Partial Combinatorial Cuspidalization for F-admissible Outomorphisms

Yuichiro Hoshi 8 September, 2022 The 2nd talk

The 29th Number Theory Summer School "Combinatorial Anabelian Geometry"

In the present talk:

n: a nonnegative integer (g,r): a pair of nonnegative integers s.t. 2 - 2g - r < 0k: an algebraically closed field of characteristic zero X: a hyperbolic curve/k of type (g,r)

 $E' \subseteq E \subseteq \{\text{positive integers} \le n\}$

 $\begin{aligned} X_E \stackrel{\text{def}}{=} \{ (x_e)_{e \in E} \in \prod_E X \, | \, x_e \neq x_{e'} \text{ if } e \neq e' \}: \\ \text{the } \#E\text{-th configuration space of } X, \end{aligned}$

where we think of the factors as being labeled by the elements of E $p_{E/E'}^X: X_E \to X_{E'}$: the natural projection morphism $\Pi_E \stackrel{\text{def}}{=} \pi_1(X_E)$ $p_{E/E'}: \Pi_E \twoheadrightarrow \Pi_{E'}$: the outer surjective continuous homomorphism induced by $p_{E/E'}^X$

 $0 \leq j \leq i \leq n$

$$\begin{split} X_i &\stackrel{\text{def}}{=} X_{\{\text{positive integers } \leq i\}} \\ p_{i/j}^X &\stackrel{\text{def}}{=} p_{\{\text{positive integers } \leq i\}/\{\text{positive integers } \leq j\}} \colon X_i \to X_j \\ \Pi_i &\stackrel{\text{def}}{=} \Pi_{\{\text{positive integers } \leq i\}} \\ p_{i/j} &\stackrel{\text{def}}{=} p_{\{\text{positive integers } \leq i\}/\{\text{positive integers } \leq j\}} \colon \Pi_i \to \Pi_j \\ \Pi_{i/j} &\stackrel{\text{def}}{=} \operatorname{Ker}(p_{i/j}) \\ \Rightarrow &\mathfrak{S}_n \curvearrowright X_n \\ \Rightarrow &\mathfrak{S}_n \stackrel{\text{out}}{\curvearrowright} \Pi_n \end{split}$$

$$\operatorname{Out}^{\operatorname{FC}}(\Pi_n) \longrightarrow \operatorname{Out}^{\operatorname{FC}}(\Pi_n) \longrightarrow \operatorname{Out}(\Pi_n) \longleftarrow \mathfrak{S}_n$$

- Theorem in [NodNon] — cf. [NodNon], Theorem B $n \ge 1 \Rightarrow$ the homomorphism $\operatorname{Out}^{\operatorname{FC}}(\Pi_{n+1}) \to \operatorname{Out}^{\operatorname{FC}}(\Pi_n)$ is <u>injective</u>

$$n \ge n_{\text{bij}} \stackrel{\text{def}}{=} \begin{cases} 3 & r \ne 0\\ 4 & r = 0 \end{cases}$$

 $n \ge n_{\text{bij}} \Rightarrow$ the homomorphism $\text{Out}^{\text{FC}}(\Pi_{n+1}) \to \text{Out}^{\text{FC}}(\Pi_n)$ is <u>bijective</u>

∽ Theorem in [NodNon] — cf. [NodNon], Theorem B — the subgroup $\mathfrak{S}_n \subseteq \operatorname{Out}(\Pi_n)$ centralizes the subgroup $\operatorname{Out}^{\operatorname{FC}}(\Pi_n)$

- Theorem in [CbTpI] — [CbTpI], cf. Theorem A, (ii) the image of $\operatorname{Out}^{\mathrm{F}}(\Pi_{n+1}) \to \operatorname{Out}^{\mathrm{F}}(\Pi_n)$ is <u>contained</u> in $\operatorname{Out}^{\mathrm{FC}}(\Pi_n) \subseteq \operatorname{Out}^{\mathrm{F}}(\Pi_n)$ $\sim \text{Theorem (F = FC)} - \text{cf. [CbTpII], Theorem A, (ii)}$ $n \ge n_{\text{FC}} \stackrel{\text{def}}{=} \begin{cases} 2 & (g, r) = (0, 3) \\ 3 & (g, r) \neq (0, 3), r \neq 0 \\ 4 & r = 0 \end{cases}$ $\Rightarrow \text{the <u>equality Out}^{\text{F}}(\Pi_n) = \text{Out}^{\text{FC}}(\Pi_n) \text{ holds}$ </u>

