The Neukirch-Uchida theorem with restricted ramification

Ryoji Shimizu

RIMS, Kyoto University

This presentation is based on my paper with the same title, whose preprint will be uploaded in a few weeks.

Let K be a number field and S a set of primes of K. We write K_S/K for the maximal extension of K unramified outside S and $G_{K,S}$ for its Galois group.

The goal of this talk is to prove the following generalization of the Neukirch-Uchida theorem under as few assumptions as possible: "For i = 1, 2, let K_i be a number field and S_i a set of primes of K_i . If G_{K_1,S_1} and G_{K_2,S_2} are isomorphic, then K_1 and K_2 are isomorphic."

For this, as in the proof of the Neukirch-Uchida theorem, we first characterize group-theoretically the decomposition groups in $G_{K,S}$, and then obtain an isomorphism of fields using them.

Notations

- $G(L/K) \stackrel{\text{def}}{=} \text{Gal}(L/K)$: the Galois group of a Galois extension L/K
- \overline{K} : a separable closure of a field K
- $G_K \stackrel{\text{def}}{=} G(\overline{K}/K)$
- K: a number field (i.e. a finite extension of the field of rational numbers \mathbb{Q})
- $P = P_K$: the set of primes of K
- $P_{\infty} = P_{K,\infty}$: the set of archimedean primes of K
- $P_I = P_{K,I}$: the set of primes of K above a prime number I
- S : a subset of P_K
- $S_f \stackrel{\mathsf{def}}{=} S \setminus P_{K,\infty}$
- S(L): the set of primes of L above the primes in S for an algebraic extension L/K

For convenience, we consider that an algebraic extension L/K is ramified at a complex prime of L if it is above a real prime of K.

The Neukirch-Uchida theorem (Uchida, 1976).

Let K_1 and K_2 be number fields. If $G_{K_1} \simeq G_{K_2}$, then $K_1 \simeq K_2$.

This is in the case that $S_i = P_{K_i}$ for i=1,2.

Theorem (Ivanov, 2017).

For i = 1, 2, let K_i be a number field and S_i a set of primes of K_i . Assume $G_{K_1,S_1} \simeq G_{K_2,S_2}$ and that the following conditions hold:

- (a) K_i/\mathbb{Q} is Galois for i = 1, 2 and K_1 is totally imaginary.
- (b) There exist two odd prime numbers p such that $P_{K_1,p} \subset S_1$.
- (c) There exists an odd prime number p such that $P_{K_2,p} \subset S_2$ and S_i is sharply p-stable for i = 1, 2.
- (d) For $i = 1, 2, S_i$ is 2-stable and is sharply *p*-stable for almost all *p*.

Then $K_1 \simeq K_2$.

Let K be a number field and S a set of primes of K. We say that S is stable if there are a subset $S_0 \subset S$ and an $\epsilon \in \mathbb{R}_{>0}$ such that for any finite subextension $K_S/L/K$, $S_0(L)$ has Dirichlet density $\delta(S_0(L)) > \epsilon$.

Theorem 4.2.

For i = 1, 2, let K_i be a number field and S_i a set of primes of K_i with

 $P_{K_i,\infty} \subset S_i$. Assume $G_{K_1,S_1} \simeq G_{K_2,S_2}$ and that the following conditions hold:

- (a) K_i/\mathbb{Q} is Galois for i = 1, 2 and K_1 is totally imaginary.
- (b) There exist two different prime numbers p such that for $i = 1, 2, P_{K_i,p} \subset S_i$.
- (c) For one *i*, there exists a totally real subfield $K_{i,0} \subset K_i$ and a set of nonarchimedean primes $T_{i,0}$ of $K_{i,0}$ such that $\delta(T_{i,0}(K_i)) \neq 0.^a$
- (d) For the other *i*, $\delta(S_i) \neq 0$.

Then $K_1 \simeq K_2$.

^aLet K be a number field and S a set of primes of K. We say that $\delta(S) \neq 0$ if S has positive Dirichlet density or does not have Dirichlet density.

Theorem (Ivanov, 2013).

Let K be a number field and $P_{\infty} \subset S$ a finite set of primes of K. Assume that there exist two different prime numbers p such that $P_p \subset S$, and write l for one of them. Assume $(G_{K,S}, l)$ are given. Then the data of the l-adic cyclotomic character of an open subgroup of $G_{K,S}$ is equivalent to the data of the decomposition groups in $G_{K,S}$ at primes in $S_f(K_S)$.

In the proof, the injectivity of

$$H^2(G_{K,S},\mu_{I^\infty}) o \bigoplus_{\mathfrak{p}\in S} H^2(D_{\mathfrak{p}},\mu_{I^\infty})$$

plays an impotant role.

