# The Neukirch-Uchida theorem with restricted ramification 

Ryoji Shimizu

RIMS, Kyoto University

This presentation is based on my paper with the same title, whose preprint will be uploaded in a few weeks.

## Introduction

Let $K$ be a number field and $S$ a set of primes of $K$. We write $K_{S} / K$ for the maximal extension of $K$ unramified outside $S$ and $G_{K, S}$ for its Galois group.

The goal of this talk is to prove the following generalization of the Neukirch-Uchida theorem under as few assumptions as possible: "For $i=1,2$, let $K_{i}$ be a number field and $S_{i}$ a set of primes of $K_{i}$. If $G_{K_{1}, S_{1}}$ and $G_{K_{2}, S_{2}}$ are isomorphic, then $K_{1}$ and $K_{2}$ are isomorphic."

For this, as in the proof of the Neukirch-Uchida theorem, we first characterize group-theoretically the decomposition groups in $G_{K, S}$, and then obtain an isomorphism of fields using them.

## Notations

- $G(L / K) \stackrel{\text { def }}{=} G a l(L / K)$ : the Galois group of a Galois extension $L / K$
- $\bar{K}$ : a separable closure of a field $K$
- $G_{K} \stackrel{\text { def }}{=} G(\bar{K} / K)$
- $K$ : a number field (i.e. a finite extension of the field of rational numbers $\mathbb{Q}$ )
- $P=P_{K}$ : the set of primes of $K$
- $P_{\infty}=P_{K, \infty}$ : the set of archimedean primes of $K$
- $P_{l}=P_{K, I}$ : the set of primes of $K$ above a prime number $I$
- $S$ : a subset of $P_{K}$
- $S_{f} \stackrel{\text { def }}{=} S \backslash P_{K, \infty}$
- $S(L)$ : the set of primes of $L$ above the primes in $S$ for an algebraic extension L/K

For convenience, we consider that an algebraic extension $L / K$ is ramified at a complex prime of $L$ if it is above a real prime of $K$.

## Previous works

## The Neukirch-Uchida theorem (Uchida, 1976).

Let $K_{1}$ and $K_{2}$ be number fields. If $G_{K_{1}} \simeq G_{K_{2}}$, then $K_{1} \simeq K_{2}$.
This is in the case that $S_{i}=P_{K_{i}}$ for $\mathrm{i}=1,2$.

## Previous works

## Theorem (Ivanov, 2017).

For $i=1,2$, let $K_{i}$ be a number field and $S_{i}$ a set of primes of $K_{i}$. Assume $G_{K_{1}, S_{1}} \simeq G_{K_{2}, S_{2}}$ and that the following conditions hold:
(a) $K_{i} / \mathbb{Q}$ is Galois for $i=1,2$ and $K_{1}$ is totally imaginary.
(b) There exist two odd prime numbers $p$ such that $P_{K_{1}, p} \subset S_{1}$.
(c) There exists an odd prime number $p$ such that $P_{K_{2}, p} \subset S_{2}$ and $S_{i}$ is sharply $p$-stable for $i=1,2$.
(d) For $i=1,2, S_{i}$ is 2-stable and is sharply $p$-stable for almost all $p$.

Then $K_{1} \simeq K_{2}$.
Let $K$ be a number field and $S$ a set of primes of $K$. We say that $S$ is stable if there are a subset $S_{0} \subset S$ and an $\epsilon \in \mathbb{R}_{>0}$ such that for any finite subextension $K_{S} / L / K, S_{0}(L)$ has Dirichlet density $\delta\left(S_{0}(L)\right)>\epsilon$.

## One of main results

## Theorem 4.2.

For $i=1,2$, let $K_{i}$ be a number field and $S_{i}$ a set of primes of $K_{i}$ with $P_{K_{i}, \infty} \subset S_{i}$. Assume $G_{K_{1}, S_{1}} \simeq G_{K_{2}, S_{2}}$ and that the following conditions hold:
(a) $K_{i} / \mathbb{Q}$ is Galois for $i=1,2$ and $K_{1}$ is totally imaginary.
(b) There exist two different prime numbers $p$ such that for $i=1,2, P_{K_{i}, p} \subset S_{i}$.
(c) For one $i$, there exists a totally real subfield $K_{i, 0} \subset K_{i}$ and a set of nonarchimedean primes $T_{i, 0}$ of $K_{i, 0}$ such that $\delta\left(T_{i, 0}\left(K_{i}\right)\right) \neq 0$. ${ }^{\text {a }}$
(d) For the other $i, \delta\left(S_{i}\right) \neq 0$.

Then $K_{1} \simeq K_{2}$.

[^0]
## Previous works

## Theorem (Ivanov, 2013).

Let $K$ be a number field and $P_{\infty} \subset S$ a finite set of primes of $K$. Assume that there exist two different prime numbers $p$ such that $P_{p} \subset S$, and write I for one of them. Assume ( $G_{K, S}, I$ ) are given. Then the data of the $l$-adic cyclotomic character of an open subgroup of $G_{K, S}$ is equivalent to the data of the decomposition groups in $G_{K, S}$ at primes in $S_{f}\left(K_{S}\right)$.

In the proof, the injectivity of

$$
H^{2}\left(G_{K, S}, \mu_{l \infty}\right) \rightarrow \bigoplus_{\mathfrak{p} \in S} H^{2}\left(D_{\mathfrak{p}}, \mu_{l^{\infty}}\right)
$$

plays an impotant role.
Even if $S$ is not finite, we can obtain the "bi-anabelian" version of this result. In order to use this, in $\S 1$ we recover the $l$-adic cyclotomic character of an open subgroup of $G_{K, s}$.

## Contents

(1) Recovering the $l$-adic cyclotomic character
(2) Local correspondence and recovering the local invariants
(3) The existence of an isomorphism of fields
(4) Main results

## §1. Recovering the $l$-adic cyclotomic character $(1 / 7)$

Let $K$ be a number field, and fix a prime number $I$.

