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Abstract

We consider the problem of making a given (k − 1)-connected graph k-connected by adding
a minimum number of new edges, which we call the k-connectivity augmentation problem. This
problem is polynomially solvable when k is a fixed number or k = n − 1, n − 2, and it is open
for general k. Here n is the number of vertices of the input graph. In this paper, we deal with
the problem when k = n − 3. By considering the complement graph, the (n − 3)-connectivity
augmentation problem can be reduced to the problem of finding a maximum square-free 2-
matching in a simple subcubic graph.

We give a polynomial-time algorithm to find a maximum square-free 2-matching in a simple
subcubic graph, which yields a polynomial-time algorithm for the (n − 3)-connectivity aug-
mentation problem. Our algorithm is based on the fact that the square-free 2-matchings are
endowed with a matroid structure called a jump system. We also show that the weighted (n−3)-
connectivity augmentation problem can be solved in polynomial time if the weights are induced
by a function on the vertex set, whereas the problem is NP-hard for general weights.

1 Introduction

For an integer k, a graph (digraph) is k-connected if it contains more than k vertices and it remains
connected (respectively, strongly connected) when we delete at most k − 1 vertices from the graph
(respectively, digraph). In this paper, we deal with the problem of making a given graph or digraph
k-connected by adding a minimum number of new edges. Concerning the directed case, Frank and
Jordán gave a min-max formula and also an algorithm relying on the ellipsoid method for finding
the minimum [11]. In [12] they also provided a combinatorial algorithm to make a (k−1)-connected
digraph k-connected. However, their algorithm is polynomial-time only for a fixed k, that is, the
running time is polynomial in the size of the digraph but exponential in k. Végh and Benczúr gave
a combinatorial algorithm for the general case whose running time is polynomial also in k [42].

There are only partial results in the undirected case. The solution is trivial when k = 1.
Eswaran and Tarjan solved the problem for k = 2 in [9], while Watanabe and Nakamura found a
characterization for the case of k = 3 [43]. Later, Hsu and Ramachandran [22, 23] gave a linear-
time algorithm for both of these problems. For k = 4, a polynomial algorithm was developed by
Hsu [21]. It is also known that near-optimal solutions can be found in polynomial time for every
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k, see [24, 25]. In [26], Jackson and Jordán gave an algorithm which provides an optimal solution
in polynomial time for every fixed k. If the size of an optimal solution is large compared to k,
their algorithm is polynomial for all k. They also obtained a min-max formula for this special case,
and completely solved the problem for a new family of graphs called k-independence free graphs.
However, the complexity of the vertex-connectivity augmentation problem is still open, and it is
certainly one of the most interesting unsolved questions in this area.

An interesting special case consists of increasing the connectivity by one, that is, when the
starting graph is already (k − 1)-connected. In this paper we call this problem the k-connectivity
augmentation problem. Hsu gave an almost linear-time algorithm to increase the connectivity from
three to four in [20]. Hence a linear-time algorithm for k = 1, 2, 3, an almost linear-time algorithm
for k = 4 and a polynomial time algorithm provided by [26] for fixed k are at hand. For general k,
the question is open again.

On the other hand, values of k close to n are also of interest. If k = n − 1, then the graph
should be simply extended to a complete graph and the answer is trivial since every augmenting
set consists of the edges of G where G denotes the complement of G. Jim Geelen observed that a
graph G is (n − 2)-connected if and only if each vertex has degree at most one in G. This implies
that for k = n− 2 the problem is equivalent to finding a maximum matching in the complement of
the graph. It can be verified easily that a graph G is (n − 3)-connected if and only if the edge set
of G is a square-free 2-matching, that is, each vertex in G has degree at most two and G contains
no cycle of length four. Moreover, an obvious but important observation is that if G is (n − 4)-
connected then its complement G is a subcubic graph (i.e. each vertex has degree at most three).
Therefore, the (n−3)-connectivity augmentation problem can be reduced to the problem of finding
a square-free 2-matching of maximum size, called the square-free 2-matching problem, in a simple
subcubic graph.

Square free 2-matchings appear also in the context of 2-matchings without short cycles. We
say that a 2-matching M is Ck-free if M contains no cycle of length k or less. The Ck-free 2-
matching problem is to find a Ck-free 2-matching of maximum size in a given graph. This problem
has been studied as a relaxation of the Hamiltonian cycle problem. The case k ≤ 2 is exactly
the classical simple 2-matching problem, which can be solved efficiently. Papadimitriou showed
that the problem is NP-hard when k ≥ 5 (see [4]), and Hartvigsen [18] gave an augmenting path
algorithm for the case k = 3. The C4-free 2-matching problem is left open. In bipartite graphs,
“C4-free” and “square-free” mean the same condition. For the square-free 2-matching problem in
bipartite graphs, a min-max formula [27] and polynomial-time algorithms [19, 37] are proposed.

The main result of this paper is a polynomial-time algorithm for the square-free 2-matching
problem in simple subcubic graphs (Theorem 3.1), which leads to a polynomial-time algorithm
for the (n − 3)-connectivity augmentation problem (Theorem 3.2). Our algorithm is based on the
theorem that square-free 2-matchings in a simple subcubic graph have a matroid structure called a
jump system (Theorem 3.3). With the aid of known results on jump systems, we show that some
optimization problems are also solvable in polynomial-time. We also give a faster algorithm for the
square-free 2-matching problem in simple subcubic graphs, that runs in O(n

3
2 ) time (Theorem 3.9).

We also discuss the weighted versions of the problems. Given a (k − 1)-connected graph G =
(V,E) and a weight function w : E → R+, where E is the complement of E, the weighted k-
connectivity augmentation problem is the problem of finding a set of edges of minimum total weight
that should be added to the original graph to obtain a simple k-connected graph. Of course the
weighted (n − 3)-connectivity augmentation problem can be reduced to the problem of finding a
square-free 2-matching maximizing the total weight of its edges, which we call the weighted square-
free 2-matching problem.
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Z. Király proved that the weighted square-free 2-matching problem in bipartite graphs is NP-
hard (see [10]). This problem is, however, polynomially solvable in bipartite graphs if the weight
function is vertex-induced on every square [32, 40]. For a subgraph H = (V (H), E(H)) of G, we
say that w is vertex-induced on H if there exists a function πH : V (H) → R such that w(e) =
πH(u) + πH(v) for every edge e = (u, v) ∈ E(H).

We show that the weighted square-free 2-matching problem in simple subcubic graphs can be
solved in polynomial time if the weight function is vertex-induced on every square (Theorem 6.1),
whereas the problem is NP-hard for general weights (Theorem 5.1). In our algorithm for the
weighted problem, we use the theory of M-concave (M-convex) functions on constant-parity jump
systems introduced by Murota [35].

It may be noted that jump systems and M-concave (M-convex) functions are understood as
a natural framework of efficiently solvable problems. Besides studies of these structures them-
selves [28, 31, 35, 38], their relation to efficiently solvable combinatorial optimization problems has
been revealed (see [1, 6, 29, 30, 35, 39]). This paper presents another such example and enforces
the importance of these structures.

This paper is organized as follows. In Section 2, we give definitions and previous works on
connectivity, square-free 2-matchings, and jump systems. In Section 3, which is the main part of
this paper, we give polynomial-time algorithms for the square-free 2-matching problem in simple
subcubic graphs and the (n − 3)-connectivity augmentation problem. In our algorithms, we use
the relation between square-free 2-matchings and jump systems, which is shown in Section 4.
In Sections 5 and 6, we show the NP-hardness of the weighted version of the problem and give
a polynomial-time algorithm for the case when the weight function is vertex-induced on every
square, respectively. In Section 7, we give a min-max theorem characterizing the maximum size
of a square-free 2-matching in a subcubic graph. We also prove the corresponding special case of
Jordán’s conjecture about the size of minimum augmenting sets.

2 Preliminaries

2.1 Connectivity and square-free 2-matchings

Let G = (V,E) be an undirected graph with vertex set V and edge set E, and n and m denote the
number of vertices and the number of edges, respectively. An edge connecting u, v ∈ V is denoted
by (u, v). A cycle C, which is denoted by C = (v1, v2, . . . , vl), is a subgraph consisting of distinct
vertices v1, . . . , vl and edges (v1, v2), . . . , (vl−1, vl), (vl, v1). For a subgraph H of G, the vertex set
and the edge set of H are denoted by V (H) and E(H), respectively. Let δv denote the set of edges
incident to v ∈ V .

For an integer k, we say that a graph G = (V,E) is k-connected if |V | ≥ k + 1 and G − X is
connected for every X ⊆ V with |X| ≤ k − 1. The complement graph of G = (V,E) is the simple
graph G = (V, E) such that (u, v) ∈ E if and only if (u, v) ̸∈ E for distinct u, v ∈ V .