Even if S is not finite, we can obtain the "bi-anabelian" version of this result. In order to use this, in §1 we recover the *l*-adic cyclotomic character of an open subgroup of $G_{K,S}$.

1 Recovering the *I*-adic cyclotomic character

2 Local correspondence and recovering the local invariants

3 The existence of an isomorphism of fields

§1. Recovering the *I*-adic cyclotomic character (1/7)

Let K be a number field, and fix a prime number I.

•
$$\Sigma = \Sigma_{\mathcal{K}} \stackrel{\mathsf{def}}{=} \{I, \infty\}(\mathcal{K}) = P_I \cup P_{\infty}$$

- K_{∞}/K : a \mathbb{Z}_{l} -extension
- $\Gamma = G(K_{\infty}/K)$
- $K_{\infty,0}/K$: the cyclotomic \mathbb{Z}_{I} -extension
- $\Gamma_0 = \Gamma_{K,0} \stackrel{\text{def}}{=} G(K_{\infty,0}/K)$

Note that K_{∞}/K is unramified outside Σ .

- $\gamma_{\mathfrak{p}}$: the Frobenius element in Γ at $\mathfrak{p} \in P_{\mathcal{K}} \setminus \Sigma$
- $\Gamma_{\mathfrak{p}} = \langle \gamma_{\mathfrak{p}} \rangle$: the decomposition group in Γ at $\mathfrak{p} \in P_{\mathcal{K}} \setminus \Sigma$
- S : a set of primes of K

In §1, we assume that $\Sigma \subset S$. Then $\mu_{I^{\infty}} \subset K_S$, and we write $\chi^{(I)} = \chi^{(I)}_K$ for the *I*-adic cyclotomic character $G_{K,S} \to \operatorname{Aut}(\mu_{I^{\infty}}) = \mathbb{Z}_I^*$.

§1. Recovering the *I*-adic cyclotomic character (2/7)

We set $\tilde{l} \stackrel{\text{def}}{=} \begin{cases} 4 \text{ if } l = 2, \\ l \text{ if } l \neq 2. \end{cases}$ We have the following commutative diagram:

We write $w = w_{\mathcal{K}} : \Gamma_0 \to 1 + \tilde{I}\mathbb{Z}_I$ for the bottom homomorphism. Note that $\chi^{(I)}|_{\mathcal{G}_{\mathcal{K}(\mu_{\tilde{I}})}, \mathcal{S}(\mathcal{K}(\mu_{\tilde{I}}))} = (\mathcal{G}_{\mathcal{K},S} \twoheadrightarrow \Gamma_0 \xrightarrow{w} 1 + \tilde{I}\mathbb{Z}_I)|_{\mathcal{G}_{\mathcal{K}(\mu_{\tilde{I}})}, \mathcal{S}(\mathcal{K}(\mu_{\tilde{I}}))}$.

The goal of this section is the following.

Theorem 1.7.

Assume that $\delta(S) \neq 0$. Then the surjection $G_{K,S} \twoheadrightarrow \Gamma_0$ and the character $w : \Gamma_0 \to 1 + \tilde{l}\mathbb{Z}_l$ are characterized group-theoretically from $G_{K,S}$ (and l).

We will see the sketch of the proof of Theorem 1.7.

§1. Recovering the *I*-adic cyclotomic character (3/7)

• $\Lambda = \Lambda^{\Gamma} \stackrel{\text{def}}{=} \mathbb{Z}_{I}[[\Gamma]] = \varprojlim_{n} \mathbb{Z}_{I}[\Gamma/\Gamma^{I^{n}}]$: the complete group ring of Γ

•
$$X_S = X_S^{\Gamma} \stackrel{\text{def}}{=} (\operatorname{Ker}(G_{K,S} \twoheadrightarrow \Gamma)^{(l)})^{\operatorname{ab}}$$

Note that X_S is constructed group-theoretically from $G_{K,S} \twoheadrightarrow \Gamma$ by its very definition, and X_S has a natural structure of Λ -module.

•
$$(S \setminus \Sigma)^{fd} \stackrel{\text{def}}{=} \{ \mathfrak{p} \in S \setminus \Sigma \mid \mathfrak{p} \text{ is finitely decomposed in } K_{\infty}/K \}$$

• $(S \setminus \Sigma)^{cd} \stackrel{\text{def}}{=} \{ \mathfrak{p} \in S \setminus \Sigma \mid \mathfrak{p} \text{ is completely decomposed in } K_{\infty}/K \}$ Note that $S \setminus \Sigma = (S \setminus \Sigma)^{fd} \coprod (S \setminus \Sigma)^{cd}$.