- $\Sigma=\Sigma_{K} \stackrel{\text { def }}{=}\{I, \infty\}(K)=P_{I} \cup P_{\infty}$
- $K_{\infty} / K$ : a $\mathbb{Z}_{l}$-extension
- $\Gamma=G\left(K_{\infty} / K\right)$
- $K_{\infty, 0} / K$ : the cyclotomic $\mathbb{Z}_{1}$-extension
- $\Gamma_{0}=\Gamma_{K, 0} \xlongequal{\text { def }} G\left(K_{\infty, 0} / K\right)$

Note that $K_{\infty} / K$ is unramified outside $\Sigma$.

- $\gamma_{\mathfrak{p}}$ : the Frobenius element in $\Gamma$ at $\mathfrak{p} \in P_{K} \backslash \Sigma$
- $\Gamma_{\mathfrak{p}}=\left\langle\gamma_{\mathfrak{p}}\right\rangle$ : the decomposition group in $\Gamma$ at $\mathfrak{p} \in P_{K} \backslash \Sigma$
- $S$ : a set of primes of $K$

In $\S 1$, we assume that $\Sigma \subset S$. Then $\mu_{/ \infty} \subset K_{S}$, and we write $\chi^{(I)}=\chi_{K}^{(I)}$ for the $l$-adic cyclotomic character $G_{K, S} \rightarrow \operatorname{Aut}\left(\mu_{/ \infty}\right)=\mathbb{Z}_{\|}{ }^{*}$.

## §1. Recovering the $l$-adic cyclotomic character ( $2 / 7$ )

We set $\tilde{I} \stackrel{\text { def }}{=}\left\{\begin{array}{l}4 \text { if } I=2, \\ I \text { if } I \neq 2 .\end{array}\right.$ We have the following commutative diagram:


We write $w=w_{K}: \Gamma_{0} \rightarrow 1+\tilde{I} \mathbb{Z}_{I}$ for the bottom homomorphism.
Note that $\left.\chi^{(I)}\right|_{G_{K\left(\mu_{7}\right), S\left(K\left(\mu_{\mu}\right)\right)}}=\left.\left(G_{K, S} \rightarrow \Gamma_{0} \xrightarrow{w} 1+\tilde{I} \mathbb{Z}_{l}\right)\right|_{G_{K\left(\mu_{\eta}\right), S\left(K\left(\mu_{i}\right)\right)}}$.
The goal of this section is the following.

## Theorem 1.7.

Assume that $\delta(S) \neq 0$. Then the surjection $G_{K, S} \rightarrow \Gamma_{0}$ and the character $w: \Gamma_{0} \rightarrow 1+\widetilde{I}_{\neq}$are characterized group-theoretically from $G_{K, S}$ (and $I$ ).

We will see the sketch of the proof of Theorem 1.7.

## §1. Recovering the $I$-adic cyclotomic character ( $3 / 7$ )

- $\Lambda=\Lambda^{\Gamma} \stackrel{\text { def }}{=} \mathbb{Z} l[[\Gamma]]=\lim _{{ }^{n}} \mathbb{Z}_{l}\left[\Gamma / \Gamma^{1^{n}}\right]$ : the complete group ring of $\Gamma$
- $X_{S}=X_{S}^{\Gamma} \stackrel{\text { def }}{=}\left(\operatorname{Ker}\left(G_{K, S} \rightarrow \Gamma\right)^{(/)}\right)^{\mathrm{ab}}$

Note that $X_{S}$ is constructed group-theoretically from $G_{K, S} \rightarrow \Gamma$ by its very definition, and $X_{S}$ has a natural structure of $\Lambda$-module.

- $(S \backslash \Sigma)^{f d} \stackrel{\text { def }}{=}\left\{\mathfrak{p} \in S \backslash \Sigma \mid \mathfrak{p}\right.$ is finitely decomposed in $\left.K_{\infty} / K\right\}$
- $(S \backslash \Sigma)^{c d} \stackrel{\text { def }}{=}\left\{\mathfrak{p} \in S \backslash \Sigma \mid \mathfrak{p}\right.$ is completely decomposed in $\left.K_{\infty} / K\right\}$ Note that $S \backslash \Sigma=(S \backslash \Sigma)^{f d} \amalg(S \backslash \Sigma)^{c d}$.

For $\mathfrak{p} \in(S \backslash \Sigma)^{f d}$ with $\mu_{I} \subset K_{\mathfrak{p}}$, the local $I$-adic cyclotomic character $G_{K_{\mathfrak{p}}} \rightarrow \operatorname{Aut}\left(\mu_{\rho^{\infty}}\right)=\mathbb{Z}_{l}{ }^{*}$ factors as $G_{K_{\mathfrak{p}}} \rightarrow \Gamma_{\mathfrak{p}} \rightarrow \mathbb{Z}_{1}{ }^{*}$ because $\Gamma_{\mathfrak{p}}=G\left(K_{\mathfrak{p}}\left(\mu_{/ \infty}\right) / K_{\mathfrak{p}}\right)$, where we write $\chi_{\mathfrak{p}}^{(I)}: \Gamma_{\mathfrak{p}} \rightarrow \mathbb{Z}_{1}{ }^{*}$ for the second homomorphism. Further, when $\mu_{\tilde{\mathcal{I}}} \subset K_{\mathfrak{p}}$ and $\Gamma=\Gamma_{0}$, we have $\left.w\right|_{\Gamma_{\mathfrak{p}}}=\chi_{\mathfrak{p}}^{(I)}$.

## §1. Recovering the $l$-adic cyclotomic character (4/7)

We have the following structure theorem for the $\Lambda$-module $X_{S}$.

