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Notation and Terminology

Oµ def
= (O×)tor ⊆ O× def

= {|z| = 1}

⊆ O▷ def
= {0 < |z| ≤ 1} ⊆ O def

= {|z| ≤ 1}

O×µ def
= O×/Oµ

an isomorph of A
def⇔ an object which is isomorphic to A

R+: the underlying additive module of a ring R
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F : a number field, i.e., [F : Q] <∞, s.t.
√
−1 ∈ F

V(−): the set of primes of (−)

E: an elliptic curve over F which has

either good or split multiplicative reduction at ∀v ∈ V(F )

qv ∈ O▷
Fv
: the q-parameter of E at v ∈ V(F )

qE
def
= (qv)v∈V(F ) ∈

∏
v∈V(F )O▷

Fv

⇒ deg qE (= [F : Q]−1 log(
∏

♯(OFv/qvOFv))) (≈ 6 · htE)

.
The Szpiro Conjecture for Elliptic Curves over Number Fields
..
......A certain upper bound of htE, i.e., deg qE
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Suppose that the following (∗) holds:
.

......(∗): ∃N ≥ 2, ∃C ≥ 0 s.t. deg qNE ≤ deg qE + C

Then since deg qNE = N · deg qE, one may conclude that

deg qE ≤
C

N − 1
.

In order to establish (∗), let us

take two isomorphs †S, ‡S of (a part of) scheme theory,

consider a “link” between these two isomorphs

Θnaive :
†S ∋ †qNE 7→ ‡qE ∈ ‡S, and

compare, via Θnaive, the computation of deg of †qNE (in †S) with

the computation of deg of ‡qE (in ‡S).
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Θnaive :
†S→ ‡S: †qNE 7→ ‡qE

Very roughly speaking, the main theorem of IUT asserts that:
.

......

Relative to such a link, the computation of deg †qNE is, up to mild

indeterminacies, compatible with the computation of deg ‡qE.

(⇒ deg qNE
ind.↷
= deg qE ⇒ (∗) ⇒ the Szpiro Conjecture)

Terminology

a(n) (arithmetic) holomorphic structure
def⇔ a (structure which determines a) ring structure

a mono-analytic structure
def⇔ an “underlying” (“non-holomorphic”) structure of a hol. str.

(e.g.: Qp, π
ét
1 (P1

Qp
\ {0, 1,∞}): hol.; (Qp)+, Q×

p , GQp : mono-an.)
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Fmod ⊆ F : the field of moduli of E

l: a prime number

K
def
= F (E[l](F ))

V ⊆ V(K): the image of a splitting of V(K) ↠ Vmod
def
= V(Fmod)

Suppose that F/Fmod and K/Fmod are Galois.

S
def
=

[
SpecOK/Gal(K/Fmod)

]
(the stack-theoretic quotient)

⇒ The arith. div. on OF determined by qE can be descended to an

arith. div. on S, i.e., by considering the arith. div. on S det’d by

q
def
= (qv

def
= qv|F ∈ O▷

Fv|F
⊆ O▷

Kv
)v∈V ∈

∏
v∈V

O▷
Kv

.

Note that deg q
def
= [Fmod : Q]−1 log(

∏
v∈V ♯(OKv/qvOKv)) = deg qE.
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Recall An arithmetic line bundle on OK

= a certain pair of a l.b. L on OK and a metric on L ×Z C

1→ µ(K)→ K× ADiv→
⊕

w∈V(K)(K
×
w /O×

Kw
)→ APicOK → 1

Categories of Arithmetic Line Bundles on S

F⊛
mod: the Frobenioid of arithmetic line bundles on S

.
Module-theoretic Description
..

......

F⊛
mod: the Frobenioid of collections {avOKv}v∈V s.t.

av ∈ K×
v , av ∈ O×

Kv
for almost v ∈ V

.
Multiplicative Description
..

......

F⊛
MOD: the Frobenioid of pairs (T, {tv}v∈V) s.t.

