Partial Combinatorial Cuspidalization
 for F -admissible Outomorphisms

Yuichiro Hoshi
8 September, 2022
The 2nd talk

The 29th Number Theory Summer School
"Combinatorial Anabelian Geometry"

In the present talk:
n : a nonnegative integer
(g, r) : a pair of nonnegative integers s.t. $2-2 g-r<0$
k : an algebraically closed field of characteristic zero
X : a hyperbolic curve $/ k$ of type (g, r)
$E^{\prime} \subseteq E \subseteq\{$ positive integers $\leq n\}$
$X_{E} \stackrel{\text { def }}{=}\left\{\left(x_{e}\right)_{e \in E} \in \prod_{E} X \mid x_{e} \neq x_{e^{\prime}}\right.$ if $\left.e \neq e^{\prime}\right\}:$
the $\# E$-th configuration space of X,
where we think of the factors as being labeled by the elements of E
$p_{E / E^{\prime}}^{X}: X_{E} \rightarrow X_{E^{\prime}}$: the natural projection morphism
$\Pi_{E} \stackrel{\text { def }}{=} \pi_{1}\left(X_{E}\right)$
$p_{E / E^{\prime}}: \Pi_{E} \rightarrow \Pi_{E^{\prime}}$: the outer surjective continuous homomorphism induced by $p_{E / E^{\prime}}^{X}$
$0 \leq j \leq i \leq n$
$X_{i} \xlongequal{\text { def }} X_{\{\text {positive integers } \leq i\}}$
$p_{i / j}^{X} \stackrel{\text { def }}{=} p_{\{\text {positive integers } \leq i\} /\{\text { positive integers } \leq j\}}^{X}: X_{i} \rightarrow X_{j}$
$\Pi_{i} \stackrel{\text { def }}{=} \Pi_{\{\text {positive integers } \leq i\}}$
$p_{i / j} \stackrel{\text { def }}{=} p_{\{\text {positive integers } \leq i\} /\{\text { positive integers } \leq j\}}: \Pi_{i} \rightarrow \Pi_{j}$
$\Pi_{i / j} \stackrel{\text { def }}{=} \operatorname{Ker}\left(p_{i / j}\right)$
$\Rightarrow \mathfrak{S}_{n} \curvearrowright X_{n}$
$\Rightarrow \mathfrak{S}_{n} \stackrel{\text { out }}{\curvearrowright} \Pi_{n}$

$$
\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \longleftrightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \longleftrightarrow \operatorname{Out}\left(\Pi_{n}\right) \longleftrightarrow \mathfrak{S}_{n}
$$

Theorem in [NodNon] — cf. [NodNon], Theorem B
$n \geq 1 \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$ is injective

$$
n \geq n_{\mathrm{bij}} \stackrel{\text { def }}{=} \begin{cases}3 & r \neq 0 \\ 4 & r=0\end{cases}
$$

$n \geq n_{\mathrm{bij}} \Rightarrow$ the homomorphism $\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$ is bijective

Theorem in [NodNon] — cf. [NodNon], Theorem B
the subgroup $\mathfrak{S}_{n} \subseteq \operatorname{Out}\left(\Pi_{n}\right)$ centralizes the subgroup $\operatorname{Out}{ }^{\mathrm{FC}}\left(\Pi_{n}\right)$

Theorem in $[\mathrm{CbTpI}]$ - $[\mathrm{CbTpI}]$, cf. Theorem A, (ii)
the image of $\mathrm{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is contained in $\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \subseteq \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$

Theorem (F = FC) —cf. [CbTpII], Theorem A, (ii)

$$
n \geq n_{\mathrm{FC}} \stackrel{\text { def }}{=} \begin{cases}2 & (g, r)=(0,3) \\ 3 & (g, r) \neq(0,3), r \neq 0 \\ 4 & r=0\end{cases}
$$

\Rightarrow the equality $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)=\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$ holds

