Synchronization of Tripods

Yuichiro Hoshi
8 September, 2022
The 3 rd and 4 th talks
The 29th Number Theory Summer School
"Combinatorial Anabelian Geometry"

In the present talks:
n : a nonnegative integer
(g, r) : a pair of nonnegative integers s.t. $2-2 g-r<0$
k : an algebraically closed field of characteristic zero
$S \stackrel{\text { def }}{=} \operatorname{Spec}(k)$
S^{log} : the fs \log scheme obtained by equipping S with
the fs \log structure determined by $\mathbb{N} \rightarrow k, 1 \mapsto 0$
$X^{\log }$: a stable log curve/ $S^{\log }$ of type (g, r)
\mathcal{G} : the semi-graph of anabelioids det'd by the stable \log curve $X^{\log }$ over $S^{\log }$
$E^{\prime} \subseteq E \subseteq\{$ positive integers $\leq n\}$
$X_{E}^{\log }$: the $\# E$-th \log configuration space of $X^{\log }$, where we think of the factors as being labeled by the elements of E
$p_{E / E^{\prime}}^{\log }: X_{E}^{\log } \rightarrow X_{E^{\prime}}^{\log }:$ the natural projection morphism
$\Pi_{E} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\pi_{1}\left(X_{E}^{\log }\right) \rightarrow \pi_{1}\left(S^{\log }\right)\right)$
$p_{E / E^{\prime}}: \Pi_{E} \rightarrow \Pi_{E^{\prime}}$: the outer surjective continuous homomorphism induced by $p_{E / E^{\prime}}^{\log }$
$0 \leq j \leq i \leq n$
$X_{i}^{\log } \stackrel{\text { def }}{=} X_{\{\text {positive integers } \leq i\}}^{\log }$
$p_{i / j}^{\log } \xlongequal{\text { def }} p_{\{\text {positive integers } \leq i\} /\{\text { positive integers } \leq j\}}^{\log }: X_{i}^{\log } \rightarrow X_{j}^{\log }$
$\Pi_{i} \stackrel{\text { def }}{=} \Pi_{\{\text {positive integers } \leq i\}}$
$p_{i / j} \stackrel{\text { def }}{=} p_{\{\text {positive integers } \leq i\} /\{\text { positive integers } \leq j\}}: \Pi_{i} \rightarrow \Pi_{j}$
$\Pi_{i / j} \stackrel{\text { def }}{=} \operatorname{Ker}\left(p_{i / j}\right)$
$\Rightarrow \mathfrak{S}_{n} \curvearrowright X_{n}^{\log }$
$\Rightarrow \mathfrak{S}_{n} \stackrel{\text { out }}{\sim} \Pi_{n}$
$i \in E \subseteq\{$ positive integers $\leq n\}$
$x: S \rightarrow X_{n}$: an S-valued geometric point
$x_{E}: S_{E, x} \stackrel{\text { def }}{=} S \xrightarrow{x} X_{n} \xrightarrow{\substack{\text { log } \\ \text { positive integers }} n\} / E} X_{E}$
$x_{E}^{\log }: S_{E, x}^{\log } \rightarrow X_{E}^{\log }:$ the strict morphism determined by
the morphism $x_{E}: S_{E, x} \rightarrow X_{E}$ and the \log structure of $X_{E}^{\log }$
$X_{i \in E, x}^{\mathrm{log}}$: the stable log curve over $S_{E \backslash\{i\}}^{\log }$ obtained by forming the fiber product of $x_{E \backslash\{i\}}^{\log }: S_{E \backslash\{i\}}^{\log } \rightarrow X_{E \backslash\{i\}}^{\log }$ and $p_{E /(E \backslash\{i\})}^{\log }: X_{E}^{\log } \rightarrow X_{E \backslash\{i\}}^{\log }$
$\mathcal{G}_{i \in E, x}$: the semi-graph of anabelioids det'd by the stable \log curve $X_{i \in E, x}^{\log }$ over $S_{E \backslash\{i\}}^{\log }$
$\Rightarrow \exists$ a natural Π_{E}-conjugacy class of continuous isom. $\Pi_{\mathcal{G}_{i \in E, x}} \xrightarrow{\sim} \Pi_{E /(E \backslash\{i\})}\left(\subseteq \Pi_{E}\right)$
Fix a cont. isom. $\Pi_{\mathcal{G}_{i \in E, x}} \xrightarrow{\sim} \Pi_{E /(E \backslash\{i\})}$ that is contained in this natural Π_{E}-conj. class

Definition
$E \subseteq\{$ positive integers $\leq n\}$
an E-tripod of $X_{n}^{\log } \stackrel{\text { def }}{\Leftrightarrow}$
an irreducible components of $X_{i \in E, x}^{\log }$ of type $(0,3)$ for some $i \in E$ and x
an $\underline{E \text {-tripod } \text { of } \Pi_{n} \stackrel{\text { def }}{\Leftrightarrow}}$
a closed subgroup of $\Pi_{\mathcal{G}_{i \in E, x}} \xrightarrow{\sim} \Pi_{E /(E \backslash\{i\})}\left(\subseteq \Pi_{E}\right)$ obtained by forming a verticial subgroup associated to an E-tripod of $X_{n}^{\log }$

Tripod Synchronization
$=$ synchronization among the various tripods of Π_{n} \Rightarrow an outer continuous automorphism of Π_{n} typically induces the same outer continuous automorphism on the various tripods of Π_{n}

