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In the present talks:

n: a nonnegative integer
(g, r): a pair of nonnegative integers s.t. 2− 2g − r < 0
k: an algebraically closed field of characteristic zero

S
def
= Spec(k)

Slog: the fs log scheme obtained by equipping S with
the fs log structure determined by N→ k, 1 7→ 0

X log: a stable log curve/Slog of type (g, r)
G: the semi-graph of anabelioids det’d by the stable log curve X log over Slog

E ′ ⊆ E ⊆ {positive integers ≤ n}

X log
E : the #E-th log configuration space of X log,
where we think of the factors as being labeled by the elements of E

plogE/E′ : X
log
E → X log

E′ : the natural projection morphism

ΠE
def
= Ker(π1(X

log
E )→ π1(S

log))

pE/E′ : ΠE ↠ ΠE′ : the outer surjective continuous homomorphism induced by plogE/E′

0 ≤ j ≤ i ≤ n

X log
i

def
= X log

{positive integers ≤i}

plogi/j

def
= plog{positive integers ≤i}/{positive integers ≤j} : X

log
i → X log

j

Πi
def
= Π{positive integers ≤i}

pi/j
def
= p{positive integers ≤i}/{positive integers ≤j} : Πi → Πj

Πi/j
def
= Ker(pi/j)

⇒ Sn ↷ X log
n

⇒ Sn
out↷ Πn
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i ∈ E ⊆ {positive integers ≤ n}
x : S → Xn: an S-valued geometric point

xE : SE,x
def
= S

x→ Xn

plog{positive integers ≤n}/E→ XE

xlog
E : Slog

E,x → X log
E : the strict morphism determined by

the morphism xE : SE,x → XE and the log structure of X log
E

X log
i∈E,x: the stable log curve over Slog

E\{i} obtained by forming

the fiber product of xlog
E\{i} : S

log
E\{i} → X log

E\{i} and plogE/(E\{i}) : X
log
E → X log

E\{i}

Gi∈E,x: the semi-graph of anabelioids det’d by the stable log curve X log
i∈E,x over Slog

E\{i}

⇒ ∃a natural ΠE-conjugacy class of continuous isom. ΠGi∈E,x

∼→ ΠE/(E\{i}) (⊆ ΠE)

Fix a cont. isom. ΠGi∈E,x

∼→ ΠE/(E\{i}) that is contained in this natural ΠE-conj. class
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v ∈ Vert(G)
Zv ⊆ X: the irreducible component of X that corresponds to v

Xv
def
= (the normalization of Zv) \ (the cusps and nodes)

Thus, by the definition of the notion of a point stable curve,
the open subscheme Xv ⊆ X is a hyperbolic curve over k

Observe: ∃a natural closed immersion (Xv)n ↪→ Xn

which induces an outer injective continuous homomorphism

(Πv)n
def
= “Πn” for Xv ↪→ Πn

m ≤ n ⇒

1 // (Πv)n/m //
� _

��

(Πv)n
(pv)n/m //

� _

��

(Πv)m //
� _

��

1

1 // Πn/m
// Πn pn/m

// Πm
// 1

(cf. the next page, i.e., the copy of p.17 of the slides for the 3rd and 4th talks)
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Sketch of the proof of Lemma (TpdSych)

Lemma (TpdSych)� �
Tb ⊆ Πn−1/n−2: a {1, . . . , n− 1}-tripod
ν: a cusp of the tripod from which Tb arises
Tf ⊆ Πn/n−1: a {1, . . . , n}-tripod that arises from ν
⇒

• The inclusions
OutFC(Πn)[Tb : |C|] ⊆ OutFC(Πn)[Tf : |C|]
OutFC(Πn)[Tb : |C|,∆] ⊆ OutFC(Πn)[Tf : |C|,∆]
hold

• ∃a “geometric” outer continuous isomorphism ι : Tf
∼→ Tb s.t.