For $\mathfrak{p} \in (S \setminus \Sigma)^{fd}$ with $\mu_l \subset K_\mathfrak{p}$, the local *l*-adic cyclotomic character $G_{K_\mathfrak{p}} \to \operatorname{Aut}(\mu_{l^\infty}) = \mathbb{Z}_l^*$ factors as $G_{K_\mathfrak{p}} \twoheadrightarrow \Gamma_\mathfrak{p} \to \mathbb{Z}_l^*$ because $\Gamma_\mathfrak{p} = G(K_\mathfrak{p}(\mu_{l^\infty})/K_\mathfrak{p})$, where we write $\chi_\mathfrak{p}^{(l)} : \Gamma_\mathfrak{p} \to \mathbb{Z}_l^*$ for the second homomorphism. Further, when $\mu_{\tilde{l}} \subset K_\mathfrak{p}$ and $\Gamma = \Gamma_0$, we have $w|_{\Gamma_\mathfrak{p}} = \chi_\mathfrak{p}^{(l)}$.

§1. Recovering the *I*-adic cyclotomic character (4/7)

We have the following structure theorem for the Λ -module X_S .

Lemma 1.1.

Assume that the weak Leopoldt conjecture holds for K_{∞}/K . Then there exists an exact sequence of Λ -modules

$$0 \to \prod_{\mathfrak{p} \in \mathcal{S} \setminus \Sigma} J_{\mathfrak{p}} \to X_{\mathcal{S}} \to X_{\Sigma} \to 0,$$

where X_{Σ} is a finitely generated Λ -module and

$$J_{\mathfrak{p}} = \begin{cases} \Lambda/\langle \gamma_{\mathfrak{p}} - \chi_{\mathfrak{p}}^{(l)}(\gamma_{\mathfrak{p}}) \rangle, & \mu_{l} \subset K_{\mathfrak{p}} \text{ and } \mathfrak{p} \in (S \setminus \Sigma)^{fd}, \\ \Lambda/l^{t_{\mathfrak{p}}}, & \mu_{l} \subset K_{\mathfrak{p}} \text{ and } \mathfrak{p} \in (S \setminus \Sigma)^{cd}, \\ 0, & \mu_{l} \not\subset K_{\mathfrak{p}}, \end{cases}$$

where $I^{t_{\mathfrak{p}}} = \#\mu(K_{\mathfrak{p}})[I^{\infty}].$

We set
$$J = J^{\Gamma} \stackrel{\text{def}}{=} \prod_{\mathfrak{p} \in S \setminus \Sigma} J_{\mathfrak{p}} \subset X_S.$$

Lemma 1.2.

The weak Leopoldt conjecture is true for K_{∞}/K if and only if $H^2(G(K_S/K_{\infty}), \mathbb{Q}_l/\mathbb{Z}_l) = 0$. Further, the weak Leopoldt conjecture is true for $K_{\infty,0}/K$.

Note that $H^2(G(K_S/K_{\infty}), \mathbb{Q}_I/\mathbb{Z}_I)$ can be reconstructed group-theoretically from $G_{K,S} \twoheadrightarrow \Gamma$ since $G(K_S/K_{\infty}) = \text{Ker}(G_{K,S} \twoheadrightarrow \Gamma)$ and $\mathbb{Q}_I/\mathbb{Z}_I$ is a trivial $G(K_S/K_{\infty})$ -module.

Lemma 1.3.

Assume that $\mu_I \subset K$. Then $\#(S \setminus \Sigma)^{cd} < \infty$ if and only if $X_S[I^{\infty}]$ is a finitely generated Λ -module. Further, $(S \setminus \Sigma)^{cd} = \emptyset$ for $K_{\infty,0}/K$.

Note that $X_S[l^{\infty}]$ also can be reconstructed group-theoretically from $G_{K,S} \twoheadrightarrow \Gamma$.

§1. Recovering the *I*-adic cyclotomic character (6/7)

Definition 1.4.

Let $M \subset X_S$ be a Λ -submodule whose quotient X_S/M is a finitely generated Λ -module. We set

$$\mathcal{A}_{\mathcal{M}}^{\Gamma} \stackrel{\text{def}}{=} \left\{ \rho: \Gamma \to 1 + \tilde{I}\mathbb{Z}_{I} \middle| \begin{array}{l} \text{For } (\gamma, \alpha) \in (\Gamma \times (1 + \tilde{I}\mathbb{Z}_{I}))^{\text{prim}} \text{ and } x \in \mathcal{M} \setminus \{0\} \\ \text{with } \gamma - \alpha \in \text{Ann}_{\Lambda}(x), \ \rho(\gamma) = \alpha \end{array} \right.$$

where
$$(\Gamma \times (1 + \tilde{I}\mathbb{Z}_l))^{\mathsf{prim}} \stackrel{\mathsf{def}}{=} (\Gamma \times (1 + \tilde{I}\mathbb{Z}_l)) \setminus (\Gamma \times (1 + \tilde{I}\mathbb{Z}_l))^l$$
.