Definition

$E \subseteq\{$ positive integers $\leq n\}$
$T \subseteq \Pi_{E}$: an E-tripod
Out ${ }^{\mathrm{F}}\left(\Pi_{n}\right)[T] \subseteq$ Out $^{\mathrm{F}}\left(\Pi_{n}\right)$: the subgp consisting of F-adm. conti. outom. of Π_{n} s.t. the induced conti. outom. of Π_{E} preserve the Π_{E}-conjugacy class of $T \subseteq \Pi_{E}$ $\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)[T] \stackrel{\text { def }}{=} \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \cap \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T]$

Out ${ }^{|\mathrm{C}|}(T) \subseteq \operatorname{Out}(T)$: the subgroup consisting of conti. outomorphisms of T that induce the identity autom. on the set of conj. classes of cusp. inertia subgps of T
$\operatorname{Out}(T)^{\Delta} \stackrel{\text { def }}{=} Z_{\operatorname{Out}(T)}\left(\mathfrak{S}_{3}\right) \quad$ Note: $\mathfrak{S}_{3} \cong \operatorname{Aut}_{S}\left(\operatorname{atpd}_{/ S}\right) \hookrightarrow \operatorname{Out}\left(\pi_{1}\left(\operatorname{atpd}_{/ S}\right)\right)$
$\operatorname{Out}^{|\mathrm{C}|}(T)^{\Delta} \stackrel{\text { def }}{=} \mathrm{Out}^{|\mathrm{C}|}(T) \cap \operatorname{Out}(T)^{\Delta}$

Example 1/3
an irreducible component of $X^{\log }$ of type $(0,3)$ is a $\{*\}$-tripod

Example-Definition 2/3
$E \subseteq\{$ positive integers $\leq n\}$
$i, j \in E$: distinct
If the image of $x_{E \backslash\{i\}}$ is a cusp (resp. node) ν of $X_{j \in E \backslash\{i\}, x}^{\mathrm{log}}$,
then $X_{i \in E, x}^{\log }$ has the "new/minor irreducible component", which is an $\underline{E \text {-tripod }}$

Example-Definition 3/3
$i, j, l \in\{$ positive integers $\leq n\}:$ distinct
\Rightarrow the \log stable curve $X_{j \in\{j, l\}, x}^{\log }$ over $S_{\{l\}}^{\log }$ has the cusp
that arises from the diagonal divisor in the second \log confi. space $X_{\{j, l\}}^{\mathrm{log}}$
\Rightarrow the log stable curve $X_{i \in\{i, j, l\}, x}^{\log }$ over $S_{\{j, l\}}^{\log }$ has the $\underline{\{i, j, l\} \text {-tripod }}$
that arises from this "diagonal cusp" of $X_{j \in\{j, l\}, x}^{\log }$
the i-central $\{i, j, l\}$-tripod

Theorem in [CmbCsp] — cf. [CmbCsp], Corollary 1.10, (i), (ii)
T : a central E-tripod of Π_{n}
Then:

- the equality $\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)[T]$ holds
- the equalities $C_{\Pi_{E}}(T)=N_{\Pi_{E}}(T)=T \times Z_{\Pi_{E}}(T)$ hold

Review

In the proof of a theorem of [NodNon]:

(cf. the talk by Minamide)
how to define the right-hand upper hor'l arrow "Out ${ }^{\mathrm{FC}}\left(\Pi_{3}\right) \rightarrow$ Out(a central tripod)"

Remark
G: a group
$H \subseteq G$: a subgroup
$\alpha \in \operatorname{Aut}(G)$
\Rightarrow can define the restriction $\left.\alpha\right|_{H} \in \operatorname{Aut}(H)$ whenever α preserves $H \subseteq G$
On the other hand:
$\alpha \in \operatorname{Out}(G)=\operatorname{Aut}(G) / \operatorname{Inn}(G)$
\Rightarrow cannot define the "restriction" $\left.\alpha\right|_{H} \in \operatorname{Out}(H)$ in general
even if α preserves the conjugacy class of $H \subseteq G$
the "natural restriction" is

$$
\operatorname{not} \in \operatorname{Out}(H)=\operatorname{Aut}(H) / \operatorname{Inn}(H) \text { but } \in \operatorname{Aut}(H) / \operatorname{Inn}\left(N_{G}(H)\right)
$$

In particular:

- the outomorphism α preserves the conjugacy class of $H \subseteq G$
- the equality $N_{G}(H)=Z_{G}(H) \cdot H$ holds
\Rightarrow can define the restriction $\left.\alpha\right|_{H} \in \operatorname{Out}(H)$
(cf. the talk by Iijima)

Theorem in [CmbCsp]
T : a central E-tripod of Π_{n} Then:

- the equality $\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)[T]$ holds
- the equalities $C_{\Pi_{E}}(T)=N_{\Pi_{E}}(T)=T \times Z_{\Pi_{E}}(T)$ hold

Theorem (weak-F-ctr) — cf. [CbTpII], Theorem 3.16, (v)
T : a central E-tripod of Π_{n}
\Rightarrow the equality $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T]$ holds

Theorem (C (tpd)) — cf. [CbTpII], Theorem C, (i)
$E \subseteq\{$ positive integers $\leq n\}$
$T \subseteq \Pi_{E}$: an E-tripod
\Rightarrow the equalities $C_{\Pi_{E}}(T)=N_{\Pi_{E}}(T)=T \times Z_{\Pi_{E}}(T)$ hold