OutFC(Πn)[Tf : |C|,∆] ∩OutFC(Πn)[Tb : |C|]
TTf

sshhhhh
hhhhh

hhhhh
hhhhh

hh TTb

++VVVV
VVVVV

VVVVV
VVVVV

VVV

Out(Tf )
conjugation by ι

∼ // Out(Tb)

commutes (which thus implies the inclusion
OutFC(Πn)[Tf : |C|,∆] ∩OutFC(Πn)[Tb : |C|] ⊆ OutFC(Πn)[Tb : |C|,∆])� �

By replacing Tf by a suitable Πn-conjugate of Tf , we may assume:

1 // Πn/n−1
// Πn

// Πn−1
// 1

1 // “Π2/1 for a tpd” //
?�

OO

“Π2 for a tpd” //
?�

(cmm. trm.) — cf. the next talk

OO

Tb
//

?�

OO

1

Tf

?�

OO

α ∈ OutFC(Πn)[Tb : |C|]
By a sim. arg. to the arg. app’d in the pf of Lemma (ConfiGC), α ∈ OutFC(Πn)[Tf : |C|]
Moreover, the outom. α also pres. the conj. class of “Π2 for a tpd” (cf. the next talk)
Thus, we may assume: (g, r, n) = (0, 3, 2)

Observe: If one takes a suitable σ ∈ S5,

then Tf ↪→ Π2

σ
∼→ Π2

p2/1
↠ Π1 determines a “geometric” Tf

∼→ Tb

The resulting Out(Tf )
∼→ Out(Tb) maps α|Tf

7→ (σασ−1)1
α|Tf

∈ Out(Tf )
∆ ⇒ (σασ−1)1 ∈ Out(Tb)

∆

[CmbCsp]⇒ σασ−1 centralizes S5

⇒ σασ−1 = α
⇒ The resulting Out(Tf )

∼→ Out(Tb) maps TTf
(α) = α|Tf

7→ α1 = TTb
(α), as desired
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Combinatorial Cuspidalization� �
OutF(Πn+1)→ OutF(Πn)
injective? surjective? ....?� �

(cf. the talks by Minamide and Iijima)

Glueability of Combinatorial Cuspidalizations� �
Relationship between:

• the combinatorial cuspidalization for Πn

OutF(Πn+1)→ OutF(Πn)
• the combinatorial cuspidalizations for the (Πv)n’s

OutF((Πv)n+1)→ OutF((Πv)n)� �
Review: the case of n = 1
the relationship of Out(Π1) and Out(Πv)’s

Aut|grph|(G) ⊆ Aut(G): the subgroup consisting of automorphisms of G
that induce the identity automorphism on the underlying semi-graph

Dehn(G) ⊆ Aut|grph|(G): the subgp consisting of α s.t. the autom. αv of Gv is trivial

Glu(G) ⊆
∏

v∈Vert(G) Out(Πv): the subgroup consisting of (αv)v s.t.

• the outomorphism αv fixes every conjugacy class of cuspidal subgroups in Πv

• ∀v, w ∈ Vert(G)
the equality χv(αv) = χw(αw) holds

Theorem in [CbTpI] — cf. [CbTpI], Theorem B, (iii)� �
1 // Dehn(G) // Aut|grph|(G) // Glu(G) // 1� �
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Theorem in [CbTpI]� �
1 // Dehn(G) // Aut|grph|(G) // Glu(G) // 1� �

Theorem (GlCmbCsp) — cf. [CbTpII], Theorem F� �
1 // Dehn(G) // OutFC(Πn+1)

|grph| //
� _

��

Glu(Πn+1)
|grph| //

� _

��

1

1 // Dehn(G) // OutFC(Πn)
|grph| // Glu(Πn)

|grph| // 1� �
where:

OutFC(Πn)
|grph| def

= OutFC(Πn)×Out(Π1) Aut
|grph|(G)

⇒
Dehn(G)� t

''

� � // Aut|grph|(G) � � // Out(ΠG)
∼ // Out(Π1)

OutFC(Πn)
|grph| � � //

?�

OO

OutFC(Πn)
?�

[NodNon]

OO
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Theorem (GlCmbCsp)� �
1 // Dehn(G) // OutFC(Πn+1)

|grph| //
� _

��

Glu(Πn+1)
|grph| //

� _

��

1

1 // Dehn(G) // OutFC(Πn)
|grph| // Glu(Πn)

|grph| // 1� �
Glu(Πn)

|grph| ⊆
∏

v∈Vert(G) OutFC((Πv)n)
|grph|: the subgroup consisting of (αv)v s.t.:

• if n = 1:
∀v, w ∈ Vert(G)
the equality χv(αv) = χw(αw) holds

• if n = 2, then:
∀ν: a node of X log

b1, b2: the distinct two branches of ν
v1, v2: the irr. comp. of X log to which b1, b2 abut, respectively
⇒ a {1, 2}-tripod T1 of (Πv1)2 that arises from the “cusp b1”
∼conj. in Π2 a {1, 2}-tripod T2 of (Πv2)2 that arises from the “cusp b2”

Observe: αvi ∈ OutFC((Πvi)n)
|grph| Lemma (ConfiGC)⇒ αvi ∈ OutFC((Πvi)n)[Ti]

the equality TT1(αv1) = TT2(αv2) holds

• if n ≥ 3, then:
∀v1, v2 ∈ Vert(G)
Ti ⊆ (Πvi)3: a 3-central {1, 2, 3}-tripod of (Πvi)n
⇒ the closed subgroup Ti is a 3-central {1, 2, 3}-tripod of Πn

⇒ T1 ∼conj. in Π3 T2

the equality TT1(αv1) = TT2(αv2) holds
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Theorem (GlCmbCsp)� �
1 // Dehn(G) // OutFC(Πn+1)

|grph| //
� _

��

Glu(Πn+1)
|grph| //

� _

��

1

1 // Dehn(G) // OutFC(Πn)
|grph| // Glu(Πn)

|grph| // 1� �
(A) how to define ρn : OutFC(Πn)

|grph| → Glu(Πn)
|grph|

(B) the compatibility of ρn+1 and ρn (i.e., the commutativity of the right-hand square)
(C) the equality Dehn(G) = Ker(ρn)
(D) the surjectivity of ρn

(A), (B)
If one proves

• ∀α ∈ OutFC(Πn)
|grph| preserves the conjugacy class of (Πv)n

• the closed subgroup (Πv)n ⊆ Πn is commensurably terminal

then, by

Remark� �
G: a group
H ⊆ G: a subgroup

α ∈ Aut(G)
⇒ can define the restriction α|H ∈ Aut(H) whenever α preserves H ⊆ G

On the other hand:
α ∈ Out(G) = Aut(G)/Inn(G)
⇒ cannot define the “restriction” α|H ∈ Out(H) in general
even if α preserves the conjugacy class of H ⊆ G

the “natural restriction” is
not ∈ Out(H) = Aut(H)/Inn(H) but ∈ Aut(H)/Inn(NG(H))

In particular:

• the outomorphism α preserves the conjugacy class of H ⊆ G
• the equality NG(H) = ZG(H) ·H holds

⇒ can define the restriction α|H ∈ Out(H)� �
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Theorem in [CbTpI] — cf. [CbTpI], Corollary 3.9, (iv)� �
α ∈ Aut|grph|(G)
v, w ∈ Vert(G)
⇒ the equality χv(αG|v) = χw(αG|w) holds� �
Theorem ((≥ 3)-TpdSych) — cf. [CbTpII], Theorem 3.18, (ii)� �
Suppose: n ≥ 3
E, E ′ ⊆ {positive integers ≤ n}
T ⊆ ΠE: an E-tripod
T ′ ⊆ ΠE′ : an E ′-tripod
⇒ ∃a “geometric” outer continuous isomorphism ι : T

∼→ T ′ s.t.