The degree of a vertex v ∈ V in G is the number of edges incident with v. The degree sequence of
an edge set F ⊆ E is the vector dF ∈ ZV such that dF (v) is the number of edges in F incident with
v. Note that if a self-loop e is incident with v, e is counted twice. We say that a graph G = (V,E)
is subcubic (respectively, cubic) if dE(v) ≤ 3 (respectively, dE(v) = 3) for every v ∈ V . An edge set
M ⊆ E is said to be a 2-matching (respectively 2-factor) if dM (v) ≤ 2 (respectively dM (v) = 2) for
every v ∈ V . In other words, a 2-matching is a vertex-disjoint collection of paths and cycles. For
a simple undirected graph G = (V,E), an edge set M ⊆ E is a square-free 2-matching if M is a
2-matching that contains no cycle of length four as a subgraph.
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By the definition of k-connectivity, for an integer t, a simple graph G = (V,E) is (n − t)-
connected if and only if G contains no complete bipartite graph with t + 1 vertices. Thus, we can
observe the following:

• G is (n − 2)-connected if and only if G contains no K1,2, that is, E is a matching.

• G is (n−3)-connected if and only if G contains no K1,3 and no K2,2, that is, E is a square-free
2-matching.

• G is (n − 4)-connected if and only if G contains no K1,4 and no K2,3, in particular G is
subcubic.

In what follows, we deal with simple graphs when we consider the (n−3)-connectivity augmen-
tation problem and the square-free 2-matching problem, and so we often omit to declare that the
graph is simple. Non-simple graphs appear only when we shrink graphs.

Definition 2.1. Let C = (v1, v2, v3, v4) be a cycle of length four in G = (V,E). Shrinking of C in
G consists of the following operations:

• identify v1 with v3, and denote the corresponding vertex by u1,

• identify v2 with v4, and denote the corresponding vertex by u2, and

• identify all edges between u1 and u2.

In the obtained graph, the edge between u1 and u2 corresponding to E(C) is called a square-edge.

Let C1, C2, . . . , Cq be edge-disjoint cycles of length four, and let G◦ = (V ◦, E◦) be the graph ob-
tained from G = (V,E) by shrinking C1, C2, . . . , Cq. Note that G◦ might have self-loops and parallel
edges, whereas G does not. We also note that if G is subcubic, C1, C2, . . . , Cq are vertex-disjoint
and G◦ is also subcubic. In a shrunk graph G◦, a square is a cycle of length four whose vertices are
not incident to a square-edge. In other words, a cycle in G◦ is a square if its corresponding edges
in G form a cycle of length four. We say that an edge set in a shrunk graph G◦ is square-free if it
contains no square.

2.2 Jump systems

Let V be a finite set. For u ∈ V , we denote by χu the characteristic vector of u, with χu(u) = 1
and χu(v) = 0 for v ∈ V \ {u}. For x, y ∈ ZV , a vector s ∈ ZV is called an (x, y)-increment if
x(u) < y(u) and s = χu for some u ∈ V , or x(u) > y(u) and s = −χu for some u ∈ V .

A jump system, introduced by Bouchet and Cunningham [2], is defined as follows.

Definition 2.2 (Jump system [2]). A nonempty set J ⊆ ZV is said to be a jump system if it
satisfies an exchange axiom, called the 2-step axiom:

For any x, y ∈ J and for any (x, y)-increment s with x+s ̸∈ J , there exists an (x+s, y)-
increment t such that x + s + t ∈ J .

A set J ⊆ ZV is a constant-parity system if x(V ) − y(V ) is even for any x, y ∈ J . Here
x(S) =

∑
v∈S x(v) for x ∈ ZV and S ⊆ V . For constant-parity jump systems, J. F. Geelen

observed a stronger exchange property:
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(EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-increment t such
that x + s + t ∈ J and y − s − t ∈ J .

This property characterizes a constant-parity jump system (see [35] for details).

Theorem 2.3. A nonempty set J is a constant-parity jump system if and only if it satisfies (EXC).

A constant-parity jump system is a generalization of the base family of a matroid, an even delta-
matroid [44, 45], and a base polyhedron of an integral polymatroid (or a submodular system) [13].

The degree sequences of all subgraphs in an undirected graph is a typical example of a constant-
parity jump system [2, 31]. Cunningham [3] showed that the set of degree sequences of all Ck-free
2-matchings is a jump system for k ≤ 3, but not a jump system for k ≥ 5. Szabó [39] showed that
it is also a jump system when k = 4.

Efficient algorithms for optimization problems on jump systems are studied in [36, 38]. For a
set S ⊆ ZV , we define Φ(S) = maxv∈V {maxy∈S y(v) − miny∈S y(v)}.

Theorem 2.4 (Shioura and Tanaka [38]). Let J ⊆ ZV be a finite jump system, and c ∈ RV be a
vector. Suppose that a vector x0 ∈ J is given, and we can check whether x ∈ J or not in γ time.
Then, we can find a vector x ∈ J maximizing cx in O(n3 log Φ(J)γ) time.

We can also find a vector maximizing the sum of univariate concave functions efficiently. A
univariate function ϕ : Z → R is concave if it satisfies

2ϕ(x) ≥ ϕ(x − 1) + ϕ(x + 1)

for any x ∈ Z. A univariate function ϕ is convex if −ϕ is concave.

Theorem 2.5 (Murota and Tanaka [36]). Let J ⊆ ZV be a finite jump system, and ϕv : Z → R be
a univariate concave function for each v ∈ V . Suppose that a vector x0 ∈ J is given, and we can
check whether x ∈ J or not in γ time. Then, we can find a vector x ∈ J maximizing

∑
v∈V ϕv(x)

in O(n3Φ(J)γ) time.

Note that Shioura and Tanaka [38] gave an algorithm for the problem that runs in O(n4(log Φ(J))2γ)
time. However, if Φ(J) is fixed, it is slower than the algorithm in Theorem 2.5.

3 Polynomial-time algorithms for the problems

3.1 Main results

Let γ1 denote the time to solve the b-factor problem when b(v) ≤ 2, that is, for a not necessarily
simple graph G = (V,E) with |V | = n and a vector b ∈ {0, 1, 2}V , we can determine whether there
exists an edge set F ⊆ E such that dF = b in γ1 time. It is the same as the running time of finding
a maximum cardinality matching, and γ1 is bounded by O(

√
nm logn

n2

m ) [17]. In subcubic graphs,
since m = O(n), we have γ1 = O(n

3
2 ).

Our first results are the following.

Theorem 3.1. In subcubic graphs, the square-free 2-matching problem can be solved in O(n3γ1)
time.

Theorem 3.2. The (n − 3)-connectivity augmentation problem is solvable in O(n3γ1) time.
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Theorem 3.2 obviously follows from Theorem 3.1. Note that we can construct the complement
graph in O(n2) time, which is shorter than O(n3γ1) time. Our proof for Theorem 3.1 is based on
the fact that the degree sequences of all square-free 2-matchings in a subcubic graph form a jump
system. Let Jsq(G) ⊆ ZV denote the set of all degree sequences of square-free 2-matchings in G,
that is,

Jsq(G) = {dM | M is a simple square-free 2-matching in G}.

Then the following theorem holds.

Theorem 3.3 (Szabó [39]). For any subcubic graph G, Jsq(G) is a constant-parity jump system.

Although a stronger result is given in [39], we give a new proof for this theorem in Section 4
which can be extended to the weighted version.

On the other hand, the membership problem of Jsq(G) can be solved in polynomial time, whose
proof is given in Section 3.2.

Lemma 3.4. Given a subcubic graph G = (V,E) and a vector x ∈ ZV , we can determine whether
x ∈ Jsq(G) or not in O(γ1) time.

By combining Theorems 2.4 and 3.3 and Lemma 3.4, we obtain Theorem 3.1. Note that
(0, 0, . . . , 0) ∈ ZV is a vector contained in Jsq(G).

We give a faster algorithm for the square-free 2-matching problem in Section 3.3, which does
not use jump systems. However, the advantage of using a jump system is that we can immediately
extend the result to optimization problems with the aid of some results on jump systems.

When the weight function is vertex-induced on V , the weighted square-free 2-matching problem
is the problem of finding a square-free 2-matching M maximizing a linear function of dM . Therefore,
by Theorems 2.4 and 3.3 and Lemma 3.4, we obtain the following corollaries.

Corollary 3.5. The weighted square-free 2-matching problem in subcubic graphs is solvable in
O(n3γ1) time if the weight function is vertex-induced on V .

