Resolution of non-singularities and absolute anabelian conjecture

Emmanuel Lepage

IMJ-PRG, Sorbonne Université

2nd Kyoto-Hefei Workshop on Arithmetic Geometry

Emmanuel Lepage (Jussieu)

Resolution of non-singularities

Nyoto-Heler Workshop on Antinhelic der 22 X, Y: hyperbolic curves over finite extension of \mathbb{Q}_p

- Absolute anabelian conjecture AAC(X, Y): Isomorphisms of étale fundamental group Π_X ≃ Π_Y come from isomorphisms X ≃ Y (absolute: not given with an augmentation map to G_K)
- Resolution of non-singularities (*RNS_X*): Every semistable model of X is dominated by the stable model of some finite étale cover of X
- Main result of this talk:

$$RNS_X \& RNS_Y \implies AAC(X, Y)$$

伺 ト イ ヨ ト イ ヨ

Theorem (S. Mochizuki)

X/K, Y/L: two hyperbolic curves over sub-p-adic fields. Π_X, Π_Y : étale fundamental groups of X and Y. G_K, G_L : absolute Galois groups of L and K. Assume following commutative diagram:

$$\begin{array}{c} \Pi_X \xrightarrow{\sim} \Pi_Y \\ \downarrow & \downarrow \\ G_K \xrightarrow{\sim} G_L \end{array}$$

such that $G_K \to G_L$ is induced by an isomorphism $K \xrightarrow{\sim} L$. Then $\Pi_X \to \Pi_Y$ is induced by an isomorphism $X \xrightarrow{\sim} Y$

A (10) A (10)

Conjecture (AAC(X,Y), S. Mochizuki)

X/K, Y/L: two hyperbolic curves over p-adic fields. Π_X, Π_Y : étale fundamental groups of X and Y. Assume we have an isomorphism:

 $\phi:\Pi_X\stackrel{\sim}{\to}\Pi_Y$

Then $\Pi_X \to \Pi_Y$ is induced by an isomorphism $X \xrightarrow{\sim} Y$

Proposition

Under the same assumptions, ϕ induces an isomorphism $G_K \xrightarrow{\sim} G_L$ (but not known to be geometric in general)

Remark

Neukirch-Uchida + Rel. AC \implies AAC over Number Fields

Emmanuel Lepage (Jussieu)

Definition

A hyp. curve X is of Quasi-Belyi type if there are maps:

$$X \xleftarrow{f.\acute{et.}} Y \ voltimizer dominant \ \mathbb{P}^1 \setminus \{0, 1, \infty\}$$

Theorem (Mochizuki)

If X, Y are curves of quasi-Belyi type, then AAC(X, Y) is true.

- A - E - N

Intermediate steps

 $\widetilde{X} = \underset{(S,s_0)\to(X,x_0)}{\underbrace{\lim}} S$: universal pro-finite étale cover of X. Natural action $\prod_X \curvearrowright \widetilde{X}$

Definition

Let *x* closed point of *X* and *x̃* ∈ *X̃* a preimage of *x*.
 D_{x̃} = Stab_{Π_X}(*x̃*) ⊂ Π_X: decomposition group of *x D_{x̃}* = conjugacy class of *D_{x̃}*.

An isomorphism φ : Π_X → Π_Y is point-theoretic if D ⊂ Π_X is a decomposition group if and only if φ(Π_X) is a decomposition group.

Proposition

Let $\phi : \Pi_X \xrightarrow{\sim} \Pi_Y$ be point-theoretic, then ϕ is induced by an isomorphism $X \xrightarrow{\sim} Y$

Characterization of decomposition groups via *curspidalization* techniques.

Emmanuel Lepage (Jussieu)

Resolution of non-singularities

Definition

Let X be a hyperbolic curve over an algebraic closure Q_p of Q_p. X satisfies resolution of non-singularities (*RNS_X*) if for every semi-stable model X of X, there exists a finite étale cover *f* : Y → X such that *f* extends to a morphism 𝔅 → 𝔅 where 𝔅 is the stable model of Y.

$$Y \xrightarrow{\text{st.model}} \mathfrak{Y} \xrightarrow{\text{st.model}} \mathfrak{Y} \xrightarrow{\text{f. \acute{e}t}} X \xrightarrow{\text{semi-st.model}} \mathfrak{X}$$

Let X be a hyperbolic curve over a finite extension K of Q_p. X satisfies resolution of non-singularities (RNS_X) if its pullback to an algebraic closure of K does.

< ロ > < 同 > < 回 > < 回 >

Definition

A valuation v on K(X) is of type 2 if it extends the valuation of \mathbb{Q}_p and its residue field \tilde{k}_v is of transcendance degree 1 over \mathbb{F}_p .