OutFC(Πn)[T : |C|] ∩OutFC(Πn)[T
′ : |C|]

TT

tthhhhh
hhhh

hhhh
hhhh

hhhh TT ′

**VVVV
VVVV

VVVV
VVVV

VVVV
V

Out(T )
conjugation by ι

∼ // Out(T ′)

commutes� �

1 // (Πv)n/m //
� _

��

(Πv)n
(pv)n/m //

� _

��

(Πv)m //
� _

��

1

1 // Πn/m
// Πn pn/m

// Πm
// 1

(A), (B) OK
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(A), (B)

• ∀α ∈ OutFC(Πn)
|grph| preserves the conjugacy class of (Πv)n

• the closed subgroup (Πv)n ⊆ Πn is commensurably terminal

the 2nd •
by the induction on n, together with
the commensurable terminality of (Πv)i+1/i ⊆ Πi+1/i, where 0 ≤ i ≤ n− 1

the 1st •
by a similar arg. to the arg. applied in the proof of the surjectivity portion of

Theorem in [NodNon] — cf. [NodNon], Theorem B� �
n ≥ 1 ⇒ the homomorphism OutFC(Πn+1)→ OutFC(Πn) is injective

n ≥ nbij
def
=

{
3 r 6= 0

4 r = 0

n ≥ nbij ⇒ the homomorphism OutFC(Πn+1)→ OutFC(Πn) is bijective� �
(cf. the talk by Minamide)

Sketch of the proof
For simplicity, suppose:

• n = 2
• ∃a cusp e of X log on the irreducible component that corresponds to v

α ∈ OutFC(Π2)
|grph|

α̃ ∈ AutFC(Π2)
|grph|: a lifting of α

α̃((Πv)2) ∼?
conj. (Πv)2
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Πe ⊆ Π1: a cuspidal subgroup associated to e
[NodNon]⇒ ∃!Πv ⊆ Π1: a verticial subgroup associated to v that contains Πe

⇒ ∃(Πv)2 ⊆ Π2 whose image by p2/1 is given by Πv ⊆ Π1

∃T ⊆ (Πv)2/1: a {1, 2}-tripod that arises from e

1 // Π2/1
// Π2

p2/1 // Π1
// 1

1 // (Πv)2/1 //
?�

OO

(Πv)2 //
?�

OO

Πv
//

?�

OO

1

T
?�

OO

Πe

?�

OO

⇒ the log geometric fiber of plog2/1 : X
log
2 → X log at e is obtained by glueing

• the tripod from which T arises and
• the “old/major” part (which is not necessarily an irr. comp.), say Y , “∼= X log”

Moreover, by a “van Kampen-type consideration”,
for suitable Πv◦ ⊆ ΠY ⊆ Π2/1

— where we write v◦ for the irr. comp. of Y that corresponds to v —

• J
def
= T ∩ ΠY is nodal and coincides with T ∩ Πv◦

• lim−→ (T ←↩ J ↪→ ΠY )
∼→ Π2/1

• lim−→ (T ←↩ J ↪→ Πv◦)
∼→ (Πv)2/1

α ∈ OutFC(Π2)
|grph| ⇒ α̃1 ↷ Π1 preserves the conj. classes of Πe ⊆ Πv ⊆ Π1

Thus, by replacing α̃ by a suitable Π2-conjugate of α̃,
we may assume: α̃1(Πe) = Πe, hence also α̃1(Πv) = Πv

Lemma (ConfiGC)⇒ α̃2/1 ↷ Π2/1 preserves the conj. classes of T , ΠY ⊆ Π2/1

Thus, by replacing α̃ by a suitable Π2/1-conjugate of α̃,
we may assume: α̃2/1(J) = J , hence also α̃2/1(T ) = T and α̃2/1(ΠY ) = ΠY
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Observe: the composite ΠY ↪→ Π2/1 ↪→ Π2

p{1,2}/{2}
↠ Π{2} is

an isomorphism induced by the natural identification “Y ∼= X log”

Thus, since α ∈ OutFC(Π2)
|grph|, which thus implies that α{2}(Πv) ∼conj. Πv,

α̃2/1|ΠY
↷ ΠY preserves the conjugacy class of Πv◦ ⊆ ΠY

Thus, since α̃2/1(J) = J ,
α̃2/1(Πv◦) = Πv◦

⇒ (α̃2/1|T , α̃2/1|Πv◦ ) determines a continuous automorphism α̃v,2/1 ↷ (Πv)2/1

By a consideration related to the commutative diagram

1 // (Πv)2/1 //

��

(Πv)2 //

��

Πv
//

��

1

1 // Inn((Πv)2/1) // Aut((Πv)2/1) // Out((Πv)2/1) // 1,

(α̃1|Πv , α̃v,2/1) determines a continuous outomorphism αv
out↷ (Πv)2

(cf. the next page, i.e., the copy of p.17 of the slides for the 3rd and 4th talks)
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Sketch of the proof of Lemma (TpdSych)