## Lemma 1.1.

Assume that the weak Leopoldt conjecture holds for $K_{\infty} / K$. Then there exists an exact sequence of $\Lambda$-modules

$$
0 \rightarrow \prod_{\mathfrak{p} \in S \backslash \Sigma} J_{\mathfrak{p}} \rightarrow X_{S} \rightarrow X_{\Sigma} \rightarrow 0
$$

where $X_{\Sigma}$ is a finitely generated $\Lambda$-module and

$$
J_{\mathfrak{p}}= \begin{cases}\Lambda /\left\langle\gamma_{\mathfrak{p}}-\chi_{\mathfrak{p}}^{(I)}\left(\gamma_{\mathfrak{p}}\right)\right\rangle, & \mu_{I} \subset K_{\mathfrak{p}} \text { and } \mathfrak{p} \in(S \backslash \Sigma)^{f d}, \\ \Lambda / I_{\mathfrak{p}}, & \mu_{I} \subset K_{\mathfrak{p}} \text { and } \mathfrak{p} \in(S \backslash \Sigma)^{c d}, \\ 0, & \mu_{I} \not \subset K_{\mathfrak{p}},\end{cases}
$$

where $I^{t_{p}}=\# \mu\left(K_{\mathfrak{p}}\right)\left[I^{\infty}\right]$.
We set $J=J \stackrel{\text { def }}{=} \prod_{\mathfrak{p} \in S \backslash \Sigma} J_{\mathfrak{p}} \subset X_{S}$.

## §1. Recovering the $l$-adic cyclotomic character ( $5 / 7$ )

## Lemma 1.2.

The weak Leopoldt conjecture is true for $K_{\infty} / K$ if and only if $H^{2}\left(G\left(K_{S} / K_{\infty}\right), \mathbb{Q}_{I} / \mathbb{Z}_{l}\right)=0$. Further, the weak Leopoldt conjecture is true for $K_{\infty, 0} / K$.

Note that $H^{2}\left(G\left(K_{S} / K_{\infty}\right), \mathbb{Q}_{I} / \mathbb{Z}_{l}\right)$ can be reconstructed group-theoretically from $G_{K, S} \rightarrow \Gamma$ since $G\left(K_{S} / K_{\infty}\right)=\operatorname{Ker}\left(G_{K, S} \rightarrow \Gamma\right)$ and $\mathbb{Q}_{I} / \mathbb{Z}_{\text {l }}$ is a trivial $G\left(K_{S} / K_{\infty}\right)$-module.

## Lemma 1.3.

Assume that $\mu_{I} \subset K$. Then $\#(S \backslash \Sigma)^{c d}<\infty$ if and only if $X_{S}\left[I^{\infty}\right]$ is a finitely generated $\Lambda$-module. Further, $(S \backslash \Sigma)^{c d}=\emptyset$ for $K_{\infty, 0} / K$.

Note that $X_{S}\left[I^{\infty}\right]$ also can be reconstructed group-theoretically from $G_{K, S} \rightarrow \Gamma$.

## §1. Recovering the $I$-adic cyclotomic character $(6 / 7)$

## Definition 1.4.

Let $M \subset X_{S}$ be a $\Lambda$-submodule whose quotient $X_{S} / M$ is a finitely generated $\Lambda$-module. We set

$$
A_{M}^{\Gamma} \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
\rho: \Gamma \rightarrow 1+\tilde{I} \mathbb{Z}_{l} & \begin{array}{l}
\text { For }(\gamma, \alpha) \in\left(\Gamma \times\left(1+\tilde{I} \mathbb{Z}_{l}\right)\right)^{\text {prim }} \text { and } x \in M \backslash\{0\} \\
\text { with } \gamma-\alpha \in \operatorname{Ann}_{\Lambda}(x), \rho(\gamma)=\alpha
\end{array}
\end{array}\right\}
$$

where $\left(\Gamma \times\left(1+\tilde{I} \mathbb{Z}_{l}\right)\right)^{\text {prim }} \stackrel{\text { def }}{=}\left(\Gamma \times\left(1+\tilde{I} \mathbb{Z}_{l}\right)\right) \backslash\left(\Gamma \times\left(1+\tilde{I} \mathbb{Z}_{l}\right)\right)^{\prime}$.
Note that this set is constructed from $M$ and $\Gamma$.

## Proposition 1.5.

Assume that $\mu_{\tilde{i}} \subset K, \Gamma=\Gamma_{0}$ and $\# S=\infty$. Let $M \subset J$ be a $\Lambda$-submodule whose quotient $J / M$ is a finitely generated $\Lambda$-module. Then $A_{M}^{\Gamma_{0}}=\{w\}$.

## Proposition 1.6.

Assume that $\mu_{\tilde{\mu}} \subset K, \Gamma \neq \Gamma_{0}, \delta(S) \neq 0$, the weak Leopoldt conjecture is true for $K_{\infty} / K$ and $\#(S \backslash \Sigma)^{c d}<\infty$. Let $M \subset X_{S}$ be a $\Lambda$-submodule whose quotient $X_{S} / M$ is a finitely generated $\Lambda$-module. Then $A_{M}^{\Gamma}=\emptyset$.

## §1. Recovering the $l$-adic cyclotomic character $(7 / 7)$

We can show the main theorem of $\S 1$ using the results obtained so far.

## Theorem 1.7.

Assume that $\delta(S) \neq 0$. Then the surjection $G_{K, S} \rightarrow \Gamma_{0}$ and the character $w: \Gamma_{0} \rightarrow 1+\tilde{I} \mathbb{Z}_{l}$ are characterized group-theoretically from $G_{K, S}$ (and $I$ ).

Proof. Assume that $\mu_{\tilde{j}} \subset K$. (In the other case, the assertion follows from that of this case.) By Lemma 1.2 and Lemma 1.3, we can distinguish purely group-theoretically whether or not a given $\mathbb{Z}_{\boldsymbol{l}}$-quotient $\Gamma$ of $G_{K, S}$ satisfies the following conditions:

- The weak Leopoldt conjecture is true for $K_{\infty} / K$.
- $\#(S \backslash \Sigma)^{c d}<\infty\left(\right.$ for $\left.K_{\infty} / K\right)$.