Corollary 3.6. The weighted (n − 3)-connectivity augmentation problem is solvable in O(n3γ1)
time if the weight function is vertex-induced on V .

In the same way as these corollaries, we obtain the following by Theorem 2.5.

Corollary 3.7. Let ϕv : Z → R be a univariate concave function for each v ∈ V . For a subcubic
graph G = (V,E), we can find a square-free 2-matching M maximizing∑

v∈V

ϕv(dM (v))

in O(n3γ1) time.

Corollary 3.8. Let ϕv : Z → R be a univariate convex function for each v ∈ V . For an (n − 4)-
connected graph G = (V,E), we can find in O(n3γ1) time an edge set E′ ⊆ E minimizing∑

v∈V

ϕv(dE∪E′(v))

such that G′ = (V,E ∪ E′) is a simple (n − 3)-connected graph.
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3.2 Proof for Lemma 3.4

In this subsection, we give a proof for Lemma 3.4.
Take edge-disjoint cycles C1, C2, . . . , Cq of length four maximally such that x(v) = 2 for each

v ∈
∪

V (Ci). Note that these cycles are also vertex-disjoint since the graph is subcubic. Obviously,
if there is a cycle Ci such that V (Ci) spans a K4 then x ̸∈ Jsq(G). Thus, we may assume that
V (Ci) does not span a K4.

Let G◦ = (V ◦, E◦) denote the graph obtained from G = (V,E) by shrinking C1, C2, ..., Cq as in
Definition 2.1. Define E1 ⊆ E as the set of all shrunk edges, that is, E1 = E(C1) ∪ · · · ∪ E(Cq),
and let E0 = E \ E1. Similarly, define V1 ⊆ V as the set of all shrunk vertices, that is, V1 =
V (C1) ∪ · · · ∪ V (Cq), and let V0 = V \ V1. Therefore E0 and V0 are also subsets of E◦ and V ◦,
respectively. Note that E◦ may contain self-loops and also parallel edges.

Let x◦ ∈ ZV ◦
be the vector obtained from x by setting

x◦(v) =

{
x(v) if v ∈ V0,
2 if v ∈ V ◦ \ V0.

We will show that x ∈ Jsq(G) if and only if x◦ is the degree sequence of some 2-matching in G◦.
Let x ∈ Jsq(G) and let M be a square-free 2-matching in G = (V,E) with dM = x. Note that

|E(Ci)∩M | = 2 or |E(Ci)∩M | = 3 for i = 1, 2, . . . , p, because G is subcubic. Let ui
1 and ui

2 denote
the vertices arising when shrinking Ci = (vi

1, v
i
2, v

i
3, v

i
4). Let I denote the set of indices for which

|E(Ci) ∩ M | = 3. Then define M◦ as

M◦ = (M ∩ E0) ∪

(∪
i∈I

{(ui
1, u

i
2)}

)
.

One can see easily that M◦ is a 2-matching in G◦ with dM◦ = x◦.
Conversely, let M◦ be a 2-matching in G◦ = (V ◦, E◦) with dM◦ = x◦. Let C = (v1, v2, v3, v4) be

one of the shrunk cycles and let u1, u2 be the corresponding vertices in G◦. If (u1, u2) ̸∈ M◦ then
either {(v1, v2), (v3, v4)} or {(v1, v4), (v2, v3)} can be added to M◦ ∩ E0 without forming a square
since G is subcubic (we use here the assumption that V (Ci) does not span a K4). One can also
see that if (u1, u2) ∈ M◦ then three properly chosen edges of C can be added to M◦ ∩ E0 without
forming a square (see Figure 1). What we do exactly is that we blow up the cycles one by one. In
each step we extend the actual 2-matching to a new one in the extended graph using one of the two
extensions described above in such a way that the arising 2-matching has no square. Recall that a
square is defined as a cycle of length four whose all four vertices are contained in V0. In this way
M◦ ∩ E0 can be extended to a square-free 2-matching M of G = (V,E) with dM = x.

The above reduction can be done in linear time and we can determine whether x◦ is a degree
sequence of a 2-matching or not in O(γ1) time which proves the lemma.

3.3 Faster algorithm

In this subsection, we give another algorithm for the square-free 2-matching problem, that runs in
O(γ1) time. A faster algorithm for the (n− 3)-connectivity augmentation problem follows from the
algorithm. However, in this case, we have to consider the time to construct the complement graph,
which is denoted by γ0. Obviously, γ0 is bounded by O(n2), but it depends on how the input graph
is represented.

Theorem 3.9. The square-free 2-matching problem in subcubic graphs can be solved in O(γ1) time.
The (n− 3)-connectivity augmentation problem is solvable in O(γ0 + γ1) time, where γ0 is the time
to construct the complement graph.
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: edges in M

u1 u2

u2u1

v1

v1

v2

v2 v3

v3

v4

v4

Figure 1: Constructing M from M◦

Proof. Let G = (V,E) be a subcubic graph. If G contains a complete graph on four nodes then this
K4 forms a component of G since the graph is subcubic. Clearly, a maximum square-free 2-matching
contains exactly three edges of such a component. By handling these components separately, we
may assume that G contains no K4.

Take edge-disjoint cycles C1, C2, . . . , Cq of length four maximally. Our first observation is that
for any maximum square-free 2-matching M in G either |M ∩ Ci| = 2 or |M ∩ Ci| = 3 for every
Ci = (vi

1, v
i
2, v

i
3, v

i
4). Moreover, we may assume the following:

(A) If |M ∩ Ci| = 2 then M ∩ Ci = {(vi
1, v

i
2), (v

i
3, v

i
4)} or {(vi

1, v
i
4), (v

i
2, v

i
3)}.

Let G◦ = (V ◦, E◦) denote the graph obtained from G = (V,E) by shrinking C1, C2, . . . , Cq. Define
E0, E1 and V0, V1 on the same lines with Lemma 3.4.

We will show that for any maximum square-free 2-matching M in G satisfying the condition (A)
we can find a 2-matching in G◦ with |M◦| = |M |−2q. Conversely, for any maximum 2-matching M◦

in G◦ we can define a square-free 2-matching M in G so that |M | = |M◦|+ 2q. Since a 2-matching
in G◦ with maximum cardinality can be found in O(γ1) time that would prove the theorem.

The correspondence described in Lemma 3.4 works again. Namely, let M be a maximum
square-free 2-matching in G satisfying the condition (A) and let I denote the set of indices for
which |E(Ci) ∩ M | = 3. Then define M◦ as

M◦ = (M ∩ E0) ∪

(∪
i∈I

{(ui
1, u

i
2)}

)
.

One can see easily that M◦ is a 2-matching in G◦ and the observation above implies |M◦| = |M |−2q.
Conversely, let M◦ be a maximum 2-matching in G◦. Let C = (v1, v2, v3, v4) be one of the

shrunk cycles and let u1, u2 be the corresponding vertices in G◦. If (u1, u2) ̸∈ M◦ then either
{(v1, v2), (v3, v4)} or {(v1, v4), (v2, v3)} can be added to M◦ ∩E0 without forming a square since G
is subcubic (again, we use here the assumption that G contains no K4). One can also see that if
(u1, u2) ∈ M◦ then three properly chosen edges of C can be added to M◦ ∩ E0 without forming a
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square. In both cases, the size of the 2-matching increases by two. Hence M◦∩E0 can be extended
to a square-free 2-matching M of G = (V,E) with |M | = |M◦| + 2q.

Now it is understandable why K4’s are handled differently. If we let G contain a K4 then after
shrinking the cycles the K4 corresponds to an edge with two self-loops at the end-vertices in G◦.
However, a maximum 2-matching in G◦ contains the two self-loops and a maximum square-free 2-
matching in G contains three edges from the K4 so in this case the size of the 2-matching increases
only by one when blowing back the corresponding cycle.

As above, the square-free 2-matching problem can be reduced to the ordinary maximum 2-
matching problem, which can be solved in O(γ1) time.

The latter half of the theorem is immediately derived from the first half.

4 Proof for Theorem 3.3

This section is devoted to the proof for Theorem 3.3, that is, we show that Jsq(G) is a constant-
parity jump system for any subcubic graph G. Recall that G is simple. In this section, we give an
algorithm for finding an (x + s, y)-increment t such that x + s + t ∈ Jsq(G) and y − s− t ∈ Jsq(G).
Without loss of generality, we assume that s = −χu for some u ∈ V .

