers

p(D), f(D)

defined in [2, Theorem 1.4, (1), (2)]. In particular, it follows from [2, Theorem 1.4, (i)]
that the existence of the above isomorphism αD implies that

(i-a) the positive integer p(D) coincides with the prime number p, and that

(i-b) the positive integer f(D) coincides with the extension degree of the residue
field of k over the minimal subfield of the residue field of k.

(ii) Let us recall the closed subgroups

P (D) ⊆ I(D) ⊆ D

of D defined in [2, Theorem 1.4, (3)]. In particular, it follows from [2, Theorem 1.4, (ii)]
that

(ii-a) the above isomorphism αD restricts to a continuous isomorphism of the inertia
subgroup of Gal(k/k) with the closed subgroup I(D) of D, and that

(ii-b) the above isomorphism αD restricts to a continuous isomorphism of the wild
inertia subgroup of Gal(k/k) with the closed subgroup P (D) of D.
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(iii) Let us recall the closed subgroup

O×(D)
def
= Im

(
I(D) ↪→ D ↠ Dab

)
⊆ Dab

of Dab defined in [2, Theorem 1.4, (5)]. In particular, it follows from [2, Theorem 1.4,
(iii)] that the existence of the above isomorphism αD implies that

(iii-a) the topological group of units of the normalization of Zp in k is isomorphic
to the topological group O×(D).

LEMMA 1.2. — Let D be a topological group of MLF-type, and let l be a prime number
not equal to p(D). Then every pro-l-Sylow subgroup of I(D) is isomorphic to the
topological group Zl.

Proof. — This assertion is well-known [cf., e.g., [3, Lemma 1.5, (ii)] and Definition 1.1,
(i-a), (ii-a), (ii-b)]. □

LEMMA 1.3. — Let D◦, D• be topological groups of MLF-type, and let α : D◦ → D• be
a continuous homomorphism. Suppose that the following two conditions are satisfied:

(1) The equality p(D◦) = p(D•) holds.

(2) Let l be a prime number not equal to p(D◦) = p(D•) [cf. (1)]. Then there exist
a pro-l-Sylow subgroup lI(D◦) of I(D◦) and a normal open subgroup N of D• such that
the image of the composite

lI(D◦)
� � // I(D◦)

� � // D◦
α // D• // // D•/N

— where the first and second arrows are the natural inclusions, and the fourth arrow is
the natural continuous surjective homomorphism — is a nontrivial l-Sylow subgroup
of the finite group D•/N .

Then the following assertions hold:

(i) Let l be a prime number not equal to p(D◦) = p(D•) [cf. (1)], and let lI(D◦) ⊆
I(D◦) be a pro-l-Sylow subgroup of I(D◦). Then the homomorphism α restricts to an
isomorphism of lI(D◦) with a pro-l-Sylow subgroup of I(D•).

(ii) The integer f(D◦) is divisible by the integer f(D•).

Proof. — We begin the proof of Lemma 1.3 with the following claim:

CLAIM 1.3.A. — Let l be a prime number not equal to p(D◦) = p(D•)
[cf. condition (1)], and let lI(D◦) ⊆ I(D◦) be a pro-l-Sylow subgroup of
I(D◦). Then the image of the composite

lI(D◦)
� � // I(D◦)

� � // D◦
α // D•

— where the first and second arrows are the natural inclusions — is con-
tained in the subgroup I(D•) of D•.

To this end, let us first observe that it is well-known [cf., e.g., [3, Lemma 1.5, (i)] and
Definition 1.1, (ii-a)] that the quotientD•/I(D•) is abelian and torsion-free. In particular,
to verify Claim 1.3.A, it suffices to verify the triviality of the image of lI(D◦) in the
maximal abelian torsion-free quotient of D◦. On the other hand, since [we have assumed
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that] l ̸= p(D◦), this triviality is well-known [cf., e.g., [3, Lemma 1.2, (i)], [3, Lemma 1.7,
(i)], and Definition 1.1, (i-a), (ii-a)]. This completes the proof of Claim 1.3.A.
First, we verify assertion (i). Let N ⊆ D• be as in condition (2). Let us first observe

that it follows from Claim 1.3.A that there exists a pro-l-Sylow subgroup lI(D•) of I(D•)
that contains the image of the composite discussed in Claim 1.3.A. Let l(D•/N) ⊆ D•/N
be an l-Sylow subgroup of D•/N that contains the image of lI(D•) ⊆ I(D•) in D•/N .
Then it follows from condition (2) that

• the group l(D•/N) is nontrivial, and that

• the composite

lI(D◦) //
lI(D•) //

l(D•/N)

— where the first arrow is the homomorphism induced by α, and the second arrow is the
homomorphism induced by the natural continuous surjective homomorphismD• ↠ D•/N
— is surjective.

