Mono-anabelian Reconstruction of Number Fields Yuichiro Hoshi RIMS 2015/03/09 #### Contents - $\S 1$ Main Result - §2 Two Keywords Related to IUT - §3 Review of the Local Theory - §4 Reconstruction of Global Cyclotomes # §1 Main Result Question: Can one reconstruct a number field from the associated absolute Galois group? #### Definition $$F$$: an NF $\stackrel{\mathrm{def}}{\Leftrightarrow}$ $[F:\mathbb{Q}]<\infty$ $$k$$: an MLF $\overset{\mathrm{def}}{\Leftrightarrow}$ $[k:\mathbb{Q}_p]<\infty$ for some p For a topological group G, $$\overset{\mathrm{def}}{\Leftrightarrow} G \cong \mathsf{the} \; \mathsf{abs.} \; \mathsf{Gal.} \; \mathsf{gp} \; \mathsf{of} \; \mathsf{an} \; \mathsf{NF} \; (\mathsf{resp.} \; \mathsf{MLF})$$ ## Theorem [Neukirch-Uchida] $$\square \in \{\circ, \bullet\}$$ F_{\square} : a global field [i.e., a fin. ext. of \mathbb{Q} or $\mathbb{F}_p(t)$] \overline{F}_\square : a separable closure of F_\square $$G_{F_{\square}}\stackrel{\mathrm{def}}{=} \mathrm{Gal}(\overline{F}_{\square}/F_{\square})$$ \implies The natural map $$\operatorname{Isom}(\overline{F}_{\circ}/F_{\circ}, \overline{F}_{\bullet}/F_{\bullet}) \longrightarrow \operatorname{Isom}(G_{F_{\bullet}}, G_{F_{\circ}})$$ is bijective. In particular: $F_{\circ} \cong F_{\bullet} \iff G_{F_{\circ}} \cong G_{F_{\bullet}}$. 4□ > 4□ > 4 = > 4 = > = 90 # Mochizuki's Mono-anabelian Philosophy Give a(n) [functorial "group-theoretic"] algorithm $$G_F \rightsquigarrow \overline{F}/F$$. A "reconstruction" as in Theorem [N-U] is called "bi-anabelian reconstruction". In the case where - $\operatorname{char}(F_{\square}) > 0$, the proof \Rightarrow mono-anab'n rec'n, - $\operatorname{char}(F_{\square}) = 0$, the proof $\not\Rightarrow$ mono-anab'n rec'n. # Rough Statement of Main Theorem (1) ∃A functorial "group-theoretic" algorithm *G* : of NF-type \leadsto F(G): an algebraically closed field \backsim G which satisfies some conditions. For instance: • An isomorphism $G \stackrel{\sim}{\to} \operatorname{Gal}(\overline{F}/F)$ determines $$(\overline{F}(G) \curvearrowleft G) \stackrel{\sim}{\longrightarrow} (\overline{F} \curvearrowleft \operatorname{Gal}(\overline{F}/F)).$$ # Rough Statement of Main Theorem (2) • The Log-Frobenius compatibility G: of NF-type $D \subseteq G$: a dec'n gp ass'd to a nonarch'n prime $$\begin{array}{l} G \hookleftarrow D \\ \stackrel{\mathsf{Th'm}}{\leadsto} G \hookleftarrow D \curvearrowright \overline{k}(D) \\ \stackrel{\mathsf{forget}}{\leadsto} G \hookleftarrow D \curvearrowright \overline{k}'' & [\mathsf{a} \; \mathsf{telecore}] \\ \leadsto G \hookleftarrow D \curvearrowright \overline{k}'' \backsim \log \; [\mathfrak{log} \colon \overline{k} \leadsto \mathsf{log}_{\overline{k}}(\mathcal{O}_{\overline{k}}^{\times})^{\mathrm{pf}}] \\ \stackrel{\mathsf{forget}}{\leadsto} G \hookleftarrow D \quad [\mathsf{a} \; \mathsf{core}] \end{array}$$ #### Remark - One may replace " \overline{F} " by an <u>absolutely Galois</u> [i.e., Galois over \mathbb{Q}] <u>solvably closed</u> [i.e., not admitting a nontrivial abelian extension] extension of F. - The Neukirch-Uchida theorem plays a crucial role in the proof of the main result. In particular, the [proof of the] main result does not give an alternative proof of the Neukirch-Uchida theorem. # §2 Two Keywords Related to IUT Mono-anabelian Reconstruction Algorithm Cyclotomic Synchronization Isomorphism [sometimes "Cyclotomic Rigidity Isomorphism"] ## Mono-anabelian Reconstruction Algorithm (1) What is an MRA? For instance: # Bi-anabelian Geometry $$\operatorname{Isom}(\overline{F}_{\circ}/F_{\circ}, \overline{F}_{\bullet}/F_{\bullet}) \xrightarrow{\sim} \operatorname{Isom}(G_{F_{\bullet}}, G_{F_{\circ}})$$ or $F_{\circ} \cong F_{\bullet} \iff G_{F_{\circ}} \cong G_{F_{\bullet}}$. # Mono-anabelian Geometry $$G_F \rightsquigarrow \overline{F}/F$$: functorial, "group-theoretic" # Mono-anabelian Reconstruction Algorithm (2) (MRA_1) What is an example of a mono-anabelian reconstruction algorithm? (MRA₂) Why should one consider [not only a "fully faithfulness result" in bi-AG but also] an algorithm in mono-AG? An answer to (MRA_1) : [Of course, our result gives an exa. of an MRA...] the local reconstruction algorithm reviewed in $\S 3$ # Mono-anabelian Reconstruction Algorithm (3) A(n) [tautological] answer to (MRA_2) Why should one consider an algorithm in mono-AG? The issue of "what can one do by a given reconstruction result" depends on the content of the given algorithm in the reconstruction result. See some examples which appear in this talk. # Cyclotomic Synchronization Isomorphism (1) [sometimes "Cyclotomic Rigidity Isomorphism"] What is a CSI? A CSI is a suitable isom. between cyclotomes. (CSI_1) What is a cyclotome? (CSI_2) How does one use a cyclotomic synchronization isomorphism? An answer to (CSI_2) : an example in the final portion of §3 # Cyclotomic Synchronization Isomorphism (2) An answer to (CSI_1) What is a cyclotome?: A cyclotome is an isomorph of " $\widehat{\mathbb{Z}}(1)$ ". #### For instance: - $\bullet \ \ \Lambda(K) \stackrel{\text{def}}{=} \varprojlim_n \mu_n(K)$ - $\pi_1^{\text{\'et}}\left(\operatorname{Spec}\left(\overline{K}''(t)\right)\right)$ - $\operatorname{Hom}_{\widehat{\mathbb{Z}}}(H^2_{\operatorname{\acute{e}t}}(C,\widehat{\mathbb{Z}}),\widehat{\mathbb{Z}})$, where K: an algebraically closed field of characteristic 0 C: a projective smooth curve over K # Cyclotomic Synchronization Isomorphism (3) [Recall: A CSI is a suitable isom. of cyclotomes.] In the ring-theoretic framework of scheme theory, we have suitable isom. of various cyclotomes. For instance: - The inclusion $\overline{\mathbb{Q}} \hookrightarrow K$ determines $\Lambda(\overline{\mathbb{Q}}) \stackrel{\sim}{\to} \Lambda(K)$. - The map $c_1 : \operatorname{Pic}(C) \to H^2_{\operatorname{\acute{e}t}}(C, \Lambda(K))$ determines $\Lambda(K) \stackrel{\sim}{\to} \operatorname{Hom}_{\widehat{\mathbb{Z}}}(H^2_{\operatorname{\acute{e}t}}(C, \widehat{\mathbb{Z}}), \widehat{\mathbb{Z}}).