Example

If \mathfrak{X} is a normal model of X and Z is a irreducible component of the special fiber \mathfrak{X}_s , then $v_z = mult_Z$ is a valuation of type 2 on K(X). A valuation of this form where \mathfrak{X} is the stable model (if it exists) is called *skeletal*

Proposition

X satisfies resolution of non-singularities if and only if for every valuation v of type 2 on K(X), there exists a finite étale cover $Y \rightarrow X$ and a skeletal valuation v' on K(Y) such that $v = v'_{|K(X)}$.

ヘロマ 人間 アメヨアメヨ

Example of Curves with RNS

A smooth curve over $\overline{\mathbb{Q}}_p$ is a Mumford curve if every normalized irreducible component of its stable model is isomorphic to \mathbb{P}^1 .

Theorem

Let X, Y be two hyperbolic curves over $\overline{\mathbb{Q}}_p$ and assume that Y satisfies RNS.

- **1** If there is a dominant map $f : X \to Y$, then X satisfies RNS.
- **2** If there is a finite étale cover $f : Y \rightarrow X$, then X satisfies RNS.
- If X is a (punctured) Mumford curve, then X satisfies RNS.
- If X is of Belyi type, then X satisfies RNS.

$$X \leftarrow Y$$

$$f.\acute{et} \qquad Y$$

$$dominant$$

$$Z \qquad : hyp. (punctured) Mumford curve$$

Resolution of non-singularities

Theorem

Let X and Y be two hyperbolic curves over finite extensions of \mathbb{Q}_p satisfying RNS. Then every isomorphism of fundamental groups $\phi : \Pi_X \xrightarrow{\sim} \Pi_Y$ is induced by an isomorphism $X \simeq Y$.

Remark

Includes some proper curves, contrary to the quasi-Belyi type result.

Sketch of the proof:

- Step 1: One just needs to show that ϕ is *point-theoretic*.
- Step 2: Recovery of the topological Berkovich space.
- Step 3: Characterization of rigid points.

Let X be an alg. variety /K non-archimedean field. If X = Spec A,

 $X^{an} = \{ \text{mult. semi - norms } A \rightarrow \mathbb{R}_{\geq 0}, \text{extending norm of } K \}$

topology: coarsest s.th. $\forall f \in A, x := |-(x)| \in X \mapsto |f(x)| \in \mathbb{R}$ cont. $X \mapsto X^{an}$ functorial, maps open coverings to open coverings. \implies glues together for general X. set theor., $X^{an} = \{(x, |-|); x \in X, |-| : \text{mult. norm on } k(x)\}$ Example of points:

•
$$\implies$$
 $X_{cl} \hookrightarrow X^{an}$ (rigid points)

- $X(\widehat{\overline{K}}) \to X^{an}$ (type 1 points (\supset rigid points))
- If X is a smooth curve, valuations of type 2 on K(X) induce points in X^{an} (type 2 points)

Let $X = \operatorname{Spec}(C_{\rho}[T]) = \mathbb{A}^{1}_{C_{\rho}}$. If $a \in C_{\rho}, r \in \mathbb{R}_{\geq 0}, |\sum_{i} a_{i}(T-a)^{i}|_{b_{a,r}} := \max_{i}(|a_{i}|r^{i}) \longrightarrow b_{a,r} \in \mathbb{A}^{1,\operatorname{an}}_{C_{\rho}}$

- If r=0, *b*_{*a*,*r*} of type 1.
- If $r \in |p|^{\mathbb{Q}}$, $b_{a,r}$ of type 2.
- If $r \notin |p|^{\mathbb{Q}}$, $b_{a,r}$ of type 3 (rk($|\mathcal{K}(X)^{\times}|_{b_{a,r}}) = 2$).
- + points of type 4 corr. to decreasing sequences of balls with empty intersection, completion of K(X) is an immediate extension of C_p.

不得る とうちょうちょ

Berkovich curves

X/K: smooth curve over non-archimedean field \overline{X} : smooth compactification of X \mathfrak{X}/O_K : semi-stable model of X/K $\mathbb{G}_{\mathfrak{X}}$: dual graph of the semi-stable curve \mathfrak{X}_s There is a natural topological embedding ι and a strong deformation retraction π :

 $X^{an} \setminus \iota(\mathbb{G}_{\mathfrak{X}})$: disjoint union of potential open disks (becomes a disk after finite extension of the base field).

By taking the inverse limit over all potential semi-stable models, they induce a homeomorphism

$$\overline{X}^{\operatorname{an}} \xrightarrow{\sim} \varprojlim_{\mathfrak{X}/K'} \mathbb{G}_{\mathfrak{X}}$$

< 🗇 > < 🖻 > < 🖻 >

• Step 2: Recovery of the topological Berkovich space.