4.1 Preliminaries

In this subsection, we give some preliminaries for the proof.
Let M and N be edge sets in an undirected (not necessarily simple) graph. We say that a path

P = (v0, v1, v2, . . . , vl) is an (M,N)-alternating path if

• (vi, vi+1) ∈ M \ N if i is even,

• (vi, vi+1) ∈ N \ M if i is odd, and

• (vi, vi+1) ̸= (vj , vj+1) for i ̸= j.

Obviously, dM∆E(P ) = dM − χv0 + (−1)lχvl
and dN∆E(P ) = dN + χv0 − (−1)lχvl

. By taking the
longest (M,N)-alternating path, we can see the following.

Lemma 4.1. For 2-matchings M,N in an undirected graph and for a (dM , dN )-increment s = −χu,
there exists an (M,N)-alternating path P beginning with v0 = u such that both M∆E(P ) and
N∆E(P ) are 2-matchings (not necessarily square-free), dM∆E(P ) = dM + s + t, and dN∆E(P ) =
dN − s − t for some (x + s, y)-increment t.

Let L be a subset of edges and let C1, C2, . . . , Cq be edge-disjoint cycles of length four such that
|E(Ci) ∩ L| = 3 for i = 1, 2, . . . , p. If an edge set L◦ ⊆ E◦ is obtained from L ⊆ E by shrinking
C1, C2, . . . , Cq, we say that L◦ is the shrunk edge set of L, and L is an expanded edge set of L◦.
Note that the shrunk edge set L◦ contains all square-edges in G◦.

We now define a map ϕ : ZV → ZV ◦
by

(ϕ(x))(u) =
∑

{x(v) | v ∈ V, v corresponds to u}

− 2|{square-edges incident to u}| (1)

for x ∈ ZV and u ∈ V ◦. One can see that for an edge set L ⊆ E satisfying that |E(Ci)∩L| = 3 for
i = 1, 2, . . . , p, ϕ(dL) is the degree sequence of the shrunk edge set of L. Conversely, the following
lemma holds.

9



Lemma 4.2 (Kobayashi and Takazawa [30]). Let L◦ ⊆ E◦ be a 2-matching in G◦ that contains all
square-edges and x be a vector in {0, 1, 2}V . If ϕ(x) is the degree sequence of L◦, there exists an
expanded edge set L of L◦ in G such that dL = x. Furthermore, such L is unique.

4.2 Finding an (x + s, y − s)-increment

Although we need an (x + s, y)-increment t to prove Theorem 3.3, in this subsection, we give a
procedure to find an (x + s, y − s)-increment t such that x + s + t ∈ Jsq(G) and y − s− t ∈ Jsq(G).
After that, we modify the procedure to obtain an (x + s, y)-increment t in Section 4.3.

For given degree sequences x, y ∈ Jsq(G), take edge sets M,N ⊆ E such that dM = x and
dN = y. Let s = −χu be an (x, y)-increment for some u ∈ V . Let C1, C2, . . . , Cq be edge-disjoint
cycles of length four in G such that E(Ci) ⊆ M ∪ N and |E(Ci) ∩ M | = |E(Ci) ∩ N | = 3 for
i = 1, 2, . . . , p. We take such C1, C2, . . . , Cq maximally, and shrink them. Let G◦ = (V ◦; E◦) be
the obtained graph, and let M◦, N◦, x◦, y◦, u◦ and s◦ be counterparts in G◦ to M,N, x, y, u and
s, respectively. Recall that a square is a cycle of length four whose vertices are not incident to a
square-edge. Then, G◦ satisfy the following condition.

(B) Both edge sets M◦ and N◦ contain all square-edges in G◦, and G◦ has no square C such that
E(C) ⊆ M◦ ∪ N◦ and |E(C) ∩ M◦| = |E(C) ∩ N◦| = 3.

In order to obtain an (x+ s, y− s)-increment t, it suffices to find an (x◦ + s◦, y◦− s◦)-increment
t◦ and edge sets M∗, N∗ in the shrunk graph G◦ such that M∗ and N∗ are square-free 2-matchings
in G◦, dM∗ = x◦ + s◦ + t◦, and dN∗ = y◦ − s◦ − t◦. This is because a unit vector t corresponding
to t◦ is a desired (x + s, y − s)-increment by Lemma 4.2. Thus, in what follows, we describe a
procedure that finds an (x◦ + s◦, y◦ − s◦)-increment t◦ and edge sets M∗, N∗ in G◦.

Let P = (v0, v1, v2, . . . , vl) be an (M◦, N◦)-alternating path beginning with v0 = u◦ such that
both M◦∆E(P ) and N◦∆E(P ) are 2-matchings, dM◦∆E(P ) = dM◦ + s◦ + t◦, and dN◦∆E(P ) =
dN◦ − s◦ − t◦ for some (x◦ + s◦, y◦)-increment t◦. The existence of such a path is guaranteed by
Lemma 4.1. We choose v1 such that N∪{(v0, v1)} is square-free if possible. Furthermore, we assume
the minimality of P , that is, any subpath (v0, v1, v2, . . . , vp) does not satisfy the above conditions
for 1 ≤ p ≤ l − 1. Let P (p) be the subpath (v0, v1, v2, . . . , vp) of P , and define M (p) = M◦∆P (p)

and N (p) = N◦∆P (p).
If M (l) and N (l) are square-free, then t◦ := dM(l)−dM◦−s◦ is an (x◦+s◦, y◦−s◦)-increment, and

M (l), N (l), and t◦ are the desired outputs. Otherwise, let p be the integer such that M (0),M (1), . . . ,M (p)

and N (0), N (1), . . . , N (p) are square-free, and M (p+1) or N (p+1) contains a square.
We consider the case when p is even, that is, M (p+1) is square-free and N (p+1) has a square

containing (vp, vp+1). The case when p is odd can be dealt with in the same way. Let C1 =
(vp+1, vp, u1, u2) be the square in N (p+1). When p ≥ 1, by the minimality of l, M (p) is not a
2-matching, that is, dM(p)(vp) = 3. Therefore {(vp, vp+1), (vp, u1)} ⊆ M (p), because G◦ is subcubic.
Furthermore, {(vp, vp+1), (vp, u1)} ⊆ M (p) is also true when p = 0 by the following claim and the
definition of P .

Claim 4.3. One of the followings holds:

• there exists an edge e ∈ δv0 ∩ (M◦ \ N◦) such that N◦ ∪ {e} is square-free, or

• G◦ has a square C = (v0, u1, u2, u3) such that {(v0, u1), (v0, u3)} ⊆ M◦ and {(v0, u1), (u1, u2), (u2, u3)} ⊆
N◦ (see Figure 2).

Proof. It is obvious because dM◦(v0) > dN◦(v0).
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: edges in M .

: edges in N .

v0 u3

u2u1

(Parallel edges represnt the same edge.)

Figure 2: An illustration of Claim 4.3.

Then, by the condition (B), (vp+1, u2), (u1, u2) ̸∈ M (p). Since the graph is subcubic and
(vp+1, u2), (u1, u2) ̸∈ M (p), we have dM(p)(u2) ≤ 1.

Now we define

M ′ = (M (p) \ {(vp, vp+1)}) ∪ {(vp+1, u2)}, N ′ = (N (p) ∪ {(vp, vp+1)}) \ {(vp+1, u2)}

(see Figure 3). Obviously, N ′ is square-free. Since dM(p)(u2) ≤ 1 and dN(p)(u2) = 2, M ′ and N ′

are 2-matchings and dM ′ − dM◦ − s◦ = χu2 is a (dM◦ + s◦, dN◦ − s◦)-increment. Therefore, if M ′ is
square-free, then M ′ and N ′ are the desired 2-matchings and t◦ = χu2 is the desired unit vector.

Otherwise, M ′ has a square C2 = (vp+1, u2, u3, u4) containing (vp+1, u2). Then, the following
claim holds.

Claim 4.4. u3 ̸= vp.

Proof. Assume that u3 = vp. Since (vp, u1) ∈ M ′, we have u1 = u4 and (u1, vp+1) ∈ M ′. Then,
|M◦∩E[C2]|+ |N◦∩E[C2]| = |M ′∩E[C2]|+ |N ′∩E[C2]| = 7, where E[C2] is the set of edges whose
end-vertices are both in V (C2). This contradicts that M◦ and N◦ are square-free 2-matchings.

By this claim, {u3, u4} ∩ {vp, vp+1} = ∅. Now we define

M ′′ = M ′ \ {(u2, u3)}, N ′′ = N ′ ∪ {(u2, u3)}

(see Figure 4). Obviously, M ′′ is a square-free 2-matching. Furthermore, N ′′ is square-free, because
N ′′ contains (u3, u2), (u2, u1), (u1, vp), (vp, vp+1), which means that it has no square containing
(u2, u3). If dN ′(u3) ≤ 1, then M ′′ and N ′′ are the desired 2-matchings and t◦ = −χu3 is the desired
unit vector, because dM ′(u3) = 2.