Let $\Gamma$ be a $\mathbb{Z}_{1}$-quotient of $G_{K, S}$ satisfying these conditions and $M \subset X_{S}^{\Gamma}$ a $\Lambda$-submodule whose quotient $X_{S} / M$ is a finitely generated $\Lambda$-module. If $\Gamma \neq \Gamma_{0}$, for any $M \subset X_{S}^{\Gamma}, A_{M}^{\Gamma}=\emptyset$ by Proposition 1.6.
If $\Gamma=\Gamma_{0}$, for sufficiently small $M \subset X_{S}^{\Gamma}, A_{M}^{\Gamma}=\{w\}$ by Proposition 1.5.

## Definition 2.1.

For $i=1,2$, let $K_{i}$ be a number field, $S_{i}$ a set of primes of $K_{i}, T_{i} \subset S_{i, f}$, and $\sigma: G_{K_{1}, S_{1}} \xrightarrow{\sim} G_{K_{2}, S_{2}}$ an isomorphism. We say that the local correspondence between $T_{1}$ and $T_{2}$ holds for $\sigma$, if the following conditions are satisfied:

- For any $\overline{\mathfrak{p}}_{1} \in T_{1}\left(K_{1, S_{1}}\right)$, there is a unique prime $\sigma_{*}\left(\overline{\mathfrak{p}}_{1}\right) \in T_{2}\left(K_{2, S_{2}}\right)$ with $\sigma\left(D_{\bar{p}_{1}}\right)=D_{\sigma_{*}\left(\overline{\mathfrak{p}}_{1}\right)}$, such that $\sigma_{*}: T_{1}\left(K_{1, S_{1}}\right) \rightarrow T_{2}\left(K_{2, S_{2}}\right), \overline{\mathfrak{p}}_{1} \mapsto \sigma_{*}\left(\overline{\mathfrak{p}}_{1}\right)$ is a bijection.

Then $\sigma_{*}$ induces a bijection $\sigma_{*, K_{1}}: T_{1} \xrightarrow{\sim} T_{2}$.

## §2. Local correspondence and recovering the local invariants (2/4)

## Definition 2.1. (continued)

Moreover, we say that the good local correspondence between $T_{1}$ and $T_{2}$ holds for $\sigma$, if the following conditions are satisfied:

- The local correspondence between $T_{1}$ and $T_{2}$ holds for $\sigma$.
- For any $\overline{\mathfrak{p}}_{1} \in T_{1}\left(K_{1, S_{1}}\right)$, the sets of Frobenius lifts ${ }^{a}$ correspond to each other under $\left.\sigma\right|_{D_{\overline{\mathfrak{p}}_{1}}}: D_{\overline{\mathfrak{p}}_{1}} \xrightarrow{\sim} D_{\sigma_{*}\left(\bar{p}_{1}\right)}$.
- $\sigma_{*, K_{1}}$ preserves the residue characteristics and the residual degrees of all primes in $T_{1}$.

[^1]
## §2. Local correspondence and recovering the local invariants (3/4)

## Lemma 2.2.

For $i=1,2$, let $p_{i}$ be a prime number, $\kappa_{i}$ a $p_{i}$-adic field and $\lambda_{1} / \kappa_{1}$ a Galois extension. Assume that there exists an isomorphism $\sigma: G\left(\lambda_{1} / \kappa_{1}\right) \xrightarrow{\sim} G_{\kappa_{2}}$. Then $p_{1}=p_{2}$, the residual degrees of $\kappa_{1}$ and $\kappa_{2}$ coincide and $\sigma$ induces a bijection between the sets of Frobenius lifts. Further, $\left[\kappa_{1}: \mathbb{Q}_{p_{1}}\right] \geq\left[\kappa_{2}: \mathbb{Q}_{p_{2}}\right]$.

In the proof,

$$
G_{\kappa_{i}}^{\mathrm{ab}} \simeq \hat{\mathbb{Z}} \times \mathbb{Z} /\left(q_{i}-1\right) \mathbb{Z} \times \mathbb{Z} / p_{i}^{a} \mathbb{Z} \times \mathbb{Z}_{p_{i}}^{\left[\kappa_{i}: \mathbb{Q}_{p_{i}}\right]}
$$

plays an impotant role, where $q_{i}$ is the order of the residue field of $\kappa_{i}$ and $a \in \mathbb{Z}_{\geq 0}$.

## Proposition 2.3 (Chenevier-Clozel, 2009).

Let $K$ be a totally real number field and $S$ a set of primes of $K$. Assume that there exists a prime / with $P_{I} \cup P_{\infty} \subset S$. Then the decomposition groups in $G_{K, S}$ at primes in $\left(S_{f} \backslash P_{l}\right)\left(K_{S}\right)$ are full. ${ }^{a}$
${ }^{\text {a }}$ For $\overline{\mathfrak{p}} \in S_{f}\left(K_{S}\right)$ and $\mathfrak{p} \in S_{f}$ with $\overline{\mathfrak{p}} \mid \mathfrak{p}$, we say that $D_{\bar{p}, K_{S} / K}$ is full if the canonical surjection $G_{K_{\mathfrak{p}}} \rightarrow D_{\bar{p}, K_{S} / K}$ is an isomorphism.

## §2. Local correspondence and recovering the local invariants (4/4)

We obtain the following using results so far.

## Theorem 2.4.

For $i=1,2$, let $K_{i}$ be a number field, $S_{i}$ a set of primes of $K_{i}$ with $P_{K_{i}, \infty} \subset S_{i}$ and $\sigma: G_{K_{1}, S_{1}} \xrightarrow{\sim} G_{K_{2}, S_{2}}$ an isomorphism. Assume that the following conditions hold:

- There exist two different prime numbers $p$ such that for $i=1,2, P_{K_{i}, p} \subset S_{i}$.
- For $i=1,2, \delta\left(S_{i}\right) \neq 0$.