Theorem (F-inj/bij) — cf. [CbTpII], Theorem A, (i)
$n \geq n_{\text {bij }}-2 \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is injective
$n \geq n_{\text {bij }} \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is bijective

Theorem $(Z(\mathfrak{S}))$ - cf. [CbTpII], Theorem 2.3, (iv)
$(r, n) \neq(0,2)$
\Rightarrow the subgroup $\mathfrak{S}_{n} \subseteq \operatorname{Out}\left(\Pi_{n}\right)$ centralizes the subgroup $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$

Corollary (FC×(5) — cf. [CbTpII], Theorem B, (ii)
Suppose:

- $(g, r) \notin\{(0,3),(1,1)\}$
- $n \geq n_{\mathrm{FC}}$
\Rightarrow the equality $\operatorname{Out}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n}$ holds

Remark 1/4

Theorem in [NodNon]
$n \geq 1 \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$ is injective

$$
n \geq n_{\mathrm{bij}} \stackrel{\text { def }}{=} \begin{cases}3 & r \neq 0 \\ 4 & r=0\end{cases}
$$

$n \geq n_{\text {bij }} \Rightarrow$ the homomorphism Out ${ }^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$ is bijective

Theorem (F-inj/bij)
$n \geq n_{\text {bij }}-2 \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is injective
$n \geq n_{\text {bij }} \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is bijective

On the other hand:
$(g, r) \notin\{(0,3),(1,1)\}$
\Rightarrow the (injective) homomorphism $\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{2}\right) \hookrightarrow \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)$ is not surjective
(cf. the 6th talk)
$(g, r) \notin\{(0,3),(1,1)\}$
$r \neq 0$

$$
\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \xrightarrow{\sim} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{3}\right) \stackrel{\sim ?}{\longrightarrow} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{2}\right) \stackrel{\nsim}{\longrightarrow} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)
$$

$r=0$
$\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \xrightarrow{\sim} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{4}\right) \xrightarrow{\sim ?} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{3}\right) \stackrel{\sim}{\sim} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{2}\right) \stackrel{\downarrow}{\longrightarrow} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)$
$\underline{\text { Remark 2/4 }}$

Expected Goal (not proved...) in the previous talk, i.e.,
"Suppose: both ρ_{\circ} and ρ_{\bullet} are of NN-type
\Rightarrow the continuous isomorphism α is group-theoretically verticial"
\Rightarrow
the injectivity of $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{2}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{1}\right)$ even in the case of $r=0$
\Rightarrow
the commutativity of \mathfrak{S}_{n} with $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ even in the case of $(r, n)=(0,2)$

Remark 3/4

Corollary ($\mathrm{FC} \times \mathfrak{S}$)
Suppose:

- $(g, r) \notin\{(0,3),(1,1)\}$
- $n \geq n_{\mathrm{FC}}$
\Rightarrow the equality $\operatorname{Out}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n}$ holds

Moreover:
Theorem in [HMM] — cf. [HMM], Corollary B

- $(g, r)=(0,3), n \geq 2$
\Rightarrow the equality $\operatorname{Out}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{gFC}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n+3}$ holds
- $(g, r)=(\overline{1,1}), n \geq 3$
\Rightarrow the equality $\operatorname{Out}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{gFC}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n+1}$ holds
(cf. the talk by Minamide)
\exists the respective pro- l versions of the theorems
\exists some applications of the theorems to the study of anabelian conjecture for configuration spaces of hyperbolic curves (cf. [CbTpII], §2)

The proof of: Theorem (F-inj/bij) \Rightarrow Theorem $(Z(\mathfrak{S}))$

Theorem (F-inj/bij)
$n \geq n_{\text {bij }}-2 \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is injective
$n \geq n_{\mathrm{bij}} \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is bijective