In particular, one concludes immediately from Lemma 1.2 that the homomorphism lI(D◦) →
lI(D•) induced by α is an isomorphism, as desired. This completes the proof of assertion
(i).

Next, we verify assertion (ii). It follows immediately from assertion (i) that, for each
prime number l not equal to p(D◦) = p(D•) [cf. condition (1)], the homomorphism α
determines a surjective homomorphism from the [unique] pro-l Sylow subgroup ofO×(D◦)
to the [unique] pro-l Sylow subgroup ofO×(D•). In particular, one concludes immediately
from [3, Lemma 1.2, (i)] and Definition 1.1, (i-a), (i-b), (iii-a), that p(D◦)

f(D◦) − 1 is
divisible by p(D•)

f(D•)−1, which thus implies [cf. condition (1)] that f(D◦) is divisible by
f(D•), as desired. This completes the proof of assertion (ii), hence also of Lemma 1.3. □

REMARK 1.3.1. — Let D◦, D• be topological groups of MLF-type, and let α : D◦ → D•
be a continuous homomorphism. Suppose that the homomorphism α is surjective. Then
one verifies easily from [1, Proposition 3.4, (i), (iii)] [cf. also [3, Lemma 1.5, (ii)] and
Definition 1.1, (i-a), (ii-a), (ii-b)] that conditions (1), (2) in the statement of Lemma 1.3
are satisfied. Moreover, it follows from the final assertion of [1, Proposition 3.4, (iii)] that
the equality f(D◦) = f(D•) holds. Thus, Lemma 1.3, (ii), may be regarded as a partial
generalization of the final assertion of [1, Proposition 3.4, (iii)].

2. The First Equivalence

In the present §2, we give a proof of the first main result of the present paper.

LEMMA 2.1. — Let p, l be distinct prime numbers, Qp an algebraic closure of Qp,

ζl ∈ Qp a primitive l-th root of unity, p1/l ∈ Qp an l-th power root of p ∈ Qp, and L ⊆ Qp

a subfield of Qp. Write D
def
= Gal(Qp/Qp) for the absolute Galois group of Qp determined

by the algebraic closure Qp and I ⊆ D for the inertia subgroup of D. Let lI ⊆ I be a
pro-l-Sylow subgroup of I. Then the following assertions hold:

(i) The subgroup Gal(L(ζl, p
1/l)/L(ζl)) ⊆ Gal(L(ζl, p

1/l)/L) is a unique nontrivial
l-Sylow subgroup of Gal(L(ζl, p

1/l)/L).
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(ii) The continuous homomorphism D → Gal(L(ζl, p
1/l)/L) induced by the natural

inclusion L(ζl, p
1/l) ↪→ Qp restricts to a continuous surjective homomorphism

lI // // Gal
(
L(ζl, p

1/l)/L(ζl)
)
.

Proof. — These assertions are immediate. □

DEFINITION 2.2.

(i) We shall say that a field is a number field if the field is of characteristic zero and
finite over the minimal subfield of the field.

(ii) We shall say that a field is solvably closed if the field admits no nontrivial abelian
field extension.

LEMMA 2.3. — Let F be a number field, F̃ a Galois extension field of F that is solvably
closed, D a topological group of MLF-type,

α : D // Gal(F̃ /F )

a continuous homomorphism, and l a prime number not equal to p(D). Suppose that
the following two conditions are satisfied:

(1) The number field F is totally imaginary.

(2) The image of a pro-l-Sylow subgroup of I(D) by α is nontrivial.

Then there exist a unique nonarchimedean prime p of F and a unique decomposition

subgroup Dp of Gal(F̃ /F ) at p such that the image of α is contained in Dp ⊆ Gal(F̃ /F ).
Moreover, in this situation, the residue characteristic of p is not equal to l.

Proof. — Let lI(D) ⊆ I(D) be a pro-l-Sylow subgroup of I(D). Let us first observe
that since [we have assumed that — cf. condition (1)] the number field F is totally

imaginary, the group Gal(F̃ /F ) has no nontrivial torsion element [cf., e.g., the argument
given in [8, pp.596-597]]. Thus, since [we have assumed that — cf. condition (2)] the
image of lI(D) by α is nontrivial, it follows from Lemma 1.2 that the restriction of α
to lI(D) is injective. In particular, it follows immediately from the well-known structure
of a pro-l-Sylow subgroup of D [cf., e.g., the classification of the topological quotients
of “Gp1,l” given in [8, p.596]; also Definition 1.1, (i-a), (ii-a)] that the restriction of α
to a pro-l-Sylow subgroup of D is injective. Thus, it follows immediately from a similar
argument to the argument given in [8, pp.595-596] [cf. also [6, Proposition 2.3, (iv)]] that
there exist a unique nonarchimedean prime p of F and a unique decomposition subgroup

Dp of Gal(F̃ /F ) at p that satisfy the desired conditions. This completes the proof of
Lemma 2.3. □

DEFINITION 2.4. — Let F be a number field, and let p be a nonarchimedean prime of F .

