Combinatorial Anabelian Geometry
in the Absence of Group-theoretic Cuspidality
Yuichiro Hoshi
8 September, 2022
The 1st talk
The 29th Number Theory Summer School
"Combinatorial Anabelian Geometry"

In the present talk:
$\square \in\{\circ, \bullet, \emptyset\}$
Σ_{\square} : a nonempty set of prime numbers
\mathcal{G}_{\square} : a semi-graph of anabelioids of pro- Σ PSC-type
$\widetilde{\mathcal{G}_{\square}} \rightarrow \mathcal{G}_{\square}:$ a pro- Σ_{\square} universal covering
$\Pi_{\mathcal{G}_{\square}} \stackrel{\text { def }}{=} \operatorname{Gal}\left(\widetilde{\mathcal{G}}_{\square} / \mathcal{G}_{\square}\right)$
I_{\square} : a profinite group
$\rho_{\square}: I_{\square} \rightarrow \operatorname{Aut}\left(\mathcal{G}_{\square}\right)\left(\subseteq \operatorname{Out}\left(\Pi_{\mathcal{G}_{\square}}\right)\right):$ a continuous homomorphism
$\Pi_{\rho \square} \stackrel{\text { def }}{=} \Pi_{\mathcal{G}_{\square}}{\stackrel{\text { out }}{ }{ }_{\rho \square} I_{\square} \text {, which thus fits into a commutative diagram }}^{\rho^{\prime}}$

$\alpha: \Pi_{\mathcal{G}_{\circ}} \xrightarrow{\sim} \Pi_{\mathcal{G}_{\bullet}}:$ a continuous isomorphism which fits into a commutative diagram

Theorem in [CbGC] — cf. [CbGC], Corollary 2.7, (iii)
Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of IPSC-type
- the continuous isomorphism α is group-theoretically cuspidal
\Rightarrow the continuous isomorphism α is graphic

Theorem in [NodNon] - cf. [NodNon], Theorem A
Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- the continuous isomorphism α is group-theoretically cuspidal
- either \mathcal{G}_{\circ} or \mathcal{G}. has a cusp
\Rightarrow the continuous isomorphism α is graphic

Theorem (IPSC) — cf. [CbTpII], Theorem 1.9, (ii)
Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- either ρ_{\circ} or ρ_{\bullet} is of IPSC-type
\Rightarrow the continuous isomorphism α is group-theoretically verticial

Theorem (NN) — cf. [CbTpII], Theorem 1.9, (i)
Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- $\exists \gamma \in \Pi_{\mathcal{G}_{o}} \backslash\{1\}$ s.t. $\gamma, \alpha(\gamma)$ are contained in some verticial subgroups of $\Pi_{\mathcal{G}_{0}}, \Pi_{\mathcal{G}_{\bullet}}$, respectively
\Rightarrow the continuous isomorphism α is group-theoretically verticial

Expected Goal (not proved...)
Suppose: both ρ_{\circ} and ρ_{0} are of NN-type
\Rightarrow the continuous isomorphism α is group-theoretically verticial

Note:
\exists some applications of this "Expected Goal" (cf. the next talk)

Theorem (NN)
Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- $\exists \gamma \in \Pi_{\mathcal{G}_{o}} \backslash\{1\}$ s.t. $\overline{\gamma, \alpha(\gamma) \text { are } \text { contained in some verticial subgroups }}$ of $\Pi_{\mathcal{G}_{0}}, \Pi_{\mathcal{G}_{\bullet}}$, respectively
\Rightarrow the continuous isomorphism α is group-theoretically verticial

Lemma (NN) — cf. [CbTpII], Lemma 1.8

Suppose:

- the homomorphism ρ is of SNN-type
- the underlying semi-graph of \mathcal{G} is untangled
\Rightarrow A given closed subgroup $H \subseteq \Pi_{\mathcal{G}}$ is verticial if and only if H satisfies the following four conditions:
(1) the composite $Z_{\Pi_{\rho}}(H) \hookrightarrow \Pi_{\rho} \rightarrow I$ is an isomorphism
(2) the equality $H=Z_{\Pi_{\mathcal{G}}}\left(Z_{\Pi_{\rho}}(H)\right)$ holds, where $Z_{\Pi_{\mathcal{G}}}(-) \stackrel{\text { def }}{=} Z_{\Pi_{\rho}}(-) \cap \Pi_{\mathcal{G}}$
(3) for each $\gamma \in \Pi_{\mathcal{G}}, \quad \gamma \in H \Leftrightarrow H \cap H^{\gamma} \neq\{1\}$
(4) $\exists \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$ s.t. $H \cap \Pi_{\widetilde{v}} \neq\{1\}$
$\underline{\text { Proof of: Lemma (NN) } \Rightarrow \text { Theorem (NN) }}$

By replacing I_{\square} by a suitable open subgroup,
we may assume: the continuous homomorphism ρ_{\square} is of SNN-type
$\stackrel{\text { Lemma }}{\Rightarrow}{ }^{(\mathrm{NN})} \exists \widetilde{v}_{\circ} \in \operatorname{Vert}\left(\widetilde{\mathcal{G}}_{\circ}\right)$ s.t. $\alpha\left(\Pi_{\widetilde{v}_{0}}\right) \subseteq \Pi_{\mathcal{G}}$. is verticial
Thus, by the "sandwich-argument" applied
in the proof of Theorem in [NodNon] (cf. the talk by Minamide), we conclude that α is group-theoretically verticial, as desired
(1) the composite $Z_{\Pi_{\rho}}(H) \hookrightarrow \Pi_{\rho} \rightarrow I$ is an isomorphism
(2) the equality $H=Z_{\Pi_{\mathcal{G}}}\left(Z_{\Pi_{\rho}}(H)\right)$ holds, where $Z_{\Pi_{\mathcal{G}}}(-) \stackrel{\text { def }}{=} Z_{\Pi_{\rho}}(-) \cap \Pi_{\mathcal{G}}$
(3) for each $\gamma \in \Pi_{\mathcal{G}}, \quad \gamma \in H \Leftrightarrow H \cap H^{\gamma} \neq\{1\}$
(4) $\exists \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$ s.t. $H \cap \Pi_{\widetilde{v}} \neq\{1\}$
$I_{\square} \stackrel{\text { def }}{=} Z_{\Pi_{\rho}}\left(\Pi_{\square}\right) \subseteq D_{\square} \stackrel{\text { def }}{=} N_{\Pi_{\rho}}\left(\Pi_{\square}\right)$
$\left.J \stackrel{\text { def }}{=} H \cap \Pi_{\widetilde{v}} \stackrel{(4)}{\neq}\{1\}\right)$

Suppose: $J \in\left\{H, \Pi_{\tilde{v}}\right\}$, i.e., $H \subseteq \Pi_{\tilde{v}}$ or $\Pi_{\tilde{v}} \subseteq H$
$\Rightarrow I_{\widetilde{v}} \subseteq Z_{\Pi_{\rho}}(H)$ or $Z_{\Pi_{\rho}}(H) \subseteq I_{\widetilde{v}}$
$\stackrel{(1)}{\Rightarrow} Z_{\Pi_{\rho}}(H)=I_{\widetilde{v}}$
$\Rightarrow H \stackrel{(2)}{=} Z_{\Pi_{\mathcal{G}}}\left(Z_{\Pi_{\rho}}(H)\right)=Z_{\Pi_{\mathcal{G}}}\left(I_{\widetilde{v}}\right) \stackrel{(2)}{=} \Pi_{\tilde{v}}$
(1) the composite $Z_{\Pi_{\rho}}(H) \hookrightarrow \Pi_{\rho} \rightarrow I$ is an isomorphism
(2) the equality $H=Z_{\Pi_{\mathcal{G}}}\left(Z_{\Pi_{\rho}}(H)\right)$ holds, where $Z_{\Pi_{\mathcal{G}}}(-) \stackrel{\text { def }}{=} Z_{\Pi_{\rho}}(-) \cap \Pi_{\mathcal{G}}$
(3) for each $\gamma \in \Pi_{\mathcal{G}}, \quad \gamma \in H \Leftrightarrow H \cap H^{\gamma} \neq\{1\}$
(4) $\exists \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$ s.t. $H \cap \Pi_{\widetilde{v}} \neq\{1\}$

