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In the present talk:

n: a nonnegative integer
(g, r): a pair of nonnegative integers s.t. 2− 2g − r < 0
k: an algebraically closed field of characteristic zero
X: a hyperbolic curve/k of type (g, r)

E ′ ⊆ E ⊆ {positive integers ≤ n}

XE
def
= { (xe)e∈E ∈

∏
E X |xe ̸= xe′ if e ̸= e′ }:

the #E-th configuration space of X,
where we think of the factors as being labeled by the elements of E

pXE/E′ : XE → XE′ : the natural projection morphism

ΠE
def
= π1(XE)

pE/E′ : ΠE ↠ ΠE′ : the outer surjective continuous homomorphism induced by pXE/E′

0 ≤ j ≤ i ≤ n

Xi
def
= X{positive integers ≤i}

pXi/j
def
= pX{positive integers ≤i}/{positive integers ≤j} : Xi → Xj

Πi
def
= Π{positive integers ≤i}

pi/j
def
= p{positive integers ≤i}/{positive integers ≤j} : Πi → Πj

Πi/j
def
= Ker(pi/j)

⇒ Sn ↷ Xn

⇒ Sn
out↷ Πn

OutFC(Πn)
� � // OutF(Πn)

� � // Out(Πn) Sn
? _oo
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Theorem in [NodNon] — cf. [NodNon], Theorem B� �
n ≥ 1 ⇒ the homomorphism OutFC(Πn+1) → OutFC(Πn) is injective

n ≥ nbij
def
=

{
3 r ̸= 0

4 r = 0

n ≥ nbij ⇒ the homomorphism OutFC(Πn+1) → OutFC(Πn) is bijective� �
Theorem in [NodNon] — cf. [NodNon], Theorem B� �
the subgroup Sn ⊆ Out(Πn) centralizes the subgroup OutFC(Πn)� �
Theorem in [CbTpI] — [CbTpI], cf. Theorem A, (ii)� �
the image of OutF(Πn+1) → OutF(Πn) is contained in OutFC(Πn) ⊆ OutF(Πn)� �

3



Theorem (F = FC) — cf. [CbTpII], Theorem A, (ii)� �
n ≥ nFC

def
=


2 (g, r) = (0, 3)

3 (g, r) ̸= (0, 3), r ̸= 0

4 r = 0

⇒ the equality OutF(Πn) = OutFC(Πn) holds� �
Theorem (F-inj/bij) — cf. [CbTpII], Theorem A, (i)� �
n ≥ nbij − 2 ⇒ the homomorphism OutF(Πn+1) → OutF(Πn) is injective

n ≥ nbij ⇒ the homomorphism OutF(Πn+1) → OutF(Πn) is bijective� �
Theorem (Z(S)) — cf. [CbTpII], Theorem 2.3, (iv)� �
(r, n) ̸= (0, 2)
⇒ the subgroup Sn ⊆ Out(Πn) centralizes the subgroup OutF(Πn)� �
Corollary (FC×S) — cf. [CbTpII], Theorem B, (ii)� �
Suppose:

• (g, r) /∈ {(0, 3), (1, 1)}
• n ≥ nFC

⇒ the equality Out(Πn) = OutFC(Πn)×Sn holds� �
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Remark 1/4

Theorem in [NodNon]� �
n ≥ 1 ⇒ the homomorphism OutFC(Πn+1) → OutFC(Πn) is injective

n ≥ nbij
def
=

{
3 r ̸= 0

4 r = 0

n ≥ nbij ⇒ the homomorphism OutFC(Πn+1) → OutFC(Πn) is bijective� �
Theorem (F-inj/bij)� �
n ≥ nbij − 2 ⇒ the homomorphism OutF(Πn+1) → OutF(Πn) is injective

n ≥ nbij ⇒ the homomorphism OutF(Πn+1) → OutF(Πn) is bijective� �
On the other hand:� �
(g, r) /∈ {(0, 3), (1, 1)}
⇒ the (injective) homomorphism OutFC(Π2) ↪→ OutFC(Π1) is not surjective� �
(cf. the 6th talk)

(g, r) /∈ {(0, 3), (1, 1)}

r ≠ 0

OutFC(Πn)
∼ // OutFC(Π3)

� � ∼? // OutFC(Π2)
� � ̸∼ // OutFC(Π1)

r = 0

OutFC(Πn)
∼ // OutFC(Π4)

� � ∼? // OutFC(Π3)
� � ∼? // OutFC(Π2)

� � ̸∼ // OutFC(Π1)
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Remark 2/4

Expected Goal (not proved...) in the previous talk, i.e.,� �
“Suppose: both ρ◦ and ρ• are of NN-type
⇒ the continuous isomorphism α is group-theoretically verticial”� �

⇒� �
the injectivity of OutF(Π2) → OutF(Π1) even in the case of r = 0� �
⇒� �
the commutativity of Sn with OutF(Πn) even in the case of (r, n) = (0, 2)� �
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Remark 3/4

Corollary (FC×S)� �
Suppose:

• (g, r) /∈ {(0, 3), (1, 1)}
• n ≥ nFC

⇒ the equality Out(Πn) = OutFC(Πn)×Sn holds� �
Moreover:
Theorem in [HMM] — cf. [HMM], Corollary B� �

• (g, r) = (0, 3), n ≥ 2
⇒ the equality Out(Πn) = OutgFC(Πn)×Sn+3 holds

• (g, r) = (1, 1), n ≥ 3
⇒ the equality Out(Πn) = OutgFC(Πn)×Sn+1 holds� �

(cf. the talk by Minamide)
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Remark 4/4

∃the respective pro-l versions of the theorems
∃some applications of the theorems to the study of
anabelian conjecture for configuration spaces of hyperbolic curves

(cf. [CbTpII], §2)
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The proof of: Theorem (F-inj/bij) ⇒ Theorem (Z(S))

Theorem (F-inj/bij)� �
n ≥ nbij − 2 ⇒ the homomorphism OutF(Πn+1) → OutF(Πn) is injective

n ≥ nbij ⇒ the homomorphism OutF(Πn+1) → OutF(Πn) is bijective� �
Theorem (Z(S))� �
(r, n) ̸= (0, 2)
⇒ the subgroup Sn ⊆ Out(Πn) centralizes the subgroup OutF(Πn)� �
similar to the case of “FC”
(cf. the talk by Minamide)

α ∈ OutF(Πn)
σ ∈ Sn

For simplicity, suppose: r ̸= 0

the open imm.Xn ↪→ X×k· · ·×kX induces an outer surj. conti. hom. Πn ↠ Π1×· · ·×Π1
[CbTpI]⇒ the outomorphism α acts “diagonally” on Π1 × · · · × Π1

⇒ the outom. α, σασ−1 induce the same outom. on Π1 × · · · × Π1, hence also on Π1

On the other hand:

r ̸= 0
Theorem (F-inj/bij)⇒ OutF(Πn) → Out(Π1) is injective

⇒ α = σασ−1
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The proof of: Theorem (F = FC)

⇒ the bijectivity portion of Theorem (F-inj/bij)

Theorem (F = FC)� �
n ≥ nFC

def
=


2 (g, r) = (0, 3)

3 (g, r) ̸= (0, 3), r ̸= 0

4 r = 0

⇒ the equality OutF(Πn) = OutFC(Πn) holds� �
Theorem (F-inj/bij)� �
n ≥ nbij − 2 ⇒ the homomorphism OutF(Πn+1) → OutF(Πn) is injective

n ≥ nbij ⇒ the homomorphism OutF(Πn+1) → OutF(Πn) is bijective� �
Theorem in [NodNon]� �
n ≥ 1 ⇒ the homomorphism OutFC(Πn+1) → OutFC(Πn) is injective

n ≥ nbij
def
=

{
3 r ̸= 0

4 r = 0

n ≥ nbij ⇒ the homomorphism OutFC(Πn+1) → OutFC(Πn) is bijective� �
n ≥ nbij
Theorem (F = FC)⇒ OutF(Πn+1) = OutFC(Πn+1), OutF(Πn) = OutFC(Πn)
Theorem in [NodNon]⇒ OutF(Πn+1) → OutF(Πn) is bijective
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The proof of the injectivity portion of Theorem (F-inj/bij)

� �
n ≥ nbij − 2 ⇒ the homomorphism OutF(Πn+1) → OutF(Πn) is injective� �
similar to the case of “FC”
(cf. the talk by Minamide)

Theorem in [CbGC] — cf. [CbGC], Corollary 2.7, (iii)� �
Suppose:

• both ρ◦ and ρ• are of IPSC-type
• the continuous isomorphism α is group-theoretically cuspidal

⇒ the continuous isomorphism α is graphic� �
Theorem in [NodNon] — cf. [NodNon], Theorem A� �
Suppose:

• both ρ◦ and ρ• are of NN-type
• the continuous isomorphism α is group-theoretically cuspidal
• either G◦ or G• has a cusp

⇒ the continuous isomorphism α is graphic� �
Theorem (IPSC) — cf. [CbTpII], Theorem 1.9, (ii)� �
Suppose:

• both ρ◦ and ρ• are of NN-type
• either ρ◦ or ρ• is of IPSC-type

⇒ the continuous isomorphism α is group-theoretically verticial� �
cf. also Lemma (ConfiGC) of the next page