(i) We shall say that p is of absolute degree one if the completion of F at p is isomorphic
to Qp, where we write p for the residue characteristic of p.

(ii) We shall say that p is of absolute residue degree one if the residue field of F at p
is isomorphic to Fp, where we write p for the residue characteristic of p.

7



DEFINITION 2.5. — Let F◦, F• be number fields, and let F̃◦, F̃• be Galois extension fields

of F◦, F•, respectively. Suppose that both F̃◦ and F̃• are solvably closed. Let

α : Gal(F̃◦/F◦) // Gal(F̃•/F•)

be a continuous open homomorphism. Then we shall write

αF◦ ⊆ F̃◦

for the subfield of F̃◦ that corresponds to the kernel of the continuous homomorphism α.

LEMMA 2.6. — In the situation of Definition 2.5, suppose that α is surjective. Let p
be a prime number, p◦ a nonarchimedean prime of F◦ of residue characteristic p,

and D◦ ⊆ Gal(F̃◦/F◦) a decomposition subgroup of Gal(F̃◦/F◦) at p◦. Suppose, moreover,
that the following three conditions are satisfied:

(1) The number field F• is totally imaginary.

(2) The nonarchimedean prime p◦ is of absolute degree one.

(3) For all prime numbers l not equal to p, every l-th power root of p in F̃◦ is

contained in αF◦ ⊆ F̃◦.

Then the following assertions hold:

(i) There exist a unique nonarchimedean prime p• of F• and a unique decomposition

subgroup D• of Gal(F̃•/F•) at p• that satisfy the following four conditions:

(a) The image of D◦ ⊆ Gal(F̃◦/F◦) by α is contained in D• ⊆ Gal(F̃•/F•).

(b) The nonarchimedean prime p• is of residue characteristic p.

(c) Let l be a prime number not equal to p. Then the homomorphism α restricts to

an isomorphism of a pro-l-Sylow subgroup of the inertia subgroup of D◦ ⊆ Gal(F̃◦/F◦)

with a pro-l-Sylow subgroup of the inertia subgroup of D• ⊆ Gal(F̃•/F•).

(d) The nonarchimedean prime p• is of absolute residue degree one.

(ii) Suppose, moreover, that the following two conditions are satisfied:

(4) The prime number p is odd.

(5) There exists a finite set S of prime numbers such that if q is a prime number

not contained in S, then every square root of q in F̃◦ is contained in αF◦ ⊆ F̃◦.

Then the homomorphism Dab
◦ ⊗Ẑ Z/2Z → Dab

• ⊗Ẑ Z/2Z induced by α [cf. (a)] is an
isomorphism.

(iii) In the situation of (ii), write F ab
◦ ⊆ F̃◦, F ab

• ⊆ F̃• for the respective maxi-

mal abelian extension fields of F◦, F• in F̃◦, F̃•. Then the continuous homomorphism
Gal(F ab

◦ /F◦)⊗Ẑ Z/2Z → Gal(F ab
• /F•)⊗Ẑ Z/2Z determined by α restricts to a bijection

between the subset FL2(p◦) ⊆ Gal(F ab
◦ /F◦) ⊗Ẑ Z/2Z [i.e., consisting of the elements of

the decomposition subgroup of Gal(F ab
◦ /F◦) ⊗Ẑ Z/2Z at p◦ whose natural actions on the

residue field of the valuation ring in the algebraic extension of the completion of F◦ deter-
mined by the pair (F ab

◦ , p◦) are given by the p-th power Frobenius map — cf. [5, Definition
2.1, (ii)], (2)] and the subset FL2(p•) ⊆ Gal(F ab

• /F•)⊗Ẑ Z/2Z [cf. (d)].
8



Proof. — We begin the proof of Lemma 2.6 with the following claim:

CLAIM 2.6.A. — Let l be a prime number not equal to p, lI◦ ⊆ D◦ a

pro-l-Sylow subgroup of the inertia subgroup of D◦, ζl ∈ F̃◦ a primitive

l-th root of unity, and p1/l ∈ F̃◦ an l-th power root of p ∈ F̃◦. Then the
image of the composite

lI◦
� � // Gal(F̃◦/F◦) // // Gal(αF◦/F◦) // // Gal

(
F◦(ζl, p

1/l)/F◦
)

— where the first arrow is the natural inclusion, and the second, third
arrows are the continuous surjective homomorphisms determined by the

natural inclusions αF◦ ↪→ F̃◦, F◦(ζl, p
1/l) ↪→ αF◦ [cf. condition (3)], respec-

tively — is a unique nontrivial l-Sylow subgroup of Gal(F (ζl, p
1/l)/F◦).