Then the local correspondence between $S_{1, f}$ and $S_{2, f}$ holds for $\sigma$. Further, let $T_{1} \subset S_{1, f}$ and $T_{2} \subset S_{2, f}$ be subsets between which the local correspondence holds for $\sigma$ and assume that for one $i$, there exist a totally real subfield $K_{i, 0} \subset K_{i}$ and a set of primes $T_{i, 0}$ of $K_{i, 0}$ such that $T_{i, 0}\left(K_{i}\right)=T_{i}$. Then the good local correspondence between $T_{1}$ and $T_{2}$ holds for $\sigma$.

## §3. The existence of an isomorphism of fields (1/11)

For a number field $K$ and a set of primes $S$ of $K$, we set

$$
\delta_{\text {sup }}(S) \stackrel{\text { def }}{=} \limsup _{s \rightarrow 1+0} \frac{\sum_{\mathfrak{p} \in S_{f}} \mathfrak{N}(\mathfrak{p})^{-s}}{\log \frac{1}{s-1}}, \delta_{\text {inf }}(S) \stackrel{\operatorname{def}}{=} \liminf _{s \rightarrow 1+0} \frac{\sum_{\mathfrak{p} \in S_{f}} \mathfrak{N}(\mathfrak{p})^{-s}}{\log \frac{1}{s-1}} .
$$

Note that $\delta(S) \neq 0$ if and only if $\delta_{\text {sup }}(S)>0$.
In $\S 3$, for $i=1,2$, we set as follows:

- $K_{i}$ : a number field
- $S_{i}$ : a set of primes of $K_{i}$ with $P_{K_{i}, \infty} \subset S_{i}$
- $T_{i} \subset S_{i, f}:$ a subset
- $\sigma: G_{K_{1}, S_{1}} \xrightarrow{\sim} G_{K_{2}, S_{2}}:$ an isomorphism

Fix an algebraic closure $\overline{\mathbb{Q}}$ of $\mathbb{Q}$, and suppose that all number fields and all algebraic extensions of them are subfields of $\overline{\mathbb{Q}}$.

The goal of $\S 3$ is to prove the following theorems:

## §3. The existence of an isomorphism of fields (2/11)

## Theorem 3.2.

Assume that the following conditions hold:
(a) $K_{i} / \mathbb{Q}$ is Galois for $i=1,2$.
(b) The good local correspondence between $T_{1}$ and $T_{2}$ holds for $\sigma$.
(c) $\delta_{\text {sup }}\left(T_{i}\right)>1 / 2$ for one $i$.

Then $K_{1} \simeq K_{2}$.

## Theorem 3.4.

Assume that the following conditions hold:
(a) $K_{i} / \mathbb{Q}$ is Galois for $i=1,2$ and $K_{1}$ is totally imaginary.
(b) The good local correspondence between $T_{1}$ and $T_{2}$ holds for $\sigma$.
(c) $\delta\left(T_{i}\right) \neq 0$ for one $i$.
(d) There exist two different prime numbers $p$ such that for $i=1,2, P_{K_{i}, p} \subset T_{i}$. Then $K_{1} \simeq K_{2}$.

## §3. The existence of an isomorphism of fields $(3 / 11)$

## Lemma 3.1.

Assume that the following conditions hold:
(a) $K_{i} / \mathbb{Q}$ is Galois for $i=1,2$.
(b) The good local correspondence between $T_{1}$ and $T_{2}$ holds for $\sigma$.

Then the following assertions hold:
(i) $\delta_{\text {sup }}\left(T_{1}\right)=\delta_{\text {sup }}\left(T_{2}\right)$
(ii) For $i=1,2, \delta_{\text {sup }}\left(T_{i}\left(K_{1} K_{2}\right)\right)=\left[K_{1} K_{2}: K_{i}\right] \delta_{\text {sup }}\left(T_{i}\right)$.

The similar assertions hold for $\delta_{\text {inf }}$.
Proof. (i): By the good local correspondence between $T_{1}$ and $T_{2}$, for $s>1$,

$$
\frac{\sum_{\mathfrak{p}_{1} \in T_{1}} \mathfrak{N}\left(\mathfrak{p}_{1}\right)^{-s}}{\log \frac{1}{s-1}}=\frac{\sum_{\mathfrak{p}_{2} \in T_{2}} \mathfrak{N}\left(\mathfrak{p}_{2}\right)^{-s}}{\log \frac{1}{s-1}}
$$

Therefore,

$$
\delta_{\text {sup }}\left(T_{1}\right)=\limsup _{s \rightarrow 1+0} \frac{\sum_{\mathfrak{p}_{1} \in T_{1}} \mathfrak{N}\left(\mathfrak{p}_{1}\right)^{-s}}{\log \frac{1}{s-1}}=\limsup _{s \rightarrow 1+0} \frac{\sum_{\mathfrak{p}_{2} \in T_{2}} \mathfrak{N}\left(\mathfrak{p}_{2}\right)^{-s}}{\log \frac{1}{s-1}}=\delta_{\text {sup }}\left(T_{2}\right) .
$$

