Classical *p*-adic Teichmüller theory in characteristic three

Yuichiro Hoshi (RIMS, Kyoto University)

Utah, July 30, 2015

References:

- S. Mochizuki, A theory of ordinary *p*-adic curves, *Publ. Res. Inst. Math. Sci.* **32** (1996).
- Y. Hoshi, Nilpotent admissible indigenous bundles via Cartier operators in characteristic three, to appear in *Kodai Math. J.*

$\S1$: Review

 $f\colon X\to S:$ a projective smooth curve of genus ≥ 2

- $P \to X: \text{ a } \mathbb{P}^1\text{-bundle}$
- ∇ : a connection on $P \to X$ (relative to X/S)
- $\sigma: \text{ a section of } P \to X$

By differentiating σ by means of ∇ , we obtain a homomorphism $\sigma^* \omega_{P/X} \to \omega_{X/S}$, i.e., the Kodaira-Spencer map at σ relative to ∇ . (This measures the failure of σ to be horizontal.) Definition [Gunning (1967)] $(P \to X, \nabla, \sigma)$: an indigenous bundle over X/S $\stackrel{\mathrm{def}}{\Leftrightarrow} \mathsf{the KS map} \ \sigma^* \omega_{P/X} \to \omega_{X/S} \text{ is an isomorphism}$

An important example

(but neither projective nor a scheme...)

- M: the moduli stack of elliptic curves
- $E \rightarrow M$: the universal elliptic curve
- $\mathcal{L}:$ the Hodge bundle of $E \to M$

\Rightarrow

- $\mathcal{H}_{dR} \stackrel{\text{def}}{=} \mathcal{H}^1_{dR}(E/M)$: locally free of rank 2
- $\nabla_{GM}\!\!:$ the Gauß-Manin connection on \mathcal{H}_{dR}
- $0 \to \mathcal{L} \to \mathcal{H}_{dR} \to \mathcal{L}^{\vee} \to 0$: the Hodge filtration

\Rightarrow

- $\mathbb{P}(\mathcal{H}_{dR}) \to M$: the \mathbb{P}^1 -bundle determined by \mathcal{H}_{dR}
- $\mathbb{P}(\nabla_{GM}):$ the connection determined by ∇_{GM}
- $\sigma_{\rm Hdg}$: the section determined by the Hodge fil'n

$$\Rightarrow$$
 ($\mathbb{P}(\mathcal{H}_{dR}) \rightarrow M, \mathbb{P}(\nabla_{GM}), \sigma_{Hdg}$): an I.B. over M

$$\mathcal{L} \hookrightarrow \mathcal{H}_{\mathrm{dR}} \stackrel{\nabla_{\mathrm{GM}}}{\to} \mathcal{H}_{\mathrm{dR}} \otimes_{\mathcal{O}_M} \omega_M \twoheadrightarrow \mathcal{L}^{\vee} \otimes_{\mathcal{O}_M} \omega_M$$

(In particular, ∇_{GM} determines $\mathcal{L}^{\otimes 2} \stackrel{\sim}{\to} \omega_M$.)

In the remainder, suppose:

 $S = \operatorname{Spec}(k)$, where $k = \overline{k}$, $\operatorname{char}(k) = p > 2$

 $\Phi \stackrel{\text{def}}{=} (\operatorname{Frob}_X, f) \colon X \to X \times_{k, \operatorname{Frob}_k} k = X^F \colon$ the relative Frobenius of X/k

$$\begin{array}{cccc} X & \stackrel{\Phi}{\longrightarrow} & X^F & \longrightarrow & X \\ & & & & & & \downarrow f \\ & & & & \downarrow f \\ & & & & \text{Spec}(k) & \stackrel{\text{Frob}_k}{\longrightarrow} & \text{Spec}(k) \end{array}$$
$$P = (\pi \colon P \to X, \nabla, \sigma) \colon \text{ an indigenous bundle over } X/k \\ \mathcal{A} \stackrel{\text{def}}{=} \pi_* \tau_{P/X} \colon \text{ locally free of rank } 3, \ \mathcal{A} \cong \mathcal{A}^{\vee} \\ \psi \colon \Phi^* \tau_{X^F} \to \mathcal{A} \colon \text{ the } p\text{-curvature map of } P \\ \text{ (This measures the failure of } p\text{-power structure of } \end{array}$$

derivations to be horizontal.)