To this end, let us first recall that [we have assumed that — cf. condition (2)] the nonar-
chimedean prime p◦ is of absolute degree one. Thus, Claim 2.6.A follows immediately
form Lemma 2.1, (i), (ii). This completes the proof of Claim 2.6.A.

First, we verify assertion (i). Observe that it is immediate from Claim 2.6.A that, for
each prime number l not equal to p and each pro-l-Sylow subgroup lI◦ ⊆ D◦ of the inertia
subgroup of D◦, the image of the composite

lI◦
� � // Gal(F̃◦/F◦)

α // // Gal(F̃•/F•)

— where the first arrow is the natural inclusion — is nontrivial. Thus, one concludes
immediately from Lemma 2.3 [cf. also condition (1)] that there exist a unique nonar-

chimedean prime p• of F• and a unique decomposition subgroup D• of Gal(F̃•/F•) at p•
that satisfy conditions (a), (b). Moreover, since [we have assumed that — cf. condition
(2)] the nonarchimedean prime p◦ is of absolute degree one, hence also of absolute residue
degree one, by applying Lemma 1.3, (i), (ii) [cf. also Definition 1.1, (i-a), (i-b), (ii-a)], to
the homomorphism D◦ → D• induced by α [cf. condition (a)], one also concludes imme-
diately from condition (b) and Claim 2.6.A that conditions (c), (d) are satisfied. This
completes the proof of assertion (i).

Next, we verify assertion (ii). Write I◦ ⊆ D◦, I• ⊆ D• for the respective inertia
subgroups of D◦, D•. Now recall that [we have assumed that — cf. condition (4)] the
prime number p is odd. Thus, it is well-known [cf., e.g., [3, Lemma 1.5, (ii)]] that if

2I◦ ⊆ I◦, 2I• ⊆ I• are pro-2-Sylow subgroups of I◦, I•, respectively, then the natural
homomorphisms 2I

ab
◦ ⊗Ẑ Z/2Z → Iab◦ ⊗Ẑ Z/2Z, 2I

ab
• ⊗Ẑ Z/2Z → Iab• ⊗Ẑ Z/2Z are isomor-

phisms [cf. also condition (b)]. In particular, it follows from conditions (a), (c) that the
homomorphism α induces a homomorphism

(D◦/I◦)
ab ⊗Ẑ Z/2Z // (D•/I•)

ab ⊗Ẑ Z/2Z,

and, moreover, to verify assertion (ii), it suffices to verify that this homomorphism is
an isomorphism. Thus, since [it is well-known — cf., e.g., [3, Lemma 1.5, (i)] — that]
both (D◦/I◦)

ab ⊗Ẑ Z/2Z and (D•/I•)
ab ⊗Ẑ Z/2Z are of order two, one concludes [cf.

also condition (c)] that, to verify assertion (ii), it suffices to verify that there exists a

homomorphism Gal(F̃•/F•) → Z/2Z such that the composite

D◦
� � // Gal(F̃◦/F◦)

α // Gal(F̃•/F•) // Z/2Z

—where the first arrow is the natural inclusion, and the third arrow is the homomorphism
under consideration — determines an isomorphism (D◦/I◦)

ab ⊗Ẑ Z/2Z
∼→ Z/2Z. On the
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other hand, such a homomorphism Gal(F̃•/F•) → Z/2Z may be obtained by pulling

back, by the inverse of the isomorphism Gal(αF◦/F◦)
∼→ Gal(F̃•/F•) determined by α,

the continuous surjective homomorphism Gal(αF◦/F◦) ↠ Gal(F◦(q
1/2)/F◦) determined

by the natural inclusion F◦(q
1/2) ↪→ αF◦, where q is a prime number not contained in

the finite set S of condition (5) such that the image of q in Fp is not contained in F2
p

(
def
= { a2 ∈ Fp | a ∈ Fp }), and q1/2 ∈ αF◦ is a square root of q [cf. condition (5)]. [Note
that it follows from Dirichlet’s theorem on primes in arithmetic progressions that the set
consisting of prime numbers whose images in Fp are not contained in F2

p is infinite.] This
completes the proof of assertion (ii).