$ # Cyclotomic Synchronization Isomorphism (4) [Recall: A CSI is a suitable isom. of cyclotomes.] On the other hand, in the group-theoretic framework of anabelian geometry, at least a priori, we do not have such an isomorphism. $$\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \xrightarrow{\sim} \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$$ $$\xrightarrow{???} \exists \text{a suitable}$$ $$\Lambda(\overline{\mathbb{Q}}_p) \qquad \Lambda(\overline{\mathbb{Q}}_p) \qquad \Lambda(\overline{\mathbb{Q}}_p) \xrightarrow{\sim} \Lambda(\overline{\mathbb{Q}}_p)$$ [No such a "suitable" isom... — cf. $\widehat{\mathbb{Z}}^{\times} \curvearrowright \Lambda$.] # Cyclotomic Synchronization Isomorphism (5) In the main result of this talk. $$H$$: a profinite group of MLF- or NF-type \rightsquigarrow a cyclotome $H \curvearrowright \Lambda(H)$ [cf. §3 and §4] [i.e., " $\operatorname{Gal}(\overline{M}/M) \rightsquigarrow (\operatorname{Gal}(\overline{M}/M) \curvearrowright \Lambda(\overline{M}))$ "] Thus: G: of NF-type $D \subseteq G$: a dec'n gp ass'd to a nonarch'n prime $$\leadsto D \hookrightarrow G$$ $$\Lambda(D) \quad \Lambda(G)$$ $$\Lambda(G) \stackrel{\sim}{\to} \Lambda(D)$$ [cf. §4] # Cyclotomic Synchronization Isomorphism (6) In IUT: For instance: k: an MLF $G \curvearrowright M$: an isomorph of $\operatorname{Gal}(\overline{k}/k) \curvearrowright \mathcal{O}_{\overline{k}}^{\triangleright}$, where $\mathcal{O}_{\overline{k}}^{\triangleright}$: the monoid of nonzero integers of \overline{k} [i.e., a certain "Frobenioid"] In this situation: "G": the étale-like portion of $G \curvearrowright M$ "M": the Frobenius-like portion of $G \curvearrowright M$ By the prev. page: $G \rightsquigarrow G \curvearrowright \Lambda(G)$: a cyclotome # Cyclotomic Synchronization Isomorphism (7) $$M^{\mathrm{gp}} \cong \overline{k}^{\times} \Rightarrow \Lambda(M) \stackrel{\mathrm{def}}{=} \varprojlim_{n} M^{\mathrm{gp}}[n] \cong \Lambda(\overline{k}),$$ i.e., $G \curvearrowright \Lambda(M)$: a cyclotome $G \rightsquigarrow G \curvearrowright \Lambda(G)$: the étale-like cyclotome $M \rightsquigarrow G \curvearrowright \Lambda(M)$: the Frobenius-like cyclotome CSI [via local class field theory]: $G \curvearrowright M \rightsquigarrow \text{a suitable [e.g.,} G\text{-eq.] } \Lambda(G) \stackrel{\sim}{\to} \Lambda(M)$ # §3 Review of the Local Theory k: an MLF $$\mathcal{O}_k \subseteq k$$: the ring of integers of k $$\mathfrak{m}_k \subseteq \mathcal{O}_k$$: the maximal ideal of \mathcal{O}_k $$\mathcal{O}_k^{\rhd} \stackrel{\mathrm{def}}{=} \mathcal{O}_k \setminus \{0\} \subseteq k^{\times} [\mathsf{submonoid}]$$ $$\underline{k} \stackrel{\mathrm{def}}{=} \mathcal{O}_k/\mathfrak{m}_k$$: the residue field of \mathcal{O}_k \overline{k} : an algebraic closure of k $$\mathcal{O}_{\overline{k}}^{\triangleright} \stackrel{\mathrm{def}}{=} \mathcal{O}_{\overline{k}} \setminus \{0\} \subseteq \overline{k}^{\times} [\mathsf{submonoid}]$$ $$G_k \stackrel{\mathrm{def}}{=} \operatorname{Gal}(\overline{k}/k)$$ $P_k \subseteq I_k \subseteq G_k$: the wild inertia, inertia subgps #### **Proposition** (i) [Local Class Field Theory] — where the right-hand upper vertical arrow maps $$\operatorname{Frob}_{\underline{k}} \in G_k/I_k \text{ to } 1 \in \widehat{\mathbb{Z}}.