Otherwise, dN ′(u3) = 2 and dN ′′(u3) = 3. Since G◦ is subcubic, (u3, u4) ∈ N ′.

Claim 4.5. (u4, vp+1) ̸∈ N ′.

Proof. If (u4, vp+1) ∈ N ′, then |M◦ ∩ E(C2)| + |N◦ ∩ E(C2)| = |M ′ ∩ E(C2)| + |N ′ ∩ E(C2)| = 6,
which contradicts the condition (B).

We define

M ′′′ = (M ′′ \ {(u2, vp+1)}) ∪ {(u2, u3)}), N ′′′ = (N ′′ \ {(u3, u4)}) ∪ {(u4, vp+1)}

(see Figure 5). Then, δvp+1 ∩M ′′′ = {(vp+1, u4)} and δvp+1 ∩N ′′′ = {(vp, vp+1), (vp+1, u4)}. Hence
M ′′′ and N ′′′ are square-free 2-matchings and t◦ = dM ′′′−dM◦−s◦ = −χvp+1 is a (dM◦+s◦, dN◦−s◦)-
increment.
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: edges in M (p).

: edges in N (p).

vp vp+1

u2u1

: edges in M ′.

: edges in N ′.

vp vp+1

u2u1

Figure 3: Definitions of M ′ and N ′.

vp vp+1

u2u1

: edges in M ′.

: edges in N ′.

u3

u4 vp vp+1

u2u1

: edges in M ′′.

: edges in N ′′.

u3

u4

Figure 4: Definitions of M ′′ and N ′′.

vp vp+1

u2u1

: edges in M ′′.

: edges in N ′′.

u3

u4 vp vp+1

u2u1

: edges in M ′′′.

: edges in N ′′′.

u3

u4

Figure 5: Definitions of M ′′′ and N ′′′.
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4.3 Finding an (x + s, y)-increment

We have already presented a procedure to find an (x + s, y − s)-increment. To obtain an (x + s, y)-
increment t, we choose M and N satisfying the following assumption.

Assumption 4.6. For x, y ∈ Jsq(G), let M and N be square-free 2-matchings with dM = x and
dN = y maximizing |M ∩ N |.

We show that under Assumption 4.6 we can find an (x + s, y)-increment by the procedure in the
previous subsection. It suffices to show that we can find an (x◦ + s◦, y◦)-increment t◦ in the shrunk
graph G◦. Note that an (x◦ + s◦, y◦ − s◦)-increment t◦ is not an (x◦ + s◦, y◦)-increment if and only
if t◦ = −s◦. We also note that, by Assumption 4.6, M◦ and N◦ maximize |M◦ ∩ N◦| among all
square-free 2-matchings in G◦ such that both of them contain all square-edges and their degree
sequences are x◦ and y◦, respectively. Clearly, the modified 2-matchings in our proof contain all
square-edges in each step, since the path is alternating and we modify in squares, where a square
is a cycle of length four whose vertices are not incident to a square-edge.

Suppose that the output (M∗, N∗, t◦) in the previous subsection satisfies that t◦ = −s◦, that
is, dM∗ = dM◦ and dN∗ = dN◦ . Then, a pair of square-free 2-matchings (M∗, N◦) satisfies that
dM∗ = x◦, dN◦ = y◦, and |M∗ ∩ N◦| > |M∗ ∩ N∗|. More precisely,

• if (M∗, N∗) = (M ′, N ′), then |M∗ ∩ N◦| = |M∗ ∩ N∗| + p+2
2 ,

• if (M∗, N∗) = (M ′′, N ′′), then |M∗ ∩ N◦| = |M∗ ∩ N∗| + p+3
2 , and

• if (M∗, N∗) = (M ′′′, N ′′′), then |M∗ ∩ N◦| = |M∗ ∩ N∗| + p+1
2 .

This contradicts Assumption 4.6.
Thus the output t◦ is an (x◦ + s◦, y◦)-increment and its corresponding unit vector t ∈ ZV is an

(x + s, y)-increment, which completes the proof of Theorem 3.3.

5 NP-hardness of the weighted problem

The objective of this section is to show the NP-hardness of the weighted square-free 2-matching
problem in subcubic graphs. Actually, we show the following stronger result, which extends Z.
Király’s result for bipartite graphs.

Theorem 5.1. The weighted square-free 2-matching problem is NP-hard even if the given graph is
cubic, bipartite, and planar.

First, we show the NP-hardness of the problem of finding a square-free 2-factor of maximum
total weight, called the weighted square-free 2-factor problem. After that we derive Theorem 5.1
from this result.

Theorem 5.2. The weighted square-free 2-factor problem is NP-hard even if the given graph is
cubic, bipartite, and planar.

Proof. We give a polynomial reduction from the independent set problem in planar cubic graphs
to the weighted square-free 2-factor problem. For a graph G = (V,E), a vertex set I ⊆ V is
independent if there exists no edge in E connecting two vertices in I. The independent set problem
is to find an independent set I of maximum size, and this problem is NP-hard even if the input
graph is cubic and planar [16].
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Figure 6: Definitions of V e, Ee, and Ev.

Let G = (V,E) be a cubic planar graph which is an instance of the independent set problem.
We construct a new graph G′ = (V ′, E′) as follows. As shown in Figure 6, define a vertex set V e

and an edge set Ee corresponding to e = (u, v) ∈ E by

V e = {ue
1, u

e
2, u

e
3, u

e
4, v

e
1, v

e
2, v

e
3, v

e
4},

Ee = {(ue
1, u

e
2), (u

e
2, u

e
3), (u

e
3, u

e
4), (u

e
4, u

e
1),

(ve
1, v

e
2), (v

e
2, v

e
3), (v

e
3, v

e
4), (v

e
4, v

e
1), (u

e
3, v

e
4), (v

e
3, u

e
4)}.

For any vertex v ∈ V with δv = {e1, e2, e3}, define an edge set Ev by

Ev = {(ve1
1 , ve2

2 ), (ve2
1 , ve3

2 ), (ve3
1 , ve1

2 )},

and define

V ′ =
∪
e∈E

V e,

E′ =

( ∪
e∈E

Ee

)
∪

( ∪
v∈V

Ev

)
.

Note that Ev is depending on the ordering of e1, e2, and e3, and if three edges in δv are arranged in
an appropriate order for each v ∈ V , then G′ is planar. It is obvious that G′ is cubic and bipartite.

Set L = 3|V | + 1, and define the weight w : E′ → R+ by

w(e′) =


L if e′ = (ue

1, u
e
2), (v

e
1, v

e
2), (u

e
3, v

e
4), (v

e
3, u

e
4) for some e = (u, v) ∈ E,

1 if e′ ∈ Ev for some v ∈ V ,
0 otherwise.

Then the following claim holds.

Claim 5.3. The original graph G = (V,E) has an independent set of size k if and only if G′ =
(V ′, E′) contains a square-free 2-factor whose total weight is 4|E|L + 3k.
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Figure 7: Three patterns of M ∩ Ee.

Proof for the Claim 5.3. Let M ⊆ E′ be a square-free 2-factor in G′ whose total weight is at least
4|E|L. We show that such a square-free 2-factor in G′ and an independent set of G correspond to
each other. First, by the definition of L, one can see that M contains all edges of weight L. Then,
since M is a square-free 2-factor, we have the following three possibilities for each e = (u, v) ∈ E
(see Figure 7);

M ∩ Ee =


Ee \ {(ue

3, u
e
4), (v

e
3, v

e
4)},

Ee \ {(ue
1, u

e
4), (u

e
2, u

e
3), (v

e
3, v

e
4)},

Ee \ {(ve
1, v

e
4), (v

e
2, v

e
3), (u

e
3, u

e
4)}.

(2)

Note that a 2-factor is a collection of cycles covering all vertices.
For a vertex v ∈ V with δv = {e1, e2, e3}, let Cv be a cycle of length six in G′ through

ve1
1 , ve1

2 , ve2
1 , ve2

2 , ve3
1 , and ve3

2 . Then, each cycle in M is contained in Ee for some e ∈ E or coincides
with Cv for some v ∈ V .

Let VM ⊆ V be a vertex set defined by VM = {v | v ∈ V, E(Cv) ⊆ M}. By (2), VM is an
independent set of G. On the other hand, when we are given an independent set I of G, we can
construct a square-free 2-factor M in G′ such that M contains Cv for v ∈ I and w(M) ≥ 4|E|L by
(2). As above, an independent set I of G and a square-free 2-factor M in G′ with w(M) ≥ 4|E|L
correspond to each other.