Next, we verify assertion (iii). Observe that it is immediate that, since p is odd [cf.
condition (4)], the subsets FL2(p◦) ⊆ Dab

◦ ⊗ẐZ/2Z, FL2(p•) ⊆ Dab
• ⊗ẐZ/2Z coincide with

the complements in Dab
◦ ⊗Ẑ Z/2Z, Dab

• ⊗Ẑ Z/2Z of the images of pro-2-Sylow subgroups
of the inertia subgroups of D◦, D•, respectively. Thus, assertion (iii) follows immediately
from assertion (ii), together with condition (c). This completes the proof of assertion
(iii), hence also of Lemma 2.6. □

THEOREM 2.7. — In the situation of Definition 2.5, the following two conditions are
equivalent:

(1) There exists a homomorphism F̃• ↪→ F̃◦ of rings compatible with the respective

actions of Gal(F̃•/F•), Gal(F̃◦/F◦), relative to the homomorphism α.

(2) For all prime numbers l and all but finitely many prime numbers p, every l-th

power root of p in F̃◦ is contained in αF◦ ⊆ F̃◦.

Proof. — First, we verify the implication (1) ⇒ (2). Suppose that condition (1) is

satisfied. Then it is immediate that the field αF◦ contains the field isomorphic to F̃•.

Thus, since [we have assumed that] the field F̃• is solvably closed, it is immediate that,

for all prime numbers l, p, every l-th power root of p in F̃◦ is contained in αF◦ ⊆ F̃◦, as
desired. This completes the proof of the implication (1) ⇒ (2).
Next, we verify the implication (2) ⇒ (1). Suppose that condition (2) is satisfied.

Let us first observe that since [we have assumed that] the continuous homomorphism α
is open, to verify condition (1), we may assume without loss of generality, by replacing

Gal(F̃•/F•) by the image of α, that α is surjective.

Let K• ⊆ F̃• be a finite Galois extension field of F• contained in F̃• that is totally

imaginary. Write K◦ ⊆ F̃◦ for the finite Galois extension field of F◦ contained in F̃◦ that

corresponds to the normal open subgroup of Gal(F̃◦/F◦) obtained by forming the inverse

image by the continuous surjective homomorphism α of Gal(F̃•/K•) ⊆ Gal(F̃•/F•). Thus,
we have a commutative diagram of topological groups

1 // Gal(F̃◦/K◦) //

βK ����

Gal(F̃◦/F◦) //

α
����

Gal(K◦/F◦) //

αK≀
��

1

1 // Gal(F̃•/K•) // Gal(F̃•/F•) // Gal(K•/F•) // 1

— where the horizontal sequences are exact, the vertical arrows are surjective, and

the right-hand vertical arrow is an isomorphism. Write βK : Gal(F̃◦/K◦)
ab ⊗Ẑ Z/2Z ↠

Gal(F̃•/K•)
ab ⊗Ẑ Z/2Z for the continuous surjective homomorphism determined by the
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left-hand vertical arrow of this diagram. Then one concludes immediately from Lemma 2.6,
(i), (iii) [cf. also condition (2)], that the homomorphism βK is Frobenius-preserving [cf.
[5, Definition 2.7]]. Thus, it follows from [5, Corollary 2.8] that the homomorphism βK

arises from a uniquely determined homomorphism of rings ιK : K• ↪→ K◦.
Next, observe that the above diagram determines a commutative diagram of groups

Gal(K◦/F◦) //

≀αK

��

Aut∗
(
Gal(F̃◦/K◦)

ab ⊗Ẑ Z/2Z
)

��

Gal(K•/F•) // Aut
(
Gal(F̃•/K•)

ab ⊗Ẑ Z/2Z
)

— where we write

Aut∗
(
Gal(F̃◦/K◦)

ab ⊗Ẑ Z/2Z
)
⊆ Aut

(
Gal(F̃◦/K◦)

ab ⊗Ẑ Z/2Z
)

for the subgroup consisting of the continuous automorphisms of the topological group

Gal(F̃◦/K◦)
ab ⊗Ẑ Z/2Z that preserve the kernel of βK , the horizontal arrows are the

respective natural continuous actions, i.e., determined by the horizontal sequences of the
above diagram, and the right-hand vertical arrow is the homomorphism induced by βK ,
i.e., by ιK . In particular, one concludes immediately from the commutativity of this
diagram, together with the faithfulness portion of [5, Theorem 2.6], that, for each γ ∈
Gal(K◦/F◦), the equality γ◦ιK = ιK◦αK(γ) holds, i.e., that the homomorphism ιK : K• ↪→
K◦ of rings is compatible with the respective actions of Gal(K•/F•), Gal(K◦/F◦), relative

to the isomorphism αK : Gal(K◦/F◦)
∼→ Gal(K•/F•). Thus, by allowing “K•” to vary, one

also concludes that there exists a homomorphism F̃• ↪→ F̃◦ of rings compatible with the

respective actions of Gal(F̃•/F•), Gal(F̃◦/F◦), relative to the homomorphism α, as desired.
This completes the proof of the implication (2) ⇒ (1), hence also of Theorem 2.7. □