Theorem $(Z(\mathfrak{S}))$
$(r, n) \neq(0,2)$
\Rightarrow the subgroup $\mathfrak{S}_{n} \subseteq \operatorname{Out}\left(\Pi_{n}\right)$ centralizes the subgroup Out $^{\mathrm{F}}\left(\Pi_{n}\right)$
similar to the case of "FC"
(cf. the talk by Minamide)
$\alpha \in \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$
$\sigma \in \mathfrak{S}_{n}$
For simplicity, suppose: $\underline{r \neq 0}$
the open imm. $X_{n} \hookrightarrow X \times_{k} \cdots \times_{k} X$ induces an outer surj. conti. hom. $\Pi_{n} \rightarrow \Pi_{1} \times \cdots \times \Pi_{1}$ $\stackrel{[\mathrm{CbTpI}]}{\Rightarrow}$ the outomorphism α acts "diagonally" on $\Pi_{1} \times \cdots \times \Pi_{1}$
\Rightarrow the outom. $\alpha, \sigma \alpha \sigma^{-1}$ induce the same outom. on $\Pi_{1} \times \cdots \times \Pi_{1}$, hence also on Π_{1}

On the other hand:
$r \neq 0 \stackrel{\text { Theorem }}{\Rightarrow} \Rightarrow{ }^{(\mathrm{F}-\mathrm{inj} / \mathrm{bij})} \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \rightarrow \operatorname{Out}\left(\Pi_{1}\right)$ is injective
$\Rightarrow \alpha=\sigma \alpha \sigma^{-1}$

The proof of: Theorem ($\mathrm{F}=\mathrm{FC}$)
\Rightarrow the bijectivity portion of Theorem (F-inj/bij)

Theorem (F = FC)

$$
n \geq n_{\mathrm{FC}} \stackrel{\text { def }}{=} \begin{cases}2 & (g, r)=(0,3) \\ 3 & (g, r) \neq(0,3), r \neq 0 \\ 4 & r=0\end{cases}
$$

\Rightarrow the equality $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$ holds

Theorem (F-inj/bij)
$n \geq n_{\text {bij }}-2 \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is injective
$n \geq n_{\text {bij }} \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is bijective

Theorem in [NodNon]
$n \geq 1 \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$ is injective

$$
n \geq n_{\mathrm{bij}} \stackrel{\text { def }}{=} \begin{cases}3 & r \neq 0 \\ 4 & r=0\end{cases}
$$

$n \geq n_{\mathrm{bij}} \Rightarrow$ the homomorphism $\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$ is bijective
$n \geq n_{\text {bij }}$
$\stackrel{\text { Theorem }}{\Rightarrow}(\mathrm{F}=\mathrm{FC}) \mathrm{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right)=\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right), \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$
$\stackrel{\text { Theorem in }}{\Rightarrow}{ }^{[\text {NodNon }]} \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow$ Out $^{\mathrm{F}}\left(\Pi_{n}\right)$ is bijective

The proof of the injectivity portion of Theorem (F-inj/bij)

$n \geq n_{\text {bij }}-2 \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is injective
similar to the case of "FC"
(cf. the talk by Minamide)

Theorem in [CbGC] — cf. [CbGC], Corollary 2.7, (iii)
Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of IPSC-type
- the continuous isomorphism α is group-theoretically cuspidal
\Rightarrow the continuous isomorphism α is graphic

Theorem in [NodNon] - cf. [NodNon], Theorem A
Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- the continuous isomorphism α is group-theoretically cuspidal
- either \mathcal{G}_{\circ} or \mathcal{G} • has a cusp
\Rightarrow the continuous isomorphism α is graphic

Theorem (IPSC) — cf. [CbTpII], Theorem 1.9, (ii)
Suppose:

- both ρ_{\circ} and ρ_{\bullet} are of NN-type
- either ρ_{\circ} or ρ_{\bullet} is of $\overline{\text { IPSC-type }}$
\Rightarrow the continuous isomorphism α is group-theoretically verticial
cf. also Lemma (ConfiGC) of the next page
Note: If $(r, n)=(0,1)$, then we do not have any GC-type result which we may apply
$\underline{\text { The proof of Theorem (} \mathrm{F}=\mathrm{FC} \text {) } 1 / 5}$