Theorem (Mochizuki)

Let X/K and Y/L be two hyperbolic curves over finite extensions of \mathbb{Q}_p that admit stable models \mathfrak{X}/O_K and \mathfrak{Y}/O_L . They are naturally enriched as log-schemes \mathfrak{X}^{log} and \mathfrak{Y}^{log} . Then every isomorphism $\Pi_X \xrightarrow{\sim} \Pi_Y$ induces an isomorphism of log-special fibers $\phi^{log} : \mathfrak{X}_s^{log} \xrightarrow{\sim} \mathfrak{Y}_s^{log}$.

In particular, it induces an isomorphism of dual graphs of the stable reduction: $\phi_{\mathbb{G}} : \mathbb{G}_X \xrightarrow{\sim} \mathbb{G}_Y$.

If X satisfies RNS, one gets a natural homeomorphism

$$\widetilde{X}^{an} \subset \overline{\widetilde{X}}^{an} := \varprojlim_{\mathcal{S}} \overline{\mathcal{S}} \xrightarrow{\sim} \varprojlim_{(\mathcal{S},s)} \mathbb{G}_{\mathcal{S}},$$

where *S* goes through pointed finite étale covers of *X* admitting stable reduction over their constant field (\overline{S} : smooth compactification of *S*). Apply isom. (–)_G to open subgps of Π_X and Π_Y , \leadsto homeomorphism

$$\widetilde{\phi}:\widetilde{X}^{\operatorname{an}}\xrightarrow{\sim}\widetilde{Y}^{\operatorname{an}}$$

(compatible with the actions of Π_X and Π_Y and ϕ). Quotient by actions of the fundamental groups (resp. geom. fund. groups) \longrightarrow

$$\phi^{an}: X^{an} \xrightarrow{\sim} Y^{an}$$
 (resp. $\phi^{an}_{\mathbb{C}_p}: X^{an}_{\mathbb{C}_p} \xrightarrow{\sim} Y^{an}_{\mathbb{C}_p}$).

Action compatibility \implies If $\tilde{x} \in \widetilde{X}^{an}$, $\phi(D_{\tilde{x}}) = D_{\tilde{\phi}(\tilde{x})}$

 \rightsquigarrow To show point-theoreticity, it is enough to show that ϕ^{an} maps rigid points to rigid points.

Emmanuel Lepage (Jussieu)

Does every homeomorphism $X^{an} \rightarrow Y^{an}$ preserves rigid points? No (cannot distinguish between type 1 and type 4 points). Need of a stronger property about this homeomorphism.

Step 3: Metric characterization of C_p-points. Let X be a semi-stable model of X_{C_p}, x a node of X_s. Then X étale loc. ~ Spec O_{C_p}[u, v]/(uv - a). Let e edge of dual graph G_X of X. Set *length*(e) := v(a) ↔ metric on G_X. X^{an}₍₂₎ ~ inj lim_X V(G_X) ↔ natural metric d on X^{an}₍₂₎.

$$\phi^{log}:\mathfrak{X}^{log}_{s} \xrightarrow{\sim} \mathfrak{Y}^{log}_{s} \implies \phi^{an}_{(2)}: X^{an}_{\mathbb{C}_{p},(2)} \to Y^{an}_{\mathbb{C}_{p},(2)}$$
 is an isometry.

< 回 > < 三 > < 三 >

Let $x_0 \in X_{(2)}^{an}$.

Proposition

Let $x \in X_{C_n}^{an}$, then x is a \mathbb{C}_p -point (is of type 1) if and only if:

$$d(x_0,x) := \sup_U \inf_{z \in U_{(2)}} d(x_0,z) = +\infty$$

where U goes through open neighbourhood of x in $X_{\mathbb{C}_n}^{an}$.

Sketch:

Metric extends to $\iota(\mathbb{G}_{\mathfrak{X}}) \leadsto$ reduce to the case of a disk in $X^{an}_{\mathbb{C}_p} \setminus \iota(\mathbb{G}_{\mathfrak{X}})$. In a disk, explicit description of the metric:

$$d(b_{a,r}, b_{a',r'}) = |log_p(r) - log_p(r')| \quad \text{if } |a - a'| \leq max(r, r')$$
$$= -2\nu(a - a') - log_p(r) - log_p(r')| \quad \text{if } |a - a'| \geq max(r, r')$$

If $b_{a',r'} \to x$ of type 1, $r' \to 0$ so $d(b_{a,r}, b_{a',r'}) \to +\infty$. If $(B(a_i, r_i))_{i \in \mathbb{N}}$ is a decreasing seq of balls s.t. $\bigcap_i B(a_i, r_i) = \emptyset$, $r_i \to r > 0$. ⇒ ϕ^{an} preserves points of type 1. If *x* is a point of type 1, then *x* is rigid, if and only if the image $p(D_x)$ by the augmentation map $p : \Pi_X \to G_K$ is open.