## Lemma 3.1.

(ii) For $i=1,2, \delta_{\text {sup }}\left(T_{i}\left(K_{1} K_{2}\right)\right)=\left[K_{1} K_{2}: K_{i}\right] \delta_{\text {sup }}\left(T_{i}\right)$.
(ii): We set $\operatorname{cs}(K / \mathbb{Q}) \stackrel{\text { def }}{=}\{p$ : a prime number $\mid p$ splits completely in $K / \mathbb{Q}\}$ for a number field $K$. We prove the case for $i=1$. By the good local correspondence between $T_{1}$ and $T_{2}$, for any prime number $p$ below a prime in $T_{1}$ which is unramified in $K_{1} K_{2} / \mathbb{Q}$,
" $p \in \operatorname{cs}\left(K_{1} / \mathbb{Q}\right)$ " $\Leftrightarrow$ "there exists $\mathfrak{p}_{1} \in T_{1}$ of residual degree 1 such that $\mathfrak{p}_{1} \mid p$ "
$\Leftrightarrow$ "there exists $\mathfrak{p}_{2} \in T_{2}$ of residual degree 1 such that $\mathfrak{p}_{2} \mid p^{\prime \prime}$
$\Leftrightarrow " p \in \operatorname{cs}\left(K_{2} / \mathbb{Q}\right) "$
$\Leftrightarrow " p \in \operatorname{cs}\left(K_{1} K_{2} / \mathbb{Q}\right)$ ".
Therefore,

$$
\begin{aligned}
\delta_{\text {sup }}\left(T_{1}\left(K_{1} K_{2}\right)\right) & =\delta_{\text {sup }}\left(\operatorname{cs}\left(K_{1} K_{2} / \mathbb{Q}\right)\left(K_{1} K_{2}\right) \cap T_{1}\left(K_{1} K_{2}\right)\right) \\
& =\limsup _{s \rightarrow 1+0} \frac{\sum_{\mathfrak{p} \in \operatorname{cs}\left(K_{1} K_{2} / \mathbb{Q}\right)\left(K_{1} K_{2}\right) \cap T_{1}\left(K_{1} K_{2}\right)} \mathfrak{N}(\mathfrak{p})^{-s}}{\log \frac{1}{s-1}} \\
& =\limsup _{s \rightarrow 1+0} \frac{\sum_{\mathfrak{p}_{1} \in \operatorname{cs}\left(K_{1} / \mathbb{Q}\right)\left(K_{1}\right) \cap T_{1}}\left[K_{1} K_{2}: K_{1}\right] \mathfrak{N}\left(\mathfrak{p}_{1}\right)^{-s}}{\log \frac{1}{s-1}} \\
& =\left[K_{1} K_{2}: K_{1}\right] \delta_{\text {sup }}\left(\operatorname{cs}\left(K_{1} / \mathbb{Q}\right)\left(K_{1}\right) \cap T_{1}\right) \\
& =\left[K_{1} K_{2}: K_{1}\right] \delta_{\text {sup }}\left(T_{1}\right) .
\end{aligned}
$$

## §3. The existence of an isomorphism of fields ( $5 / 11$ )

## Theorem 3.2.

Assume that the following conditions hold:
(a) $K_{i} / \mathbb{Q}$ is Galois for $i=1,2$.
(b) The good local correspondence between $T_{1}$ and $T_{2}$ holds for $\sigma$.
(c) $\delta_{\text {sup }}\left(T_{i}\right)>1 / 2$ for one $i$.

Then $K_{1} \simeq K_{2}$.
Proof. By Lemma 3.1, we have $\delta_{\text {sup }}\left(T_{1}\right)=\delta_{\text {sup }}\left(T_{2}\right)>1 / 2$ and $1 \geq \delta_{\text {sup }}\left(T_{i}\left(K_{1} K_{2}\right)\right)=\left[K_{1} K_{2}: K_{i}\right] \delta_{\text {sup }}\left(T_{i}\right)$ for $i=1,2$. Hence we have [ $\left.K_{1} K_{2}: K_{i}\right]=1$ for $i=1,2$, so that $K_{1} \subset K_{2}$ and $K_{1} \supset K_{2}$.
Thus, $K_{1}=K_{2} . \square$

## §3. The existence of an isomorphism of fields ( $6 / 11$ )

## Lemma 3.3.

Assume that the following conditions hold:
(b) The good local correspondence between $T_{1}$ and $T_{2}$ holds for $\sigma$.
(d) There exist two different prime numbers $p$ such that for $i=1,2, P_{K_{i}, p} \subset T_{i}$. Then $\left[K_{1}: \mathbb{Q}\right]=\left[K_{2}: \mathbb{Q}\right]$.

Proof. The assertion follows from the fact that $\left[K_{i}: \mathbb{Q}\right]=\sum_{\mathfrak{p} \in P_{K_{i}, p}}\left[K_{i, \mathfrak{p}}: \mathbb{Q}_{p}\right] . \square$

## The proof of Theorem $3.4(7 / 11)$

## Theorem 3.4.

Assume that the following conditions hold:
(a) $K_{i} / \mathbb{Q}$ is Galois for $i=1,2$ and $K_{1}$ is totally imaginary.
(b) The good local correspondence between $T_{1}$ and $T_{2}$ holds for $\sigma$.
(c) $\delta\left(T_{i}\right) \neq 0$ for one $i$.
(d) There exist two different prime numbers $p$ such that for $i=1,2, P_{K_{i}, p} \subset T_{i}$. Then $K_{1} \simeq K_{2}$.

Proof. Take a prime number $/$ such that for $i=1,2, P_{K_{i}, I} \subset T_{i}$. (By (d), we can take at least two different such prime numbers.) For $i=1,2$, we set $G_{K_{i}, S_{i}} \rightarrow \Gamma_{i} \stackrel{\text { def }}{=} G_{K_{i}, S_{i}}^{\text {ab,(t) }}$ /tor $\simeq \mathbb{Z}_{i}^{r_{i}}$ and write $K_{i}^{(\infty)}=K_{i}^{(\infty, l)}$ for the corresponding subextension of $K_{i, S_{i}} / K_{i}$ with this surjection. Note that $r_{\mathbb{C}}\left(K_{i}\right)+1 \leq r_{i} \leq\left[K_{i}: \mathbb{Q}\right]$ by class field theory. $\sigma$ induces $\bar{\sigma}: \Gamma_{1} \xrightarrow{\sim} \Gamma_{2}$, so that $r_{1}=r_{2}$ for which we write $r$. Since $K_{i}$ is Galois over $\mathbb{Q}$ for $i=1,2, K_{i}^{(\infty)}$ and $K_{1}^{(\infty)} K_{2}^{(\infty)}$ are also.