Corollary-Definition
$E \subseteq\{$ positive integers $\leq n\}$
$T \subseteq \Pi_{E}$: an E-tripod
$\mathfrak{T}_{T}: \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T] \rightarrow \operatorname{Out}(T)$: the restriction homomorphism
(well-defined by Theorem $(C(\operatorname{tpd}))$)
the tripod homomorphism associated to T
\Rightarrow If T is central, then we have $\mathfrak{T}_{T}: \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \rightarrow \operatorname{Out}(T)(\mathrm{cf}$. Theorem (weak-F-ctr))
$\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T:|\mathrm{C}|] \subseteq \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T]$: the pull-back of $\operatorname{Out}^{|\mathrm{C}|}(T) \subseteq \operatorname{Out}(T)$ by \mathfrak{T}_{T}
$\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T: \Delta] \subseteq \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T]$: the pull-back of $\operatorname{Out}(T)^{\Delta} \subseteq \operatorname{Out}(T)$ by \mathfrak{T}_{T}
$\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T:|\mathrm{C}|, \Delta] \stackrel{\text { def }}{=} \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T:|\mathrm{C}|] \cap \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T: \Delta]$
$\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)[T: \square] \stackrel{\text { def }}{=} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \cap \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T: \square]$

Proof of Theorem (F-ctr) $1 / 2$

Theorem (weak-F-ctr) — cf. [CbTpII], Theorem 3.16, (v)
T : a central E-tripod of Π_{n}
\Rightarrow the equality $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T]$ holds

More strongly:
Theorem (F-ctr) — cf. [CbTpII], Theorem 3.16, (v)
T : a central E-tripod of Π_{n}
\Rightarrow the equality Out $^{\mathrm{F}}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T: \Delta]$ holds
similar to the case of "FC"
(cf. the talk by Minamide)

Theorem in $[\mathrm{CbTpI}]$ - cf. $[\mathrm{CbTpI}]$, Theorem A, (ii)
the image of $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is contained in $\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \subseteq \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$

Lemma (ConfiGC)

$1 \leq i \leq n-1 \quad c, c^{\prime}:$ cusps of $X_{i / i-1}$
$I_{\square} \subseteq \Pi_{i / i-1}$: a cuspidal inertia subgroup associated to
\mathcal{H}_{\square} : the semi-graph of anabelioids of PSC-type det'd by the log geom. fiber at
$Y_{\square} \in \operatorname{Vert}\left(\mathcal{H}_{\square}\right)$: the vertex that corresponds to the "old/major irr. component"
$P_{\square} \in \operatorname{Vert}\left(\mathcal{H}_{\square}\right)$: the vertex that corresponds to the "new/minor irr. component"
Suppose: the autom. α_{i} and $\alpha_{i+1 / i}$ fit into a commutative diagram

\Rightarrow the images $\alpha_{i+1 / i}\left(\Pi_{Y_{c}}\right), \alpha_{i+1 / i}\left(\Pi_{P_{c}}\right)$ are $\Pi_{i+1 / i}$-conjugates of $\Pi_{Y_{c^{\prime}}} \Pi_{P_{c^{\prime}}}$, respectively
$\alpha \in \operatorname{Aut}^{\mathrm{F}}\left(\Pi_{n}\right)$
$I \subseteq \Pi_{2 / 1}$: a cuspidal inertia subgroup associated to the "diagonal cusp"
$T \subseteq \Pi_{3 / 2}$: a 3 -central $\{1,2,3\}$-tripod
$\stackrel{\text { Theorem in }}{\Rightarrow}{ }^{[\mathrm{CbTpr}]} \alpha_{2 / 1} \curvearrowright \Pi_{2 / 1}$ is "compatible" with the cuspidal inertia subgps

Observe: if $J \subseteq \Pi_{2 / 1}$ is cuspidal, then:
$J \sim_{\text {conj. }} I \Leftrightarrow$ the image of J by $\Pi_{2 / 1} \hookrightarrow \Pi_{2} \xrightarrow{p_{\{1,2\}}\{2\}} \Pi_{\{2\}}$ is nontrivial
$\Rightarrow \alpha_{2 / 1}(I) \sim_{\text {conj. }} I$

By replacing α by a suitable Π_{n}-conjugate of α,
we may assume: $\alpha_{2 / 1}(I)=I$
$\stackrel{\text { Lemma }}{\Rightarrow} \Rightarrow{ }^{(\text {ConfiGC })} \alpha_{3 / 2} \curvearrowright \Pi_{3 / 2} \underline{\text { preserves the }} \Pi_{3 / 2}$-conjugacy class of $T \subseteq \Pi_{3 / 2} \subseteq \Pi_{3}$
Moreover, by Theorem $(Z(\mathfrak{S})), \alpha_{3}$ centalizes $\left.\mathfrak{S}_{3} \Rightarrow \alpha_{3 / 2}\right|_{T} \in \operatorname{Out}(T)^{\Delta}$

Theorem $(C($ tpd $))$
$E \subseteq\{$ positive integers $\leq n\}$
$T \subseteq \Pi_{E}$: an E-tripod
\Rightarrow the equalities $C_{\Pi_{E}}(T)=N_{\Pi_{E}}(T)=T \times Z_{\Pi_{E}}(T)$ hold

Lemma $(C($ tpd $))$ - cf. [CbTpII], Lemma 3.8, (i), (ii)
$E \subseteq\{$ positive integers $\leq n\}$
$T \subseteq \Pi_{E}$: an E-tripod
Then one of the following three conditions is satisfied:
(1) $\exists i \in E$ s.t. the image of $T \hookrightarrow \Pi_{E} \xrightarrow{p_{E /\{i\}}} \Pi_{\{i\}}$ is an $\underline{\{i\} \text {-tripod }}$
(2) $\exists i, j \in E$: distinct $\quad \exists \nu$: a cusp or node of $X^{\log }$ s.t. the image of $T \hookrightarrow \Pi_{E} \xrightarrow{p_{E /\{i, j\}}} \Pi_{\{i, j\}}$ is an $\{i, j\}$-tripod that arises from ν
(3) $\exists i, j, l \in E$: distinct s.t.
the image of $T \hookrightarrow \Pi_{E} \xrightarrow{p_{E /\{i, j, l\}}} \Pi_{\{i, j, l\}}$ is a central $\{i, j, l\}$-tripod
proof, omit