Lemma (TpdSych)� �
Tb ⊆ Πn−1/n−2: a {1, . . . , n− 1}-tripod
ν: a cusp of the tripod from which Tb arises
Tf ⊆ Πn/n−1: a {1, . . . , n}-tripod that arises from ν
⇒

• The inclusions
OutFC(Πn)[Tb : |C|] ⊆ OutFC(Πn)[Tf : |C|]
OutFC(Πn)[Tb : |C|,∆] ⊆ OutFC(Πn)[Tf : |C|,∆]
hold

• ∃a “geometric” outer continuous isomorphism ι : Tf
∼→ Tb s.t.

OutFC(Πn)[Tf : |C|,∆] ∩OutFC(Πn)[Tb : |C|]
TTf

sshhhhh
hhhhh

hhhhh
hhhhh

hh TTb

++VVVV
VVVVV

VVVVV
VVVVV

VVV

Out(Tf )
conjugation by ι

∼ // Out(Tb)

commutes (which thus implies the inclusion
OutFC(Πn)[Tf : |C|,∆] ∩OutFC(Πn)[Tb : |C|] ⊆ OutFC(Πn)[Tb : |C|,∆])� �

By replacing Tf by a suitable Πn-conjugate of Tf , we may assume:

1 // Πn/n−1
// Πn

// Πn−1
// 1

1 // “Π2/1 for a tpd” //
?�

OO

“Π2 for a tpd” //
?�

(cmm. trm.) — cf. the next talk

OO

Tb
//

?�

OO

1

Tf

?�

OO

α ∈ OutFC(Πn)[Tb : |C|]
By a sim. arg. to the arg. app’d in the pf of Lemma (ConfiGC), α ∈ OutFC(Πn)[Tf : |C|]
Moreover, the outom. α also pres. the conj. class of “Π2 for a tpd” (cf. the next talk)
Thus, we may assume: (g, r, n) = (0, 3, 2)

Observe: If one takes a suitable σ ∈ S5,

then Tf ↪→ Π2

σ
∼→ Π2

p2/1
↠ Π1 determines a “geometric” Tf

∼→ Tb

The resulting Out(Tf )
∼→ Out(Tb) maps α|Tf

7→ (σασ−1)1
α|Tf

∈ Out(Tf )
∆ ⇒ (σασ−1)1 ∈ Out(Tb)

∆

[CmbCsp]⇒ σασ−1 centralizes S5

⇒ σασ−1 = α
⇒ The resulting Out(Tf )

∼→ Out(Tb) maps TTf
(α) = α|Tf

7→ α1 = TTb
(α), as desired
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Theorem (GlCmbCsp)� �
1 // Dehn(G) // OutFC(Πn+1)

|grph| //
� _

��

Glu(Πn+1)
|grph| //

� _

��

1

1 // Dehn(G) // OutFC(Πn)
|grph| // Glu(Πn)

|grph| // 1� �
(A) how to define ρn : OutFC(Πn)

|grph| → Glu(Πn)
|grph|

(B) the compatibility of ρn+1 and ρn
(C) the equality Dehn(G) = Ker(ρn)
(D) the surjectivity of ρn

(C)

Theorem in [CbTpI]� �
1 // Dehn(G) // Aut|grph|(G) // Glu(G) // 1� �

Dehn(G) // OutFC(Πn)
|grph| ρn //

� _

��

Glu(Πn)
|grph|

� _

��

1 // Dehn(G) // OutFC(Π1)
|grph|

ρ1
// Glu(Π1)

|grph| // 1

the lower sequence is exact by Theorem in [CbTpI]
⇒ (C) OK
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Thus, to verify Theorem (GlCmbCsp),
it suffices to verify: (D) the surjectivity of ρn : OutFC(Πn)

