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§1: A Combinatorial Version of the Grothendieck
Conjecture

semi-graphs of anabelioids of PSC-type

pointed stable curve
 

semi-graph of anabelioids of PSC-type

××

v1
v2

ν

e2

e1

 

◦ • • ◦
B(π1(e1)) B(π1(ν)) B(π1(e2))

B(π1(v1)) B(π1(v2))

• irreducible component↔ vertex
• node↔ closed edge
• cusp↔ open edge

(B(G): connected anabelioid [= Galois category]
associated to G)
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Comb. Groth. Conj. (CombGC)

G: semi-graph of anabelioids of PSC-type

I : profinite group

Σ (6= ∅): set of prime numbers

ρ : I → Out
def
= Out(π1(G)Σ):

cont. hom. satisfying certain conditions

=⇒ Any element of ZOut(Im(ρ)) is graphic,
i.e., arises from an automorphism of G.

Note: Original Grothendieck conjecture

k: field satisfying certain conditions

X/k: hyperbolic curve

ρ : Gal(k/k)→ Out
def
= Out(π1(X ⊗k k)):

outer Galois rep. ass. to X/k

=⇒ Any element of

ZOut(Im(ρ)) (' IsomGk
(π1(X))/geom. inner)

is geometric,

i.e., arises from an automorphism of X over k.
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Results of CombGC:

Theorem A (Mochizuki)

For φ ∈ ZOut(Im(ρ)),

• ρ: IPSC-type

• φ: C-admissible,

i.e., preserves the set of cuspidal inertia sub-
groups of π1(G)Σ.

=⇒ φ: graphic

Theorem B (Mochizuki-H)

For φ ∈ ZOut(Im(ρ)),

• ρ: NN-type

• φ: C-admissible

• G has at least one cusp, i.e., G is not proper.

=⇒ φ: graphic
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“IPSC” (inertial pointed stable curve)
“NN” (nodally nondegenerate)

ρ : I → Out(π1(G)Σ): IPSC-type
def
⇔ ρ arises from a stable log curve, i.e.,

∃ X log → Slog def
= Spec (N→ k : n 7→ 0n):

stable log curve (where k = k of char.6∈ Σ)

s.t. ρ “is”

ρX log/Slog : π1(S
log)Σ −→ Out(π1(X

log/Slog)Σ)

[π1(X
log/Slog)

def
= Ker(π1(X

log)� π1(S
log))].

ρ : I → Out(π1(G)Σ): NN-type
def
⇔ · · ·

Remark

• “NN” is a purely group-theoretic condition.

• “IPSC” =⇒ “NN”
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§2: Combinatorial Cuspidalization

X : hyperbolic Riemann surface of type (g, r),
i.e.,

× ×

· · · ·
︸ ︷︷ ︸

g

· · · · · · ·
︷ ︸︸ ︷

r

2g − 2 + r > 0

Xn: n-th configuration space of X , i.e.,

Xn
def
=

n
︷ ︸︸ ︷
X × · · · ×X \various diagonals

† ∈ {discrete, profinite, pro-l}

OutFC(π
top
1 (Xn)†) ⊆ Out(π

top
1 (Xn)†):

group of F-admissible and C-admissible outer

automorphisms of π
top
1 (Xn)†, i.e.,

• induce “id” on the set of Fiber subgroups.

• preserve the set of Cuspidal inertia subgroups.
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Theorem C (Mochizuki-H)

The homomorphism

OutFC(π
top
1 (Xn+1)

†) −→ OutFC(π
top
1 (Xn)†)

induced by the projection Xn+1→ Xn is

• injective if n > 0;

• surjective if either
† =“discrete”, n > 3, or n > 2 and r > 0.

Remark
The injectivity and surjectivity of similar homo-

morphisms have been studied by various reseach-
ers:
e.g., D. Harbater; Y. Ihara; M. Kaneko; M. Mat-

sumoto; H. Nakamura; L. Schneps; N. Takao; H.
Tsunogai; R. Ueno ...
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§3: Injectivity of the Outer Galois Representa-
tions of Hyperbolic Curves

Theorem D (Mochizuki-H)

Either [k : Q] <∞ or [k : Qp] <∞

X/k: hyperbolic curve

ρX/k : Gal(k/k) −→ Out(π1(X ⊗k k)):

outer Galois rep. ass. to X/k

=⇒ ρX/k: injective

Remark

• If X is a tripod, i.e., ' P1
k \ {0, 1,∞}, then

this was proven by G. V. Belyi.

• If X is affine, then this was proven by M.
Matsumoto.
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Outline of proof of Thm D:

• By Thm C, it suffices to verify the injectivity
of

ρX3/k
: Gal(k/k)→ OutFC(π1(X3 ⊗k k)) .

• By considering a “tripod in X3”,

Ker(ρX3/k
) ⊆ Ker(ρtripod/k) .

• By the above result of Belyi,

Ker(ρtripod/k) = {1} .
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§4: A Version of the Grothendieck Conjecture
for Universal Curves

(g, r) s.t. 2g − 2 + r > 0

Mg,r/C: moduli stack of (g, r)-curves over C

(Ccpt
g,r →Mg,r; s1, · · · , sr : Mg,r → C

cpt
g,r ):

universal curve overMg,r

Cg,r
def
= Ccpt

g,r \
⋃r

i=1 Im(si) ('Mg,r+1)

Theorem E (Mochizuki-H)

φ: outer automorphism of π1(Cg,r) over π1(Mg,r)

• 2g − 2 + r > 2

• φ preserves the set of cuspidal inertia sub-
groups associated to the si’s.