Hint:
$i_{T} \in E$ be s.t. $T \subseteq \Pi_{E /\left(E \backslash\left\{i_{T}\right\}\right)}$
$\Rightarrow \exists$ a natural bijective map
$\left\{\right.$ cusps of $\left.X_{i_{T} \in E, x}^{\log }\right\} \xrightarrow{\sim}\left\{\right.$ cusps of $\left.X^{\log }\right\} \cup\left(E \backslash\left\{i_{T}\right\}\right)$
$\underline{\text { Proof of: Lemma }(C(\operatorname{tpd})) \Rightarrow \text { Theorem }(C(\operatorname{tpd})) 1 / 4}$

$$
\begin{aligned}
& \text { Theorem }(C(\text { tpd })) \\
& E \subseteq\{\text { positive integers } \leq n\} \\
& T \subseteq \Pi_{E}: \text { an } E \text {-tripod } \\
& \Rightarrow \text { the } \underline{\text { equalities }} C_{\Pi_{E}}(T)=N_{\Pi_{E}}(T)=T \times Z_{\Pi_{E}}(T) \text { hold }
\end{aligned}
$$

$\underline{C_{\Pi_{E}}(T) \subseteq N_{\Pi_{E}}(T)}$
$i \in E$ be s.t. $T \subseteq \Pi_{E /(E \backslash\{i\})}$
$\alpha \in C_{\Pi_{E}}(T)$
$\gamma \in C_{\Pi_{E / E \backslash\{i\}}}(T)$
$C_{\Pi_{E / E \backslash\{i\}}}(T) \subseteq C_{\Pi_{E}}(T)=C_{\Pi_{E}}\left(T \cap T^{\alpha}\right)=C_{\Pi_{E}}\left(T^{\alpha}\right)$
$\Rightarrow T^{\alpha \gamma} \sim_{\mathrm{cmm}} T^{\alpha}$
$\Rightarrow T^{\alpha \gamma \alpha^{-1}} \stackrel{\text { cmm }}{\sim_{c m m}} T$
$\Rightarrow \alpha \gamma \alpha^{-1} \in C_{\Pi_{E / E \backslash\{i\}}}(T)$
$\Rightarrow C_{\Pi_{E}}(T) \subseteq N_{\Pi_{E}}\left(C_{\Pi_{E / E \backslash\{i\}}}(T)\right) \stackrel{\text { cmm. trm. }}{=} N_{\Pi_{E}}(T)$

Observe:
If the image T^{\prime} of $T \hookrightarrow \Pi_{E} \xrightarrow{p_{E / E^{\prime}}} \Pi_{E^{\prime}}$ is an E^{\prime}-tripod for $E^{\prime} \subseteq E$, then:

$\underline{\text { Proof of: Lemma }(C(\operatorname{tpd})) \Rightarrow \text { Theorem }(C(\operatorname{tpd})) 2 / 4}$

Lemma ($C(\mathrm{tpd})$)
$E \subseteq\{$ positive integers $\leq n\}$
$T \subseteq \Pi_{E}$: an E-tripod
Then one of the following three conditions is satisfied:
(1) $\exists i \in E$ s.t. the image of $T \hookrightarrow \Pi_{E} \xrightarrow{p_{E /\{i\}}} \Pi_{\{i\}}$ is an $\underline{\{i\} \text {-tripod }}$
(2) $\exists i, j \in E$: distinct $\exists \nu$: a cusp or node of $X^{\log } \frac{\text { s.t. }}{}$
the image of $T \hookrightarrow \Pi_{E} \xrightarrow{p_{E /\{i, j\}}} \Pi_{\{i, j\}}$ is an $\underline{\{i, j\} \text {-tripod that arises from } \nu}$
(3) $\exists i, j, l \in E$: distinct s.t.
the image of $T \hookrightarrow \Pi_{E} \xrightarrow{p_{E /\{i, j, l\}}} \Pi_{\{i, j, l\}}$ is a central $\{i, j, l\}$-tripod

Thus, we may assume:
we are in the situation of one of the three cases of Lemma $(C(\operatorname{tpd}))$
the case of (1):
the closed subgroup $T \subseteq \Pi_{1}$ is commensurably terminal
(cf. the talk by Yamashita)
the case of (3):
by
Theorem in [CmbCsp]
T : a central E-tripod of Π_{n}
Then:

- the equality $\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)=\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)[T]$ holds
- the $\underline{\text { equalities }} C_{\Pi_{E}}(T)=N_{\Pi_{E}}(T)=T \times Z_{\Pi_{E}}(T)$ hold

Thus, we may assume:
$E=\{1,2\}$
$T \subseteq \Pi_{2 / 1}$
$\exists \nu$: a cusp or node of $X^{\log }$ from which T arises
By considering a suitable generization of $X^{\log }$,
we may assume: if ν is a node, then the set of nodes of $X^{\log }$ consists of only ν
x be s.t. the image of $x_{\{1\}}$ is ν
$\mathcal{H} \stackrel{\text { def }}{=} \mathcal{G}_{2 \in\{1,2\}, x}$
$\Pi_{\nu} \subseteq \Pi_{1}$: an edge-like subgroup associated to ν
$\left.\Pi_{2}\right|_{\nu} \stackrel{\text { def }}{=} \Pi_{2} \times_{\Pi_{1}} \Pi_{\nu}$