Since M contains 3|VM | edges of weight 1, w(M) = 4|E|L + 3|VM |, which shows the claim.

By this claim, the independent set problem in G is equivalent to the weighted square-free
2-factor problem in (G′, w).

Now we can easily give a proof for Theorem 5.1.

Proof for Theorem 5.1. Let G = (V,E) and w be an instance of the weighted square-free 2-
factor problem. Define a new weight function w′ : E → R+ by w′(e) = L + w(e), where
L = n(maxe∈E w(e)) + 1. We consider an instance (G,w′) of the weighted square-free 2-matching
problem. Then, by the definition of w′, the optimal solution M of the weighted square free 2-
matching problem must be a 2-factor if w′(M) ≥ nL, and in this case M is also an optimal solution
of the original problem. If w′(M) < nL, we can conclude that G has no 2-factors.

Therefore, we can reduce the weighted square-free 2-factor problem to the weighted square-free
2-matching problem, which means that Theorem 5.1 can be derived from Theorem 5.2.

Since the graph G′ in the proof of Theorem 5.2 contains no complete bipartite graph with five
vertices (i.e. K1,4 and K2,3) as a subgraph, its complement graph is (|V ′| − 4)-connected. Hence,
we also obtain the following theorem.

Theorem 5.4. The weighted (n − 3)-connectivity augmentation problem is NP-hard.
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6 Weighted square-free 2-matchings

We have already seen in Section 5 that the weighted square-free 2-matching problem in subcubic
graphs is NP-hard for general weight functions. In this section, we show that the weighted square-
free 2-matching problem is polynomially solvable if the weight function is vertex-induced on every
square.

Suppose that for a weighted (not necessarily simple) graph (G,w) and for a vector x ∈ {0, 1, 2}V ,
we can find in γ2 time an edge set F ⊆ E maximizing w(F ) such that dF = x. Note that γ2 is
bounded by O(n(m+n log n)) [14] and O(m log(nw(E))

√
nα(m, n) log n) [15], where α is the inverse

of the Ackermann function.

Theorem 6.1. In a weighted subcubic graph (G,w), if w is vertex-induced on every square in G,
then the weighted square-free 2-matching problem is solvable in O(n3γ2) time.

In what follows, in this section, we give a proof for Theorem 6.1. In our proof, we show the
relation between the weighted square-free 2-matching problem and M-concave functions, which are
a quantitative extension of jump systems.

6.1 M-concave functions

An M-concave (M-convex) function on a constant-parity jump system is a quantitative extension
of a jump system, which is a generalization of valuated matroids [5, 7], valuated delta-matroids [6],
and M-concave (M-convex) functions on base polyhedra [33, 34].

Definition 6.2 (M-concave function on a constant-parity jump system [35]). For J ⊆ ZV , we call
f : J → R an M-concave function on a constant-parity jump system if it satisfies the following
exchange axiom:

(M-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-increment t
such that x + s + t ∈ J , y − s − t ∈ J , and f(x) + f(y) ≤ f(x + s + t) + f(y − s − t).

It directly follows from (M-EXC) that J satisfies (EXC), and hence J is a constant-parity jump
system. We call a function f : J → R an M-convex function if −f is an M-concave function on a
constant-parity jump system. M-concave functions on constant-parity jump systems appear in many
combinatorial optimization problems such as the weighted matching problem, the minsquare factor
problem [1], and the weighted even factor problem in odd-cycle-symmetric digraphs [29]. Some
properties of M-concave functions are investigated in [28], and efficient algorithms for maximizing
an M-concave function on a constant-parity jump system are given in [36, 38].

Theorem 6.3 (Murota and Tanaka [36]). Let J ⊆ ZV be a finite constant-parity jump system, and
f : J → Z be an M -concave function on J . Suppose that a vector x0 ∈ J is given, and we can check
whether x ∈ J or not and evaluate f(x) in γ time. Then we can find a vector x ∈ J maximizing
f(x) in O(n3Φ(J))γ) time.

Note that O(n4(log Φ(J))2γ) time algorithm is proposed in [38] also for this problem.

6.2 Relation with M-concave functions

In this subsection, we consider a generalization of Theorem 3.3. For a weighted subcubic graph
(G,w), define a function fsq on Jsq(G) by

fsq(x) = max

{∑
e∈M

w(e)
∣∣∣∣ M is a square-free 2-matching, dM = x

}
.
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Then, the following theorem holds.

Theorem 6.4. For a weighted subcubic graph (G,w), if w is vertex-induced on every square in G,
fsq is an M-concave function on the constant-parity jump system Jsq(G).

In what follows, in this subsection, we give a proof for this theorem. In a similar way as
Theorem 3.3, we use the procedure in Section 4.2 to find an (x + s, y)-increment t satisfying (M-
EXC) for given x, y, and s. We now consider the weight of the output. Define E1 ⊆ E as the set of
all shrunk edges, that is, E1 = E(C1)∪· · ·∪E(Cq), and let E0 = E \E1. Define w(F ) =

∑
e∈F w(e)

for F ⊆ E. Then the following lemma holds.

Lemma 6.5. Let M and N be square-free 2-matchings in G, whose shrunk edge sets in G◦ are M◦

and N◦, respectively. Let M∗, N∗ be square-free 2-matchings in G◦ obtained from M and N by the
procedure in Section 4.2. Then, w(M∗ ∩ E0) + w(N∗ ∩ E0) = w(M◦ ∩ E0) + w(N◦ ∩ E0).

Proof. If (M∗, N∗) = (M (l), N (l)), (M ′, N ′), (M ′′, N ′′), then M∗+N∗ = M◦+N◦, where “+” means
the union when we consider the multiplicity of the edges. Hence, w(M∗∩E0)+w(N∗∩E0) = w(M◦∩
E0) + w(N◦ ∩ E0). If (M∗, N∗) = (M ′′′, N ′′′) then M∗ + N∗ = M◦ + N◦ − {(u2, vp+1), (u3, u4)} +
{(u2, u3), (vp+1, u4)}, where “−” means the difference of sets when we consider the multiplicity of
the edges. Since w is vertex-induced on (vp+1, u2, u3, u4), we have w(M∗ ∩ E0) + w(N∗ ∩ E0) =
w(M◦ ∩ E0) + w(N◦ ∩ E0).

Lemma 6.6. Let M∗, N∗ and t◦ be the outputs of the procedure in Section 4.2. Suppose that M∗∗

and N∗∗ are square-free 2-matchings which are expanded edge sets of M∗ and N∗, respectively, and
t is a (dM + s, dN − s)-increment corresponding to t◦ such that dM∗∗ = dM + s + t and dN∗∗ =
dN − s − t. Then, w(M∗∗) + w(N∗∗) = w(M) + w(N).

Proof. By Lemma 6.5, it suffices to show that

w(M∗∗ ∩ E(Ci)) + w(N∗∗ ∩ E(Ci)) = w(M ∩ E(Ci)) + w(N ∩ E(Ci)) (3)

for any shrunk cycle Ci. Since dM∗∗∩E0 + dN∗∗∩E0 = dM∩E0 + dN∩E0 and dM∗∗ + dN∗∗ = dM + dN ,
it holds that dM∗∗∩E(Ci) + dN∗∗∩E(Ci) = dM∩E(Ci) + dN∩E(Ci). Then the equation (3) holds because
w is vertex-induced on Ci.

We are now ready to show Theorem 6.4.
Proof for Theorem 6.4. For x, y ∈ Jsq(G) and an (x, y)-increment s, let M and N be square-free 2-
matchings such that dM = x, dN = y, w(M) = fsq(x), and w(N) = fsq(y). As with Assumption 4.6,
we assume that M and N maximize |M ∩ N | among such 2-matchings.

Let M∗∗, N∗∗, and t be as in Lemma 6.6. If t is not an (x + s, y)-increment, then dM∗∗ = dM

and dN∗∗ = dN . Since w(M∗∗) + w(N∗∗) = w(M) + w(N) by Lemma 6.6, w(M∗∗) = w(M) and
w(N∗∗) = w(N). However, |M∗∗ ∩ N | > |M ∩ N | contradicts the maximality of |M ∩ N |. Thus, t
is an (x + s, y)-increment.

On the other hand, by Lemma 6.6, we have

fsq(x) + fsq(y) = w(M) + w(N)
= w(M∗∗) + w(N∗∗)
≤ fsq(x + s + t) + fsq(y − s − t).

Hence fsq is an M-concave function on Jsq. ¤
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6.3 Polynomial time algorithm

In this section, we give a proof for Theorem 6.1 with the aid of previous works on M-concave
functions. As a generalization of Lemma 3.4, we show the following lemma.