Theorem (F-inj/bij) — cf. [CbTpII], Theorem A, (i) $n \ge n_{\text{bij}} - 2 \Rightarrow \text{the homomorphism Out}^{\mathrm{F}}(\Pi_{n+1}) \to \text{Out}^{\mathrm{F}}(\Pi_n) \text{ is injective}$ $n \ge n_{\text{bij}} \Rightarrow \text{the homomorphism Out}^{\mathrm{F}}(\Pi_{n+1}) \to \text{Out}^{\mathrm{F}}(\Pi_n) \text{ is injective}$

→ Theorem $(Z(\mathfrak{S}))$ — cf. [CbTpII], Theorem 2.3, (iv) $(r,n) \neq (0,2)$ ⇒ the subgroup $\mathfrak{S}_n \subseteq \operatorname{Out}(\Pi_n)$ <u>centralizes</u> the subgroup $\operatorname{Out}^{\mathrm{F}}(\Pi_n)$

Corollary (FC× \mathfrak{S}) — cf. [CbTpII], Theorem B, (ii) — Suppose: • $(g,r) \notin \{(0,3), (1,1)\}$ • $n \ge n_{\rm FC}$ \Rightarrow the <u>equality</u> Out(Π_n) = Out^{FC}(Π_n) × \mathfrak{S}_n holds Remark 1/4

Theorem in [NodNon] —

 $n \geq 1 \Rightarrow$ the homomorphism $\operatorname{Out}^{\operatorname{FC}}(\Pi_{n+1}) \to \operatorname{Out}^{\operatorname{FC}}(\Pi_n)$ is <u>injective</u>

n

$$\geq n_{\rm bij} \stackrel{\rm def}{=} \begin{cases} 3 & r \neq 0\\ 4 & r = 0 \end{cases}$$

 $n \ge n_{\text{bij}} \Rightarrow$ the homomorphism $\text{Out}^{\text{FC}}(\Pi_{n+1}) \to \text{Out}^{\text{FC}}(\Pi_n)$ is <u>bijective</u>

- Theorem (F-inj/bij)

$$n \ge n_{\text{bij}} - 2 \Rightarrow \text{the homomorphism Out}^{\mathrm{F}}(\Pi_{n+1}) \to \text{Out}^{\mathrm{F}}(\Pi_n) \text{ is injective}$$

 $n \ge n_{\text{bij}} \Rightarrow \text{the homomorphism Out}^{\mathrm{F}}(\Pi_{n+1}) \to \text{Out}^{\mathrm{F}}(\Pi_n) \text{ is bijective}$

On the other hand:

$$(g,r) \notin \{(0,3), (1,1)\}$$

 \Rightarrow the (injective) homomorphism $\operatorname{Out}^{\operatorname{FC}}(\Pi_2) \hookrightarrow \operatorname{Out}^{\operatorname{FC}}(\Pi_1)$ is not surjective

(cf. the 6th talk)

$$\begin{split} (g,r) \notin \{(0,3),(1,1)\} \\ r \neq 0 \\ & \operatorname{Out}^{\operatorname{FC}}(\Pi_n) \xrightarrow{\sim} \operatorname{Out}^{\operatorname{FC}}(\Pi_3) \xrightarrow{\sim?} \operatorname{Out}^{\operatorname{FC}}(\Pi_2) \xrightarrow{\checkmark} \operatorname{Out}^{\operatorname{FC}}(\Pi_1) \\ r = 0 \\ & \operatorname{Out}^{\operatorname{FC}}(\Pi_n) \xrightarrow{\sim} \operatorname{Out}^{\operatorname{FC}}(\Pi_4) \xrightarrow{\sim?} \operatorname{Out}^{\operatorname{FC}}(\Pi_3) \xrightarrow{\sim?} \operatorname{Out}^{\operatorname{FC}}(\Pi_2) \xrightarrow{\checkmark} \operatorname{Out}^{\operatorname{FC}}(\Pi_1) \end{split}$$

Remark 2/4

~ Expected Goal (not proved...) in the previous talk, i.e., — "Suppose: both ρ_{\circ} and ρ_{\bullet} are <u>of NN-type</u> \Rightarrow the continuous isomorphism α is group-theoretically verticial"