If ν is a cusp (resp. node),
then $\overline{\Pi_{\nu} \rightarrow} \operatorname{Out}\left(\Pi_{\mathcal{H}}\right)$ is of IPSC-type (resp. of SNN-type)
c_{dg} : the "diagonal cusp" of $X_{2 \in\{1,2\}, x}^{\log }$
$\Pi_{c_{\mathrm{dg}}} \subseteq \Pi_{2 / 1} \leftleftarrows \Pi_{\mathcal{H}}:$ an edge-like subgp associated to c_{dg} contained in T

$$
p_{1 \backslash 2}: \Pi_{2} \rightarrow \Pi_{\{2\}}, \quad \Pi_{1 \backslash 2} \stackrel{\text { def }}{=} \operatorname{Ker}\left(p_{1 \backslash 2}\right)
$$

$$
1 \longrightarrow \Pi_{1 \backslash 2} \longrightarrow \Pi_{2} \xrightarrow{p_{1 \backslash 2}} \Pi_{\{2\}} \longrightarrow 1
$$

$D_{c_{\mathrm{dg}}} \stackrel{\text { def }}{=} Z_{\Pi_{2}}\left(\Pi_{c_{\mathrm{dg}}}\right)$
$\left.\left.I_{T}\right|_{\nu} \stackrel{\text { def }}{=} Z_{\left.\Pi_{2}\right|_{\nu}}(T) \subseteq D_{T}\right|_{\nu} \stackrel{\text { def }}{=} N_{\left.\Pi_{2}\right|_{\nu}}(T)$
\Rightarrow
(a) the equality $\left.D_{T}\right|_{\nu}=T \times\left. I_{T}\right|_{\nu}$ holds
(b) $\left.\left.D_{T}\right|_{\nu} \subseteq \Pi_{2}\right|_{\nu}:$ commensurably terminal
(c) the composite $\overline{\left.\left.I_{T}\right|_{\nu} \hookrightarrow \Pi_{2}\right|_{\nu} \rightarrow \Pi_{\nu} \text { is an }}$ isomorphism
(cf. the talk by Minamide)
$D_{c_{\mathrm{dg}}} \stackrel{\text { def }}{=} Z_{\Pi_{2}}\left(\Pi_{c_{\mathrm{dg}}}\right)$
$\left.\left.I_{T}\right|_{\nu} \stackrel{\text { def }}{=} Z_{\left.\Pi_{2}\right|_{\nu}}(T) \subseteq D_{T}\right|_{\nu} \stackrel{\text { def }}{=} N_{\left.\Pi_{2}\right|_{\nu}}(T)$
(a) the equality $\left.D_{T}\right|_{\nu}=T \times\left. I_{T}\right|_{\nu}$ holds
(b) $\left.\left.D_{T}\right|_{\nu} \subseteq \Pi_{2}\right|_{\nu}$: commensurably terminal
(c) the composite $\left.\left.I_{T}\right|_{\nu} \hookrightarrow \Pi_{2}\right|_{\nu} \rightarrow \Pi_{\nu}$ is an isomorphism

Step 1:

by a well-known fact concerning the decomposition groups associated to cusps

Step 2: $\left.D_{T}\right|_{\nu} \subseteq \Pi_{2}$: normally terminal
$p_{2 / 1}\left(\left.D_{T}\right|_{\nu}\right) \stackrel{(\text { a) }}{=} p_{2 / 1}\left(T \times\left. I_{T}\right|_{\nu}\right)=p_{2 / 1}\left(\left.I_{T}\right|_{\nu}\right) \stackrel{(\mathrm{c})}{=} \Pi_{\nu}$
$\Rightarrow p_{2 / 1}\left(N_{\Pi_{2}}\left(\left.D_{T}\right|_{\nu}\right)\right) \subseteq N_{\Pi_{1}}\left(\Pi_{\nu}\right) \stackrel{\text { nrm. trm. }}{=} \Pi_{\nu}$
$\left.\Rightarrow N_{\Pi_{2}}\left(\left.D_{T}\right|_{\nu}\right) \subseteq \Pi_{2}\right|_{\nu}$
$\Rightarrow N_{\Pi_{2}}\left(\left.D_{T}\right|_{\nu}\right)=\left.N_{\left.\Pi_{2}\right|_{\nu}}\left(\left.D_{T}\right|_{\nu}\right) \stackrel{(\mathrm{b})}{=} D_{T}\right|_{\nu}$
$\frac{\text { Step 3: }}{p_{1 \backslash 2}(T)} \frac{Z_{\Pi_{2}}(T)=\left.I_{T}\right|_{\nu}}{\sim_{\text {conj. }} . \Pi_{\nu} \subseteq \Pi_{\{2\}}}$
$\Rightarrow p_{1 \backslash 2}\left(Z_{\Pi_{2}}(T)\right) \subseteq Z_{\Pi_{\{2\}}}\left(\right.$ a conj. of $\left.\Pi_{\nu}\right) \stackrel{\text { nrm. trm. }}{\subseteq}$ the conj. of Π_{ν}
Thus. since $Z_{\Pi_{2}}(T) \subseteq D_{c_{\mathrm{dg}}}$, by Step 1,
$p_{2 / 1}\left(Z_{\Pi_{2}}(T)\right) \subseteq$ a conj. of Π_{ν}
Thus, $\left.I_{T}\right|_{\nu} \subseteq Z_{\Pi_{2}}(T)$ and $p_{2 / 1}\left(\left.I_{T}\right|_{\nu}\right) \stackrel{(\text { c) }}{=} \Pi_{\nu}$,

$$
p_{2 / 1}\left(Z_{\Pi_{2}}(T)\right)=\Pi_{\nu} \text {, i.e., }\left.Z_{\Pi_{2}}(T) \subseteq \Pi_{2}\right|_{\nu}
$$