Note that this set is constructed from M and Γ .

Proposition 1.5.

Assume that $\mu_{\tilde{l}} \subset K$, $\Gamma = \Gamma_0$ and $\#S = \infty$. Let $M \subset J$ be a Λ -submodule whose quotient J/M is a finitely generated Λ -module. Then $A_M^{\Gamma_0} = \{w\}$.

Proposition 1.6.

Assume that $\mu_{\tilde{l}} \subset K$, $\Gamma \neq \Gamma_0$, $\delta(S) \neq 0$, the weak Leopoldt conjecture is true for K_{∞}/K and $\#(S \setminus \Sigma)^{cd} < \infty$. Let $M \subset X_S$ be a Λ -submodule whose quotient X_S/M is a finitely generated Λ -module. Then $A_M^{\Gamma} = \emptyset$.

§1. Recovering the *I*-adic cyclotomic character (7/7)

We can show the main theorem of \$1 using the results obtained so far.

Theorem 1.7.

Assume that $\delta(S) \neq 0$. Then the surjection $G_{K,S} \twoheadrightarrow \Gamma_0$ and the character $w : \Gamma_0 \to 1 + \tilde{I}\mathbb{Z}_l$ are characterized group-theoretically from $G_{K,S}$ (and l).

Proof. Assume that $\mu_{\tilde{l}} \subset K$. (In the other case, the assertion follows from that of this case.) By Lemma 1.2 and Lemma 1.3, we can distinguish purely group-theoretically whether or not a given \mathbb{Z}_{l} -quotient Γ of $G_{K,S}$ satisfies the following conditions:

- The weak Leopoldt conjecture is true for K_∞/K .
- $\#(S \setminus \Sigma)^{cd} < \infty$ (for K_{∞}/K).

Let Γ be a \mathbb{Z}_{I} -quotient of $G_{K,S}$ satisfying these conditions and $M \subset X_{S}^{\Gamma}$ a Λ -submodule whose quotient X_{S}/M is a finitely generated Λ -module. If $\Gamma \neq \Gamma_{0}$, for any $M \subset X_{S}^{\Gamma}$, $A_{M}^{\Gamma} = \emptyset$ by Proposition 1.6. If $\Gamma = \Gamma_{0}$, for sufficiently small $M \subset X_{S}^{\Gamma}$, $A_{M}^{\Gamma} = \{w\}$ by Proposition 1.5.

Definition 2.1.

For i = 1, 2, let K_i be a number field, S_i a set of primes of K_i , $T_i \subset S_{i,f}$, and $\sigma : G_{K_1,S_1} \xrightarrow{\sim} G_{K_2,S_2}$ an isomorphism. We say that the local correspondence between T_1 and T_2 holds for σ , if the following conditions are satisfied:

• For any $\overline{\mathfrak{p}}_1 \in T_1(K_{1,S_1})$, there is a unique prime $\sigma_*(\overline{\mathfrak{p}}_1) \in T_2(K_{2,S_2})$ with $\sigma(D_{\overline{\mathfrak{p}}_1}) = D_{\sigma_*(\overline{\mathfrak{p}}_1)}$, such that $\sigma_* \colon T_1(K_{1,S_1}) \to T_2(K_{2,S_2})$, $\overline{\mathfrak{p}}_1 \mapsto \sigma_*(\overline{\mathfrak{p}}_1)$ is a bijection.

Then σ_* induces a bijection $\sigma_{*,\kappa_1} \colon T_1 \xrightarrow{\sim} T_2$.

Definition 2.1. (continued)

Moreover, we say that the good local correspondence between T_1 and T_2 holds for σ , if the following conditions are satisfied:

- The local correspondence between T_1 and T_2 holds for σ .
- For any p

 ₁ ∈ T₁(K_{1,S1}), the sets of Frobenius lifts^a correspond to each other under σ|<sub>D

 ₁ : D

 ₁ → D<sub>σ*(p

 ₁).
 </sub></sub>
- σ_{*,κ_1} preserves the residue characteristics and the residual degrees of all primes in T_1 .

^aFor a Galois extension λ/κ of *p*-adic fields, we say that an element of $G(\lambda/\kappa)$ is a Frobenius lift if its image under $G(\lambda/\kappa) \twoheadrightarrow G(\lambda/\kappa)/I(\lambda/\kappa)$ is equal to the Frobenius element, where $I(\lambda/\kappa)$ is the inertia subgroup of $G(\lambda/\kappa)$.