$$ (ii) $$\{\operatorname{char}(\underline{k})\} = \{I : \operatorname{prime} \mid \operatorname{dim}_{\mathbb{Q}_I}(G_k^{\operatorname{ab}} \otimes_{\widehat{\mathbb{Z}}} \mathbb{Q}_I) \geq 2 \}$$ Write $p \stackrel{\operatorname{def}}{=} \operatorname{char}(\underline{k})$. $$(iii) \ d_k \stackrel{\operatorname{def}}{=} [k : \mathbb{Q}_p] = \operatorname{dim}_{\mathbb{Q}_p}(G_k^{\operatorname{ab}} \otimes_{\widehat{\mathbb{Z}}} \mathbb{Q}_p) - 1$$ (iv) $f_k \stackrel{\operatorname{def}}{=} [\underline{k} : \mathbb{F}_p] = \log_p(\sharp (G_k^{\operatorname{ab}})_{\operatorname{tor}}^{(p')} + 1)$ (v) $I_k = \bigcap_{K/k: \text{ fin. s.t. } d_K/f_K = d_k/f_k} G_K$ (vi) $P_k \subseteq I_k$: the unique pro- p -Sylow subgroup (vii) $\{\operatorname{Frob}_{\underline{k}} \in G_k/I_k \}$ $$= \{\gamma \in G_k/I_k \mid \gamma \text{ acts on } I_k/P_k \text{ by } p^{f_k} \}$$ (viii) $$U_k^{(1)} \stackrel{\mathrm{def}}{=} 1 + \mathfrak{m}_k \subseteq \mathcal{O}_k^{ imes}$$: unique pro- p -Sylow (ix) $$\overline{k}^{\times} = \varinjlim_{K/k: \text{ fin.}} K^{\times}$$ $\mathcal{O}_{\overline{k}}^{\triangleright} = \varinjlim_{K/k: \text{ fin.}} \mathcal{O}_{K}^{\triangleright}$ $$(\mathsf{x})\ \mathsf{\Lambda}(\overline{k})\ \stackrel{\mathrm{def}}{=}\ ``\widehat{\mathbb{Z}}(1)"\ =\ \varprojlim_{n}\ \overline{k}^{\times}[n]$$ $$(\mathsf{xi}) \ 1 \to \overline{k}^{\times}[n] \to \overline{k}^{\times} \overset{n}{\to} \overline{k}^{\times} \to 1 \quad \curvearrowleft \quad G_k$$ induces an injection $$\operatorname{Kmm}_k : k^{\times} \hookrightarrow H^1(G_k, \Lambda(\overline{k})).$$ - ◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (^) # Local Mono-anabelian Reconstruction (1) G: of MLF-type (1) $$p(G)$$: [unique] prime I s.t. $$\dim_{\mathbb{Q}_I} (G^{\mathrm{ab}} \otimes_{\widehat{\mathbb{Z}}} \mathbb{Q}_I) \geq 2$$ $$(2) \ d(G) \ \stackrel{\mathrm{def}}{=} \ \mathsf{dim}_{\mathbb{Q}_{p(G)}}(G^{\mathrm{ab}} \otimes_{\widehat{\mathbb{Z}}} \mathbb{Q}_{p(G)}) - 1$$ $$(3) \ f(G) \stackrel{\mathrm{def}}{=} \ \log_{p(G)}(\sharp (G^{\mathrm{ab}})^{(p(G)')}_{\mathrm{tor}} + 1)$$ (4) $$I(G) \stackrel{\text{def}}{=} \bigcap_{G^{\dagger} \subseteq G: \text{ open s.t. } \frac{d(G^{\dagger})}{f(G^{\dagger})} = \frac{d(G)}{f(G)}} G^{\dagger}$$ (5) $P(G) \subseteq I(G)$: [unique] pro-p(G)-Sylow # Local Mono-anabelian Reconstruction (2) - (6) Frob $(G) \in G/I(G)$: [unique] elem't $\in G/I(G)$ which acts on I(G)/P(G) by $p(G)^{f(G)}$ - $(7) k^{\times}(G) \stackrel{\mathrm{def}}{=} G^{\mathrm{ab}} \times_{G/I(G)} \mathrm{Frob}(G)^{\mathbb{Z}} \subseteq G^{\mathrm{ab}}$ - $(8) \mathcal{O}^{\triangleright}(G) \stackrel{\mathrm{def}}{=} G^{\mathrm{ab}} \times_{G/I(G)} \mathrm{Frob}(G)^{\mathbb{N}} \subseteq k^{\times}(G)$ - $(9) \,\, \mathcal{O}^{\times}(G) \,\, \stackrel{\mathrm{def}}{=} \,\, \mathrm{Im}(I(G) \to G^{\mathrm{ab}}) \,\, \subseteq \,\, \mathcal{O}^{\triangleright}(G)$ - (10) $U^{(1)}(G) \subseteq \mathcal{O}^{\times}(G)$: [unique] pro-p(G)-Sylow # Local Mono-anabelian Reconstruction (3) $$(11) \ \overline{k}^{\times}(G) \stackrel{\text{def}}{=} \ \varinjlim_{G^{\dagger} \subseteq G: \text{ open}} k^{\times}(G^{\dagger})$$ $$\overline{\mathcal{O}}^{\triangleright}(G) \stackrel{\text{def}}{=} \ \varinjlim_{G^{\dagger} \subseteq G: \text{ open}} \mathcal{O}^{\triangleright}(G^{\dagger})$$ $$\Lambda(G) \stackrel{\text{def}}{=} \ \varprojlim_{n} \ \overline{k}^{\times}(G)[n] \stackrel{\text{conj.}}{\curvearrowleft} G$$ (12) $$\operatorname{Kmm}(G)$$: $k^{\times}(G) \hookrightarrow H^{1}(G, \Lambda(G))$: the injection induced by $$1 \to \overline{k}^{\times}(G)[n] \to \overline{k}^{\times}(G) \overset{n}{\to} \overline{k}^{\times}(G) \to 1 \overset{\text{conj.}}{\curvearrowleft} G$$ # Local Mono-anabelian Reconstruction (4) Let $\alpha \colon G_k \xrightarrow{\sim} G$ be an isomorphism. Then: (i) $$\operatorname{char}(\underline{k}) = p(G)$$, $d_k = d(G)$, $f_k = f(G)$. (ii) lpha determines a commutative diagram $$P_{k} \xrightarrow{\subset} I_{k} \xrightarrow{\subset} G_{k}$$ $$\downarrow \downarrow \qquad \qquad \downarrow \downarrow \alpha$$ $$P(G) \xrightarrow{\subset} I(G) \xrightarrow{\subset} G;$$ moreover, $G_k/I_k \stackrel{\sim}{\to} G/I(G)$ maps Frob_k to $\operatorname{Frob}(G)$. ## Local Mono-anabelian Reconstruction (5) (iii) α [and the fld str. on k] det. a comm. dia'm $$U^{(1)}(G) \stackrel{\subset}{\longrightarrow} \mathcal{O}^{\times}(G) \stackrel{\subset}{\longrightarrow} \mathcal{O}^{\rhd}(G) \stackrel{\subset}{\longrightarrow} k^{\times}(G).$$ (iv) The dia'm of (iii) det. (G_k , G)-equiv't isom. $$\overline{k}^{\times} \stackrel{\sim}{\longrightarrow} \overline{k}^{\times}(G), \quad \mathcal{O}_{\overline{k}}^{\triangleright} \stackrel{\sim}{\longrightarrow} \overline{\mathcal{O}}^{\triangleright}(G),$$ $$\Lambda(\overline{k}) \stackrel{\sim}{\longrightarrow} \Lambda(G).$$ # Local Mono-anabelian Reconstruction (6) (v) $k^{\times} \stackrel{\sim}{\to} k^{\times}(G)$ of (iii) and $\Lambda(\overline{k}) \stackrel{\sim}{\to} \Lambda(G)$ of (iv) fit into a commutative diagram $$k^{ imes} \xrightarrow{\operatorname{Kmm}_{k}} H^{1}(G_{k}, \Lambda(\overline{k}))$$ $\downarrow \downarrow \qquad \qquad \downarrow \downarrow \downarrow$ $k^{ imes}(G) \xrightarrow{\operatorname{Kmm}(G)} H^{1}(G, \Lambda(G)).