|grph| → Glu(Πn)
|grph|

By applying (nontrivial) induction on

• n (i.e., by the passage from “Πn” to “Πn/m” and “Πm”) and
• #Node(G) (i.e., by the passage from “G” to “G⇝S”),

it suffices to verify:
the surjectivity of ρ2 : OutFC(Π2)

|grph| → Glu(Π2)
|grph| in the case where #Node(G) = 1

Sketch of the proof
For simplicity, suppose: the dual semi-graph of G is a tree
e: the unique node of X log

v, w ∈ Vert(G): distinct

(αv, αw) ∈ Glu(Π2)
|grph| ⊆ OutFC((Πv)2)

|grph| ×OutFC((Πw)2)
|grph|

α̃□ ∈ AutFC((Π□)2)
|grph|: a lifting of α□

Πe ⊆ Π1: a nodal subgroup associated to e
[NodNon]⇒ ∃!Πv, Πw ⊆ Π1: verticial subgroups associated to v, w that contain Πe, resp.

Then: by a “van Kampen-type consideration”,
lim−→ (Πv ←↩ Πe ↪→ Πw)

∼→ Π1

∃(Πv)2, (Πw)2 ⊆ Π2 s.t.

(a) the intersection T
def
= (Πv)2/1 ∩ (Πw)2/1 is a {1, 2}-tpd that arises from the node e

(b) the images of (Πv)2, (Πw)2 ⊆ Π2 by p2/1 are given by Πv, Πw ⊆ Π1, respectively

1 // Π2/1
// Π2

p2/1 // Π1
// 1

1 // (Πv)2/1 //
?�

OO

(Πv)2 //
?�

OO

Πv
//

?�

OO

1

T
?�

OO

_�

��

Πe

?�

OO

_�

��
1 // (Πw)2/1 // (Πw)2 // Πw

// 1
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α□ ∈ OutFC((Π□)2)
|grph| ⇒ (α̃□)1 ↷ Π□ preserves the conjugacy class of Πe ⊆ Π□

Thus, by replacing α̃□ by a suitable (Π□)2-conjugate of α̃□,
we may assume: (α̃□)1(Πe) = Πe

(αv, αw) ∈ Glu(Π2)
|grph| ⇒ (α̃v)1|Πe = (α̃w)1|Πe Note: Πe is a “cyclotome”

⇒ ((α̃v)1, (α̃w)1) determines a continuous automorphism α̃1 ↷ Π1

α□ ∈ OutFC((Π□)2)
|grph|

Lemma (ConfiGC)⇒ (α̃□)2/1 ↷ (Π□)2/1 preserves the conjugacy class of T ⊆ (Π□)2/1
Thus, by replacing α̃□ by a suitable (Π□)2/1-conjugate of α̃□,
we may assume: (α̃□)2/1(T ) = T

(αv, αw) ∈ Glu(Π2)
|grph| ⇒ by replacing α̃v by a suitable T -conjugate of α̃v,

we may assume: (α̃v)2/1|T = (α̃w)2/1|T

Again by a “van Kampen-type consideration”,
lim−→ ((Πv)2/1 ←↩ T ↪→ (Πw)2/1)

∼→ Π2/1

⇒ ((α̃v)2/1, (α̃w)2/1) determines a continuous automorphism α̃2/1 ↷ Π2/1

By a consideration related to the commutative diagram

1 // Π2/1
//

≀
��

Π2
//

��

Π1
//

��

1

1 // Inn(Π2/1) // Aut(Π2/1) // Out(Π2/1) // 1,

(α̃1, α̃2/1) determines a continuous outomorphism α
out↷ Π2
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Corollary (FC-nonsurj) — cf. [CbTpII], Theorem A, (iii)� �
(g, r) 6∈ {(0, 3), (1, 1)}
⇒ the (injective) homomorphism OutFC(Π2) ↪→ OutFC(Π1) is not surjective� �
Proof

By considering a suitable specialization of X log,
we may assume: ∀vertex of G is a tripod

(g, r) 6∈ {(0, 3), (1, 1)}
⇒ ∃v, w ∈ Vert(G): distinct
∃a node of G that abuts to both v and w

αv ∈ Out|C|(Πv)
∆, αw ∈ Out|C|(Πw)

∆ s.t.