=⇒
φ arises from an automorphism of Cg,r overMg,r,
i.e., φ = id.
=⇒
The image of the universal outer monodromy

representation is center-free.
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Outline of proof of Thm E:

• If r > 0, then the left-hand vertical arrow of

fiber product −→ π1(Cg,r)


y



y

Ker(proj.) −→ π1(Mg,r)
proj.
−−−→ π1(Mg,r−1)

is isomorphic to “π1(X2)→ π1(X)” for
a (g, r − 1)-curve X .

Thus, Thm C and Thm H⇒ Thm E.

• If r = 0, then by considering the various irre-
ducible components of the divisor at infinity
ofMg,r, Thm E in the case where r > 0 and
Thm B⇒ α is a profinite Dehn twist,

i.e., graphic outer automorphism of

π1( semi-graph of anab. of PSC-type )

that induces “id” on the underlying graph
and on any irreducible component.

Thus, the consideration of the various de-
generations of the fiber ⇒ Thm E.
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§5: A Generalization of a Result due to Y. André

[k : Q] <∞

p: nonarchimedean prime of k

X/k: hyperbolic curve

π
temp
1 (Xp): tempered π1 of X ⊗k (kp)

∧

Outtemp def
= Out(π

temp
1 (Xp))

=⇒

Gal(kp/kp)
ρ

temp
X/k:p
−−−−→ Outtemp

∩



y



y∩

Gal(k/k) −−−→
ρX/k

Out(π1(X ⊗k k))

Theorem F (André)

X
∃ fét
← Y/k

∃ nonconstant
→ tripod /k

=⇒

Gal(kp/kp) = Gal(k/k) ∩ Outtemp
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OutM ⊆ (Outtemp ⊆) Out(π1(X ⊗k k)) :

group of isometric outer automorphisms,

i.e., preserve the metrics of nodes of the various
coverings.

(The metric of “op[[x, y]]/(xy − a)” is vp(a).)

=⇒
Gal(kp/kp) −→ OutM

∥
∥
∥



y∩

Gal(kp/kp) −−−−→
ρ

temp
X/k:p

Outtemp

∩



y



y∩

Gal(k/k) −−−→
ρX/k

Out(π1(X ⊗k k))

Theorem G (Mochizuki-H)

Gal(kp/kp) = Gal(k/k) ∩ OutM
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Outline of proof of Thm G:

By (almost pro-l) Thm C, the map

OutFC(π1(X3 ⊗k k))→ Out(π1(tripod))

obtained by considering a “tripod in X3” induces

OutFC(π1(X3 ⊗k k)) ∩ OutM

(∗)
−→ OutM(π1(tripod)) .

Therefore,
Gal(kp/kp)

⊆ Gal(k/k) ∩ OutM

= Gal(k/k) ∩ OutFC(π1(X3 ⊗k k)) ∩ OutM

(∗)+ThmD
⊆ Gal(k/k) ∩ OutM(π1(tripod))

André
⊆ Gal(kp/kp) .
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§6: Differences between OutFC ⊆ OutF ⊆ Out

X : hyperbolic Riemann surface of type (g, r),
i.e.,

× ×

· · · ·
︸ ︷︷ ︸

g

· · · · · · ·
︷ ︸︸ ︷

r

2g − 2 + r > 0

Xn: n-th configuration space of X , i.e.,

Xn
def
=

n
︷ ︸︸ ︷
X × · · · ×X \various diagonals

† ∈ {discrete, profinite, pro-l}

Πn
def
= π

top
1 (Xn)†

OutFC(Πn) ⊆ OutF(Πn) ⊆ Out(Πn):

• induce “id” on the set of Fiber subgroups.

• preserve the set of Cuspidal inertia subgroups.
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∼ OutF v.s. Out ∼

Theorem H (Mochizuki-Tamagawa)

2g − 2 + r > 1 =⇒

Any element of Out(Πn) preserves the set of
fiber subgroups, i.e., ∃ split exact sequence

1 −→ OutF(Πn) −→ Out(Πn) −→ Sn −→ 1 .

∼ OutFC v.s. OutF ∼

Theorem I (Mochizuki-H)

Im
(

OutF(Πn+1)→ OutF(Πn)
)

⊆ OutFC(Πn) .
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Outline of proof of Thm I:

For simplicity, n = 1, † = “pro-l”, g > 0.

OutF(Π2) −→ OutF(Π1) = Out(Π1)
α2 7→ α

α2 y α2 y

Π2 Π2

y



y(pr1,pr2)

1 −→ Zl(1) −→ Πc-cn
2 −→ Π1 × Π1 −→ 1

αc-cn
2 y α× β y

H2(Π1 × Π1, Zl(1)) ' H2(X ×X, Zl(1))
Πc-cn

2 7→ c1(diagonal in X ×X)

→ H1(Π1, Zl)
⊗2 ⊗ Zl(1) ' Hom((Πab

1 )⊗2, Zl(1))
7→ Poincaré duality

P.D. factors through (Πab
1 )⊗2

� πab
1 (Xcpt)⊗2

⇒ α preserves Ker(Πab
1 = πl-ab

1 (X)� πl-ab
1 (Xcpt))

... Apply this argument to various fét of X2 ...
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