 \Rightarrow

the injectivity of $\operatorname{Out}^{\mathsf{F}}(\Pi_2) \to \operatorname{Out}^{\mathsf{F}}(\Pi_1)$ even in the case of r = 0

 \Rightarrow

the commutativity of \mathfrak{S}_n with $\operatorname{Out}^{\mathrm{F}}(\Pi_n)$ even in the case of (r, n) = (0, 2)

Remark 3/4

 \sim Corollary (FC× \mathfrak{S}) – Suppose:

• $(g,r) \notin \{(0,3), (1,1)\}$

• $n \ge n_{\rm FC}$

 \Rightarrow the <u>equality</u> $\operatorname{Out}(\Pi_n) = \operatorname{Out}^{\operatorname{FC}}(\Pi_n) \times \mathfrak{S}_n$ holds

Moreover: \sim Theorem in [HMM] — cf. [HMM], Corollary B \bullet $(g, r) = (0, 3), n \ge 2$ \Rightarrow the equality $\operatorname{Out}(\Pi_n) = \operatorname{Out}^{\operatorname{gFC}}(\Pi_n) \times \mathfrak{S}_{n+3}$ holds \bullet $(g, r) = (\overline{1, 1}), n \ge 3$ \Rightarrow the equality $\operatorname{Out}(\Pi_n) = \operatorname{Out}^{\operatorname{gFC}}(\Pi_n) \times \mathfrak{S}_{n+1}$ holds

(cf. the talk by Minamide)

 $\underline{\text{Remark } 4/4}$

∃the respective pro-*l* versions of the theorems
∃some applications of the theorems to the study of anabelian conjecture for configuration spaces of hyperbolic curves (cf. [CbTpII], §2) The proof of: Theorem (F-inj/bij) \Rightarrow Theorem (Z(\mathfrak{S}))

Theorem (F-inj/bij) $n \ge n_{\text{bij}} - 2 \Rightarrow \text{the homomorphism Out}^{\mathrm{F}}(\Pi_{n+1}) \to \text{Out}^{\mathrm{F}}(\Pi_n) \text{ is injective}$ $n \ge n_{\text{bij}} \Rightarrow \text{the homomorphism Out}^{\mathrm{F}}(\Pi_{n+1}) \to \text{Out}^{\mathrm{F}}(\Pi_n) \text{ is injective}$

Theorem $(Z(\mathfrak{S}))$ $(r,n) \neq (0,2)$ \Rightarrow the subgroup $\mathfrak{S}_n \subseteq \operatorname{Out}(\Pi_n)$ <u>centralizes</u> the subgroup $\operatorname{Out}^{\mathrm{F}}(\Pi_n)$

similar to the case of "FC" (cf. the talk by Minamide)

 $\begin{array}{l} \alpha \in \operatorname{Out}^{\mathrm{F}}(\Pi_n) \\ \sigma \in \mathfrak{S}_n \end{array}$

For simplicity, suppose: $r \neq 0$

the open imm. $X_n \hookrightarrow X \times_k \cdots \times_k X$ induces an outer surj. conti. hom. $\Pi_n \twoheadrightarrow \Pi_1 \times \cdots \times \Pi_1$ $\stackrel{[CbTpI]}{\Rightarrow}$ the outomorphism α acts "diagonally" on $\Pi_1 \times \cdots \times \Pi_1$ \Rightarrow the outom. $\alpha, \sigma \alpha \sigma^{-1}$ induce the <u>same outom.</u> on $\Pi_1 \times \cdots \times \Pi_1$, hence also on Π_1

On the other hand: $r \neq 0 \xrightarrow{\text{Theorem } (F-\text{inj}/\text{bij})} \text{Out}^F(\Pi_n) \to \text{Out}(\Pi_1) \text{ is } \underline{\text{injective}}$ $\Rightarrow \alpha = \sigma \alpha \sigma^{-1}$ $\frac{\text{The proof of: Theorem (F = FC)}}{\Rightarrow \text{ the bijectivity portion of Theorem (F-inj/bij)}}$

Theorem (F = FC) $n \ge n_{FC} \stackrel{\text{def}}{=} \begin{cases} 2 \quad (g,r) = (0,3) \\ 3 \quad (g,r) \ne (0,3), \ r \ne 0 \\ 4 \quad r = 0 \end{cases}$ $\Rightarrow \text{ the <u>equality</u> Out^F(\Pi_n) = Out^{FC}(\Pi_n) \text{ holds}$