Lemma 2.2.

For i = 1, 2, let p_i be a prime number, κ_i a p_i -adic field and λ_1/κ_1 a Galois extension. Assume that there exists an isomorphism $\sigma : G(\lambda_1/\kappa_1) \xrightarrow{\sim} G_{\kappa_2}$. Then $p_1 = p_2$, the residual degrees of κ_1 and κ_2 coincide and σ induces a bijection between the sets of Frobenius lifts. Further, $[\kappa_1 : \mathbb{Q}_{p_1}] \ge [\kappa_2 : \mathbb{Q}_{p_2}]$.

In the proof,

$$\mathcal{G}^{\mathsf{ab}}_{\kappa_i} \simeq \hat{\mathbb{Z}} imes \mathbb{Z}/(q_i-1)\mathbb{Z} imes \mathbb{Z}/p_i{}^{{\boldsymbol{a}}}\mathbb{Z} imes \mathbb{Z}_{p_i}{}^{[\kappa_i:\mathbb{Q}_{p_i}]}$$

plays an impotant role, where q_i is the order of the residue field of κ_i and $a \in \mathbb{Z}_{>0}$.

Proposition 2.3 (Chenevier-Clozel, 2009).

Let K be a totally real number field and S a set of primes of K. Assume that there exists a prime I with $P_I \cup P_{\infty} \subset S$. Then the decomposition groups in $G_{K,S}$ at primes in $(S_f \setminus P_I)(K_S)$ are full.^a

^aFor $\overline{\mathfrak{p}} \in S_f(K_S)$ and $\mathfrak{p} \in S_f$ with $\overline{\mathfrak{p}}|\mathfrak{p}$, we say that $D_{\overline{\mathfrak{p}},K_S/K}$ is full if the canonical surjection $G_{K_{\mathfrak{p}}} \twoheadrightarrow D_{\overline{\mathfrak{p}},K_S/K}$ is an isomorphism.

We obtain the following using results so far.

Theorem 2.4.

For i = 1, 2, let K_i be a number field, S_i a set of primes of K_i with $P_{K_i,\infty} \subset S_i$ and $\sigma : G_{K_1,S_1} \xrightarrow{\sim} G_{K_2,S_2}$ an isomorphism. Assume that the following conditions hold:

- There exist two different prime numbers p such that for $i = 1, 2, P_{K_i, p} \subset S_i$.
- For $i = 1, 2, \delta(S_i) \neq 0$.

Then the local correspondence between $S_{1,f}$ and $S_{2,f}$ holds for σ . Further, let $T_1 \subset S_{1,f}$ and $T_2 \subset S_{2,f}$ be subsets between which the local correspondence holds for σ and assume that for one *i*, there exist a totally real subfield $K_{i,0} \subset K_i$ and a set of primes $T_{i,0}$ of $K_{i,0}$ such that $T_{i,0}(K_i) = T_i$. Then the good local correspondence between T_1 and T_2 holds for σ .

§3. The existence of an isomorphism of fields (1/11)

For a number field K and a set of primes S of K, we set

$$\delta_{\sup}(S) \stackrel{\text{def}}{=} \limsup_{s \to 1+0} \frac{\sum_{\mathfrak{p} \in S_f} \mathfrak{N}(\mathfrak{p})^{-s}}{\log \frac{1}{s-1}}, \delta_{\inf}(S) \stackrel{\text{def}}{=} \liminf_{s \to 1+0} \frac{\sum_{\mathfrak{p} \in S_f} \mathfrak{N}(\mathfrak{p})^{-s}}{\log \frac{1}{s-1}}.$$

Note that $\delta(S) \neq 0$ if and only if $\delta_{sup}(S) > 0$.

In §3, for i = 1, 2, we set as follows:

- K_i : a number field
- S_i : a set of primes of K_i with $P_{K_i,\infty} \subset S_i$
- $T_i \subset S_{i,f}$: a subset
- $\sigma: \mathcal{G}_{\mathcal{K}_1,\mathcal{S}_1} \xrightarrow{\sim} \mathcal{G}_{\mathcal{K}_2,\mathcal{S}_2}$: an isomorphism

Fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} , and suppose that all number fields and all algebraic extensions of them are subfields of $\overline{\mathbb{Q}}$.

The goal of 3 is to prove the following theorems:

§3. The existence of an isomorphism of fields (2/11)

Theorem 3.2.

Assume that the following conditions hold:

(a) K_i/\mathbb{Q} is Galois for i = 1, 2.

(b) The good local correspondence between T_1 and T_2 holds for σ .

(c)
$$\delta_{sup}(T_i) > 1/2$$
 for one *i*.