$N_{\Pi_{2}}(T) \subseteq N_{\Pi_{2}}\left(Z_{\Pi_{2}}(T)\right) \stackrel{\text { Step }}{=}{ }^{3} N_{\Pi_{2}}\left(\left.I_{T}\right|_{\nu}\right)$
$\left.\left.\Rightarrow N_{\Pi_{2}}(T) \subseteq N_{\Pi_{2}}\left(\left.T \cdot I_{T}\right|_{\nu}\right) \stackrel{(\text { a) }}{=} N_{\Pi_{2}}\left(\left.D_{T}\right|_{\nu}\right) \stackrel{\text { Step }}{=}{ }^{2} D_{T}\right|_{\nu} \stackrel{(\text { a) }}{=} T \cdot I_{T}\right|_{\nu}$

Tripod Synchronization
$=$ synchronization among the various tripods of Π_{n}
\Rightarrow an outer continuous automorphism of Π_{n} typically induces the same outer continuous automorphism on the various tripods of Π_{n}

Theorem (2-TpdSych) — cf. [CbTpII], Theorem 3.17, (i), (ii)
Suppose: $n=2$
$E \subseteq\{1,2\}$
$T \subseteq \Pi_{E}$: an E-tripod
$T_{0} \subseteq \Pi_{1}:$ a $\{1\}$-tripod
If one of the following two conditions is satisfied,
then $\exists \mathrm{a}$ "geometric" outer continuous isomorphism $\iota: T \xrightarrow{\sim} T_{0}$ s.t.

commutes

- $E=\{1,2\}$
\exists a cusp ν of the $\{1\}$-tripod from which T_{0} arises
s.t. the E-tripod T arises from ν
- $E=\{1\}$
\exists a node of $X^{\log }$ that abuts to both the $\{1\}$-tripod from which T_{0} arises and the $\{1\}$-tripod from which T arises

Theorem ((\geq 3)-TpdSych) — cf. [CbTpII], Theorem 3.18, (ii)
Suppose: $n \geq 3$
$E, E^{\prime} \subseteq\{$ positive integers $\leq n\}$
$T \subseteq \Pi_{E}$: an E-tripod
$T^{\prime} \subseteq \Pi_{E^{\prime}}$: an E^{\prime}-tripod
\Rightarrow ヨa "geometric" outer continuous isomorphism $\iota: T \xrightarrow{\sim} T^{\prime}$ s.t.

commutes

Lemma (TpdSych)
$T_{b} \subseteq \Pi_{n-1 / n-2}:$ a $\{1, \ldots, n-1\}$-tripod
ν : a cusp of the tripod from which T_{b} arises
$T_{f} \subseteq \Pi_{n / n-1}:$ a $\{1, \ldots, n\}$-tripod that arises from ν
\Rightarrow

- The inclusions

$$
\begin{aligned}
& \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|\right] \\
& \text { Out }^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|, \Delta\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|, \Delta\right] \\
& \text { hold }
\end{aligned}
$$

- ヨa "geometric" outer continuous isomorphism $\iota: T_{f} \xrightarrow{\sim} T_{b}$ s.t.

commutes (which thus implies the inclusion

$$
\left.\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|, \Delta\right] \cap \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|, \Delta\right]\right)
$$

by a similar arg. to the arg. applied in the proof of the surjectivity portion of - Theorem in [NodNon] - cf. [NodNon], Theorem B
$n \geq 1 \Rightarrow$ the homomorphism $\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$ is injective

$$
n \geq n_{\mathrm{bij}} \stackrel{\text { def }}{=} \begin{cases}3 & r \neq 0 \\ 4 & r=0\end{cases}
$$

$n \geq n_{\mathrm{bij}} \Rightarrow$ the homomorphism Out ${ }^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$ is bijective
(cf. the talk by Minamide)

Sketch of the proof of Lemma (TpdSych)
Lemma (TpdSych)
$T_{b} \subseteq \Pi_{n-1 / n-2}:$ a $\{1, \ldots, n-1\}$-tripod
ν : a cusp of the tripod from which T_{b} arises
$T_{f} \subseteq \Pi_{n / n-1}:$ a $\{1, \ldots, n\}$-tripod that arises from ν
\Rightarrow

- The inclusions

$$
\begin{aligned}
& \text { Out }^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|\right] \\
& \text { Out }^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|, \Delta\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|, \Delta\right] \\
& \text { hold }
\end{aligned}
$$

- ヨa "geometric" outer continuous isomorphism $\iota: T_{f} \xrightarrow{\sim} T_{b}$ s.t.

commutes (which thus implies the inclusion

$$
\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|, \Delta\right] \cap \operatorname{Out}^{\mathrm{FC}}\left(\overline{\left.\left.\left.\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|, \Delta\right]\right) . \Delta{ }^{2}\right) .}\right.
$$

By replacing T_{f} by a suitable Π_{n}-conjugate of T_{f}, we may assume:

$\alpha \in \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|\right]$
By a sim. arg. to the arg. app'd in the pf of Lemma (ConfiGC), $\alpha \in$ Out $^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|\right]$ Moreover, the outom. α also pres. the conj. class of " Π_{2} for a tpd" (cf. the next talk) Thus, we may assume: $(g, r, n)=(0,3,2)$

Observe: If one takes a suitable $\sigma \in \mathfrak{S}_{5}$,
then $T_{f} \hookrightarrow \Pi_{2} \xrightarrow{\underset{\sim}{\sim}} \Pi_{2} \xrightarrow{p_{2 / 1}} \Pi_{1}$ determines a "geometric" $T_{f} \xrightarrow{\sim} T_{b}$
The resulting $\operatorname{Out}\left(T_{f}\right) \xrightarrow{\sim} \operatorname{Out}\left(T_{b}\right)$ maps $\left.\alpha\right|_{T_{f}} \mapsto\left(\sigma \alpha \sigma^{-1}\right)_{1}$
$\left.\alpha\right|_{T_{f}} \in \operatorname{Out}\left(T_{f}\right)^{\Delta} \quad \Rightarrow \quad\left(\sigma \alpha \sigma^{-1}\right)_{1} \in \operatorname{Out}\left(T_{b}\right)^{\Delta}$
$\stackrel{[\mathrm{CmbCsp}]}{\Rightarrow} \sigma \alpha \sigma^{-1}$ centralizes \mathfrak{S}_{5}
$\Rightarrow \sigma \alpha \sigma^{-1}=\alpha$
\Rightarrow The resulting $\operatorname{Out}\left(T_{f}\right) \xrightarrow{\sim} \operatorname{Out}\left(T_{b}\right)$ maps $\mathfrak{T}_{T_{f}}(\alpha)=\left.\alpha\right|_{T_{f}} \mapsto \alpha_{1}=\mathfrak{T}_{T_{b}}(\alpha)$, as desired

Theorem (2-TpdSych)
Suppose: $n=2$
$E \subseteq\{1,2\}$
$T \subseteq \Pi_{E}$: an E-tripod
$T_{0} \subseteq \Pi_{1}:$ a $\{1\}$-tripod
If one of the following two conditions is satisfied,
then $\exists \mathrm{a}$ "geometric" outer continuous isomorphism $\iota: T \xrightarrow{\sim} T_{0}$ s.t.

commutes

- $E=\{1,2\}$
\exists a cusp ν of the $\{1\}$-tripod from which T_{0} arises
s.t. the E-tripod T arises from ν
- $E=\{1\}$
\exists a node of $X^{\log }$ that abuts to both the $\{1\}$-tripod from which T_{0} arises and the $\{1\}$-tripod from which T arises

Lemma (TpdSych)
$T_{b} \subseteq \Pi_{n-1 / n-2}:$ a $\{1, \ldots, n-1\}$-tripod
ν : a cusp of the tripod from which T_{b} arises
$T_{f} \subseteq \Pi_{n / n-1}:$ a $\{1, \ldots, n\}$-tripod that arises from ν
\Rightarrow

- The inclusions

$$
\begin{aligned}
& \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|\right] \\
& \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|, \Delta\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|, \Delta\right]
\end{aligned}
$$

hold

- ヨa "geometric" outer continuous isomorphism $\iota: T_{f} \xrightarrow{\sim} T_{b}$ s.t.

commutes (which thus implies the inclusion

$$
\left.\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|, \Delta\right] \cap \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|, \Delta\right]\right)
$$

$\underline{\text { Proof of: Lemma (TpdSych) } \Rightarrow \text { Theorem }((\geq 3) \text {-TpdSych }) 1 / 3}$

Theorem $((\geq 3)$-TpdSych $)$
Suppose: $n \geq 3$
$E, E^{\prime} \subseteq\{$ positive integers $\leq n\}$
$T \subseteq \Pi_{E}$: an E-tripod
$T^{\prime} \subseteq \Pi_{E^{\prime}}$: an E^{\prime}-tripod
$\Rightarrow \exists \mathrm{a}$ "geometric" outer continuous isomorphism $\iota: T \xrightarrow{\sim} T^{\prime}$ s.t.

commutes

For tripods T, T^{\prime} of Π_{n},
$T \sim_{\text {Sych }} T$ 党ef $\exists \mathrm{a}$ "geometric" outer continuous isomorphism $\iota: T \xrightarrow{\sim} T^{\prime}$ s.t. \ldots

Observe:
an outer continuous isomorphism $\Pi_{E} \xrightarrow{\sim} \Pi_{E^{\prime}}$ induced by a suitable element of \mathfrak{S}_{n} det. an outer isom. (an i-central E-tripod) $\xrightarrow{\sim}\left(\right.$ an i^{\prime}-central E^{\prime}-tripod) as in Theorem
Moreover: Out ${ }^{\mathrm{FC}}\left(\Pi_{n}\right)$ centralizes with $\mathfrak{S}_{n} \subseteq \operatorname{Out}\left(\Pi_{n}\right)$ (cf. Theorem $(Z(\mathfrak{S}))$)
\Rightarrow an i-central E-tripod $\sim_{\text {Sych }}$ an i^{\prime}-central E^{\prime}-tripod
Thus, it suffices to show: every tripod $\sim_{\text {Sych }}$ a central tripod
$\underline{\text { Proof of: Lemma (TpdSych) } \Rightarrow \text { Theorem }((\geq 3) \text {-TpdSych }) 2 / 3}$