Theorem (F = FC)

$$
n \geq n_{\mathrm{FC}} \stackrel{\text { def }}{=} \begin{cases}2 & (g, r)=(0,3) \\ 3 & (g, r) \neq(0,3), r \neq 0 \\ 4 & r=0\end{cases}
$$

\Rightarrow the equality $\mathrm{Out}^{\mathrm{F}}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$ holds
$\alpha \in \operatorname{Aut}^{\mathrm{F}}\left(\Pi_{n}\right)$
$X_{i+1 / i}:$ a geometric fiber of $p_{i+1 / i}^{X}: X_{i+1} \rightarrow X_{i}$
$\Rightarrow \Pi_{i+1 / i} \cong \pi_{1}\left(X_{i+1 / i}\right)$
$1 \rightarrow \Pi_{i+1 / i} \rightarrow \Pi_{i+1} \rightarrow \Pi_{i} \rightarrow 1$
$\Rightarrow \Pi_{i} \rightarrow \operatorname{Out}\left(\Pi_{i+1 / i}\right)$
$\alpha_{\square} \in \operatorname{Aut}\left(\Pi_{\square}\right)$: the continuous automorphism induced by α (e.g., $\alpha_{n}=\alpha$)

Lemma (ConfiGC)

$1 \leq i \leq n-1 \quad c, c^{\prime}:$ cusps of $X_{i / i-1}$
$I_{\square} \subseteq \Pi_{i / i-1}$: a cuspidal inertia subgroup associated to
\mathcal{H}_{\square} : the semi-graph of anabelioids of PSC-type det'd by the log geom. fiber at \square
$Y_{\square} \in \operatorname{Vert}\left(\mathcal{H}_{\square}\right)$: the vertex that corresponds to the "old/major irr. component" $P_{\square} \in \operatorname{Vert}\left(\mathcal{H}_{\square}\right):$ the vertex that corresponds to the "new/minor irr. component" Suppose: the autom. α_{i} and $\alpha_{i+1 / i}$ fit into a commutative diagram

\Rightarrow the images $\alpha_{i+1 / i}\left(\Pi_{Y_{c}}\right), \alpha_{i+1 / i}\left(\Pi_{P_{c}}\right)$ are $\Pi_{i+1 / i}$-conjugates of $\Pi_{Y_{c^{\prime}}} \Pi_{P_{c^{\prime}}}$, respectively
by Theorem (IPSC)

The proof of Theorem (F=FC) $2 / 5$

Theorem in $[\mathrm{CbTpI}]$
the image of $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is contained in $\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \subseteq \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$
$\alpha \in \operatorname{Aut}^{\mathrm{F}}\left(\Pi_{n}\right)$
$X_{i+1 / i}:$ a geometric fiber of $p_{i+1 / i}^{X}: X_{i+1} \rightarrow X_{i}$
$\Rightarrow \Pi_{i+1 / i} \cong \pi_{1}\left(X_{i+1 / i}\right)$
$\alpha_{\square} \in \operatorname{Aut}\left(\Pi_{\square}\right)$: the continuous automorphism induced by α (e.g., $\alpha_{n}=\alpha$)