Then $K_1 \simeq K_2$.

Theorem 3.4.

Assume that the following conditions hold:

- (a) K_i/\mathbb{Q} is Galois for i = 1, 2 and K_1 is totally imaginary.
- (b) The good local correspondence between T_1 and T_2 holds for σ .
- (c) $\delta(T_i) \neq 0$ for one *i*.

(d) There exist two different prime numbers p such that for i = 1, 2, $P_{K_i,p} \subset T_i$. Then $K_1 \simeq K_2$.

§3. The existence of an isomorphism of fields (3/11)

Lemma 3.1.

Assume that the following conditions hold:

(a) K_i/\mathbb{Q} is Galois for i = 1, 2.

(b) The good local correspondence between T_1 and T_2 holds for σ .

Then the following assertions hold:

(i)
$$\delta_{sup}(T_1) = \delta_{sup}(T_2)$$

(ii) For
$$i = 1, 2, \ \delta_{sup}(T_i(K_1K_2)) = [K_1K_2 : K_i]\delta_{sup}(T_i)$$

The similar assertions hold for δ_{inf} .

Proof. (i): By the good local correspondence between T_1 and T_2 , for s > 1,

$$\frac{\sum_{\mathfrak{p}_1 \in \mathcal{T}_1} \mathfrak{N}(\mathfrak{p}_1)^{-s}}{\log \frac{1}{s-1}} = \frac{\sum_{\mathfrak{p}_2 \in \mathcal{T}_2} \mathfrak{N}(\mathfrak{p}_2)^{-s}}{\log \frac{1}{s-1}}$$

Therefore,

$$\delta_{\sup}(T_1) = \limsup_{s \to 1+0} \frac{\sum_{\mathfrak{p}_1 \in T_1} \mathfrak{N}(\mathfrak{p}_1)^{-s}}{\log \frac{1}{s-1}} = \limsup_{s \to 1+0} \frac{\sum_{\mathfrak{p}_2 \in T_2} \mathfrak{N}(\mathfrak{p}_2)^{-s}}{\log \frac{1}{s-1}} = \delta_{\sup}(T_2).$$

Lemma 3.1.

(ii) For i = 1, 2, $\delta_{sup}(T_i(K_1K_2)) = [K_1K_2 : K_i]\delta_{sup}(T_i)$.

(ii): We set $cs(K/\mathbb{Q}) \stackrel{\text{def}}{=} \{p : a \text{ prime number } | p \text{ splits completely in } K/\mathbb{Q}\}$ for a number field K. We prove the case for i = 1. By the good local correspondence between T_1 and T_2 , for any prime number p below a prime in T_1 which is unramified in K_1K_2/\mathbb{Q} ,

"
$$p \in cs(K_1/\mathbb{Q})$$
" \Leftrightarrow "there exists $\mathfrak{p}_1 \in T_1$ of residual degree 1 such that $\mathfrak{p}_1|p$ "
 \Leftrightarrow "there exists $\mathfrak{p}_2 \in T_2$ of residual degree 1 such that $\mathfrak{p}_2|p$ "
 \Leftrightarrow " $p \in cs(K_2/\mathbb{Q})$ "
 \Leftrightarrow " $p \in cs(K_1K_2/\mathbb{Q})$ ".

Therefore,

$$\begin{split} \delta_{\sup}(T_1(K_1K_2)) &= \delta_{\sup}(\operatorname{cs}(K_1K_2/\mathbb{Q})(K_1K_2) \cap T_1(K_1K_2)) \\ &= \limsup_{s \to 1+0} \frac{\sum_{\mathfrak{p} \in \operatorname{cs}(K_1K_2/\mathbb{Q})(K_1K_2) \cap T_1(K_1K_2)} \mathfrak{N}(\mathfrak{p})^{-s}}{\log \frac{1}{s-1}} \\ &= \limsup_{s \to 1+0} \frac{\sum_{\mathfrak{p}_1 \in \operatorname{cs}(K_1/\mathbb{Q})(K_1) \cap T_1} [K_1K_2 : K_1] \mathfrak{N}(\mathfrak{p}_1)^{-s}}{\log \frac{1}{s-1}} \\ &= [K_1K_2 : K_1] \delta_{\sup}(\operatorname{cs}(K_1/\mathbb{Q})(K_1) \cap T_1) \\ &= [K_1K_2 : K_1] \delta_{\sup}(T_1). \end{split}$$

Theorem 3.2.

Assume that the following conditions hold:

- (a) K_i/\mathbb{Q} is Galois for i = 1, 2.
- (b) The good local correspondence between T_1 and T_2 holds for σ .
- (c) $\delta_{sup}(T_i) > 1/2$ for one *i*.