$ #### Remark In general: $$G_k \not \rightsquigarrow \text{ the field } k$$. Indeed: \exists a pair of MLF (k_{\circ}, k_{\bullet}) s.t. $$G_{k_{\circ}} \simeq G_{k_{\bullet}}$$ but $k_{\circ} \not\simeq k_{\bullet}$. On the other hand: $$G_k + \text{ram'n fil'n} \iff \text{the field } k \quad [\text{Mochizuki}]$$ $$G_k$$ + Hodge-Tate rep. \rightsquigarrow the field k [H] An answer to (CSI_2) How does one use a CSI? Recall: k: an MI F $G \curvearrowright M$: an isomorph of $\operatorname{Gal}(\overline{k}/k) \curvearrowright \mathcal{O}_{\overline{\iota}}^{\triangleright}$ $\Rightarrow M^{\mathrm{gp}} \cong \overline{k}^{\times} \Rightarrow \Lambda(M) \stackrel{\mathrm{def}}{=} \varprojlim_{n} M^{\mathrm{gp}}[n] \cong \Lambda(\overline{k}),$ i.e., $G \curvearrowright \Lambda(M)$: a cyclotome On the other hand: $G \rightsquigarrow G \curvearrowright \Lambda(G)$: a cyclotome CSI [via local class field theory]: $G \curvearrowright M \rightsquigarrow \text{a suitable [e.g., } G\text{-eq.] } \Lambda(G) \stackrel{\sim}{\to} \Lambda(M)$ - The $\operatorname{Kmm}(G^{\dagger})$'s \Rightarrow $\overline{\mathcal{O}}^{\triangleright}(G) \hookrightarrow \varinjlim_{G^{\dagger} \subset G} H^{1}(G^{\dagger}, \Lambda(G^{\dagger}) (= \Lambda(G)))$ - The $(1 \to M^{\rm gp}[n] \to M^{\rm gp} \stackrel{n}{\to} M^{\rm gp} \to 1 \curvearrowleft G^{\dagger})$'s $\Rightarrow M \hookrightarrow \varinjlim_{G^{\dagger} \subset G} H^{1}(G^{\dagger}, \Lambda(M))$ In fact: Our $\Lambda(G) \xrightarrow{\sim} \Lambda(M)$ is a unique isom. s.t. $\varinjlim H^1(\Lambda(G)) \xrightarrow{\sim} \varinjlim H^1(\Lambda(M)) \stackrel{!!!}{\Rightarrow} \overline{\mathcal{O}}^{\triangleright}(G) \xrightarrow{\sim} M$. Thus, we obtain a "Kummer isomorphism", i.e., "étale-like monoid $\stackrel{\sim}{\to}$ Frobenius-like portion". $$G_i \curvearrowright M_i$$: an isomorph of $G_{\overline{k}_i} \curvearrowright \mathcal{O}_{\overline{k}_i}^{ hd}$ $[i=1,\,2]$ Given an isom. $G_1 \stackrel{\sim}{\to} G_2$ [i.e., two "math. worlds" $$G_1 \curvearrowright M_1$$, $G_2 \curvearrowright M_2$ are glued by an "étale bridge" $G_1 \stackrel{\sim}{\to} G_2$] Then: $$M_1 \overset{\mathsf{Kmm \ via \ CSI}}{\leftarrow} \overline{\mathcal{O}}^{\rhd}(\mathit{G}_1) \overset{\mathsf{given}}{\overset{\sim}{\rightarrow}} \overline{\mathcal{O}}^{\rhd}(\mathit{G}_2) \overset{\mathsf{Kmm \ via \ CSI}}{\overset{\sim}{\rightarrow}} \mathit{M}_2$$ Thus: $$G_1 \stackrel{\sim}{\to} G_2 \rightsquigarrow (G_1 \curvearrowright M_1) \stackrel{\sim}{\to} (G_2 \curvearrowright M_2)$$ Recall: the above discussion $$\Leftarrow$$ the \exists of $\mathrm{Kmm}(G) \colon k^{\times}(G) \hookrightarrow H^1(G, \Lambda(G))$ $$\Leftarrow k^{\times}(G) \subseteq \overline{k}^{\times}(G) \supseteq \overline{k}^{\times}(G)_{\text{tor}} \rightsquigarrow \Lambda(G),$$ i.e., the relationship between the algorithms for constructing $k^{\times}(G)$ and $\Lambda(G)$ [cf. (MRA₂)] Remark: In IUT, ∃other various CSI, e.g., a CSI via a mono-Θ environment. # §4 Reconstruction of Global Cyclotomes #### Set of Nonarchimedean Primes G: of NF-type • $\widetilde{\mathcal{V}}(G)$ $\stackrel{\mathrm{def}}{=} \{ \mathsf{maximal} \; \mathsf{subgps} \; \mathsf{of} \; \mathsf{G} \; \mathsf{of} \; \mathsf{MLF-type} \} \stackrel{\mathrm{conj.