Survey on the Combinatorial Anabelian Geometry of Hyperbolic Curves

Yuichiro Hoshi (RIMS, Kyoto University)

The 3rd MSJ-SI: Development of Galois-Teichmüller theory

and anabelian geometry at RIMS

October 30, 2010.

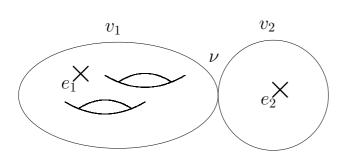
- §1: A Combinatorial Version of the Grothendieck Conjecture
- §2: Combinatorial Cuspidalization
- §3: Injectivity of the Outer Galois Representations of Hyperbolic Curves
- §4: A Version of the Grothendieck Conjecture for Universal Curves
- §5: A Generalization of a Result due to Y. André
- §6: Differences between $\operatorname{Out}^{\operatorname{FC}} \subseteq \operatorname{Out}^{\operatorname{F}} \subseteq \operatorname{Out}$

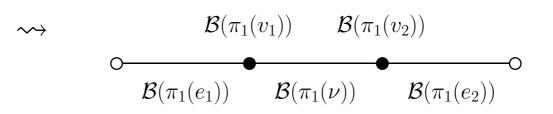
§1: A Combinatorial Version of the Grothendieck Conjecture

semi-graphs of anabelioids of PSC-type

pointed stable curve

semi-graph of anabelioids of PSC-type





- irreducible component \leftrightarrow vertex
- node \leftrightarrow closed edge
- $\operatorname{cusp} \leftrightarrow \operatorname{open} \operatorname{edge}$

 $(\mathcal{B}(G)$: connected anabelioid [= Galois category] associated to G)

Comb. Groth. Conj. (CombGC)

- \mathcal{G} : semi-graph of anabelioids of PSC-type
- I: profinite group
- $\Sigma \ (\neq \emptyset)$: set of prime numbers

$$\rho \colon I \to \operatorname{Out} \stackrel{\operatorname{def}}{=} \operatorname{Out}(\pi_1(\mathcal{G})^{\Sigma})$$
:

cont. hom. <u>satisfying certain conditions</u> \implies Any element of $Z_{\text{Out}}(\text{Im}(\rho))$ is <u>graphic</u>, i.e., arises from an automorphism of \mathcal{G} .

Note: Original Grothendieck conjecture k: field satisfying certain conditions X/k: hyperbolic curve

 $\rho \colon \operatorname{Gal}(\overline{k}/k) \to \operatorname{Out} \stackrel{\text{def}}{=} \operatorname{Out}(\pi_1(X \otimes_k \overline{k})):$ outer Galois rep. ass. to X/k

 $\implies \text{Any element of} \\ Z_{\text{Out}}(\text{Im}(\rho)) \ (\simeq \text{Isom}_{G_k}(\pi_1(X))/\text{geom. inner}) \\ \text{is geometric,} \end{cases}$

i.e., arises from an automorphism of X over k.

<u>Results of CombGC</u>:

Theorem A (Mochizuki)

For $\phi \in Z_{\text{Out}}(\text{Im}(\rho))$,

• ρ : <u>IPSC-type</u>

• ϕ : <u>C-admissible</u>,

i.e., preserves the set of cuspidal inertia subgroups of $\pi_1(\mathcal{G})^{\Sigma}$.

 $\implies \phi$: graphic

Theorem B (Mochizuki-H)

For $\phi \in Z_{\text{Out}}(\text{Im}(\rho))$,

• ρ : <u>NN-type</u>

• ϕ : <u>C-admissible</u>

• \mathcal{G} has at least one cusp, i.e., \mathcal{G} is not proper. $\implies \phi: \underline{\text{graphic}}$

"IPSC" (inertial pointed stable curve) "NN" (nodally nondegenerate)

