Combinatorial Anabelian Geometry in the Absence of Group-theoretic Cuspidality

Yuichiro Hoshi 8 September, 2022 The 1st talk

The 29th Number Theory Summer School "Combinatorial Anabelian Geometry"

In the present talk:

$$\begin{split} &\square \in \{\circ, \bullet, \emptyset\} \\ &\Sigma_{\square}: \text{ a nonempty set of prime numbers} \\ &\mathcal{G}_{\square}: \text{ a semi-graph of anabelioids of pro-} \Sigma \text{ PSC-type} \\ &\widetilde{\mathcal{G}}_{\square} \to \mathcal{G}_{\square}: \text{ a pro-} \Sigma_{\square} \text{ universal covering} \end{split}$$

 $\alpha \colon \Pi_{\mathcal{G}_{\circ}} \xrightarrow{\sim} \Pi_{\mathcal{G}_{\bullet}}$: a continuous isomorphism which fits into a commutative diagram

$$I_{\circ} \xrightarrow{\rho_{\circ}} \operatorname{Out}(\Pi_{\mathcal{G}_{\circ}})$$

$$\exists \downarrow^{\wr} \qquad \wr \downarrow^{\circ} \operatorname{conjugation} \operatorname{by} \alpha$$

$$I_{\bullet} \xrightarrow{\rho_{\bullet}} \operatorname{Out}(\Pi_{\mathcal{G}_{\bullet}})$$

Theorem in [CbGC] — cf. [CbGC], Corollary 2.7, (iii) -

Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of IPSC-type
- the continuous isomorphism α is group-theoretically cuspidal
- \Rightarrow the continuous isomorphism α is graphic

- Theorem in [NodNon] — cf. [NodNon], Theorem A -

Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- the continuous isomorphism α is group-theoretically cuspidal
- either \mathcal{G}_{\circ} or \mathcal{G}_{\bullet} has a cusp
- \Rightarrow the continuous isomorphism α is graphic

Theorem (IPSC) — cf. [CbTpII], Theorem 1.9, (ii) Suppose: • both ρ_{\circ} and ρ_{\bullet} are of NN-type • either ρ_{\circ} or ρ_{\bullet} is of IPSC-type \Rightarrow the continuous isomorphism α is group-theoretically verticial

Theorem (NN) — cf. [CbTpII], Theorem 1.9, (i)
Suppose:
both ρ_o and ρ_• are of NN-type
∃γ ∈ Π_{G_o} \ {1} s.t. γ, α(γ) are contained in some verticial subgroups of Π_{G_o}, Π_{G_•}, respectively

 \Rightarrow the continuous isomorphism α is group-theoretically verticial

- Expected Goal (not proved...) ----

Suppose: both ρ_{\circ} and ρ_{\bullet} are of NN-type \Rightarrow the continuous isomorphism α is group-theoretically verticial

Note: \exists some applications of this "Expected Goal" (cf. the next talk) \sim Theorem (NN) -

Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- $\exists \gamma \in \Pi_{\mathcal{G}_{\circ}} \setminus \{1\}$ s.t. $\overline{\gamma, \alpha(\gamma)}$ are contained in some verticial subgroups of $\Pi_{\mathcal{G}_{\circ}}, \Pi_{\mathcal{G}_{\circ}}$, respectively
- \Rightarrow the continuous isomorphism α is group-theoretically verticial

 \sim Lemma (NN) — cf. [CbTpII], Lemma 1.8 -

Suppose:

- the homomorphism ρ is of SNN-type
- the underlying semi-graph of \mathcal{G} is untangled

 \Rightarrow A given closed subgroup $H \subseteq \Pi_{\mathcal{G}}$ is <u>verticial</u> if and only if H satisfies the following four conditions:

- (1) the composite $Z_{\Pi_{\rho}}(H) \hookrightarrow \Pi_{\rho} \twoheadrightarrow I$ is an isomorphism
- (2) the equality $H = Z_{\Pi_{\mathcal{G}}}(Z_{\Pi_{\rho}}(H))$ holds, where $Z_{\Pi_{\mathcal{G}}}(-) \stackrel{\text{def}}{=} Z_{\Pi_{\rho}}(-) \cap \Pi_{\mathcal{G}}$
- (3) for each $\gamma \in \Pi_{\mathcal{G}}$, $\gamma \in H \Leftrightarrow H \cap H^{\gamma} \neq \{1\}$
- (4) $\exists \tilde{v} \in \operatorname{Vert}(\mathcal{G}) \text{ s.t. } H \cap \Pi_{\tilde{v}} \neq \{1\}$

Proof of: Lemma (NN) \Rightarrow Theorem (NN)

By replacing I_{\Box} by a suitable open subgroup,

we may assume: the continuous homomorphism ρ_{\Box} is <u>of SNN-type</u> $\stackrel{\text{Lemma (NN)}}{\Rightarrow} \exists \tilde{v}_{\circ} \in \text{Vert}(\widetilde{\mathcal{G}}_{\circ}) \text{ s.t. } \alpha(\Pi_{\tilde{v}_{\circ}}) \subseteq \Pi_{\mathcal{G}_{\bullet}} \text{ is } \underline{\text{verticial}}$ Thus, by the "sandwich-argument" applied in the proof of Theorem in [NodNon] (cf. the talk by Minamide),

we conclude that α is group-theoretically verticial, as desired

- (1) the composite $Z_{\Pi_{\rho}}(H) \hookrightarrow \Pi_{\rho} \twoheadrightarrow I$ is an <u>isomorphism</u>
- (2) the equality $H = Z_{\Pi_{\mathcal{G}}}(Z_{\Pi_{\rho}}(H))$ holds, where $Z_{\Pi_{\mathcal{G}}}(-) \stackrel{\text{def}}{=} Z_{\Pi_{\rho}}(-) \cap \Pi_{\mathcal{G}}$ (3) for each $\gamma \in \Pi_{\mathcal{G}}$, $\gamma \in H \Leftrightarrow H \cap H^{\gamma} \neq \{1\}$
- (4) $\exists \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}}) \text{ s.t. } H \cap \Pi_{\widetilde{v}} \neq \{1\}$

$$I_{\Box} \stackrel{\text{def}}{=} Z_{\Pi_{\rho}}(\Pi_{\Box}) \subseteq D_{\Box} \stackrel{\text{def}}{=} N_{\Pi_{\rho}}(\Pi_{\Box})$$
$$J \stackrel{\text{def}}{=} H \cap \Pi_{\widetilde{v}} \stackrel{(4)}{\neq} \{1\})$$

Suppose:
$$J \in \{H, \Pi_{\widetilde{v}}\}$$
, i.e., $H \subseteq \Pi_{\widetilde{v}}$ or $\Pi_{\widetilde{v}} \subseteq H$
 $\Rightarrow I_{\widetilde{v}} \subseteq Z_{\Pi_{\rho}}(H)$ or $Z_{\Pi_{\rho}}(H) \subseteq I_{\widetilde{v}}$
 $\stackrel{(1)}{\Rightarrow} Z_{\Pi_{\rho}}(H) = I_{\widetilde{v}}$
 $\Rightarrow H \stackrel{(2)}{=} Z_{\Pi_{\mathcal{G}}}(Z_{\Pi_{\rho}}(H)) = Z_{\Pi_{\mathcal{G}}}(I_{\widetilde{v}}) \stackrel{(2)}{=} \Pi_{\widetilde{v}}$

(1) the composite $Z_{\Pi_{\rho}}(H) \hookrightarrow \Pi_{\rho} \twoheadrightarrow I$ is an <u>isomorphism</u>

- (2) the equality $H = Z_{\Pi_{\mathcal{G}}}(Z_{\Pi_{\rho}}(H))$ holds, where $Z_{\Pi_{\mathcal{G}}}(-) \stackrel{\text{def}}{=} Z_{\Pi_{\rho}}(-) \cap \Pi_{\mathcal{G}}$ (3) for each $\gamma \in \Pi_{\mathcal{G}}$, $\gamma \in H \Leftrightarrow H \cap H^{\gamma} \neq \{1\}$
- (4) $\exists \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}}) \text{ s.t. } H \cap \Pi_{\widetilde{v}} \neq \{1\}$