Lemma 6.7. Given a weighted subcubic graph (G,w) and a vector x ∈ Jsq(G), we can calculate
fsq(x) in O(γ2) time if w is vertex-induced on every square.

Proof. Take edge-disjoint cycles C1, C2, . . . , Cq of length four maximally such that x(v) = 2 for
each v ∈

∪
V (Ci). Let G◦ = (V ◦, E◦) denote the graph obtained from G = (V,E) by shrinking

C1, C2, . . . , Cq. Let ui
1 and ui

2 denote the vertices arising when shrinking Ci = (vi
1, v

i
2, v

i
3, v

i
4). Let p

be a function on
∪

V (Ci) that induces w on E(Ci) simultaneously. Since the cycles C1, . . . , Cq are
disjoint we can find such p. Let E0, E1, V0, V1 and x◦ be the same as in the proof of Lemma 3.4.
We define w◦ : E◦ → R as follows (see Figure 8):

w◦(e) =


w(e) if e = (u, v) where u, v ∈ V0,
w(e) − p(v) if e = (u, v) where u ∈ V0 and v ∈ V ◦ \ V0,
w(e) − p(u) − p(v) if e = (u, v) where u, v ∈ V ◦ \ V0,
p(vi

1) + p(vi
2) + p(vi

3) + p(vi
4) if e = (ui

1, u
i
2).

We will show that fsq(x) = f(x◦) + p(V1) where

f(x◦) = max

{ ∑
e∈M◦

w◦(e)
∣∣∣∣ M◦ is a 2-matching in G◦, dM◦ = x◦

}
.

Clearly, that would prove the lemma since f(x◦) can be calculated in O(γ2) time.
For a square-free 2-matching M with dM = x we can get a 2-matching M◦ in G◦ with dM◦ = x◦,

and conversely, for any 2-matching M◦ of G◦ with dM◦ = x◦ we can define a square-free 2-matching
M of G with dM = x as described in Lemma 3.4. One only has to observe that for a corresponding
pair M,M◦, we have w(M) = w◦(M◦) + p(V1). This means that for any M with dM = x and
w(M) = fsq(x) we can find an M◦ with w◦(M◦) = fsq(x) − p(V1), and conversely, for any M◦

with dM◦ = x◦ and w◦(M◦) = f(x◦) we can find an M with w(M) = f(x◦) + p(V1), hence we are
done.

Theorem 6.1 follows from Lemma 6.7 and Theorems 6.3 and 6.4.

7 A min-max formula

In this section we give a min-max formula that characterizes the maximum size of a square-free
2-matching in a subcubic graph. The proof is based on the connection between square-free 2-
matchings in G and 2-matchings in G◦ that was described in Section 3.

We begin with a few definitions. For a vertex set S of G = (V,E) and a subgraph T of G − S,
let E(T, S) be the set of edges of E connecting S and T . Similarly, for a vertex v ∈ V , E(v, S) is
the set of edges of E connecting v and S. For S ⊆ V and u ∈ S, S \{u} is simply denoted by S−u.

The following characterization of the maximum size of a 2-matching (not necessarily square-free)
can be derived from a construction of Tutte [41].

18



p1

p2

p4

p3

p5

p6 p7

p8

w(a)

w(b) w(c)

w(d)

w(e) w(f)

w(g)

w(a) − p1

w(b) − p2 w(c) − p3 w(e) − p6

w(d) − p4 − p5

w(g) − p8

w(f) − p7

: edges in M

: edges in M◦

w(M) = w(a) + w(d) + w(f) + p1 + p4 + p5 + p7 + 2p2 + 2p3 + 2p6 + 2p8

w◦(M◦) = w(a) + w(d) + w(f) + p2 + p3 + p6 + p8

∑4
i=1 pi

∑8
i=5 pi

Figure 8: Example of w◦(M◦)

Theorem 7.1. Let G = (V,E) be a graph. The maximum size of a 2-matching in G is equal to
the minimum value of

τG(U, S) = |V | + |U | − |S| +
∑
T

⌊1
2 |E(T, S)|⌋, (4)

where U and S are disjoint subsets of V , S is stable, and T ranges over the components of G−U−S.

We drop the subscript G if it is clear from the context. Our first observation is that U can be
eliminated from the formula in the subcubic case.

Theorem 7.2. Let G = (V,E) be a subcubic graph. The maximum size of a 2-matching in G is
equal to the minimum value of

τ ′
G(S) = |V | − |S| +

∑
T

⌊1
2 |E(T, S)|⌋, (5)

where S is a stable subset of V , and T ranges over the components of G − S.
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Proof. Let U and S be disjoint subsets of V that minimize (4). If U = ∅, then we are done,
otherwise take a node u ∈ U . As G is subcubic, d(u) ≤ 3 and so we have the following cases.

• If u has all of its neighbors in U ∪ S, then u is a component of G − (U − u) − S and
⌊1

2 |E(u, S)|⌋ ≤ 1. Hence τ(U − u, S) ≤ τ(U, S).

• If u has exactly one neighbor in V \(U∪S), then let T be the component of G−U−S containing
the neighbor of u. Then ⌊1

2 |E(T + u, S)|⌋ ≤ ⌊1
2 |E(T, S)|⌋ + 1, hence τ(U − u, S) ≤ τ(U, S).

• If u has exactly two neighbors in V \ (U ∪ S), then we have two subcases. If these neighbors
are contained in the same component T of G−U −S then ⌊1

2 |E(T +u, S)|⌋ ≤ ⌊1
2 |E(T, S)|⌋+1

so τ(U − u, S) ≤ τ(U, S). If the two neighbors are contained in T1 and T2, then T1 + T2 + u
will form one component of G − (U − u) − S. It is easy to see that ⌊1

2 |E(T1 + T2 + u, S)|⌋ ≤
⌊1

2 |E(T1, S)|⌋ + ⌊1
2 |E(T2, S)|⌋ + 1 which implies τ(U − u, S) ≤ τ(U, S) again.

• If u has three neighbors in V \ (U ∪S), then, depending on the position of these neighbors in
the components of G − U − S, we may get one from two or three components when leaving
u out from U . One can easily check that the sum in (4) belonging to the components of
G−U −S may increase only by one in each case while the size of U always decreases by one.
That means that τ(U − u, S) ≤ τ(U, S).

The observations above imply that if U and S attain the minimum in (4) and the graph is
subcubic, then we can make U empty by trimming its nodes one by one so that the value τ(U, S)
does not increase. At the end, we get a stable set S for which τ ′(S) = τ(U, S), and we are done.

Now we turn to the min-max formula characterizing the maximum size of a square-free 2-
matching. Let G be a subcubic graph, let S be a stable subset of V , and take a set C of edge-disjoint
cycles C1, . . . , Cq of length four. We define the C-components of G − S as follows.

Definition 7.3 (C-component). We say that u, v ∈ V \ S are in the same C-component of G − S
if and only if one of the followings hold:

• u and v are in the same component of G − S, or

• u ∈ V (T1), v ∈ V (T2) (where T1 and T2 are components of G − S), and there is a cycle
C = (v1, v2, v3, v4) ∈ C such that v1 ∈ V (T1), v3 ∈ V (T2), v2, v4 ∈ S.

We say that C = (v1, v2, v3, v4) ∈ C fits a C-component T if v1, v3 ∈ V (T ) and v2, v4 ∈ S.

In other words, a C-component is the union of some components of G − S that are connected
with cycles from C in a special configuration. Using this definition, we can formalize our result.

Theorem 7.4. Let G = (V,E) be a subcubic graph and let C be a maximal set of edge-disjoint
cycles of length four. The maximum size of a square-free 2-matching in G is equal to the minimum
value of

τG(S) = |V | − |S| +
∑
T

⌊1
2(|E(T, S)| − |CT |)⌋ − |K|, (6)

where S is a stable subset of V , T ranges over the C-components of G − S, CT ⊆ C denotes the set
of cycles fitting T , and K is the set of K4’s in G.