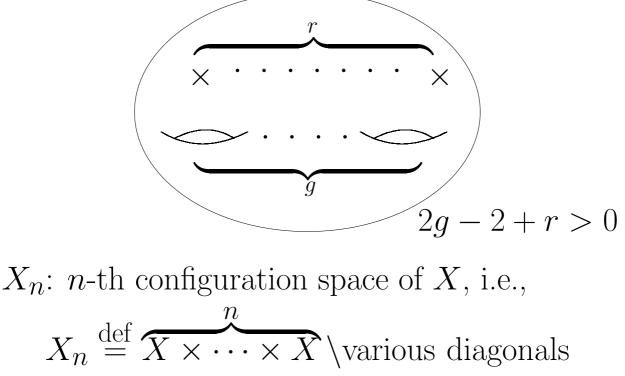
$$\frac{\rho \colon I \to \operatorname{Out}(\pi_1(\mathcal{G})^{\Sigma}) \colon \operatorname{IPSC-type}}{\stackrel{\text{def}}{\Leftrightarrow} \rho \text{ arises from a stable log curve, i.e.,} \\ \exists X^{\log} \to S^{\log} \stackrel{\text{def}}{=} \operatorname{Spec}(\mathbb{N} \to k : n \mapsto 0^n) \colon \\ \text{stable log curve (where } k = \overline{k} \text{ of char.} \notin \Sigma) \\ \text{s.t. } \rho \text{ "is"} \\ \rho_{X^{\log}/S^{\log}} \colon \pi_1(S^{\log})^{\Sigma} \longrightarrow \operatorname{Out}(\pi_1(X^{\log}/S^{\log})^{\Sigma}) \\ [\pi_1(X^{\log}/S^{\log}) \stackrel{\text{def}}{=} \operatorname{Ker}(\pi_1(X^{\log}) \twoheadrightarrow \pi_1(S^{\log}))] . \\ \\ \underline{\rho} \colon I \to \operatorname{Out}(\pi_1(\mathcal{G})^{\Sigma}) \colon \operatorname{NN-type} \stackrel{\text{def}}{\Leftrightarrow} \cdots$$

Remark

- "NN" is a purely group-theoretic condition.
- "IPSC" \implies "NN"

§2: Combinatorial Cuspidalization

X: hyperbolic Riemann surface of type (g, r), i.e.,



 $\dagger \in \{ \text{discrete, profinite, pro-}l \}$ $\text{Out}^{\text{FC}}(\pi_1^{\text{top}}(X_n)^{\dagger}) \subseteq \text{Out}(\pi_1^{\text{top}}(X_n)^{\dagger}):$

group of <u>F-admissible</u> and <u>C-admissible</u> outer automorphisms of $\pi_1^{\text{top}}(X_n)^{\dagger}$, i.e.,

- induce "id" on the set of \underline{F} iber subgroups.
- preserve the set of \underline{C} uspidal inertia subgroups.

Theorem C (Mochizuki-H)

The homomorphism

 $\operatorname{Out}^{\operatorname{FC}}(\pi_1^{\operatorname{top}}(X_{n+1})^{\dagger}) \longrightarrow \operatorname{Out}^{\operatorname{FC}}(\pi_1^{\operatorname{top}}(X_n)^{\dagger})$

induced by the projection $X_{n+1} \to X_n$ is

• injective if n > 0;

• surjective if either $\frac{1}{7} = \text{``discrete''}, \ \underline{n > 3}, \text{ or } \underline{n > 2} \text{ and } \underline{r > 0}.$

Remark

The injectivity and surjectivity of similar homomorphisms have been studied by various reseachers:

e.g., D. Harbater; Y. Ihara; M. Kaneko; M. Matsumoto; H. Nakamura; L. Schneps; N. Takao; H. Tsunogai; R. Ueno ... §3: Injectivity of the Outer Galois Representations of Hyperbolic Curves

Theorem D (Mochizuki-H)
Either
$$[k : \mathbb{Q}] < \infty$$
 or $[k : \mathbb{Q}_p] < \infty$
 X/k : hyperbolic curve
 $\rho_{X/k} : \operatorname{Gal}(\overline{k}/k) \longrightarrow \operatorname{Out}(\pi_1(X \otimes_k \overline{k})):$
outer Galois rep. ass. to X/k
 $\implies \rho_{X/k}: \underline{injective}$

Remark

- If X is a tripod, i.e., $\simeq \mathbb{P}^1_k \setminus \{0, 1, \infty\}$, then this was proven by G. V. Belyi.
- If X is affine, then this was proven by M. Matsumoto.