T : an F×
mod-torsor, tv ∈ T ×F×

mod K×
v /O×

Kv
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⇒ The holomorphic structure of Fmod determines

F⊛
mod

∼−→ F⊛
mod

∼−→ F⊛
MOD

{avOKv} 7→ (F×
mod, {ordv(av)})

F⊛R
mod, F⊛R

mod, F⊛R
MOD: the resp. realifications of F⊛

mod, F⊛
mod, F⊛

MOD,

i.e., obtained by replacing
⊕

v(K
×
v /O×

Kv
) by

⊕
v((K

×
v /O×

Kv
)⊗ R)

(⇒ The hol. str. of Fmod determines F⊛R
mod

∼→ F⊛R
mod

∼→ F⊛R
MOD)
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The multiplication by 1/N on
⊕

v((K
×
v /O×

Kv
)⊗ R) determines

Θnaive :
†F⊛R

MOD
∼−→ ‡F⊛R

MOD which maps †qN 7→ ‡q.

.
Remark
..

......

Θnaive may be regarded as a “deformation of value groups”.

The link “Θnaive” will be eventually established by means of

nonarchimedean theta functions (cf. p.21).

F⊛
mod depending on hol. str. suited to deg. estimates

F⊛
MOD only multiplicative str. not suited to deg. estimates
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.
Goal
..

......

Relative to a link such as Θnaive, the computation of deg †qN is, up

to mild indeterminacies, compatible with the comp. of deg ‡q.

Note that ∄a ring automorphism of Kv s.t. qNv 7→ qv (if qv ̸= 1).

Thus, Θnaive cannot be compatible with the holomorphic structures,

i.e., Θnaive may be compatible with only certain mono-analytic str.

(For instance, Θnaive is compatible with the local Galois group

Gv
def
= Gal(F v/Kv) for each finite v ∈ V

— cf. Θnaive“=”a deformation of value groups.)
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On the other hand:
.
Remark
..

......

The “degree computation” is, at least a priori, performed by means

of the holomorphic structure under consideration.

Thus, in order to obtain a certain compatibility of the degree

computations, we have to establish a “multiradial representation”

of the degree computations whose coric data consist of suitable

mono-analytic structures.
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Multiradial Algorithm

Suppose that we are given

a mathematical object R, i.e., a radial data,

an “underlying” object C of R, i.e., a coric data, and

a func’l algorithm Φ whose input data is (an isomorph of) R.
.
Example
..

......

R: the one-dimensional complex linear space C

C: the underlying two-dimensional real linear space R⊕2

R: the field Qp C: the underlying additive module (Qp)+

R: the étale fundamental gp πét
1 (V ) of a hyperbolic curve V/Qp

C: the absolute Galois group GQp of Qp
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Roughly speaking, we shall say that the algorithm Φ is:

coric if Φ depends only on C

multiradial if Φ(is rel’d to R but)may be described in terms of C

uniradial if Φ is not multiradial, i.e., essentially depends on R

If one starts with a coric data “C” and applies the alg’m Φ, then:

uniradial ⇒ the output depends on the choice of a “spoke”

multiradial⇒ the output is unaffected by alterations in a“spoke”

· · · R1 · · ·y
R2 −−−→ C ←−−− R3
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.
(Tautological) Example
..

......

(R,C) ∼= (C,R⊕2)

Φ(R) = the holomorphic structure on R ⇒ uniradial

Φ(R) = the real analytic structure on R ⇒ coric

Φ(R) = the GL2(R)-orbit of the hol. str. on R ⇒ multiradial

incompatible H.S. on †C compatible H.S. of †Cy GL2(R)
y↷

H.S. of ‡C −−−→ R⊕2 H.S. of ‡C GL2(R)−−−−→
↷

R⊕2

uniradial multiradial

(cf. GL2(R)/C× = H+ ⊔H−)
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Summary

We want to obtain a certain compatibility of the degree

computations relative to a link such as Θnaive.

Θnaive cannot be compatible w/ the holomorphic str., i.e.,

Θnaive is compatible w/ only certain mono-an. str., e.g., Gv.

On the other hand, the degree computation is, at least a priori,

performed by means of the holomorphic structure.

Thus, we have to establish a multiradial representation of the

degree computations whose coric data are suitable mono-an. str.
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.
An Approximate Statement of the Main Theorem of IUT (tentative)
..

......