Seemingly, the minimum value of (6) also depends on the choice of C. The theorem implies that
we can anyhow take edge-disjoint cycles maximally, the minimum value of τG(S) will always be the
same, namely, the maximum size of a square-free 2-matching.
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Proof. As a K4 forms a component of G, first we handle such a component separately. Let T ∈ K
be a K4-subgraph of G. For a stable set S ⊆ V , |S ∩ V (T )| = 0 or 1 by the definition, and in
both cases, |S∩V (T )| = ⌊1

2(|E(T, S)|− |CT |)⌋. Thus, a square-free 2-matching M of maximum size
satisfies that

|M ∩ E(T )| = 3 = |V (T )| − |S ∩ V (T )| + ⌊1
2(|E(T, S)| − |CT |)⌋ − 1,

and hence it suffices to consider the case when G has no K4 as a subgraph.
First we show that the maximum is not more than the minimum. Let M be a square-free

2-matching and take a stable subset S of V . We claim that for each C-component T of G − S, the
number of edges in M spanned by V (T ) ∪ S is at most |V (T )| + ⌊1

2(|E(T, S)| − |CT |)⌋. Indeed,

2|M ∩ E(T + S)| = 2|M ∩ E(T )| + 2|M ∩ E(T, S)|
≤ 2|M ∩ E(T )| + |M ∩ E(T, S)| + |E(T, S)| − |CT |
≤ 2|V (T )| + |E(T, S)| − |CT |.

Here, T + S denotes the graph induced by V (T ) ∪ S. Hence we have

|M | ≤
∑
T

(|V (T )| + ⌊1
2(|E(T, S)| − |CT |)⌋)

= |V | − |S| +
∑
T

⌊1
2(|E(T, S)| − |CT |)⌋.

Now we turn to the reverse inequality. According to the above mentioned, we may assume that
G does not contain a K4. Let C = {C1, . . . , Cq} and let G◦ = (V ◦, E◦) denote the graph obtained
from G = (V,E) by shrinking C1, C2, . . . , Cq. By Theorem 7.1, the maximum size of a 2-matching
in G◦ is equal to the minimum value of

τ ′
G◦(S◦) = |V ◦| − |S◦| +

∑
T ◦

⌊1
2 |E

◦(T ◦, S◦)|⌋. (7)

From now let S◦ ⊆ V ◦ be a stable set attaining the minimum in (7). In Section 3, we have
already shown that the maximum size of a square-free 2-matching in G is equal to τ ′

G◦(S◦) + 2q.
So we only have to find a stable subset S of V such that τG(S) = τ ′

G◦(S◦) + 2q.
Let S denote the set of nodes in V that corresponds to S◦. Since no self-loops are incident

to vertices in S◦ by the definition of a stable set, S is obviously stable. We claim that τG(S) =
τ ′
G◦(S◦) + 2q. To see this, we will blow back the cycles one by one and show that (7) increases

by two at each step. Assume that some of the cycles are already blown back, and G′ and S′ are
the actual graph and stable set, while G′′ and S′′ are those arising after blowing back the next
square-edge. We also use the notation C′ and C′′ for the set of cycles already blown back.

If the edge has both of its end-vertices in V ′ \ S′ then |V ′′| = |V ′| + 2. Also |S′′| = |S′| and
the set of edges going between S′ and V ′ \ S′ does not change. Hence τG′′(S′′) = τG′(S′) + 2. Now
assume that the square-edge has one of its end-vertices in S′ and the other in T ′ where T ′ is a
C′-component of G′ − S′. Then we have |V ′′| = |V ′| + 2, |S′′| = |S′| + 1, and |E(T ′′, S′′)| − |C′′

T ′′ | =
|E(T ′, S′)| − |C′

T ′ | + 2. Hence τG′′(S′′) = τG′(S′) + 2 again, and we are done.

Remark 7.5. It is easy to see that both an algorithm and a min-max theorem can be presented
in the slightly more general case when a list of forbidden squares is given in the graph. That is, if
we denote by L the list, we are looking for a maximum L-free 2-matching M where L-free means
that M contains at most three edges from each square in L. The only difference is that we have to
take edge-disjoint cycles of length four maximally from L and only shrink these cycles.
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By using the min-max result, we can prove a special case of a conjecture of Jordán appeared in
[8]. To describe the conjecture, first we give some definitions.

We call an ordered pair L = (Z,P) a clump of G if Z is a cut of size k − 1 and P is a partition
of V \Z such that no edge of G joins two distinct member of P. A clump L covers a pair of nodes
u, v if u and v belong to distinct members of P. A bush B is a set of clumps such that each pair
of nodes is covered by at most two of them. A bush B covers a pair of nodes if it contains a clump
covering them. Two bushes B1 and B2 are disjoint if no pair of nodes is covered by both of them.
Let

σ(B) = ⌈1
2

∑
(Z,P)∈B

(|P| − 1)⌉.

It is easy to see that in order to make G k-connected, one must add a set of at least
∑

B∈D σ(B)
edges to G for any collection D of disjoint bushes.

Conjecture 7.6 (Bushy-conjecture). Let G be a (k − 1)-connected graph. Then the minimum
number of edges that must be added to G to make it k-connected is equal to the maximum value of∑

B∈D σ(B), where the maximum is taken over all sets of pairwise disjoint bushes D of G.

The conjecture can be easily verified for k = n− 1 and n− 2. Now we show how it follows from
our min-max result when k = n − 3.

Theorem 7.7. Let G be a (n− 4)-connected graph. Then the minimum number of edges that must
be added to G to make it (n − 3)-connected is equal to the maximum value of

∑
B∈D σ(B), where

the maximum is taken over all sets of pairwise disjoint bushes D of G.

Proof. Obviously, the maximum is at most the minimum. We prove the reverse inequality. Let
G = (V, E) be the complement of the graph, which is a subcubic graph. We have already seen
that a graph is (n − 3)-connected if and only if its complement is a square-free 2-matching. Take
edge-disjoint cycles C1, . . . , Cq of length four maximally in G. However, we know, by the min-max
result, that the minimum number of edges that must be added to G to make it (n − 3)-connected
is equal to the maximum value of

|E| − (|V | − |S| +
∑
T

⌊1
2(|E(T, S)| − |CT |⌋ − |K|), (8)

where S is a stable subset of V in G, T ranges over the C-components of G − S, and K is the set
of K4’s of G. Assume that S attains the minimum in (8). Let T1, . . . , Tt be the C-components of
G − S intersecting no K4. We will define a set of disjoint bushes D of G such that∑

B∈D
σ(B) ≥ |E| − (|V | − |S| +

∑
T

⌊1
2(|E(T, S)| − |CT |⌋ − |K|), (9)

which would clearly prove the theorem.
For i = 1, . . . , t, let Bi be the set of the following clumps:

• for v ∈ Ti with dG(v) = 3, let L be the star of v, namely L = (Z,P) where Z = V \ (NG(v)∪
{v}) and P = {{v}, NG(v)};

• for a cycle C = (v1, v2, v3, v4) ∈ C fitting Ti, let L = (Z,P) be a clump such that Z = V \V (C)
and P = {{v1, v3}, {v2, v4}}.
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Here NG(v) is the set of vertices adjacent to v in G.
Clearly, these pairs are clumps in G. Moreover, each pair of nodes is covered by at most two of

them. Hence the Bi’s form a set D of pairwise disjoint bushes of G. We have

σ(Bi) = ⌈1
2

∑
(Z,P)∈Bi

(|P| − 1)⌉

= ⌈1
2(|{v ∈ V (Ti) | dG(v) = 3}| + |CTi |)⌉

≥ ⌈1
2(

∑
v∈Ti

(dG(v) − 2) + |CTi |)⌉

= ⌈1
2(2|E(Ti)| + |E(Ti, S)| − 2|V (Ti)| + |CTi |)⌉

= |E(Ti)| − |V (Ti)| + ⌈1
2(|E(Ti, S)| + |CTi |)⌉

= |E(Ti ∪ S)| − |V (Ti)| − ⌊1
2(|E(Ti, S)| − |CTi |)⌋

Note that for a subgraph T of G = (V, E), E(T ) is the set of edges of T .
For T ∈ K, the bush BT will contain a single clump twice. Namely, if V (T ) = {v1, v2, v3, v4},

then L = (Z,P) is defined by Z = V \ V (T ) and P = {{v1}, {v2}, {v3}, {v4}}. Clearly, σ(BT ) = 3.
By summing these values over the bushes defined above we get

∑
B∈D

σ(B) ≥
t∑

i=1

(|E(Ti + S)| − |V (Ti)| − ⌊1
2(|E(Ti, S)| − |CTi |)⌋) + 3|K|

=
∑
T

(|E(T + S)| − |V (T )| − ⌊1
2(|E(T, S)| − |CT |)⌋) + |K|

= |E| − (|V | − |S| +
∑
T

⌊1
2(|E(T, S)| − |CT |⌋ − |K|),

where T ranges over the C-components of G−S and the second equality follows from |E(T +S)| =
6, |V (T )| = 4 if T ∈ K and |E(T + S)| = 6, |V (T )| = 3, |E(T, S)| = 3 if T + v ∈ K for some
v ∈ S.
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