Note: If (r, n) = (0, 1), then we do not have any GC-type result which we may apply
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The proof of Theorem (F = FC) 1/5

Theorem (F = FC)� �
n ≥ nFC

def
=


2 (g, r) = (0, 3)

3 (g, r) ̸= (0, 3), r ̸= 0

4 r = 0

⇒ the equality OutF(Πn) = OutFC(Πn) holds� �
α ∈ AutF(Πn)

Πn

pn/n−1

Πn/n−1
def
=Ker

// Πn−1

pn−1/n−2

Πn−1/n−2
def
=Ker

// . . .
p3/2

Π3/2
def
=Ker

// Π2

p2/1

Π2/1
def
=Ker

// Π1

Xi+1/i: a geometric fiber of pXi+1/i : Xi+1 → Xi

⇒ Πi+1/i
∼= π1(Xi+1/i)

1 → Πi+1/i → Πi+1 → Πi → 1
⇒ Πi → Out(Πi+1/i)

α□ ∈ Aut(Π□): the continuous automorphism induced by α (e.g., αn = α)

Lemma (ConfiGC)� �
1 ≤ i ≤ n− 1 c, c′: cusps of Xi/i−1

I□ ⊆ Πi/i−1: a cuspidal inertia subgroup associated to □
H□: the semi-graph of anabelioids of PSC-type det’d by the log geom. fiber at □
Y□ ∈ Vert(H□): the vertex that corresponds to the “old/major irr. component”
P□ ∈ Vert(H□): the vertex that corresponds to the “new/minor irr. component”
Suppose: the autom. αi and αi+1/i fit into a commutative diagram

Ic
� � //

≀
��

Πi
//

≀ αi

��

Out(Πi+1/i)

≀ conjugation by αi+1/i

��

∼ // Out(ΠHc)

Ic′
� � // Πi

// Out(Πi+1/i)
∼ // Out(ΠHc′

)

⇒ the images αi+1/i(ΠYc), αi+1/i(ΠPc) are Πi+1/i-conjugates of ΠYc′
ΠPc′

, respectively� �
by Theorem (IPSC)
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The proof of Theorem (F = FC) 2/5

Theorem in [CbTpI]� �
the image of OutF(Πn+1) → OutF(Πn) is contained in OutFC(Πn) ⊆ OutF(Πn)� �
α ∈ AutF(Πn)

Πn

pn/n−1

Πn/n−1
def
=Ker

// Πn−1

pn−1/n−2

Πn−1/n−2
def
=Ker

// . . .
p3/2

Π3/2
def
=Ker

// Π2

p2/1

Π2/1
def
=Ker

// Π1

Xi+1/i: a geometric fiber of pXi+1/i : Xi+1 → Xi

⇒ Πi+1/i
∼= π1(Xi+1/i)

α□ ∈ Aut(Π□): the continuous automorphism induced by α (e.g., αn = α)

By Theorem in [CbTpI],
i ∈ {1, . . . , n− 2} ⇒ αi+1/i is “compatible” with cuspidal inertia subgroups

Thus, it suffices to verify: αn/n−1 is “compatible” with cuspidal inertia subgroups

c1, . . . , cr: the cusps of X
⇒ the cusp cj determines a cusp of X2/1, say cj2/1
⇒ ∃!cr+1

2/1 : a cusp of X2/1 s.t. {c12/1, . . . , cr2/1, c
r+1
2/1 } = {cusps of X2/1}

⇒ the cusp cj2/1 determines a cusp of X3/2, say cj3/2
⇒ ∃!cr+2

3/2 : a cusp of X3/2 s.t. {c13/2, . . . , c
r+1
3/2 , c

r+2
3/2 } = {cusps of X3/2}

...
⇒ the cusp cjn−1/n−2 determines a cusp of Xn/n−1, say cjn/n−1

⇒ ∃!cr+n−1
n/n−1 : a cusp of Xn/n−1 s.t. {c1n/n−1, . . . , c

r+n−2
n/n−1 , c

r+n−1
n/n−1} = {cusps of Xn/n−1}

Iji+1/i ⊆ Πi+1/i: a cuspidal inertia subgroup associated to cji+1/i

Thus, by Theorem in [CbTpI], i ∈ {1, . . . , n− 2} ⇒ αi+1/i(I
j
i+1/i) is cuspidal

Moreover, it suffices to verify: αn/n−1(I
j
n/n−1) is cuspidal for ∀j
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The proof of Theorem (F = FC) 3/5