Outline of proof of Thm D:

- By Thm C, it suffices to verify the <u>injectivity</u> of
- $\rho_{X_3/k} \colon \operatorname{Gal}(\overline{k}/k) \to \operatorname{Out}^{\operatorname{FC}}(\pi_1(X_3 \otimes_k \overline{k})).$
- By considering a "tripod in X_3 ",

$$\operatorname{Ker}(\rho_{X_3/k}) \subseteq \operatorname{Ker}(\rho_{\operatorname{tripod}/k}).$$

• By the above result of Belyi,

$$\operatorname{Ker}(\rho_{\operatorname{tripod}/k}) = \{1\}.$$

§4: A Version of the Grothendieck Conjecture for Universal Curves

$$(g, r) \text{ s.t. } 2g - 2 + r > 0$$

$$\mathcal{M}_{g,r}/\mathbb{C}: \text{ moduli stack of } (g, r) \text{-curves over } \mathbb{C}$$

$$(\mathcal{C}_{g,r}^{\text{cpt}} \to \mathcal{M}_{g,r}; s_1, \cdots, s_r \colon \mathcal{M}_{g,r} \to \mathcal{C}_{g,r}^{\text{cpt}}):$$

universal curve over $\mathcal{M}_{g,r}$

$$\mathcal{C}_{g,r} \stackrel{\text{def}}{=} \mathcal{C}_{g,r}^{\text{cpt}} \setminus \bigcup_{i=1}^r \operatorname{Im}(s_i) \quad (\simeq \mathcal{M}_{g,r+1})$$

Theorem E (Mochizuki-H)

 ϕ : outer automorphism of $\pi_1(\mathcal{C}_{q,r})$ over $\pi_1(\mathcal{M}_{q,r})$

• 2g - 2 + r > 2

 \Longrightarrow

 \Longrightarrow

• ϕ preserves the set of cuspidal inertia subgroups associated to the s_i 's.

 ϕ arises from an automorphism of $\mathcal{C}_{g,r}$ over $\mathcal{M}_{g,r}$, i.e., $\phi = \mathrm{id}$.

The image of the universal outer monodromy representation is <u>center-free</u>.

Outline of proof of Thm E: • If r > 0, then the left-hand vertical arrow of

fiber product $\rightarrow \pi_1(\mathcal{C}_{g,r})$ $\downarrow \qquad \qquad \downarrow$ Ker(proj.) $\rightarrow \pi_1(\mathcal{M}_{g,r}) \xrightarrow{\text{proj.}} \pi_1(\mathcal{M}_{g,r-1})$ is isomorphic to " $\pi_1(X_2) \rightarrow \pi_1(X)$ " for

is isomorphic to " $\pi_1(X_2) \to \pi_1(X)$ " for a (g, r-1)-curve X.

Thus, Thm C and Thm $H \Rightarrow$ Thm E.

• If r = 0, then by considering the various irreducible components of the divisor at infinity of $\mathcal{M}_{g,r}$, Thm E in the case where r > 0 and Thm B $\Rightarrow \alpha$ is a profinite Dehn twist,

i.e., graphic outer automorphism of

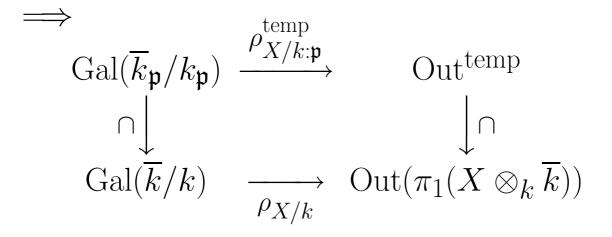
 π_1 (semi-graph of anab. of PSC-type) that induces "id" on the underlying graph and on any irreducible component.

Thus, the consideration of the various degenerations of the fiber \Rightarrow Thm E.