 $\implies \phi^{an}$ preserves rigid points.

< 回 > < 三 > < 三 >

If X satisfies RNS and $\Pi_X \simeq \Pi_Y$, does Y satisfies RNS? Not known in general...

Theorem (Mochizuki)

Let \mathcal{B} (curves of Belyi type) be the smallest family of hyperbolic orbicurves over finite extensions of \mathbb{Q}_p such that:

- $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ belong to \mathcal{B} ;
- If X belongs to B and Y → X is an open embedding, then Y belongs to B;
- If X belongs to \mathcal{B} and $Y \to X$ is finite étale, then Y belongs to \mathcal{B} ;
- If X belongs to \mathcal{B} and $X \to Y$ is finite étale, then Y belongs to \mathcal{B} .
- If X belongs to B and Y → X is a partial coarsification, then Y belongs to B.

If X and Y are hyperbolic orbicurves such that $X \in \mathcal{M}$, then every isomorphism $\Pi_X \xrightarrow{\sim} \Pi_Y$ comes from an isomorphism $X \xrightarrow{\sim} Y$

Corollary

Let \mathcal{M} be the smallest family of hyperbolic orbicurves over finite extensions of \mathbb{Q}_p such that:

- Hyperbolic (punctured) Mumford curves belong to \mathcal{M} ;
- If X belongs to M and Y → X is an open embedding, then Y belongs to M;
- If X belongs to \mathcal{M} and $Y \to X$ is finite étale, then Y belongs to \mathcal{M} ;
- If X belongs to \mathcal{M} and $X \to Y$ is finite étale, then Y belongs to \mathcal{M} .
- If X belongs to M and Y → X is a partial coarsification, then Y belongs to M.

If X and Y are hyperbolic orbicurves such that $X \in \mathcal{M}$, then every isomorphism $\Pi_X \xrightarrow{\sim} \Pi_Y$ comes from an isomorphism $X \xrightarrow{\sim} Y$

< 回 > < 三 > < 三 >

Let X/K be a proper Mumford curve.

- It is enough to show that the union of images of skeletal valuation by arbitrary finite étale morphisms are dense inside X^{an}.
- *p*-adic Hodge theory \implies $H^1(X, \mathbb{Z}_p(1)) \xrightarrow{p_X} H^0(X, \Omega^1_X) \otimes_K \mathbb{C}_p$ Local computation in a disk:

Lemma

If $c \in H^1(X, \mathbb{Z}_p(1))$, let $Y_{n,c} \xrightarrow{\phi_{n,c}} X$ be the finite étale μ_{p^n} -cover corr. to c. If $x \in X(\mathbb{C}_p)$ s.t. $\exists c \in H^1(X, \mathbb{Z}_p(1))$ s.t. $p_X(c) \neq 0$ and $mult_x p_X(c)$ is not of the form $p^k - 1$ for any k, then $\exists z_n \in (Y_{n,c})_{K_n}$ s.t. $\phi_{n,c}(z_n) \xrightarrow{n} x$.

Let X be a hyperbolic curve over K. Let x ∈ X(K'), where K' is a finite extension of K.

$$\begin{array}{c} H^{1}(X, \mathbb{Z}_{p}(1))/(\operatorname{Ker} p_{X}) & \longrightarrow & H^{0}(X, \Omega^{1}_{X}) \xrightarrow{\operatorname{ev}_{x}} K' \subset \mathbb{C}_{p} \\ & \swarrow & & \downarrow & & \downarrow \\ H^{1}(X', \mathbb{Z}_{p}(1))/(\operatorname{Ker} p_{X'}) & \longrightarrow & H^{0}(X', \Omega^{1}_{X'}) \end{array}$$

where X' is any topological finite cover and $x' \in X'(K')$ is a preimage of x.

As $g(X') \to \infty$, dim_{Q_p} $H^1(X', Q_p(1))/(\text{Ker } p_{X'}) \to \infty$, but dim_{Q_p} K' stays finite

$$\implies \exists (X',x') \text{ and } c \in H^1(X,\mathbb{Z}_p(1)) \setminus (\operatorname{Ker} p'_X) \text{ s.t. } p_X(c)(x') \neq 0.$$

4 AR N 4 E N 4 E N