By replacing α by the product of α and a suitable element of OutFC(Πn),
we may assume: i ∈ {1, . . . , n− 2} ⇒ αi+1/i(I

j
i+1/i) ∼conj. I

j
i+1/i for ∀j

I1n/n−1, I2n/n−1, . . . , Irn/n−1, Ir+1
n/n−1, . . . , Ir+n−3

n/n−1 , Ir+n−2
n/n−1 , Ir+n−1

n/n−1

Claim (F = FC)� �
Fix j ∈ {1, . . . , r + n− 2}
⇒ the image αn/n−1(I

j′

n/n−1) is cuspidal for ∀j′ ∈ {1, . . . , r + n− 2} \ {j}� �
j ̸= r + n− 1 ⇒ ∃cjn−1/n−2

Recall: αn−1/n−2(I
j
n−1/n−2) ∼conj. I

j
n−1/n−2

Thus, by replacing α by a suitable Πn-conjugate of α,
we may assume: αn−1/n−2(I

j
n−1/n−2) = Ijn−1/n−2, i.e.,

Ijn−1/n−2
� � //

≀
��

Πn−1
//

αn−1/n−2≀
��

Out(Πn/n−1)

conjugation by αn/n−1≀
��

Ijn−1/n−2
� � // Πn−1

// Out(Πn/n−1)

Y : the vertex that corr. to the “old/major irr. comp.” of the log geom. fiber at cjn−1/n−2

P : the vertex that corr. to the “new/minor irr. comp.” of the log geom. fib. at cjn−1/n−2

Lemma (ConfiGC)⇒ αn/n−1(ΠY ) ∼conj. ΠY , αn/n−1(ΠP ) ∼conj. ΠP

Thus, by replacing α by a suitable Πn/n−1-conjugate of α,
we may assume: αn/n−1(ΠY ) = ΠY
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The proof of Theorem (F = FC) 4/5

Observe:

ΠY
� � // Πn/n−1

� � // Πn

p{1,...,n}\{j−r or n−1} //

p{1,...,n−1}

����

Π{1,...,n}\{j−r or n−1}

p{1,...,n−1}\{j−r or n−1}

����
Πn−1 p{1,...,n−1}\{j−r or n−1}

// Π{1,...,n−1}\{j−r or n−1}

determines a continuous isomorphism ΠY
∼→ Ker(p{1,...,n−1}\{...})

⇒
Ij

′

n/n−1
� � // ΠY

∼ //

αn/n−1 ≀
��

Ker(p{1,...,n−1}\{...})

≀ by α

��
ΠY

∼ // Ker(p{1,...,n−1}\{...})

Thus, by Theorem in [CbTpI],
the right-hand vertical arrow is “compatible” with cuspidal inertia subgroups

⇒ the left-hand vertical arrow is “compatible” with cuspidal inertia subgroups

⇒ the image αn/n−1(I
j′

n/n−1) is cuspidal
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The proof of Theorem (F = FC) 5/5

Theorem (F = FC)� �
n ≥ nFC

def
=


2 (g, r) = (0, 3)

3 (g, r) ̸= (0, 3), r ̸= 0

4 r = 0

⇒ the equality OutF(Πn) = OutFC(Πn) holds� �
Claim (F = FC)� �
Fix j ∈ {1, . . . , r + n− 2}
⇒ the image αn/n−1(I

j′

n/n−1) is cuspidal for ∀j′ ∈ {1, . . . , r + n− 2} \ {j}� �

r + n− 2 ≥ r + nFC − 2 =


r = 3 (g, r) = (0, 3)

r + 1 ≥ 2 (g, r) ̸= (0, 3), r ̸= 0

r + 2 = 2 r = 0

Claim (F = FC)⇒
I1n/n−1, I2n/n−1, . . . , Irn/n−1, Ir+1

n/n−1, . . . , Ir+n−3
n/n−1 , Ir+n−2

n/n−1
OK

, Ir+n−1
n/n−1

If n ≥ 3:
we conclude, by replacing the ordering of {1, . . . , n}, that
I1n/n−1, I2n/n−1, . . . , Irn/n−1, Ir+1

n/n−1, . . . , Ir+n−3
n/n−1 , Ir+n−2

n/n−1 , Ir+n−1
n/n−1

OK

Πn

pn/n−1

Πn/n−1
def
=Ker

// Πn−1

pn−1/n−2

Πn−1/n−2
def
=Ker

// . . .
p3/2

Π3/2
def
=Ker

// Π2

p2/1

Π2/1
def
=Ker

// Π1

If n = 2 (⇒ (g, r) = (0, 3)):
“X2

∼= M0,5 ↶ S5” gives rise to an automorphism of X2

that maps cr+n−1
n/n−1 to c1n/n−1

⇒
I1n/n−1, I2n/n−1, . . . , Irn/n−1, Ir+1

n/n−1, . . . , Ir+n−3
n/n−1 , Ir+n−2

n/n−1 , Ir+n−1
n/n−1

OK
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