 $\sim \text{Theorem (F-inj/bij)} \longrightarrow$ $n \geq n_{\text{bij}} - 2 \Rightarrow \text{the homomorphism Out}^{\mathrm{F}}(\Pi_{n+1}) \rightarrow \text{Out}^{\mathrm{F}}(\Pi_{n}) \text{ is } \underline{\text{injective}}$ $n \geq n_{\text{bij}} \Rightarrow \text{the homomorphism Out}^{\mathrm{F}}(\Pi_{n+1}) \rightarrow \text{Out}^{\mathrm{F}}(\Pi_{n}) \text{ is } \underline{\text{bijective}}$

Theorem in [NodNon]

$$n \ge 1 \Rightarrow$$
 the homomorphism $\operatorname{Out}^{\operatorname{FC}}(\Pi_{n+1}) \to \operatorname{Out}^{\operatorname{FC}}(\Pi_n)$ is injective
 $n \ge n_{\operatorname{bij}} \stackrel{\operatorname{def}}{=} \begin{cases} 3 & r \ne 0 \\ 4 & r = 0 \end{cases}$
 $n \ge n_{\operatorname{bij}} \Rightarrow$ the homomorphism $\operatorname{Out}^{\operatorname{FC}}(\Pi_{n+1}) \to \operatorname{Out}^{\operatorname{FC}}(\Pi_n)$ is bijective

 $\begin{array}{l} n \geq n_{\mathrm{bij}} \\ \stackrel{\mathrm{Theorem \ (F = FC)}}{\Rightarrow} \mathrm{Out}^{\mathrm{F}}(\Pi_{n+1}) = \mathrm{Out}^{\mathrm{FC}}(\Pi_{n+1}), \ \mathrm{Out}^{\mathrm{F}}(\Pi_{n}) = \mathrm{Out}^{\mathrm{FC}}(\Pi_{n}) \\ \stackrel{\mathrm{Theorem \ in \ [NodNon]}}{\Rightarrow} \mathrm{Out}^{\mathrm{F}}(\Pi_{n+1}) \to \mathrm{Out}^{\mathrm{F}}(\Pi_{n}) \ \mathrm{is \ \underline{bijective}} \end{array}$

 $n \ge n_{\text{bij}} - 2 \Rightarrow \text{the homomorphism Out}^{\mathcal{F}}(\Pi_{n+1}) \to \text{Out}^{\mathcal{F}}(\Pi_n) \text{ is injective}$

similar to the case of "FC" (cf. the talk by Minamide)

```
\sim Theorem in [CbGC] — cf. [CbGC], Corollary 2.7, (iii) -
```

Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of IPSC-type
- the continuous isomorphism α is group-theoretically cuspidal

 \Rightarrow the continuous isomorphism α is graphic

Theorem in [NodNon] — cf. [NodNon], Theorem A -

Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- the continuous isomorphism α is group-theoretically cuspidal
- \bullet either \mathcal{G}_\circ or \mathcal{G}_\bullet has a cusp
- \Rightarrow the continuous isomorphism α is graphic

- Theorem (IPSC) — cf. [CbTpII], Theorem 1.9, (ii) –

Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- either ρ_{\circ} or ρ_{\bullet} is of IPSC-type
- \Rightarrow the continuous isomorphism α is group-theoretically verticial

cf. also Lemma (ConfiGC) of the next page

Note: If (r, n) = (0, 1), then we do not have any GC-type result which we may apply

The proof of Theorem (F = FC) 1/5

Theorem (F = FC) $n \ge n_{FC} \stackrel{\text{def}}{=} \begin{cases} 2 \quad (g,r) = (0,3) \\ 3 \quad (g,r) \ne (0,3), \ r \ne 0 \\ 4 \quad r = 0 \end{cases}$ $\Rightarrow \text{ the <u>equality</u> Out^{F}(\Pi_{n}) = Out^{FC}(\Pi_{n}) \text{ holds}}$

 $\alpha \in \operatorname{Aut}^{\mathrm{F}}(\Pi_n)$

$$\Pi_n \xrightarrow{p_{n/n-1}} \Pi_{n-1} \xrightarrow{p_{n-1/n-2}} \dots \xrightarrow{p_{3/2}} \Pi_2 \xrightarrow{p_{2/1}} \Pi_{1/2} \xrightarrow{p_{1/2}} \Pi_1$$