}}{\curvearrowleft} \mathsf{G}$ • $\mathcal{V}(G) \stackrel{\text{def}}{=} \widetilde{\mathcal{V}}(G)/G$ by Neukirch's work F: an NF $G_F \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{F}/F)$ - $\mathcal{V}_{\overline{F}} \stackrel{\text{def}}{=} \{ \text{ nonarch'n primes of } \overline{F} \} \land G_F$ - $\mathcal{V}_F \stackrel{\mathrm{def}}{=} \{ \text{ nonarch'n primes of } F \} \cong \mathcal{V}_{\overline{F}} / \mathcal{G}_{F_{\circ,\circ,\circ}}$ ## Local Modules/Group of Finite Idèles For $$v \in \mathcal{V}(G)$$, by considering the "diagonal", $\mathcal{O}^{\times}(v) \subseteq k^{\times}(v) \subseteq \prod_{D \in v} k^{\times}(D) \subseteq \prod_{D \in v} D^{\mathrm{ab}}$ by §3 $\Rightarrow \mathbb{I}^{\Sigma}(G) \stackrel{\mathrm{def}}{=} (\prod_{v \in \Sigma} k^{\times}(v)) \times (\prod_{v \notin \Sigma} \mathcal{O}^{\times}(v))$ $$\Rightarrow \mathbb{I}^{\Sigma}(G) \stackrel{\mathrm{def}}{=} (\prod_{v \in \Sigma} k^{\times}(v)) \times (\prod_{v \notin \Sigma} \mathcal{O}^{\times}(v))$$ $$\mathbb{I}^{\mathrm{fin}}(G) \stackrel{\mathrm{def}}{=} \varinjlim_{\Sigma \subseteq \mathcal{V}(G): \, \mathrm{finite}} \mathbb{I}^{\Sigma}(G)$$ For $v \in \mathcal{V}_F$, $\mathcal{O}_{F_{\nu}}^{\times} \subseteq F_{\nu}^{\times}$, where F_{ν} : the completion of F at ν $\mathbb{I}_{F}^{\text{fin}}$: the group of finite idèles of F ## Homomorphism via Global Class Field Theory The $$(k^{\times}(v)\hookrightarrow D^{\mathrm{ab}}\to G^{\mathrm{ab}})$$'s $\Rightarrow \mathbb{I}^{\mathrm{fin}}(G)\to G^{\mathrm{ab}}$ \mathbb{I}_F : the group of idèles of F By global class field theory: $$\left(\mathbb{I}_F^{\mathrm{fin}}\hookrightarrow ight)\mathbb{I}_F woheadrightarrow\left(\mathbb{I}_F/F^ imes ightarrow ight)\:G_F^{\mathrm{ab}}$$ Moreover: the $(F^{\times} \hookrightarrow F_{\nu}^{\times})$'s $\Rightarrow F^{\times} \hookrightarrow \mathbb{I}_{F}^{\text{fin}}$. Remark: $F^{\times} \hookrightarrow \mathbb{I}_F^{\text{fin}} \to G_F^{\text{ab}}$ is nontriv. in general! [i.e., " F^{\times} " of " $F^{\times} \hookrightarrow \mathbb{I}_F^{\text{fin}}$ " \neq " F^{\times} " of " \mathbb{I}_F/F^{\times} "] # Proposition It holds that: $$\operatorname{Ker}(\mathbb{I}_F^{\operatorname{fin}} \to G_F^{\operatorname{ab}})_{\operatorname{tor}} \subseteq (F^{\times})_{\operatorname{tor}} \ (= \mu(F))$$ If, moreover, F is totally imaginary, then: $$\operatorname{Ker}(\mathbb{I}_F^{\operatorname{fin}} \to G_F^{\operatorname{ab}})_{\operatorname{tor}} = (F^{\times})_{\operatorname{tor}} \ (= \mu(F))$$ #### Global Cyclotome $$\mu(G) \stackrel{\text{def}}{=} \varinjlim_{G^{\dagger} \subseteq G: \text{ open}} \text{Ker}(\mathbb{I}^{\text{fin}}(G^{\dagger}) \to (G^{\dagger})^{\text{ab}})_{\text{tor}}$$ $$\Lambda(G) \stackrel{\text{def}}{=} \varprojlim_{n} \mu(G)[n] \qquad \qquad \stackrel{\text{conj.}}{\curvearrowleft} G$$ Thus, we obtain a global cyclotome $G \curvearrowright \Lambda(G)$! $$\mu(\overline{F}) = \varinjlim_{E/F: \text{fin.