It suffices to prove that $K_{1} \subset K_{2}^{(\infty)}$. Indeed, then $K_{1} \subset \cap_{1} K_{2}^{(\infty, l)}=K_{2}$, so that we obtain $K_{1}=K_{2}$ by $\left[K_{1}: \mathbb{Q}\right]=\left[K_{2}: \mathbb{Q}\right]$

## The proof of Theorem 3.4 (8/11)



First, we prove $\left[K_{1}^{(\infty)}: K_{1}^{(\infty)} \cap K_{2}^{(\infty)}\right]<\infty$.
For this, it suffices to prove $K_{1}^{(\infty)} K_{2}^{(\infty)}=K_{1} K_{2}^{(\infty)}$.


We set $\Gamma \stackrel{\text { def }}{=} G\left(K_{1}^{(\infty)} K_{2}^{(\infty)} / K_{1} K_{2}\right)$ and for $i=1,2, \Gamma_{i}^{\prime} \stackrel{\text { def }}{=} G\left(K_{i}^{(\infty)} / K_{i}^{(\infty)} \cap K_{1} K_{2}\right)$. We write $\pi_{1}$ for $\Gamma \rightarrow G\left(K_{1}^{(\infty)} K_{2} / K_{1} K_{2}\right) \xrightarrow{\rightarrow} \Gamma_{1}^{\prime} \hookrightarrow \Gamma_{1}$ and define $\pi_{2}: \Gamma \rightarrow \Gamma_{2}$ similarly. It suffices to prove that $\pi_{2}$ is injective. Note that $\left(\pi_{1}, \pi_{2}\right): \Gamma \hookrightarrow \Gamma_{1} \times \Gamma_{2}$ is injective.


Since $\delta\left(T_{1}\left(K_{1} K_{2}\right)\right) \neq 0$, the closed subgroup of $\Gamma$ generated by Frobenius elements at primes in $T_{1}\left(K_{1} K_{2}\right) \backslash P_{K_{1} K_{2}, \text {, }}$ of degree 1 is open by the Chebotarev density theorem. By the good local correspondence between $T_{1}$ and $T_{2}$, for $\mathfrak{p} \in T_{1}\left(K_{1} K_{2}\right) \backslash P_{K_{1} K_{2}, l}$ of degree 1, we have $\bar{\sigma} \circ \pi_{1}\left(\operatorname{Frob}_{\mathfrak{p}}\right)=\operatorname{Frob}_{\sigma_{*, K_{1}}\left(\mathfrak{p} \mid K_{1}\right)}$ and $\pi_{2}\left(\right.$ Frob $\left._{\mathfrak{p}}\right)=$ Frob $_{\mathfrak{p}}^{\left.\right|_{k_{2}}}$. Hence $\exists \tau \in G\left(K_{2} / \mathbb{Q}\right)$ s.t. $\tau^{*} \circ \bar{\sigma} \circ \pi_{1}\left(\right.$ Frob $\left._{\mathfrak{p}}\right)=\pi_{2}\left(\right.$ Frob $\left._{\mathfrak{p}}\right)$.
Therefore, $\exists \tau \in G\left(K_{2} / \mathbb{Q}\right)$ s.t. $\tau^{*} \circ \bar{\sigma} \circ \pi_{1}=\pi_{2}$, so that $\operatorname{Ker}\left(\pi_{2}\right)=\operatorname{Ker}\left(\tau^{*} \circ \bar{\sigma} \circ \pi_{1}\right)=\operatorname{Ker}\left(\pi_{1}\right)$. Thus, $\pi_{1}$ and $\pi_{2}$ are injective.

## The proof of Theorem 3.4 (11/11)

Since $\Gamma_{1}\left(\simeq \mathbb{Z}_{l}^{r}\right)$ is torsion free, $K_{1}^{(\infty)}=K_{1}\left(K_{1}^{(\infty)} \cap K_{2}^{(\infty)}\right)$. Hence restriction $\Gamma_{1} \xrightarrow{\sim} G\left(K_{1}^{(\infty)} \cap K_{2}^{(\infty)} / K_{1} \cap K_{2}^{(\infty)}\right)$ is an isomorphism, so that the number $r^{\prime}$ of independent $\mathbb{Z}_{\text {l }}$-extensions of $K_{1} \cap K_{2}^{(\infty)}$ satisfies that $r \leq r^{\prime} \leq\left[K_{1} \cap K_{2}^{(\infty)}: \mathbb{Q}\right]$.

Here, assume that $K_{1} \neq K_{1} \cap K_{2}^{(\infty)}$. Then


## The proof of Theorem 3.4 (11/11)

Since $\Gamma_{1}\left(\simeq \mathbb{Z}_{l}^{r}\right)$ is torsion free, $K_{1}^{(\infty)}=K_{1}\left(K_{1}^{(\infty)} \cap K_{2}^{(\infty)}\right)$. Hence restriction $\Gamma_{1} \xrightarrow{\sim} G\left(K_{1}^{(\infty)} \cap K_{2}^{(\infty)} / K_{1} \cap K_{2}^{(\infty)}\right)$ is an isomorphism, so that the number $r^{\prime}$ of independent $\mathbb{Z}_{\text {l }}$-extensions of $K_{1} \cap K_{2}^{(\infty)}$ satisfies that $r \leq r^{\prime} \leq\left[K_{1} \cap K_{2}^{(\infty)}: \mathbb{Q}\right]$.

Here, assume that $K_{1} \neq K_{1} \cap K_{2}^{(\infty)}$. Then


## §4. Main results ( $1 / 3$ )

Finally we see the three main results in this talk.
By Theorem 2.4 and Theorem 3.2, we obtain the following theorem.