 $X_{i+1/i}$: a geometric fiber of $p_{i+1/i}^X \colon X_{i+1} \to X_i$ $\Rightarrow \prod_{i+1/i} \cong \pi_1(X_{i+1/i})$

$$\begin{split} 1 &\to \Pi_{i+1/i} \to \Pi_{i+1} \to \Pi_i \to 1 \\ &\Rightarrow \Pi_i \to \operatorname{Out}(\Pi_{i+1/i}) \end{split}$$

 $\alpha_{\Box} \in \operatorname{Aut}(\Pi_{\Box})$: the continuous automorphism induced by α (e.g., $\alpha_n = \alpha$)

Lemma (ConfiGC) $1 \leq i \leq n-1 \quad c, c': \text{ cusps of } X_{i/i-1}$ $I_{\Box} \subseteq \Pi_{i/i-1}: \text{ a cuspidal inertia subgroup associated to } \Box$ $\mathcal{H}_{\Box}: \text{ the semi-graph of anabelioids of PSC-type det'd by the log geom. fiber at } \Box$ $Y_{\Box} \in \text{Vert}(\mathcal{H}_{\Box}): \text{ the vertex that corresponds to the "old/major irr. component"}$ $P_{\Box} \in \text{Vert}(\mathcal{H}_{\Box}): \text{ the vertex that corresponds to the "new/minor irr. component"}$ Suppose: the autom. α_i and $\alpha_{i+1/i}$ fit into a commutative diagram $I_c \longrightarrow \Pi_i \longrightarrow \text{Out}(\Pi_{i+1/i}) \xrightarrow{\sim} \text{Out}(\Pi_{\mathcal{H}_c})$ $\downarrow \qquad \downarrow \alpha_i \qquad \downarrow \text{ conjugation by } \alpha_{i+1/i}$ $I_{c'} \longrightarrow \Pi_i \longrightarrow \text{Out}(\Pi_{i+1/i}) \xrightarrow{\sim} \text{Out}(\Pi_{\mathcal{H}_{c'}})$

 \Rightarrow the images $\alpha_{i+1/i}(\Pi_{Y_c})$, $\alpha_{i+1/i}(\Pi_{P_c})$ are $\Pi_{i+1/i}$ -conjugates of $\Pi_{Y_{c'}}$, $\Pi_{P_{c'}}$, respectively

by Theorem (IPSC)

Theorem in [CbTpI]
the image of
$$\operatorname{Out}^{\mathrm{F}}(\Pi_{n+1}) \to \operatorname{Out}^{\mathrm{F}}(\Pi_n)$$
 is contained in $\operatorname{Out}^{\mathrm{FC}}(\Pi_n) \subseteq \operatorname{Out}^{\mathrm{F}}(\Pi_n)$

$$\alpha \in \operatorname{Aut}^{\mathsf{F}}(\Pi_n)$$

$$\Pi_n \xrightarrow{p_{n/n-1}} \Pi_{n-1} \xrightarrow{p_{n-1/n-2}} \dots \xrightarrow{p_{3/2}} \Pi_2 \xrightarrow{p_{2/1}} \Pi_{21} \xrightarrow{p_{2/1}} \Pi_1$$

 $X_{i+1/i}$: a geometric fiber of $p_{i+1/i}^X \colon X_{i+1} \to X_i$ $\Rightarrow \prod_{i+1/i} \cong \pi_1(X_{i+1/i})$ $\alpha_{\Box} \in \operatorname{Aut}(\Pi_{\Box})$: the continuous automorphism induced by α (e.g., $\alpha_n = \alpha$)

By Theorem in [CbTpI],

 $i \in \{1, \ldots, n-2\} \Rightarrow \alpha_{i+1/i}$ is "compatible" with cuspidal inertia subgroups Thus, it suffices to verify: $\alpha_{n/n-1}$ is "compatible" with cuspidal inertia subgroups

$$c^{1}, \ldots, c^{r}$$
: the cusps of X
 \Rightarrow the cusp c^{j} determines a cusp of $X_{2/1}$, say $c^{j}_{2/1}$
 $\Rightarrow \exists ! c^{r+1}_{2/1}$: a cusp of $X_{2/1}$ s.t. $\{c^{1}_{2/1}, \ldots, c^{r}_{2/1}, c^{r+1}_{2/1}\} = \{$ cusps of $X_{2/1}\}$