Thus, we may assume: $J \notin \{H, \Pi_{\widetilde{v}}\}$ $\gamma \in H \setminus J$ $\Rightarrow \Pi_{\widetilde{v}} \supseteq J \subseteq H \supseteq J^{\gamma} \supseteq \Pi_{\widetilde{v}^{\gamma}}$

Claim (NN) —

the closed subgroup J, hence also J^{γ} , is normally terminal in $\Pi_{\mathcal{G}}$

by (3)

$$J \xrightarrow{\longrightarrow} N_{\Pi_{\rho}}(J) \xleftarrow{\longrightarrow} I_{\tilde{v}}$$

$$1 \xrightarrow{\longrightarrow} \Pi_{\mathcal{G}} \xrightarrow{\longrightarrow} \Pi_{\rho} \xrightarrow{\longrightarrow} I \xrightarrow{\longrightarrow} 1$$

$$\stackrel{(1), \text{ Claim (NN)}}{\Rightarrow} N_{\Pi_{\rho}}(J) = J \cdot I_{\tilde{v}}$$

$$N_{\Pi_{\rho}}(J^{\gamma}) = J^{\gamma} \cdot I_{\tilde{v}^{\gamma}}$$

$$\Rightarrow Z_{\Pi_{\rho}}(H) \subseteq N_{\Pi_{\rho}}(J) = J \cdot I_{\widetilde{v}} \subseteq \Pi_{\widetilde{v}} \cdot D_{\widetilde{v}} \subseteq D_{\widetilde{v}}$$
$$Z_{\Pi_{\rho}}(H) \subseteq N_{\Pi_{\rho}}(J^{\gamma}) = J^{\gamma} \cdot I_{\widetilde{v}^{\gamma}} \subseteq \Pi_{\widetilde{v}^{\gamma}} \cdot D_{\widetilde{v}^{\gamma}} \subseteq D_{\widetilde{v}^{\gamma}}$$
$$Z_{\Pi_{\rho}}(H) \subseteq D_{\widetilde{v}} \cap D_{\widetilde{v}^{\gamma}}$$

$$\begin{array}{l} H \ni \gamma \notin J = H \cap \Pi_{\widetilde{v}} \Rightarrow \gamma \notin \Pi_{\widetilde{v}} \\ D_{\widetilde{v}} \cap D_{\widetilde{v}^{\gamma}} \cap \Pi_{\mathcal{G}} \stackrel{\text{nrm. trm.}}{=} \Pi_{\widetilde{v}} \cap \Pi_{\widetilde{v}^{\gamma}} \stackrel{(3)}{=} \{1\} \\ \stackrel{(1)}{\Rightarrow} Z_{\Pi_{\rho}}(H) = D_{\widetilde{v}} \cap D_{\widetilde{v}^{\gamma}} \\ \stackrel{(1), \, [\text{NodNon]}}{\Rightarrow} \exists \widetilde{w} \in \text{Vert}(\widetilde{\mathcal{G}}) \text{ s.t. } Z_{\Pi_{\rho}}(H) = I_{\widetilde{w}} \\ \Rightarrow H \stackrel{(2)}{=} Z_{\Pi_{\mathcal{G}}}(Z_{\Pi_{\rho}}(H)) = Z_{\Pi_{\mathcal{G}}}(I_{\widetilde{w}}) \stackrel{(2)}{=} \Pi_{\widetilde{w}} \end{array}$$

- Theorem (IPSC) -

Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- either ρ_{\circ} or ρ_{\bullet} is of IPSC-type
- \Rightarrow the continuous isomorphism α is group-theoretically verticial

Lemma (IPSC) — cf. [CbTpII], Corollary 1.7, (ii)
(a) Suppose: the homomorphism ρ is of SNN-type Then a given closed subgroup H ⊆ Π_g is verticial ⇒
(1) the equality Z_{Πg}(H) = {1} holds
(2) ∃s: I ↔ Π_ρ: a splitting of Π_ρ → I s.t. H = Z_{Πg}(s(I))
(b) Suppose: the homomorphism ρ is of IPSC-type Then "⇒" of (a) may be replaced by "⇔"