Then $K_1 \simeq K_2$.

Proof. By Lemma 3.1, we have $\delta_{sup}(T_1) = \delta_{sup}(T_2) > 1/2$ and $1 \ge \delta_{sup}(T_i(K_1K_2)) = [K_1K_2 : K_i]\delta_{sup}(T_i)$ for i = 1, 2. Hence we have $[K_1K_2 : K_i] = 1$ for i = 1, 2, so that $K_1 \subset K_2$ and $K_1 \supset K_2$. Thus, $K_1 = K_2$. \Box

Lemma 3.3.

Assume that the following conditions hold:

(b) The good local correspondence between T_1 and T_2 holds for σ .

(d) There exist two different prime numbers p such that for $i = 1, 2, P_{K_i,p} \subset T_i$. Then $[K_1 : \mathbb{Q}] = [K_2 : \mathbb{Q}]$.

Proof. The assertion follows from the fact that $[K_i : \mathbb{Q}] = \sum_{\mathfrak{p} \in P_{K_i,\mathfrak{p}}} [K_{i,\mathfrak{p}} : \mathbb{Q}_p]$.

The proof of Theorem 3.4 (7/11)

Theorem 3.4.

Assume that the following conditions hold:

- (a) K_i/\mathbb{Q} is Galois for i = 1, 2 and K_1 is totally imaginary.
- (b) The good local correspondence between T_1 and T_2 holds for σ .
- (c) $\delta(T_i) \neq 0$ for one *i*.

(d) There exist two different prime numbers p such that for $i = 1, 2, P_{K_i,p} \subset T_i$. Then $K_1 \simeq K_2$.

Proof. Take a prime number *I* such that for $i = 1, 2, P_{K_i,l} \subset T_i$. (By (d), we can take at least two different such prime numbers.) For i = 1, 2, we set $G_{K_i,S_i} \twoheadrightarrow \Gamma_i \stackrel{\text{def}}{=} G_{K_i,S_i}^{ab,(l),/tor} \simeq \mathbb{Z}_l^{r_i}$ and write $K_i^{(\infty)} = K_i^{(\infty,l)}$ for the corresponding subextension of $K_{i,S_i}/K_i$ with this surjection. Note that $r_{\mathbb{C}}(K_i) + 1 \leq r_i \leq [K_i : \mathbb{Q}]$ by class field theory. σ induces $\overline{\sigma} : \Gamma_1 \xrightarrow{\sim} \Gamma_2$, so that $r_1 = r_2$ for which we write r. Since K_i is Galois over \mathbb{Q} for $i = 1, 2, K_i^{(\infty)}$ and $K_1^{(\infty)}K_2^{(\infty)}$ are also.

It suffices to prove that $K_1 \subset K_2^{(\infty)}$. Indeed, then $K_1 \subset \cap_I K_2^{(\infty,I)} = K_2$, so that we obtain $K_1 = K_2$ by $[K_1 : \mathbb{Q}] = [K_2 : \mathbb{Q}]$

The proof of Theorem 3.4 (8/11)

First, we prove $[\mathcal{K}_1^{(\infty)}:\mathcal{K}_1^{(\infty)}\cap\mathcal{K}_2^{(\infty)}]<\infty$. For this, it suffices to prove $\mathcal{K}_1^{(\infty)}\mathcal{K}_2^{(\infty)}=\mathcal{K}_1\mathcal{K}_2^{(\infty)}$.

We set $\Gamma \stackrel{\text{def}}{=} G(\mathcal{K}_1^{(\infty)}\mathcal{K}_2^{(\infty)}/\mathcal{K}_1\mathcal{K}_2)$ and for i = 1, 2, $\Gamma_i' \stackrel{\text{def}}{=} G(\mathcal{K}_i^{(\infty)}/\mathcal{K}_i^{(\infty)} \cap \mathcal{K}_1\mathcal{K}_2)$. We write π_1 for $\Gamma \twoheadrightarrow G(\mathcal{K}_1^{(\infty)}\mathcal{K}_2/\mathcal{K}_1\mathcal{K}_2) \stackrel{\text{restriction}}{\to} \Gamma_1' \hookrightarrow \Gamma_1$ and define $\pi_2 : \Gamma \to \Gamma_2$ similarly. It suffices to prove that π_2 is injective. Note that $(\pi_1, \pi_2) : \Gamma \hookrightarrow \Gamma_1 \times \Gamma_2$ is injective.