## Theorem 4.1.

For $i=1,2$, let $K_{i}$ be a number field and $S_{i}$ a set of primes of $K_{i}$ with $P_{K_{i}, \infty} \subset S_{i}$. Assume $G_{K_{1}, S_{1}} \simeq G_{K_{2}, S_{2}}$ and that the following conditions hold:
(a) $K_{i} / \mathbb{Q}$ is Galois for $i=1,2$.
(b) There exist two different prime numbers $p$ such that for $i=1,2, P_{K_{i}, p} \subset S_{i}$.
(c) For one $i$, there exist a totally real subfield $K_{i, 0} \subset K_{i}$ and a set of nonarchimedean primes $T_{i, 0}$ of $K_{i, 0}$ such that $\delta_{\text {sup }}\left(T_{i, 0}\left(K_{i}\right)\right)>1 / 2$.
(d) For the other $i, \delta\left(S_{i}\right) \neq 0$.

Then $K_{1} \simeq K_{2}$.

## §4. Main results (2/3)

By Theorem 2.4 and Theorem 3.4, we obtain the following theorem.

## Theorem 4.2.

For $i=1,2$, let $K_{i}$ be a number field and $S_{i}$ a set of primes of $K_{i}$ with $P_{K_{i}, \infty} \subset S_{i}$. Assume $G_{K_{1}, S_{1}} \simeq G_{K_{2}, S_{2}}$ and that the following conditions hold:
(a) $K_{i} / \mathbb{Q}$ is Galois for $i=1,2$ and $K_{1}$ is totally imaginary.
(b) There exist two different prime numbers $p$ such that for $i=1,2, P_{K_{i}, p} \subset S_{i}$.
(c) For one $i$, there exist a totally real subfield $K_{i, 0} \subset K_{i}$ and a set of nonarchimedean primes $T_{i, 0}$ of $K_{i, 0}$ such that $\delta\left(T_{i, 0}\left(K_{i}\right)\right) \neq 0$.
(d) For the other $i, \delta\left(S_{i}\right) \neq 0$.

Then $K_{1} \simeq K_{2}$.

## §4. Main results $(3 / 3)$

If the Dirichlet densities are large enough, we can omit some assumptions.

## Theorem 4.3.

For $i=1,2$, let $K_{i}$ be a number field and $S_{i}$ a set of primes of $K_{i}$ with $P_{K_{i}, \infty} \subset S_{i}$. Assume $G_{K_{1}, S_{1}} \simeq G_{K_{2}, S_{2}}$ and that the following conditions hold:
(A) $K_{1} / \mathbb{Q}$ is Galois.
(B) $\delta_{\text {sup }}\left(S_{1}\right)>1-\frac{1}{2\left[K_{1}: \mathbb{Q}\right]}$.
(C) $\delta_{\text {sup }}\left(S_{1}\right)+\delta_{\text {inf }}\left(S_{2}\right)$ or $\delta_{\text {inf }}\left(S_{1}\right)+\delta_{\text {sup }}\left(S_{2}\right)$ is larger than $2-\frac{1}{\left[K_{1}: \mathbb{Q}\right]\left(\left[K_{2}: \mathbb{Q}\right]!!\right)}$, where $\left[K_{2}: \mathbb{Q}\right]$ ! is the factorial of $\left[K_{2}: \mathbb{Q}\right]$.
Then $K_{1} \simeq K_{2}$.
In the proof, we show that the conditions in Theorem 4.2 hold.
This theorem is a generalization of Neukirch's original result.

## Future perspectives

Future issues are to weaken the assumptions on $K_{i}$ and $S_{i}$.
In particular, we have the following questions:

- To recover the $l$-adic cyclotomic character from $G_{K_{i}, S_{i}}$ when $\delta\left(S_{i}\right)=0$.
- To study the structures of the decomposition groups in $G_{K_{i}, S_{i}}$ in the case where we cannot use the result of [Chenevier-Clozel], and to recover local invariants.
- To prove $K_{1} \simeq K_{2}$ without assuming "Galois over $\mathbb{Q}$ ".
- To search for counterexamples when $\delta\left(S_{i}\right)=0$.


## References

Chenevier，G．，Clozel，L．，Corps de nombres peu ramifiés et formes automorphes autoduales，J．of the AMS，vol． 22 （2009），no．2，467－519．
－Ivanov，A．，Arithmetic and anabelian theorems for stable sets in number fields，Dissertation，Universität Heidelberg， 2013.
围 Ivanov，A．，On some anabelian properties of arithmetic curves，Manuscripta Mathematica 144 （2014），no．3，545－564．
围 Ivanov，A．，On a generalization of the Neukirch－Uchida theorem，Moscow Mathematical J． 17 （2017），no．3，371－383．
囯 Neukirch，J．，Kennzeichnung der p－adischen und der endlichen algebraischen Zahlkörper，Invent．Math． 6 （1969），296－314．

Neukirch，J．，Kennzeichnung der endlich－algebraischen Zahlkörper durch die Galoisgruppe der maximal auflösbaren Erweiterungen，J．Reine Angew．Math． 238 （1969），135－147．
Neukirch，J．，Schmidt，A．and Wingberg，K．，Cohomology of number fields， Second edition，Grundlehren der Mathematischen Wissenschaften， 323. Springer－Verlag，Berlin， 2008.

Saïdi, M. and Tamagawa, A., The m-step solvable anabelian geometry of number fields, preprint, arXiv:1909.08829.
目 Serre, J.-P., Abelian I-adic representations and elliptic curves, Second edition, Advanced Book Classics, Addison-Wesley, Redwood City, 1989.


[^0]:    ${ }^{\text {a }}$ Let $K$ be a number field and $S$ a set of primes of $K$. We say that $\delta(S) \neq 0$ if $S$ has positive Dirichlet density or does not have Dirichlet density.

[^1]:    ${ }^{a}$ For a Galois extension $\lambda / \kappa$ of $p$-adic fields, we say that an element of $G(\lambda / \kappa)$ is a Frobenius lift if its image under $G(\lambda / \kappa) \rightarrow G(\lambda / \kappa) / I(\lambda / \kappa)$ is equal to the Frobenius element, where $I(\lambda / \kappa)$ is the inertia subgroup of $G(\lambda / \kappa)$.