⇒ the cusp
$$c_{2/1}^{j}$$
 determines a cusp of $X_{3/2}$, say $c_{3/2}^{j}$
⇒ $\exists! c_{3/2}^{r+2}$: a cusp of $X_{3/2}$ s.t. $\{c_{3/2}^{1}, \ldots, c_{3/2}^{r+1}, c_{3/2}^{r+2}\} = \{\text{cusps of } X_{3/2}\}$
...
⇒ the cusp $c_{n-1/n-2}^{j}$ determines a cusp of $X_{n/n-1}$, say $c_{n/n-1}^{j}$
⇒ $\exists! c_{n/n-1}^{r+n-1}$: a cusp of $X_{n/n-1}$ s.t. $\{c_{n/n-1}^{1}, \ldots, c_{n/n-1}^{r+n-2}, c_{n/n-1}^{r+n-1}\} = \{\text{cusps of } X_{n/n-1}\}$

 $I_{i+1/i}^j \subseteq \prod_{i+1/i}$: a cuspidal inertia subgroup associated to $c_{i+1/i}^j$ Thus, by Theorem in [CbTpI], $i \in \{1, \ldots, n-2\} \Rightarrow \alpha_{i+1/i}(I_{i+1/i}^j)$ is <u>cuspidal</u> Moreover, it suffices to verify: $\alpha_{n/n-1}(I_{n/n-1}^j)$ is <u>cuspidal</u> for $\forall j$ The proof of Theorem (F = FC) 3/5

By replacing α by the product of α and a suitable element of $\text{Out}^{\text{FC}}(\Pi_n)$,

we may assume: $i \in \{1, \ldots, n-2\} \Rightarrow \alpha_{i+1/i}(I_{i+1/i}^j) \sim_{\text{conj.}} I_{i+1/i}^j$ for $\forall j$

$$I_{n/n-1}^1, \quad I_{n/n-1}^2, \quad \dots, \quad I_{n/n-1}^r, \quad I_{n/n-1}^{r+1}, \quad \dots, \quad I_{n/n-1}^{r+n-3}, \quad I_{n/n-1}^{r+n-2}, \quad I_{n/n-1}^{r+n-1}$$

 $\begin{array}{l} \leftarrow \text{Claim } (\mathbf{F} = \mathbf{FC}) \\ \hline \\ \text{Fix } j \in \{1, \dots, r+n-2\} \\ \Rightarrow \text{ the image } \alpha_{n/n-1}(I_{n/n-1}^{j'}) \text{ is } \underline{\text{cuspidal}} \text{ for } \forall j' \in \{1, \dots, r+n-2\} \setminus \{j\} \end{array}$

$$\begin{split} j &\neq r + n - 1 \Rightarrow \exists c_{n-1/n-2}^{j} \\ \text{Recall: } \alpha_{n-1/n-2}(I_{n-1/n-2}^{j}) \sim_{\text{conj.}} I_{n-1/n-2}^{j} \\ \text{Thus, by replacing } \alpha \text{ by a suitable } \Pi_{n}\text{-conjugate of } \alpha, \\ \text{we may assume: } \alpha_{n-1/n-2}(I_{n-1/n-2}^{j}) = I_{n-1/n-2}^{j}, \text{ i.e.,} \end{split}$$

Y: the vertex that corr. to the "old/major irr. comp." of the log geom. fiber at $c_{n-1/n-2}^{j}$ P: the vertex that corr. to the "new/minor irr. comp." of the log geom. fib. at $c_{n-1/n-2}^{j}$ $\stackrel{\text{Lemma (ConfiGC)}}{\Rightarrow} \alpha_{n/n-1}(\Pi_{Y}) \sim_{\text{conj.}} \Pi_{Y}, \alpha_{n/n-1}(\Pi_{P}) \sim_{\text{conj.}} \Pi_{P}$ Thus, by replacing α by a suitable $\Pi_{n/n-1}$ -conjugate of α ,

we may assume: $\alpha_{n/n-1}(\Pi_Y) = \Pi_Y$

Observe:

$$\begin{array}{c} \Pi_{Y} & \longrightarrow & \Pi_{n/n-1} & & \prod_{n \to \infty} p_{\{1,\dots,n\} \setminus \{j-r \text{ or } n-1\}} & & \Pi_{\{1,\dots,n\} \setminus \{j-r \text{ or } n-1\}} \\ & & & p_{\{1,\dots,n-1\}} \\ & & & & p_{\{1,\dots,n-1\} \setminus \{j-r \text{ or } n-1\}} & & & p_{\{1,\dots,n-1\} \setminus \{j-r \text{ or } n-1\}} \\ & & & \Pi_{n-1} & & & \prod_{n \to \infty} p_{\{1,\dots,n-1\} \setminus \{j-r \text{ or } n-1\}} & & \Pi_{\{1,\dots,n-1\} \setminus \{j-r \text{ or } n-1\}} \end{array}$$

determines a continuous isomorphism $\Pi_Y \xrightarrow{\sim} \operatorname{Ker}(p_{\{1,\dots,n-1\}\setminus\{\dots\}})$

 \Rightarrow

Thus, by Theorem in [CbTpI],

the right-hand vertical arrow is "compatible" with cuspidal inertia subgroups \Rightarrow the left-hand vertical arrow is "compatible" with cuspidal inertia subgroups \Rightarrow the image $\alpha_{n/n-1}(I_{n/n-1}^{j'})$ is cuspidal The proof of Theorem (F = FC) 5/5

Theorem (F = FC) $n \ge n_{FC} \stackrel{\text{def}}{=} \begin{cases} 2 \quad (g,r) = (0,3) \\ 3 \quad (g,r) \ne (0,3), \ r \ne 0 \\ 4 \quad r = 0 \end{cases}$ $\Rightarrow \text{ the <u>equality</u> Out^{F}(\Pi_{n}) = Out^{FC}(\Pi_{n}) \text{ holds}}$

 $\begin{array}{l} \leftarrow \text{Claim } (\mathbf{F} = \mathbf{FC}) \\ \hline \\ \text{Fix } j \in \{1, \dots, r+n-2\} \\ \Rightarrow \text{ the image } \alpha_{n/n-1}(I_{n/n-1}^{j'}) \text{ is } \underline{\text{cuspidal}} \text{ for } \forall j' \in \{1, \dots, r+n-2\} \setminus \{j\} \end{array}$

$$r + n - 2 \ge r + n_{\rm FC} - 2 = \begin{cases} r = 3 & (g, r) = (0, 3) \\ r + 1 \ge 2 & (g, r) \ne (0, 3), \ r \ne 0 \\ r + 2 = 2 & r = 0 \end{cases}$$

 $\begin{array}{c} \text{Claim} (F = FC) \\ \rightleftharpoons \end{array}$

$$\underline{I_{n/n-1}^{1}, I_{n/n-1}^{2}, \ldots, I_{n/n-1}^{r}, I_{n/n-1}^{r+1}, \ldots, I_{n/n-1}^{r+n-3}, I_{n/n-1}^{r+n-2}, I_{n/n-1}^{r+n-1}}_{n/n-1}$$

If $n \ge 3$: we conclude, by replacing the ordering of $\{1, ..., n\}$, that $I_{n/n-1}^1, I_{n/n-1}^2, ..., I_{n/n-1}^r, I_{n/n-1}^{r+1}, ..., I_{n/n-1}^{r+n-3}, I_{n/n-1}^{r+n-2}, I_{n/n-1}^{r+n-1}_{OK}$

$$\Pi_n \xrightarrow{p_{n/n-1}} \Pi_{n-1} \xrightarrow{p_{n-1/n-2}} \dots \xrightarrow{p_{3/2}} \Pi_2 \xrightarrow{p_{2/1}} \Pi_{2/1} \xrightarrow{p_{2/1}} \Pi_1$$

$$\begin{split} &\text{If } n = 2 \ (\Rightarrow (g, r) = (0, 3)): \\ & ``X_2 \cong \mathcal{M}_{0,5} \curvearrowleft \mathfrak{S}_5" \text{ gives rise to an automorphism of } X_2 \\ & \text{that maps } c_{n/n-1}^{r+n-1} \text{ to } c_{n/n-1}^1 \\ \Rightarrow \\ & \frac{I_{n/n-1}^1, \quad I_{n/n-1}^2, \quad \dots, \quad I_{n/n-1}^{r+1}, \quad \dots, \quad I_{n/n-1}^{r+n-3}, \quad I_{n/n-1}^{r+n-2}, \quad I_{n/n-1}^{r+n-1}}{OK} \end{split}$$