§5: A Generalization of a Result due to Y. André $[k:\mathbb{Q}]<\infty$

 \mathfrak{p} : nonarchimedean prime of k

X/k: hyperbolic curve $\pi_1^{\text{temp}}(X_{\mathfrak{p}})$: tempered π_1 of $X \otimes_k (\overline{k}_{\mathfrak{p}})^{\wedge}$ $\text{Out}^{\text{temp}} \stackrel{\text{def}}{=} \text{Out}(\pi_1^{\text{temp}}(X_{\mathfrak{p}}))$



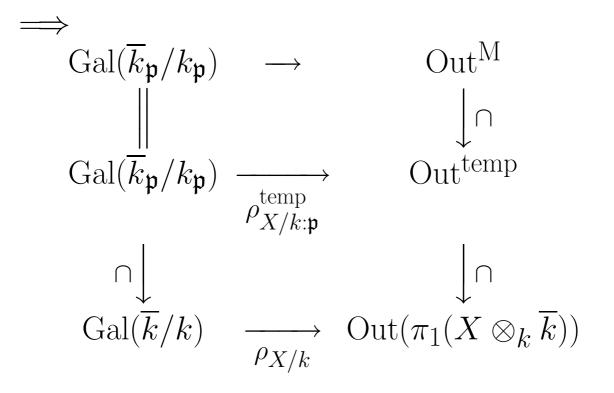
 $\frac{\text{Theorem F (André)}}{X \stackrel{\exists \text{fét}}{\leftarrow} Y_{/\overline{k}} \stackrel{\exists \text{nonconstant}}{\to} \operatorname{tripod}_{/\overline{k}}}$ \Longrightarrow $\operatorname{Gal}(\overline{k}_{\mathfrak{p}}/k_{\mathfrak{p}}) = \operatorname{Gal}(\overline{k}/k) \cap \operatorname{Out^{temp}}$

 $\operatorname{Out}^{\mathrm{M}} \subseteq (\operatorname{Out}^{\operatorname{temp}} \subseteq) \operatorname{Out}(\pi_1(X \otimes_k \overline{k})) :$

group of *isometric* outer automorphisms,

i.e., preserve the metrics of nodes of the various coverings.

(The metric of " $\mathfrak{o}_{\mathfrak{p}}[[x, y]]/(xy - a)$ " is $v_{\mathfrak{p}}(a)$.)



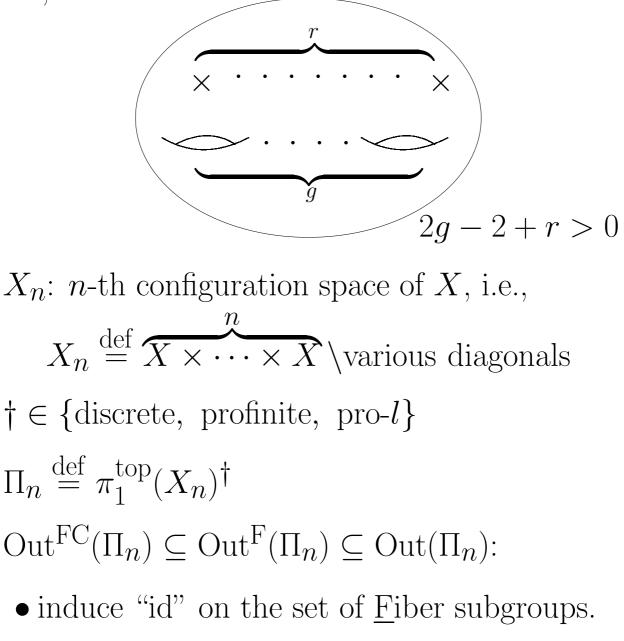
Theorem G (Mochizuki-H)

 $\operatorname{Gal}(\overline{k}_{\mathfrak{p}}/k_{\mathfrak{p}}) = \operatorname{Gal}(\overline{k}/k) \cap \operatorname{Out}^{\mathrm{M}}$

Outline of proof of Thm G:

By (almost pro-l) Thm C, the map $\operatorname{Out}^{\operatorname{FC}}(\pi_1(X_3 \otimes_k \overline{k})) \to \operatorname{Out}(\pi_1(\operatorname{tripod}))$ obtained by considering a "tripod in X_3 " induces $\operatorname{Out}^{\operatorname{FC}}(\pi_1(X_3 \otimes_k \overline{k})) \cap \operatorname{Out}^{\operatorname{M}}$ $\xrightarrow{(*)}$ Out^M(π_1 (tripod)). Therefore, $\operatorname{Gal}(k_{\mathfrak{p}}/k_{\mathfrak{p}})$ $\subset \operatorname{Gal}(\overline{k}/k) \cap \operatorname{Out}^{\mathrm{M}}$ $= \operatorname{Gal}(\overline{k}/k) \cap \operatorname{Out}^{\operatorname{FC}}(\pi_1(X_3 \otimes_k \overline{k})) \cap \operatorname{Out}^{\operatorname{M}})$ (*)+ThmD \subseteq Gal $(\overline{k}/k) \cap \text{Out}^{M}(\pi_1(\text{tripod}))$ $\stackrel{\text{André}}{\subset} \operatorname{Gal}(\overline{k}_{\mathfrak{p}}/k_{\mathfrak{p}}) \,.$

§6: Differences between $\operatorname{Out}^{\operatorname{FC}} \subseteq \operatorname{Out}^{\operatorname{F}} \subseteq \operatorname{Out}^{\operatorname{F}}$ X: hyperbolic Riemann surface of type (g, r), i.e.,



• preserve the set of \underline{C} uspidal inertia subgroups.

$$\sim {
m Out}^{
m F}$$
 v.s. Out \sim

Theorem H (Mochizuki-Tamagawa)

 $2g - 2 + r > 1 \Longrightarrow$

Any element of $Out(\Pi_n)$ preserves the set of fiber subgroups, i.e., \exists split exact sequence

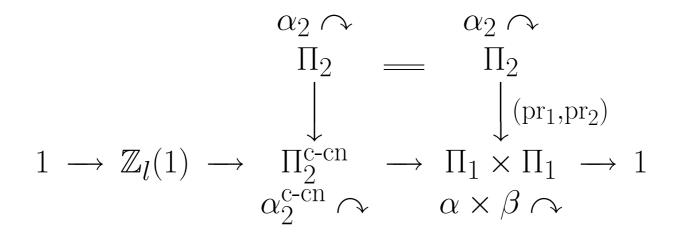
$$1 \longrightarrow \operatorname{Out}^{\mathrm{F}}(\Pi_n) \longrightarrow \operatorname{Out}(\Pi_n) \longrightarrow \mathfrak{S}_n \longrightarrow 1$$
.

~
$$\operatorname{Out}^{\mathrm{FC}}$$
 v.s. $\operatorname{Out}^{\mathrm{F}}$ ~
Theorem I (Mochizuki-H)
 $\operatorname{Im}\left(\operatorname{Out}^{\mathrm{F}}(\Pi_{n+1}) \to \operatorname{Out}^{\mathrm{F}}(\Pi_{n})\right) \subseteq \operatorname{Out}^{\mathrm{FC}}(\Pi_{n}).$

Outline of proof of Thm I:

For simplicity, n = 1, $\dagger = "pro-l"$, g > 0.

 $\begin{array}{ccc} \operatorname{Out}^{F}(\Pi_{2}) & \longrightarrow & \operatorname{Out}^{F}(\Pi_{1}) = \operatorname{Out}(\Pi_{1}) \\ \alpha_{2} & \longmapsto & \alpha \end{array}$



 $\begin{array}{rcl} H^{2}(\Pi_{1} \times \Pi_{1}, \mathbb{Z}_{l}(1)) &\simeq & H^{2}(X \times X, \mathbb{Z}_{l}(1)) \\ \Pi_{2}^{\text{c-cn}} &\mapsto c_{1}(\text{diagonal in } X \times X) \\ \rightarrow & H^{1}(\Pi_{1}, \mathbb{Z}_{l})^{\otimes 2} \otimes \mathbb{Z}_{l}(1) \simeq & \operatorname{Hom}((\Pi_{1}^{\text{ab}})^{\otimes 2}, \mathbb{Z}_{l}(1)) \\ \mapsto & \operatorname{Poincar\acute{e} duality} \end{array}$

P.D. factors through $(\Pi_1^{ab})^{\otimes 2} \twoheadrightarrow \pi_1^{ab}(X^{cpt})^{\otimes 2}$ $\Rightarrow \alpha$ preserves $\operatorname{Ker}(\Pi_1^{ab} = \pi_1^{l-ab}(X) \twoheadrightarrow \pi_1^{l-ab}(X^{cpt}))$... Apply this argument to various fét of X_2 ...