Definition

- (1) *P*: nilpotent $\stackrel{\text{def}}{\Leftrightarrow} (\Phi^* \tau_{X^F} \stackrel{\psi}{\to} \mathcal{A} \cong \mathcal{A}^{\vee} \stackrel{\psi^{\vee}}{\to} \Phi^* \omega_{X^F}) = 0$
- (2) P: admissible $\stackrel{\text{def}}{\Leftrightarrow} V(\psi) = \emptyset$, where $V(-) \stackrel{\text{def}}{=}$ the zero locus of (-), $(\Leftrightarrow \psi$: nowhere vanishing, i.e., a locally split injection)
- (3) $H \in f_*(\omega_X^{\otimes p-1})$: the square Hasse invariant of P $\stackrel{\text{def}}{=} \Phi^* \tau_{X^F} \xrightarrow{\psi} \mathcal{A} \twoheadrightarrow \mathcal{A}/\pi_*(\tau_{P/X}(-\sigma)) \xrightarrow{\sim} \tau_X$

(3)
$$H \in f_*(\omega_X^{\otimes p-1})$$
: the square Hasse invariant of P
 $\stackrel{\text{def}}{=} \Phi^* \tau_{X^F} \stackrel{\psi}{\to} \mathcal{A} \twoheadrightarrow \mathcal{A}/\pi_*(\tau_{P/X}(-\sigma)) \stackrel{\sim}{\to} \tau_X$
(4) $\mathbb{R}^1 f_*^F \tau_{X^F} \to \mathbb{R}^1 f_*^F \Phi_* \Phi^* \tau_{X^F} \stackrel{\sim}{\to} \mathbb{R}^1 f_* \Phi^* \tau_{X^F}$
 $\stackrel{H}{\to} \mathbb{R}^1 f_* \tau_X$: the Frobenius induced by P

(5) P: ordinary $\stackrel{\text{def}}{\Leftrightarrow}$ the Frobenius is an isomorphism

(Remark: ordinary \Rightarrow admissible \Rightarrow $H \neq 0$)

(6) If P is nilpotent and admissible, then ∃H and ∃χ ∈ f_{*}H s.t. H^{⊗2} ≅ ω_X^{⊗p-1} and χ ⊗ χ = H χ: the Hasse invariant of P V(χ): the supersingular divisor of P (Note: H ≠ 0)

Example

- The above example $(\mathbb{P}(\mathcal{H}_{dR}), \mathbb{P}(\nabla_{GM}), \sigma_{Hdg})$ is nilpotent and ordinary.
- " \mathcal{H} " = $\mathcal{L}^{\otimes p-1}$ (Recall: ∇_{GM} determines $\mathcal{L}^{\otimes 2} \xrightarrow{\sim} \omega_M$.) " χ " = the classical Hasse invariant $(\mathcal{L}_{E^F/M^F})^{\vee} \to \mathcal{L}^{\vee}$ " $V(\chi)$ " = the locus of M parametrizing supersingular elliptic curves

A part of classical *p*-adic Teichmüller theory

a nilpotent ordinary indigenous bundle on X/k \Rightarrow

- a canonical lifting $\mathbb X$ of X over W(k)
- a canonical lifting of $\Phi|_{X^{\mathrm{ord}}}$ over W(k)
- a canonical coordinate of $\mathbb{X}^{\mathrm{ord}}/W(k)$
- a canonical rep'n $\pi_1(\mathbb{X}[1/p]) \to GL_2(\mathbb{Z}_p)/\{\pm 1\}$

When does X/k admit a nilpotent ordinary indigenous bundle?

Theorem [Mochizuki]

A general X/k is hyperbolically ordinary, i.e., admits a nilpotent ordinary indigenous bundle.

<u>Remark</u>

One of basic questions of p-adic Teichmüller theory is: Is every X/k hyperbolically ordinary?

Is there an easier object that helps us understand/classify nilpotent ordinary indigenous bundles?

$\S2$: Results

 $\mathcal{L}: \text{ an invertible sheaf on } X \text{ s.t. } \mathcal{L}^{\otimes 2} \cong \mathcal{O}_X \\ \Rightarrow \quad C_{\mathcal{L}} \stackrel{\text{up to } k^{\times}}{\curvearrowright} f(\mathcal{L} \otimes_{\mathcal{O}_X} \omega_X): \\ \text{the Cartier operator associated to } \mathcal{L}$

- 1/p-linear, i.e., $C_{\mathcal{L}}(c \cdot v) = c^{1/p} \cdot C_{\mathcal{L}}(v)$
- $C_{\mathcal{O}_X}$ = the usual Cartier operator on $f_*\omega_X$
- D: an effective divisor on X

Definition

- $D: of CE-type \\ \stackrel{\text{def}}{\Leftrightarrow} \exists \mathcal{L} \text{ and } \exists \chi \in f_*(\mathcal{L} \otimes_{\mathcal{O}_X} \omega_X) \text{ s.t.}$
- (1) D: reduced
- (2) $D = V(\chi)$
- (3) $\mathcal{L}^{\otimes 2} \cong \mathcal{O}_X$

(4) χ is a Cartier eigenform, i.e., $\chi \neq 0$, $C_{\mathcal{L}}(\chi) \in k^{\times} \cdot \chi$