Proof of the Equivalence (1) ⇔ (2) of Theorem B. — First, we verify the im-
plication (1) ⇒ (2). Suppose that assertion (1) is satisfied. Let F ⊆ K ⊆ Q be subfields
of Q as in assertion (2), which thus implies that there exists a continuous open injec-
tive homomorphism Gal(K/F ) ↪→ Gal(Qslv/Q). Then, by applying assertion (1) to the
composite

Gal(Q/F ) // // Gal(K/F ) �
� // Gal(Qslv/Q)

— where the first arrow is the continuous surjective homomorphism determined by the
natural inclusion K ↪→ Q, and the second arrow is a continuous open injective homomor-
phism — one concludes immediately that the field K contains Qslv. In particular, for all
prime numbers l, p, every l-th power root of p in Q is contained in K ⊆ Q, as desired.
This completes the proof of the implication (1) ⇒ (2).

Next, we verify the implication (2) ⇒ (1). Suppose that assertion (2) is satisfied. Let

F◦, F•, F̃◦, F̃•, α : Gal(F̃◦/F◦) → Gal(F̃•/F•) be as in assertion (1). Write (F•)0 ⊆ F•

for the minimal subfield of F•, (F•)
∼
0 ⊆ F̃• for the maximal prosolvable extension field of

(F•)0 in F̃•,

π : Gal(F̃•/F•) // Gal
(
(F•)

∼
0 /(F•)0

)
for the continuous open homomorphism determined by the natural inclusion (F•)

∼
0 ↪→ F̃•,

and π◦αF◦ ⊆ αF◦ [cf. Definition 2.5] for the subfield of αF◦ that corresponds to the kernel
of the continuous homomorphism π ◦α. Then since [it is immediate that] the topological
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group Gal(π◦αF◦/F◦) is isomorphic to an open subgroup of Gal((F•)
∼
0 /(F•)0), it follows

immediately from assertion (2) that, for all prime numbers l and all but finitely many

prime numbers p, every l-th power root of p in F̃◦ is contained in π◦αF◦ ⊆ F̃◦, hence also

in αF◦ ⊆ F̃◦. In particular, it follows from the implication (2) ⇒ (1) of Theorem 2.7

that there exists a homomorphism F̃• ↪→ F̃◦ of rings compatible with the respective

actions of Gal(F̃•/F•), Gal(F̃◦/F◦), relative to the homomorphism α, as desired. This
completes the proof of the implication (2) ⇒ (1), hence also of the equivalence (1) ⇔ (2)
of Theorem B. □

3. The Second Equivalence

In the present §3, we give a proof of the second main result of the present paper.

LEMMA 3.1. — Let F be a number field, F̃ a Galois extension field of F that is solvably
closed, and F ′ a finite Galois extension field of F in F̃ . Write Aut(Gal(F̃ /F ′)) for

the group of continuous automorphisms of the topological group Gal(F̃ /F ′). Then there

exist a subfield F0 of F over which F̃ is Galois and a commutative diagram of groups

Aut
(
Gal(F̃ /F ′)

)
≀

��

Gal(F̃ /F )

66nnnnnnnnnnnn

u�

((PP
PPP

PPP
PPP

P

Gal(F̃ /F0)

— where the upper diagonal arrow is the continuous action by conjugation, the lower
diagonal arrow is the continuous open injective homomorphism determined by the natural
inclusion F0 ↪→ F , and the right-hand vertical arrow is an isomorphism.

Proof. — This assertion is a formal consequence of [7, Theorem]. □

LEMMA 3.2. — Let F be a number field, F̃ a Galois extension field of F that is solvably
closed, Γ a topological group, and ι : Gal(F̃ /F ) ↪→ Γ a continuous injective homomor-
phism. Suppose that the image of ι is either normal or of finite index in Γ. Then

there exist a subfield F0 of F over which F̃ is Galois and a commutative diagram of
groups

Γ

��

Gal(F̃ /F )

* 


ι
77oooooooooooo

t�

&&NN
NNN

NNN
NNN

Gal(F̃ /F0)
12



— where the lower diagonal arrow is the continuous open injective homomorphism deter-
mined by the natural inclusion F0 ↪→ F , and the image of the right-hand vertical arrow
is open.

Proof. — Observe that since [we have assumed that] the image of ι is either normal
or of finite index in Γ, one verifies easily that there exists a finite [necessarily Galois ]

extension field F ′ of F in F̃ such that the image of Gal(F̃ /F ′) by ι is normal in Γ. Then
the assertion follows immediately from Lemma 3.1 by considering the continuous action

of Γ on [the image by ι of] Gal(F̃ /F ′) by conjugation. □

DEFINITION 3.3. — We shall say that a field is absolutely Galois if the field is [algebraic
and] Galois over the minimal subfield of the field.