Thus, we may assume: $J \notin\left\{H, \Pi_{\tilde{v}}\right\}$
$\gamma \in H \backslash J$
$\Rightarrow \Pi_{\widetilde{v}} \supseteq J \subseteq H \supseteq J^{\gamma} \supseteq \Pi_{\tilde{v}^{\gamma}}$

Claim (NN)

the closed subgroup J, hence also J^{γ}, is normally terminal in $\Pi_{\mathcal{G}}$
by (3)

(1), Claim $\left({ }^{\mathrm{NN})} N_{\Pi_{\rho}}(J)=J \cdot I_{\widetilde{v}}\right.$

$$
N_{\Pi_{\rho}}\left(J^{\gamma}\right)=J^{\gamma} \cdot I_{\widetilde{v} \gamma}
$$

$\Rightarrow Z_{\Pi_{\rho}}(H) \subseteq N_{\Pi_{\rho}}(J)=J \cdot I_{\widetilde{v}} \subseteq \Pi_{\tilde{v}} \cdot D_{\tilde{v}} \subseteq D_{\widetilde{v}}$ $Z_{\Pi_{\rho}}(H) \subseteq N_{\Pi_{\rho}}\left(J^{\gamma}\right)=J^{\gamma} \cdot I_{\widetilde{v} \gamma} \subseteq \Pi_{\tilde{v}^{\gamma}} \cdot D_{\tilde{v}^{\gamma}} \subseteq D_{\widetilde{v} \gamma}$
$Z_{\Pi_{\rho}}(H) \subseteq D_{\widetilde{v}} \cap D_{\widetilde{v}^{\gamma}}$
$H \ni \gamma \notin J=H \cap \Pi_{\tilde{v}} \Rightarrow \gamma \notin \Pi_{\widetilde{v}}$
$D_{\widetilde{v}} \cap D_{\widetilde{v}^{\gamma}} \cap \Pi_{\mathcal{G}} \stackrel{\text { nrm. trm. }}{=} \Pi_{\widetilde{v}} \cap \Pi_{\tilde{v}^{\gamma}} \stackrel{(3)}{=}\{1\}$
$\stackrel{(1)}{\Rightarrow} Z_{\Pi_{\rho}}(H)=D_{\widetilde{v}} \cap D_{\widetilde{v} \gamma}$
(1), $\stackrel{\text { NodNon] }}{\Rightarrow} \exists \widetilde{w} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$ s.t. $Z_{\Pi_{\rho}}(H)=I_{\widetilde{w}}$
$\Rightarrow H \stackrel{(2)}{=} Z_{\Pi_{\mathcal{G}}}\left(Z_{\Pi_{\rho}}(H)\right)=Z_{\Pi_{\mathcal{G}}}\left(I_{\widetilde{w}} \stackrel{(2)}{=} \Pi_{\widetilde{w}}\right.$
$\underline{\text { Proof of Theorem (IPSC) }}$

Theorem (IPSC)
Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- either ρ_{\circ} or ρ_{\bullet} is of IPSC-type
\Rightarrow the continuous isomorphism α is group-theoretically verticial

Lemma (IPSC) — cf. [CbTpII], Corollary 1.7, (ii)
(a) Suppose: the homomorphism ρ is of SNN-type

Then a given closed subgroup $\overline{H \subseteq \Pi_{\mathcal{G}} \text { is verticial } \Rightarrow, ~(1) ~}$
(1) the equality $Z_{\Pi_{\mathcal{G}}}(H)=\{1\}$ holds
(2) $\exists s: \overline{I \hookrightarrow \Pi_{\rho}}:$ a splitting of $\Pi_{\rho} \rightarrow I$ s.t. $H=Z_{\Pi_{\mathcal{G}}}(s(I))$
(b) Suppose: the homomorphism ρ is of IPSC-type