Definition

$\begin{array}{l} D: \mbox{ of CEO-type} \\ \stackrel{\rm def}{\Leftrightarrow} \exists (\mathcal{L}, \chi \in f_*(\mathcal{L} \otimes_{\mathcal{O}_X} \omega_X)) \mbox{ as in the above definition} \\ {\rm s.t. \ either} \end{array}$

• $\mathcal{L} \cong \mathcal{O}_X$ and J_X is ordinary

or

L ≇ O_X and J_{X_L}/Im(J_X) is ordinary,
 where X_L → X: the finite étale double covering which
 trivializes L

<u>Theorem</u>

If p = 3, then, by considering the supersingular divisors, ${\text{nilp. adm. I.B.}} \cong \xrightarrow{\sim} {\text{of CE-type}}$ $\downarrow \uparrow \qquad \downarrow \uparrow$ ${\text{nilp. ord. I.B.}} \cong \xrightarrow{\sim} {\text{of CEO-type}}.$

- Consequence To find a nilp. adm. I.B.:
- (1) Take an invertible sheaf L of order at most 2.
 (♯ of such invertible sheaves = 2^{2g})
- (2) Find an "eigenvector" of $C_{\mathcal{L}} \curvearrowright f_*(\mathcal{L} \otimes_{\mathcal{O}_X} \omega_X)$. (semi-linear algebra,

the essential \sharp of such vectors $= \sharp \mathbb{P}^{p-\mathsf{rank}-1}(\mathbb{F}_3)$)

- (3) Consider the issue of whether or not the zero locus of the eigenvector of (2) is reduced. (algebraic geometry)
- To find a nilp. ord. I.B.:
- $(4)\;\;$ Consider the issue of whether or not the abelian variety under consideration is ordinary.

<u>Remark</u>

- (1) The injectivity follows from general theory.
- (2) A priori, there is no relationship between the hyperbolic ordinariness of curves and the usual ordinariness of abelian varieties. On the other hand, by the above theorem, we have such a relationship.

Corollary

p = 3, P: a nilpotent ordinary I.B. over X/k $\Rightarrow \exists Y \to X$: a connected finite étale covering s.t. $P|_Y$: not ordinary

<u>Remark</u>

One of basic questions of *p*-adic Teichmüller theory is: Is the pull-back, via a con'd fét cov'g, of nilp. ord. I.B. still ordinary?

Key ingredient in the proof

A theorem of Raynaud: For every X, there exists a con'd fét cov'g whose Jacobian variety is nonordinary.

Corollary

(p,g)=(3,2)

 \Rightarrow Every X/k is hyperbolically ordinary,

i.e., admits a nilp. ord. I.B.

<u>Remark</u>

One of basic questions of p-adic Teichmüller theory is: Is every X/k hyperbolically ordinary?

<u>Proof</u>

Explicit computation.

$\S3: Outline$

(1) $\mathcal{B} \stackrel{\text{def}}{=} \operatorname{Coker}(\mathcal{O}_{X^F} \to \Phi_*\mathcal{O}_X)$: loc'y free of rank p-1 $P_0 \stackrel{\text{def}}{=} \mathbb{P}(\mathcal{B})$: a \mathbb{P}^1 -bundle (by p = 3) equipped with a "dormant" connection ∇_0 (by a theorem of Cartier) Moreover: $P_0 \stackrel{\text{def}}{=} (P_0, \nabla_0, \exists ! \text{a section})$: an I.B. (2) {I.B.}/ \cong forms a $f_*(\omega_X^{\otimes 2})$ -torsor (by general theory) Thus, by P_0 of (1),

$$\begin{array}{ccc} f_*(\omega_X^{\otimes 2}) & \stackrel{\sim}{\longrightarrow} & \{\mathsf{I}.\mathsf{B}.\}/\cong \\ \theta & \mapsto & P_\theta \stackrel{\mathrm{def}}{=} "P_0 + \theta" \end{array}$$

- (3) By a local computation, if $\theta = a(t)dt \otimes dt$,
 - $\theta \in k^{\times}$ (the square Hasse inv't of P_{θ}) ($\subseteq f_*(\omega_X^{p-1})$)
 - P_{θ} : nilpotent \Leftrightarrow $(a')^2 + aa'' + a^3 = 0$
 - P_{θ} : admissible \Leftrightarrow $\operatorname{ord}_{\forall x}(a) \leq 2$
- (4) (For simplicity, suppose that " \mathcal{H} " = ω_X .) (Recall: $\mathcal{H}^{\otimes 2} \cong \omega_X^{\otimes p-1}$) By a local computation, if $\theta = \chi \otimes \chi$, and $\chi = b(t)dt$,
 - P_{θ} : nilp. \Leftrightarrow $b'' = b^3$, i.e., χ is a Cartier eigenform
 - P_{θ} : adm. \Leftrightarrow $\operatorname{ord}_{\forall x}(b) \leq 1$, i.e., $V(\chi)$ is reduced