THEOREM 3.4. — In the situation of Definition 2.5, suppose that the subfield αF◦ of F̃◦ is

absolutely Galois. Then there exists a homomorphism F̃• ↪→ F̃◦ of rings compatible
with the respective actions of Gal(F̃•/F•), Gal(F̃◦/F◦), relative to the homomorphism α.

Proof. — Write (F◦)0 ⊆ F◦ for the minimal subfield of F◦. Let us first observe that it
is immediate that, to verify Theorem 3.4, we may assume without loss of generality, by

replacing F̃◦ by an algebraic closure of F̃◦, that F̃◦ is algebraically closed. Moreover, since
[we have assumed that] the continuous homomorphism α is open, to verify Theorem 3.4,

we may assume without loss of generality, by replacing Gal(F̃•/F•) by the image of α,
that α is surjective.

Next, observe that it follows immediately from Lemma 3.2 — i.e., in the case where

we take the “(F, F̃ ,Γ)” of Lemma 3.2 to be (F•, F̃•,Gal(αF◦/(F◦)0)) [cf. our assumption
that αF◦ is absolutely Galois ] and the “ι” of Lemma 3.2 to be the [necessarily open]

homomorphism obtained by forming the composite of α−1 : Gal(F̃•/F•)
∼→ Gal(αF◦/F◦)

with the natural inclusion Gal(αF◦/F◦) ↪→ Gal(αF◦/(F◦)0) — that there exist a subfield

(F•)0 of F• over which F̃• is Galois and a commutative diagram of topological groups

Gal(αF◦/F◦)
� � //

α ≀
��

Gal
(
αF◦/(F◦)0

)
��

Gal(F̃•/F•)
� � // Gal

(
F̃•/(F•)0

)
— where the upper, lower horizontal arrows are the respective continuous open injective
homomorphisms determined by the natural inclusions (F◦)0 ↪→ F◦, (F•)0 ↪→ F•, and the
vertical arrows are open. In particular, to verify Theorem 3.4, we may assume without loss
of generality, by replacing α by the continuous surjective homomorphism determined by
the composite of the right-hand vertical arrow of this diagram with the natural surjective

homomorphism Gal(F̃◦/(F◦)0) ↠ Gal(αF◦/(F◦)0), that F◦ is isomorphic to the field of
rational numbers. On the other hand, it follows from [8, Theorem 1] that there exists a

homomorphism F̃• ↪→ F̃◦ of rings compatible with the respective actions of Gal(F̃•/F•),

Gal(F̃◦/F◦), relative to the homomorphism α whenever F◦ is isomorphic to the field of
rational numbers. This completes the proof of Theorem 3.4. □
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LEMMA 3.5. — Let G be a group, H ⊆ G a normal subgroup of G, and α an automor-
phism of G. Suppose that the following three conditions are satisfied:

(1) The centralizer of H in G is trivial.

(2) The automorphism α preserves the subgroup H.

(3) The automorphism of H induced by α [cf. (2)] is the identity automorphism
of H.

Then the automorphism α is the identity automorphism of G.

Proof. — Observe that it follows from condition (1) that the conjugation action G →
Aut(H) is faithful. On the other hand, it is immediate that this injective homomorphism
G ↪→ Aut(H) is compatible with the respective natural actions of α on G and Aut(H)
[cf. condition (2)]. Thus, it follows from condition (3) that the automorphism α is the
identity automorphism of G, as desired. This completes the proof of Lemma 3.5. □

LEMMA 3.6. — In the situation of Definition 2.5, let K◦ be a finite extension field of

F◦ in F̃◦. Suppose that there exists a homomorphism αF̃ : F̃• ↪→ F̃◦ of rings compati-

ble with the respective actions of Gal(F̃•/F•), Gal(F̃◦/K◦), relative to the restriction to

Gal(F̃◦/K◦) ⊆ Gal(F̃◦/F◦) of the homomorphism α. Then the homomorphism αF̃ : F̃• ↪→
F̃◦ of rings is compatible with the respective actions of Gal(F̃•/F•), Gal(F̃◦/F◦), relative
to the homomorphism α.