Thus, it suffices to show: every tripod $\sim_{\text {Sych }}$ a central tripod

Thus, by
Lemma ($C($ tpd $)$)
$E \subseteq\{$ positive integers $\leq n\}$
$T \subseteq \Pi_{E}$: an E-tripod
Then one of the following three conditions is satisfied:
(1) $\exists i \in E$ s.t. the image of $T \hookrightarrow \Pi_{E} \xrightarrow{p_{E /\{i\}}} \Pi_{\{i\}}$ is an $\underline{\{i\} \text {-tripod }}$
(2) $\exists i, j \in E$: distinct $\quad \exists \nu$: a cusp or node of $X^{\log }$ s.t.
the image of $T \hookrightarrow \Pi_{E} \xrightarrow{p_{E /\{i, j\}}} \Pi_{\{i, j\}}$ is an $\underline{\{i, j\} \text {-tripod that arises from } \nu}$
(3) $\exists i, j, l \in E$: distinct s.t.
the image of $T \hookrightarrow \Pi_{E} \xrightarrow{p_{E /\{i, j, l\}}} \Pi_{\{i, j, l\}}$ is a central $\{i, j, l\}$-tripod
it suffices to show:
each of the tripods of (1), (2), (3) as in Lemma $\sim_{\text {Sych }}$ a central tripod
(a) a $\{1\}$-tripod $\sim_{\text {Sych }}^{?}$ a 3 -central $\{1,2,3\}$-tripod
(b) a \{1,2\}-tripod that arises from a cusp or node ν of $X^{\log }$ $\sim_{\text {Sych }}^{?}$ a 3 -central $\{1,2,3\}$-tripod

Proof of: Lemma (TpdSych) \Rightarrow Theorem $((\geq 3)$-TpdSych $) 3 / 3$
(a) a $\{1\}$-tripod $\sim_{\text {Sych }}^{?}$ a 3 -central $\{1,2,3\}$-tripod
(b) a \{1,2\}-tripod that arises from a cusp or node ν of $X^{\text {log }}$
$\xrightarrow{\sim}$? ${ }_{\text {Sych }}$ a 3 -central $\{1,2,3\}$-tripod

- Theorem (F-ctr) — cf. [CbTpII], Theorem 3.16, (v)
T : a central E-tripod of Π_{n}
\Rightarrow the equality $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T: \Delta]$ holds
Lemma (TpdSych)
$T_{b} \subseteq \Pi_{n-1 / n-2}:$ a $\{1, \ldots, n-1\}$-tripod
ν : a cusp of the tripod from which T_{b} arises
$T_{f} \subseteq \Pi_{n / n-1}:$ a $\{1, \ldots, n\}$-tripod that arises from ν \Rightarrow
- The inclusions

$$
\begin{aligned}
& \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|\right] \\
& \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|, \Delta\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|, \Delta\right]
\end{aligned}
$$

hold

- ヨa "geometric" outer continuous isomorphism $\iota: T_{f} \xrightarrow{\sim} T_{b}$ s.t.

commutes (which thus implies the inclusion

$$
\left.\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{f}:|\mathrm{C}|, \Delta\right] \cap \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|\right] \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)\left[T_{b}:|\mathrm{C}|, \Delta\right]\right)
$$

The case of (b)
Observe:
a 3 -central $\{1,2,3\}$-tripod is a tripod that arises from a cusp of
a $\{1,2\}$-tripod that arises from a cusp or node ν of $X^{\log }$
Theorem (F-ctr), Lemma (TpdSych) (b) OK
Moreover, the equality
Out ${ }^{\mathrm{FC}}\left(\Pi_{n}\right)[$ such a tpd $:|\mathrm{C}|]=\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)[$ such a tpd : $|\mathrm{C}|, \Delta]$ holds

The case of (a)
a $\{1\}$-tripod $\sim_{\text {Sych }}^{(\mathrm{b}), \text { Lemma }}$ (TpdSych)
a $\{1,2\}$-tripod that arises from a suitable cusp or node of $X^{\log } \sim_{\text {Sych }}^{(\mathrm{b})}$
a 3 -central $\{1,2,3\}$-tripod
\Rightarrow (a) OK

Tripod Synchronization
$=$ synchronization among the various tripods of Π_{n} \Rightarrow an outer continuous automorphism of Π_{n} typically induces the same outer continuous automorphism on the various tripods of Π_{n}

Theorem (2-TpdSych)
Suppose: $n=2$
$E \subseteq\{1,2\}$
$T \subseteq \Pi_{E}$: an E-tripod
$T_{0} \subseteq \Pi_{1}:$ a $\{1\}$-tripod
If one of the following two conditions is satisfied,
then $\exists \mathrm{a}$ "geometric" outer continuous isomorphism $\iota: T \xrightarrow{\sim} T_{0}$ s.t.

commutes

- $E=\{1,2\}$
\exists a cusp ν of the $\{1\}$-tripod from which T_{0} arises
s.t. the E-tripod T arises form the "new/minor irreducible component" of $p_{2 / 1}^{\log }: X_{2}^{\log } \rightarrow X_{1}^{\log }$ at the cusp ν
- $E=\{1\}$
\exists a node of $X^{\log }$ that abuts to both the $\{1\}$-tripod from which T_{0} arises and the $\{1\}$-tripod from which T arises

Theorem ((≥ 3)-TpdSych $)$
Suppose: $n \geq 3$
$E, E^{\prime} \subseteq\{$ positive integers $\leq n\}$
$T \subseteq \Pi_{E}$: an E-tripod
$T^{\prime} \subseteq \Pi_{E^{\prime}}$: an E^{\prime}-tripod
$\Rightarrow \exists \mathrm{a}$ "geometric" outer continuous isomorphism $\iota: T \xrightarrow{\sim} T^{\prime}$ s.t.

commutes