∃A suitable multiradial algorithm whose output data consist of

the following three objects ↶ mild indeterminacies

{(OKv)∗}v∈V (∗ = + if v is finite, ∗ = ∅ if v is infinite)

qN ↷
∏

v∈V (OKv)∗

Fmod ↷
∏

v∈V
(
(Kv)∗“via (OKv)∗”

)
Moreover, this algorithm is compatible with

Θnaive :
†F⊛R

MOD

∼→ ‡F⊛R
MOD;

†qN 7→ ‡q.
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Main Theorem of IUT ⇒ Szpiro Conjecture

Θnaive :
†F⊛R

MOD

∼→ ‡F⊛R
MOD;

†qN 7→ ‡q
Th’m⇒ 

{(†OKv)∗}v∈V
†qN ↷

∏
(†OKv)∗

†Fmod ↷
∏

(†Kv)∗

 ind.↷
∼−→


{(‡OKv)∗}v∈V

‡qN ↷
∏

(‡OKv)∗

‡Fmod ↷
∏

(‡Kv)∗


⇒

cmod :
†F⊛

mod

ind.↷
∼→ ‡F⊛

mod which maps {†qNv †OKv} 7→ {‡qNv ‡OKv}

c□ :
□F⊛

mod
∼→ □F⊛

MOD which maps {□q(N)
v

□OKv} 7→ □q(N)

which are compatible with Θnaive, i.e.,
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fit into a diagram that is commutative, up to mild indeterminacies

†F⊛R
mod

cmod−−−→ ‡F⊛R
mod

c†

y yc‡

†F⊛R
MOD

Θnaive−−−→ ‡F⊛R
MOD

⇒


{†qNv †OKv} ⇒ {‡qNv ‡OKv}, {‡qv‡OKv}

⇑ ⇓
†qN ⇐ ‡q


⇒ {‡qv‡OKv} “

log-vol.

⊆ ”
∪

indeterminacies

{‡qNv ‡OKv}

⇒ − deg q ≤ − deg qN + C, i.e., (∗) in p.4

⇒ the Szpiro Conjecture
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.
An Approximate Statement of the Main Theorem of IUT (tentative)
..

......

∃A suitable multiradial algorithm whose output data consist of

the following three objects ↶ mild indeterminacies

{(OKv)∗}v∈V (∗ = + if v is finite, ∗ = ∅ if v is infinite)

qN ↷
∏

v∈V (OKv)∗

Fmod ↷
∏

v∈V
(
(Kv)∗“via (OKv)∗”

)
Moreover, this algorithm is compatible with

Θnaive :
†F⊛R

MOD

∼→ ‡F⊛R
MOD;

†qN 7→ ‡q.
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Recall (v ∈ V: fin.; p def
= pv) (OKv)+ ∈ output, Gv: coric

Unfortunately, it is known that:

̸ ∃a func’l (w.r.t. open injections) alg’m for rec. “(OKv)+” from “Gv”.

IKv

def
= 1

2p
Im(O×

Kv
→ O×

Kv
⊗Z Q

logp
∼→ (Kv)+): the log-shell of Kv

IKv : a finitely generated free Zp-module

(OKv)+, logp(O×
Kv

) ⊆ IKv ⊆ IKv ⊗Z Q = (Kv)+

[IKv : (OKv)+] (<∞) can be comp’d by the top. gp str. of Gv

Gv
∃func’l⇒

algorithm
an isomorph of IKv

Thus, “{(OKv)∗}v∈V” in Th’m should be replaced by {Iv
def
= IKv}v∈V

(where the log-shell at an infinite v ∈ V def
= π · OKv).
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Recall qN , Fmod ∈ output

Unfortunately, by various indeterminacies arising from the operation

of “passing from holom’c str. to mono-anal’c str.”, it is difficult to

obtain multiradial representations of qN , Fmod themselves directly.

To establish a mul’l alg’m of the desired type, we rep. multiradially a

suitable function whose special value is qNv or an ∈ Fmod.

“qNv ” will be represented as a special value of a (multiradially

represented) theta function.

“Fmod” will be represented as a set of special values of

(multiradially represented) κ-coric functions.
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.
An Approximate Statement of the Main Theorem of IUT
..

......

For a “general E/F”,

∃a suitable multiradial algorithm whose output data consist of

the following three objects ↶ mild indeterminacies

the collection of log-shells {Iv}v∈V

the theta values (= {qj2/2l}
1≤j≤l⋇

def
= l−1

2

) ↷
∏

v∈V Iv

Fmod via κ-coric functions ↷
∏

v∈V
(
(Kv)+“via Iv”

)
Moreover, this alg’m is compatible w/ the Θ-link (more precisely,

Θ×µ
LGP-link) “

†F⊛R
MOD

∼→ ‡F⊛R
MOD”; “

†theta values 7→ ‡q1/2l”.
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