• αv 6= φ−1αwφ for ∀“geometric” isomorphism φ : Πv
∼→ Πw

• χv(αv) = χw(αw)

(cf. “Gal(Q/Q) ⊆ Out|C|(a tpd)∆”
cf. the talks by Yamashita and Minamide)

By

Theorem (GlCmbCsp)� �
1 // Dehn(G) // OutFC(Πn+1)

|grph| //
� _

��

Glu(Πn+1)
|grph| //

� _

��

1

1 // Dehn(G) // OutFC(Πn)
|grph| // Glu(Πn)

|grph| // 1� �
∃α ∈ OutFC(Π1)

|grph| s.t. α|Πv = αv, α|Πw = αw

Assume: OutFC(Π2) ↪→ OutFC(Π1) is surjective

⇒ ∃α2 ∈ OutFC(Π2) whose image in OutFC(Π1) is = α
But this contradicts Theorem (2-TpdSych)
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Theorem (2-TpdSych) — cf. [CbTpII], Theorem 3.17, (i), (ii)� �
Suppose: n = 2
E ⊆ {1, 2}
T ⊆ ΠE: an E-tripod
T0 ⊆ Π1: a {1}-tripod
If one of the following two conditions is satisfied,
then ∃a “geometric” outer continuous isomorphism ι : T

∼→ T0 s.t.

OutFC(Πn)[T : |C|,∆] ∩OutFC(Πn)[T0 : |C|,∆]

TT

ssggggg
ggggg

ggggg
ggggg

ggg TT0

++WWWW
WWWWW

WWWWW
WWWWW

WWWW

Out(T )
conjugation by ι

∼ // Out(T0)

commutes

• E = {1, 2}
∃a cusp ν of the {1}-tripod from which T0 arises
s.t. the E-tripod T arises from ν

• E = {1}
∃a node of X log that abuts to both the {1}-tripod from which T0 arises
and the {1}-tripod from which T arises� �
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Corollary (GT) — cf. [CbTpII], Theorem C, (iv)� �
Suppose:

• n ≥ 3
• either r 6= 0 or n ≥ 4

T ⊆ Π3: a central {1, 2, 3}-tripod of Πn

⇒
OutF(Πn)

Theorem (F-ctr)

,,

OutF(Πn)[T ]
TT // Out(T )

GT
?�

OO

moreover, the resulting OutF(Πn)→ GT is surjective� �
Proof of ∃ of the factorization

Theorem (F-ctr) — cf. [CbTpII], Theorem 3.16, (v)� �
T : a central E-tripod of Πn

⇒ the equality OutF(Πn) = OutF(Πn)[T : ∆] holds� �
by a similar argument to the argument applied in the proof of Lemma (TpdSych)
(cf. the next page, i.e., the copy of p.17 of the slides for the 3rd and 4th talks)

cf. also GT = Out(T )∆ ∩ Im(OutF(T2) ↪→ Out(T ))
(cf. the talk by Minamide)
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Sketch of the proof of Lemma (TpdSych)

Lemma (TpdSych)� �
Tb ⊆ Πn−1/n−2: a {1, . . . , n− 1}-tripod
ν: a cusp of the tripod from which Tb arises
Tf ⊆ Πn/n−1: a {1, . . . , n}-tripod that arises from ν
⇒

• The inclusions
OutFC(Πn)[Tb : |C|] ⊆ OutFC(Πn)[Tf : |C|]
OutFC(Πn)[Tb : |C|,∆] ⊆ OutFC(Πn)[Tf : |C|,∆]
hold

• ∃a “geometric” outer continuous isomorphism ι : Tf
∼→ Tb s.t.