By Theorem in $[\mathrm{CbTpI}]$,
$i \in\{1, \ldots, n-2\} \Rightarrow \alpha_{i+1 / i}$ is "compatible" with cuspidal inertia subgroups
Thus, it suffices to verify: $\alpha_{n / n-1}$ is "compatible" with cuspidal inertia subgroups
c^{1}, \ldots, c^{r} : the cusps of X
\Rightarrow the cusp c^{j} determines a cusp of $X_{2 / 1}$, say $c_{2 / 1}^{j}$
$\Rightarrow \exists!c_{2 / 1}^{r+1}$: a cusp of $X_{2 / 1}$ s.t. $\left\{c_{2 / 1}^{1}, \ldots, c_{2 / 1}^{r}, c_{2 / 1}^{r+1}\right\}=\left\{\operatorname{cusps}\right.$ of $\left.X_{2 / 1}\right\}$
\Rightarrow the cusp $c_{2 / 1}^{j}$ determines a cusp of $X_{3 / 2}$, say $c_{3 / 2}^{j}$
$\Rightarrow \exists!c_{3 / 2}^{r+2}$: a cusp of $X_{3 / 2}$ s.t. $\left\{c_{3 / 2}^{1}, \ldots, c_{3 / 2}^{r+1}, c_{3 / 2}^{r+2}\right\}=\left\{\right.$ cusps of $\left.X_{3 / 2}\right\}$
\Rightarrow the cusp $c_{n-1 / n-2}^{j}$ determines a cusp of $X_{n / n-1}$, say $c_{n / n-1}^{j}$
$\Rightarrow \exists!c_{n / n-1}^{r+n-1}$: a cusp of $X_{n / n-1}$ s.t. $\left\{c_{n / n-1}^{1}, \ldots, c_{n / n-1}^{r+n-2}, c_{n / n-1}^{r+n-1}\right\}=\left\{\right.$ cusps of $\left.X_{n / n-1}\right\}$
$I_{i+1 / i}^{j} \subseteq \Pi_{i+1 / i}$: a cuspidal inertia subgroup associated to $c_{i+1 / i}^{j}$
Thus, by Theorem in $[\mathrm{CbTpI}], i \in\{1, \ldots, n-2\} \Rightarrow \alpha_{i+1 / i}\left(I_{i+1 / i}^{j}\right)$ is cuspidal
Moreover, it suffices to verify: $\alpha_{n / n-1}\left(I_{n / n-1}^{j}\right)$ is cuspidal for $\forall j$

By replacing α by the product of α and a suitable element of $\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$, we may assume: $i \in\{1, \ldots, n-2\} \Rightarrow \alpha_{i+1 / i}\left(I_{i+1 / i}^{j}\right) \sim_{\text {conj. }} I_{i+1 / i}^{j}$ for $\forall j$

$$
I_{n / n-1}^{1}, \quad I_{n / n-1}^{2}, \quad \ldots, \quad I_{n / n-1}^{r}, \quad I_{n / n-1}^{r+1}, \quad \ldots, \quad I_{n / n-1}^{r+n-3}, \quad I_{n / n-1}^{r+n-2}, \quad I_{n / n-1}^{r+n-1}
$$

Claim ($\mathrm{F}=\mathrm{FC}$)
Fix $j \in\{1, \ldots, r+n-2\}$
\Rightarrow the image $\alpha_{n / n-1}\left(I_{n / n-1}^{j^{\prime}}\right)$ is cuspidal for $\forall j^{\prime} \in\{1, \ldots, r+n-2\} \backslash\{j\}$
$j \neq r+n-1 \Rightarrow \exists c_{n-1 / n-2}^{j}$
Recall: $\alpha_{n-1 / n-2}\left(I_{n-1 / n-2}^{j}\right) \sim_{\text {conj. }} . I_{n-1 / n-2}^{j}$
Thus, by replacing α by a suitable Π_{n}-conjugate of α,
we may assume: $\alpha_{n-1 / n-2}\left(I_{n-1 / n-2}^{j}\right)=I_{n-1 / n-2}^{j}$, i.e.,

Y : the vertex that corr. to the "old/major irr. comp." of the log geom. fiber at $c_{n-1 / n-2}^{j}$
P : the vertex that corr. to the "new/minor irr. comp." of the log geom. fib. at $c_{n-1 / n-2}^{j}$
Lemma (ConfiGC)
$\alpha_{n / n-1}\left(\Pi_{Y}\right) \sim_{\text {conj. }} \Pi_{Y}, \alpha_{n / n-1}\left(\Pi_{P}\right) \sim_{\text {conj. }} . \Pi_{P}$
Thus, by replacing α by a suitable $\Pi_{n / n-1}$-conjugate of α,
we may assume: $\alpha_{n / n-1}\left(\Pi_{Y}\right)=\Pi_{Y}$