}} \text{Ker}(\mathbb{I}_E^{\text{fin}} \to G_E^{\text{ab}})_{\text{tor}}$$ by Prop. $\Lambda(\overline{F}) \stackrel{\text{def}}{=} \varprojlim_n \mu(\overline{F})[n]$ ## Local-global CSI By our construction: $$\mu(G) \subseteq arprojlim_{G^\dagger} \mathbb{I}^{ ext{fin}}(G^\dagger) \subseteq arprojlim_{G^\dagger} \prod_{D^\dagger \in \widetilde{\mathcal{V}}(G^\dagger)} k^ imes (D^\dagger)$$ Thus, for $D \in \widetilde{\mathcal{V}}(G)$, we have a homomorphism $\mu(G) \to \varinjlim_{D^{\dagger} \subseteq D} k^{\times}(D^{\dagger}) = \overline{k}^{\times}(D)$, which ind. a D-eq. isom. $\Lambda(G) \overset{\sim}{\to} \Lambda(D)$: Local-global CSI! [cf. (MRA₂)] $$\mu(\overline{F}) \subseteq \overline{F}^{\times} \to \overline{F}_{\nu}^{\times} \text{ induces } \Lambda(\overline{F}) \xrightarrow{\sim} \Lambda(\overline{F}_{\nu}).$$ #### "Outline" of the Proof of the Main Result $$G_F \stackrel{\mathrm{def}}{=} \mathrm{Gal}(\overline{F}/F)$$ (1) By Neukirch's work, $$G_F \rightsquigarrow G_F \curvearrowright \mathcal{V}_{\overline{F}} \rightsquigarrow \mathcal{V}_F = \mathcal{V}_{\overline{F}}/G_F.$$ (2) By Class Field Theory + Local Rec'n, the multiplicative groups $F^{\times} \subseteq \prod_{v \in \mathcal{V}_{F}} F_{v}^{\times}$. $$\rightsquigarrow \mathcal{M}_F \stackrel{\mathrm{def}}{=} (F, \mathcal{O}_F, \mathcal{V}_F, \{U_{(v)}\}_{v \in \mathcal{V}_F}), \text{ where }$$ - the monoid F with respect to " \times ", - the submonoid $\mathcal{O}_F \subseteq F$, - the set \mathcal{V}_F , and - the subgps $U_{(v)}\stackrel{\mathrm{def}}{=} 1 + \mathfrak{m}_{(v)} \subseteq F$ for $v \in \mathcal{V}_F$. - (3) By Uchida's Lemma for NF, $$\mathcal{M}_F \iff$$ "+" of F , i.e., the field structure of F. \square ## Mono-anabelian Reconstruction Algorithm A characterization approach for NF: By the Neukirch-Uchida theorem, the functor from the cat. of pairs " \overline{F}/F " [F: an NF] to the cat. of prof. gps of NF-type given by " $\overline{F}/F \rightsquigarrow \operatorname{Gal}(\overline{F}/F)$ " is an equiv. of category. Let \mathcal{F} be a quasi-inverse of " $\overline{F}/F \rightsquigarrow \operatorname{Gal}(\overline{F}/F)$ ". \Rightarrow A functorial assignment $G \rightsquigarrow \mathcal{F}(G)$ [similar to the assignment as in the main result]. ## Mono-anabelian Reconstruction Algorithm In other words: the reconstruction by the following algorithm: For G of NF-type, the desired " \overline{F}/F " is the uniquely determined [by N-U Th'm] pair \overline{F}/F s.t. $G \cong \operatorname{Gal}(\overline{F}/F)$. #### Mono-anabelian Reconstruction Algorithm # Problems of this approach: - This essentially depends on the choice of F [or the universes w.r.t. the above two categories cf. fully faithful + essentially surjective ⇔ equivalence of categories]. - The relationship of G and " \overline{F}/F " depends on the choice of an isom. $G \xrightarrow{\sim} \operatorname{Gal}(\overline{F}/F)$, i.e., any "ring-theoretic basepoint" [or "ring-theoretic label"] of G is not determined by G itself.