Proof. — Observe that it is immediate that, to verify Lemma 3.6, we may assume

without loss of generality, by replacing K◦ by a suitable finite extension field of K◦ in F̃◦,
that K◦ is Galois over F◦.
Next, observe that one verifies easily that the diagram of groups

Gal(F̃◦/F◦) //

α

��

Aut∗
(
Gal(F̃◦/K◦)

)
��

Gal(F̃•/F•) // Aut
(
Gal(F̃•/F•)

)
— where we write

Aut∗
(
Gal(F̃◦/K◦)

)
⊆ Aut

(
Gal(F̃◦/K◦)

)
for the subgroup consisting of the continuous automorphisms of the topological group

Gal(F̃◦/K◦) that preserve the normal closed subgroup Gal(F̃◦/K◦)∩Ker(α), and, more-

over, the induced automorphisms of α : Gal(F̃◦/K◦)/(Gal(F̃◦/K◦)∩Ker(α))
∼→ Gal(F̃•/K•)

uniquely [cf. [6, Corollary 1.3], Lemma 3.5] extend to automorphisms of Gal(F̃•/F•)

(⊇ Gal(F̃•/K•)), the horizontal arrows are the respective conjugation actions, and the
right-hand vertical arrow is the homomorphism determined by the definition of the sub-

group Aut∗(Gal(F̃◦/K◦)) — commutes. Next, observe that it follows from our assumption

[i.e., that the homomorphism αF̃ : F̃• ↪→ F̃◦ of rings is compatible with the respective ac-

tions of Gal(F̃•/F•), Gal(F̃◦/K◦), relative to the restriction to Gal(F̃◦/K◦) ⊆ Gal(F̃◦/F◦)
of the homomorphism α] that the right-hand vertical arrow of this diagram coincides with

the homomorphism induced by the homomorphism αF̃ : F̃• ↪→ F̃◦ of rings. In particu-
lar, one concludes immediately from the commutativity of the above diagram, together
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with the uniqueness portion of [7, Theorem], that, for each γ ∈ Gal(F̃◦/F◦), the equality
γ ◦ αF̃ = αF̃ ◦ α(γ) holds, as desired. This completes the proof of Lemma 3.6. □

Proof of the Equivalence (1) ⇔ (3) of Theorem B. — First, we verify the im-
plication (1) ⇒ (3). Suppose that assertion (1) is satisfied. Let F ⊆ K ⊆ Q be subfields
of Q as in assertion (3), which thus implies that there exists a continuous open injec-
tive homomorphism Gal(K/F ) ↪→ Gal(Qslv/Q). Then, by applying assertion (1) to the
composite

Gal(Q/F ) // // Gal(K/F ) �
� // Gal(Qslv/Q)

— where the first arrow is the continuous surjective homomorphism determined by the
natural inclusion K ↪→ Q, and the second arrow is a continuous open injective homo-
morphism — one concludes immediately that the equality K = F · Qslv in Q holds. In
particular, the field extension K/Q is Galois, as desired. This completes the proof of the
implication (1) ⇒ (3).

Next, we verify the implication (3) ⇒ (1). Suppose that assertion (3) is satisfied. Let

F◦, F•, F̃◦, F̃•, α : Gal(F̃◦/F◦) → Gal(F̃•/F•) be as in assertion (1). Let us first observe

that it is immediate that, to verify the existence of a homomorphism “F̃• ↪→ F̃◦” as in

assertion (1), we may assume without loss of generality, by replacing F̃◦ by an algebraic

closure of F̃◦, that F̃◦ is algebraically closed. Moreover, it follows from Lemma 3.6 that,

to verify the existence of a homomorphism “F̃• ↪→ F̃◦” as in assertion (1), we may assume

without loss of generality, by replacing F◦ by a suitable finite extension field of F◦ in F̃◦,

that F◦ is absolutely Galois. Write (F•)0 ⊆ F• for the minimal subfield of F•, (F•)
∼
0 ⊆ F̃•

for the maximal prosolvable extension field of (F•)0 in F̃•, and

π : Gal(F̃•/F•) // Gal
(
(F•)

∼
0 /(F•)0

)
for the continuous open homomorphism determined by the natural inclusion (F•)

∼
0 ↪→ F̃•.

Then, to verify the existence of a homomorphism “F̃• ↪→ F̃◦” as in assertion (1) [i.e., to
verify condition (2) of Theorem 2.7 — cf. Theorem 2.7], we may assume without loss
of generality, by replacing α by π ◦ α, that F• is isomorphic to the field of rational

numbers, and F̃• is isomorphic to a maximal prosolvable extension field of the field of
rational numbers. Then since [it is immediate that] the topological group Gal(αF◦/F◦)

is isomorphic to an open subgroup of Gal(F̃•/F•), it follows from assertion (3) that the
field αF◦ is absolutely Galois. In particular, it follows from Theorem 3.4 that there exists

a homomorphism F̃• ↪→ F̃◦ of rings compatible with the respective actions of Gal(F̃•/F•),

Gal(F̃◦/F◦), relative to the homomorphism α, as desired. This completes the proof of the
implication (3) ⇒ (1), hence also of the equivalence (1) ⇔ (3) of Theorem B. □
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