Then " \Rightarrow " of (a) may be replaced by " \Leftrightarrow "

Proof of: Lemma (IPSC) \Rightarrow Theorem (IPSC)

Suppose: the continuous homomorphism $\rho_{\mathbf{\bullet}}$ is of IPSC-type
By replacing I_{\square} by a suitable open subgroup,
we may assume: the continuous homomorphism ρ_{\circ} is of SNN-type
$\stackrel{\text { Lemma }}{\Rightarrow}{ }^{\text {(IPSC) }}$ for each $\widetilde{v}_{o} \in \operatorname{Vert}\left(\widetilde{\mathcal{G}}_{\circ}\right), \alpha\left(\Pi_{\tilde{v}_{0}}\right) \subseteq \Pi_{\mathcal{G}_{0}}$ is verticial
Thus, by Theorem (NN),
we conclude that α is group-theoretically verticial, as desired

- the homomorphism ρ is of IPSC-type
(1) the equality $Z_{\Pi_{\mathcal{G}}}(H)=\{1\}$ holds
(2) $\exists s: \overline{I \hookrightarrow \Pi_{\rho}}:$ a splitting of $\Pi_{\rho} \rightarrow I$ s.t. $H=Z_{\Pi_{\mathcal{G}}}(s(I))$

Claim (IPSC) — cf. [NodNon], Lemma 1.6; [CbTpII], Proposition 1.5
$\diamond \in\{$ verticial, cuspidal, nodal, edge-like $\}$
Then a given closed subgroup $H \subseteq \Pi_{\mathcal{G}}$ is contained in some \diamond subgroup \Leftrightarrow for each connected finite characteristic subcovering $\mathcal{H} \rightarrow \mathcal{G}$ of $\widetilde{\mathcal{G}} \rightarrow \mathcal{G}$,
the image of $H \cap \Pi_{\mathcal{H}} \hookrightarrow \Pi_{\mathcal{H}} \rightarrow \Pi_{\mathcal{H}}^{\text {ab }}$ is contained in the closed submodule generated by the images of the \diamond subgroups of $\Pi_{\mathcal{H}}$
proof, omit
(cf. the discussion of "graphically filtration-preserving \Rightarrow graphic" in the talk by Yamashita)
$\mathcal{H} \rightarrow \mathcal{G}$: a connected finite characteristic subcovering of $\widetilde{\mathcal{G}} \rightarrow \mathcal{G}$
\Rightarrow the sequence $I \stackrel{s}{\hookrightarrow} \Pi_{\rho} \supseteq \Pi_{\mathcal{G}} \supseteq \Pi_{\mathcal{H}}$ determines an action $I \curvearrowright \Pi_{\mathcal{H}}^{a b}$
$\operatorname{Im}\left(H \cap \Pi_{\mathcal{H}} \hookrightarrow \Pi_{\mathcal{H}} \rightarrow \Pi_{\mathcal{H}}^{\mathrm{ab}}\right) \stackrel{(2)}{\subseteq}\left(\Pi_{\mathcal{H}}^{\mathrm{ab}}\right)^{I} \subseteq$ ""wght.mndrm.conj."
the closed submodule top. gen'd by the images of the verticial subgroups of $\Pi_{\mathcal{H}}$
$\stackrel{\text { Claim (IPSC) }}{\Rightarrow} \exists \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$ s.t. $H \subseteq \Pi_{\widetilde{v}}$
$\Rightarrow I_{\tilde{v}} \subseteq Z_{\Pi_{\rho}}(H)$

$\Rightarrow s(I)=I_{\widetilde{v}}$
$\Rightarrow H \stackrel{(2)}{=} Z_{\Pi_{\mathcal{G}}}(s(I))=Z_{\Pi_{\mathcal{G}}}\left(I_{\widetilde{v}}\right) \stackrel{(2)}{=} \Pi_{\widetilde{v}}$