Observe:

determines a continuous isomorphism $\Pi_{Y} \xrightarrow{\sim} \operatorname{Ker}\left(p_{\{1, \ldots, n-1\} \backslash\{\ldots\}}\right)$
\Rightarrow

Thus, by Theorem in [CbTpI],
the right-hand vertical arrow is "compatible" with cuspidal inertia subgroups \Rightarrow the left-hand vertical arrow is "compatible" with cuspidal inertia subgroups
\Rightarrow the image $\alpha_{n / n-1}\left(I_{n / n-1}^{j^{\prime}}\right)$ is cuspidal

The proof of Theorem (F=FC) 5/5

Theorem (F = FC)

$$
n \geq n_{\mathrm{FC}} \stackrel{\text { def }}{=} \begin{cases}2 & (g, r)=(0,3) \\ 3 & (g, r) \neq(0,3), r \neq 0 \\ 4 & r=0\end{cases}
$$

\Rightarrow the equality Out $^{\mathrm{F}}\left(\Pi_{n}\right)=$ Out $^{\mathrm{FC}}\left(\Pi_{n}\right)$ holds

Claim ($\mathrm{F}=\mathrm{FC}$)
Fix $j \in\{1, \ldots, r+n-2\}$
\Rightarrow the image $\alpha_{n / n-1}\left(I_{n / n-1}^{j^{\prime}}\right)$ is cuspidal for $\forall j^{\prime} \in\{1, \ldots, r+n-2\} \backslash\{j\}$

$$
r+n-2 \geq r+n_{\mathrm{FC}}-2= \begin{cases}r=3 & (g, r)=(0,3) \\ r+1 \geq 2 & (g, r) \neq(0,3), r \neq 0 \\ r+2=2 & r=0\end{cases}
$$

Claim $\stackrel{(\mathrm{F}}{\Rightarrow}=\mathrm{FC})$

$$
\begin{array}{lllllllll}
I_{n / n-1}^{1}, & I_{n / n-1}^{2}, & \ldots, & I_{n / n-1}^{r}, & I_{n / n-1}^{r+1}, & \ldots, & I_{n / n-1}^{r+n-3}, & I_{n / n-1}^{r+n-2} \mathrm{OK} & I_{n / n-1}^{r+n-1}
\end{array}
$$

If $n \geq 3$:
we conclude, by replacing the ordering of $\{1, \ldots, n\}$, that

$$
\begin{aligned}
& \underline{I_{n / n-1}^{1}, \quad I_{n / n-1}^{2},}, \ldots, \quad I_{n / n-1}^{r}, \quad I_{n / n-1}^{r+1}, \quad \ldots, \quad I_{n / n-1}^{r+n-3}, \quad I_{n / n-1}^{r+n-2}, \quad I_{n / n-1}^{r+n-1} \text { OK }
\end{aligned}
$$

If $n=2(\Rightarrow(g, r)=(0,3))$:
" $X_{2} \cong \mathcal{M}_{0,5} \curvearrowleft \mathfrak{S}_{5}$ " gives rise to an automorphism of X_{2} that maps $c_{n / n-1}^{r+n-1}$ to $c_{n / n-1}^{1}$
\Rightarrow

$$
\begin{array}{lllllllll}
I_{n / n-1}^{1}, & I_{n / n-1}^{2}, & \ldots, & I_{n / n-1}^{r}, & I_{n / n-1}^{r+1}, & \ldots, & I_{n / n-1}^{r+n-3}, & I_{n / n-1}^{r+n-2}, & I_{n / n-1}^{r+n-1} \text { OK }
\end{array}
$$