Proof of: Lemma (IPSC) \Rightarrow Theorem (IPSC)

Suppose: the continuous homomorphism ρ_{\bullet} is <u>of IPSC-type</u> By replacing I_{\Box} by a suitable open subgroup,

we may assume: the continuous homomorphism ρ_{\circ} is <u>of SNN-type</u> $\stackrel{\text{Lemma (IPSC)}}{\Rightarrow}$ for each $\tilde{v}_{\circ} \in \text{Vert}(\tilde{\mathcal{G}}_{\circ}), \alpha(\Pi_{\tilde{v}_{\circ}}) \subseteq \Pi_{\mathcal{G}_{\bullet}}$ is <u>verticial</u> Thus, by Theorem (NN),

we conclude that α is group-theoretically verticial, as desired

• the homomorphism ρ is <u>of IPSC-type</u>

(1) the equality $Z_{\Pi_{\mathcal{G}}}(H) = \{1\}$ holds

(2) $\exists s \colon \overline{I \hookrightarrow \Pi_{\rho}}$: a splitting of $\Pi_{\rho} \twoheadrightarrow I$ s.t. $H = Z_{\Pi_{\mathcal{G}}}(s(I))$

Claim (IPSC) — cf. [NodNon], Lemma 1.6; [CbTpII], Proposition 1.5 — $\diamond \in \{\text{verticial, cuspidal, nodal, edge-like}\}$ Then a given closed subgroup $H \subseteq \Pi_{\mathcal{G}}$ is contained in some \diamond subgroup \Leftrightarrow for each connected finite characteristic subcovering $\mathcal{H} \to \mathcal{G}$ of $\widetilde{\mathcal{G}} \to \mathcal{G}$, the image of $H \cap \Pi_{\mathcal{H}} \hookrightarrow \Pi_{\mathcal{H}} \twoheadrightarrow \Pi_{\mathcal{H}}^{ab}$ is contained in the closed submodule generated by the images of the \diamond subgroups of $\Pi_{\mathcal{H}}$

proof, omit

 $\begin{array}{l} \mathcal{H} \to \mathcal{G} \colon \text{a connected finite characteristic subcovering of } \widetilde{\mathcal{G}} \to \mathcal{G} \\ \Rightarrow \text{ the sequence } I \stackrel{s}{\hookrightarrow} \Pi_{\rho} \supseteq \Pi_{\mathcal{G}} \supseteq \Pi_{\mathcal{H}} \text{ determines an action } I \curvearrowright \Pi_{\mathcal{H}}^{\mathrm{ab}} \\ \mathrm{Im} \Big(H \cap \Pi_{\mathcal{H}} \hookrightarrow \Pi_{\mathcal{H}} \twoheadrightarrow \Pi_{\mathcal{H}}^{\mathrm{ab}} \Big) \stackrel{(2)}{\subseteq} (\Pi_{\mathcal{H}}^{\mathrm{ab}})^{I} \subseteq \text{``wght.mndrm.conj.''} \\ \text{ the closed submodule top. gen'd by the <u>images of the verticial subgroups</u> of } \Pi_{\mathcal{H}} \end{aligned}$

the closed submodule top. gen'd by the <u>images of the verticial subgroups</u> of $\Pi_{\mathcal{H}}$ $\stackrel{\text{Claim (IPSC)}}{\Rightarrow} \exists \widetilde{v} \in \text{Vert}(\widetilde{\mathcal{G}}) \text{ s.t. } H \subseteq \Pi_{\widetilde{v}}$

 $\Rightarrow I_{\widetilde{v}} \subseteq Z_{\Pi_{\rho}}(H)$

 $\Rightarrow s(I) = I_{\widetilde{v}}$ $\Rightarrow H \stackrel{(2)}{=} Z_{\Pi_{\mathcal{G}}}(s(I)) = Z_{\Pi_{\mathcal{G}}}(I_{\widetilde{v}}) \stackrel{(2)}{=} \Pi_{\widetilde{v}}$

⁽cf. the discussion of "graphically filtration-preserving \Rightarrow graphic" in the talk by Yamashita)