OutFC(Πn)[Tf : |C|,∆] ∩OutFC(Πn)[Tb : |C|]
TTf

sshhhhh
hhhhh

hhhhh
hhhhh

hh TTb

++VVVV
VVVVV

VVVVV
VVVVV

VVV

Out(Tf )
conjugation by ι

∼ // Out(Tb)

commutes (which thus implies the inclusion
OutFC(Πn)[Tf : |C|,∆] ∩OutFC(Πn)[Tb : |C|] ⊆ OutFC(Πn)[Tb : |C|,∆])� �

By replacing Tf by a suitable Πn-conjugate of Tf , we may assume:

1 // Πn/n−1
// Πn

// Πn−1
// 1

1 // “Π2/1 for a tpd” //
?�

OO

“Π2 for a tpd” //
?�

(cmm. trm.) — cf. the next talk

OO

Tb
//

?�

OO

1

Tf

?�

OO

α ∈ OutFC(Πn)[Tb : |C|]
By a sim. arg. to the arg. app’d in the pf of Lemma (ConfiGC), α ∈ OutFC(Πn)[Tf : |C|]
Moreover, the outom. α also pres. the conj. class of “Π2 for a tpd” (cf. the next talk)
Thus, we may assume: (g, r, n) = (0, 3, 2)

Observe: If one takes a suitable σ ∈ S5,

then Tf ↪→ Π2

σ
∼→ Π2

p2/1
↠ Π1 determines a “geometric” Tf

∼→ Tb

The resulting Out(Tf )
∼→ Out(Tb) maps α|Tf

7→ (σασ−1)1
α|Tf

∈ Out(Tf )
∆ ⇒ (σασ−1)1 ∈ Out(Tb)

∆

[CmbCsp]⇒ σασ−1 centralizes S5

⇒ σασ−1 = α
⇒ The resulting Out(Tf )

∼→ Out(Tb) maps TTf
(α) = α|Tf

7→ α1 = TTb
(α), as desired
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Corollary (GT)� �
Suppose:

• n ≥ 3
• either r 6= 0 or n ≥ 4

T ⊆ Π3: a central {1, 2, 3}-tripod of Πn

⇒
OutF(Πn)

Theorem (F-ctr)

,,

OutF(Πn)[T ]
TT // Out(T )

GT
?�

OO

moreover, the resulting OutF(Πn)→ GT is surjective� �
Proof of the surjectivity

By considering a suitable specialization of X log,
we may assume: ∀vertex of G is a tripod

α ∈ GT
⇒ ∀v ∈ Vert(G), ∃αv,n ∈ OutFC((Πv)n)

|grph| whose image in Out(Πv) is = α
Theorem (≥3-TpdSych)⇒ ∀v ∈ Vert(G), Ta ctrl tpd in (Πv)3(αv,n) = α
Theorem (GlCmbCsp)⇒
∃αn ∈ OutFC(Πn)

|grph| whose image in OutFC((Πv)n)
|grph| is = αv,n for ∀v ∈ Vert(G)

Theorem (≥3-TpdSych)⇒ TT (αn) = α, as desired

Remark� �
One may regard this surjective homomorphism

OutF(Πn) // // GT

may be regarded as
a combinatorial analogue of the natural outer surjective continuous isomorphism

π1(Mg,r/Q) // // Gal(Q/Q)� �
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Corollary (Csp/FntFld) — cf. [CbTpII], Corollary 4.16� �
□ ∈ {◦, •}
p: a prime number
l□: a prime number that is 6= p
k□: a finite field of characteristic p

S□
def
= Spec(k□)

Slog
□ : the fs log scheme obtained by equipping S□ with
the fs log structure determined by N→ k□, 1 7→ 0
⇒

π1(S
log
□ ) // // π1(S□)

s□: a splitting of π1(S
log
□ )↠ π1(S□)

X log
□ : a stable log curve/Slog

□

If n is a positive integer, then:

nX
log
□ : the n-th log configuration space of X log

□ ,

πl□-gm
1 (nX

log
□ ): the geometrically pro-l□ log fundamental group of nX

log
□

⇒
πl□-gm
1 (nX

log
□ ) // // π1(S

log
□ ) // // π1(S□)

nΠ□ ↠ π1(S□): the pull-back of πl□-gm
1 (nX

log
□ )↠ π1(S

log
□ ) by s□

Then an arbitrary continuous isomorphism 1Π◦
∼→ 1Π•

extends to a continuous isomorphism nΠ◦
∼→ nΠ• for ∀n ≥ 1� �
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