Since $\delta(T_1(K_1K_2)) \neq 0$, the closed subgroup of Γ generated by Frobenius elements at primes in $T_1(K_1K_2) \setminus P_{K_1K_2,l}$ of degree 1 is open by the Chebotarev density theorem. By the good local correspondence between T_1 and T_2 , for $\mathfrak{p} \in T_1(K_1K_2) \setminus P_{K_1K_2,l}$ of degree 1, we have $\overline{\sigma} \circ \pi_1(\operatorname{Frob}_{\mathfrak{p}}) = \operatorname{Frob}_{\sigma_{*,K_1}(\mathfrak{p}|_{K_1})}$ and $\pi_2(\operatorname{Frob}_{\mathfrak{p}}) = \operatorname{Frob}_{\mathfrak{p}|_{K_2}}$. Hence $\exists \tau \in G(K_2/\mathbb{Q})$ s.t. $\tau^* \circ \overline{\sigma} \circ \pi_1(\operatorname{Frob}_{\mathfrak{p}}) = \pi_2(\operatorname{Frob}_{\mathfrak{p}})$. Therefore, $\exists \tau \in G(K_2/\mathbb{Q})$ s.t. $\tau^* \circ \overline{\sigma} \circ \pi_1 = \pi_2$, so that $\operatorname{Ker}(\pi_2) = \operatorname{Ker}(\tau^* \circ \overline{\sigma} \circ \pi_1) = \operatorname{Ker}(\pi_1)$. Thus, π_1 and π_2 are injective.

The proof of Theorem 3.4 (11/11)

Since $\Gamma_1(\simeq \mathbb{Z}_l^r)$ is torsion free, $\mathcal{K}_1^{(\infty)} = \mathcal{K}_1(\mathcal{K}_1^{(\infty)} \cap \mathcal{K}_2^{(\infty)})$. Hence restriction $\Gamma_1 \xrightarrow{\sim} G(K_1^{(\infty)} \cap K_2^{(\infty)} / K_1 \cap K_2^{(\infty)})$ is an isomorphism, so that the number r'of independent \mathbb{Z}_l -extensions of $K_1 \cap K_2^{(\infty)}$ satisfies that $r \leq r' \leq [K_1 \cap K_2^{(\infty)} : \mathbb{Q}]$. Here, assume that $K_1 \neq K_1 \cap K_2^{(\infty)}$. Then $K_1^{(\infty)}$
$$\begin{split} [\mathcal{K}_1 \cap \mathcal{K}_2^{(\infty)} : \mathbb{Q}] &\leq [\mathcal{K}_1 : \mathbb{Q}]/2 \quad \because \mathcal{K}_1 \neq \mathcal{K}_1 \cap \mathcal{K}_2^{(\infty)} \\ &= r_{\mathbb{C}}(\mathcal{K}_1) \quad \because \mathcal{K}_1 \text{ is totally imaginary} \\ &< r_{\mathbb{C}}(\mathcal{K}_1) + 1 \\ &\leq r \end{split}$$
 $\begin{matrix} \mathcal{K}_1^{(\infty)} \cap \mathcal{K}_2^{(\infty)} \\ \big| \end{matrix}$ This contradicts the above estimate. Thus, $K_1 = K_1 \cap K_2^{(\infty)}$, so that $K_1 \subset K_2^{(\infty)}$ K_1 $K_1 \cap K_2^{(\infty)}$

The proof of Theorem 3.4 (11/11)

Since $\Gamma_1(\simeq \mathbb{Z}_l^r)$ is torsion free, $\mathcal{K}_1^{(\infty)} = \mathcal{K}_1(\mathcal{K}_1^{(\infty)} \cap \mathcal{K}_2^{(\infty)})$. Hence restriction $\Gamma_1 \xrightarrow{\sim} G(K_1^{(\infty)} \cap K_2^{(\infty)} / K_1 \cap K_2^{(\infty)})$ is an isomorphism, so that the number r'of independent \mathbb{Z}_l -extensions of $K_1 \cap K_2^{(\infty)}$ satisfies that $r \leq r' \leq [K_1 \cap K_2^{(\infty)} : \mathbb{Q}]$. Here, assume that $K_1 \neq K_1 \cap K_2^{(\infty)}$. Then $K_1^{(\infty)}$
$$\begin{split} [\mathcal{K}_1 \cap \mathcal{K}_2^{(\infty)} : \mathbb{Q}] &\leq [\mathcal{K}_1 : \mathbb{Q}]/2 \quad \because \mathcal{K}_1 \neq \mathcal{K}_1 \cap \mathcal{K}_2^{(\infty)} \\ &= r_{\mathbb{C}}(\mathcal{K}_1) \quad \because \mathcal{K}_1 \text{ is totally imaginary} \\ &< r_{\mathbb{C}}(\mathcal{K}_1) + 1 \\ &\leq r \end{split}$$
 $\begin{matrix} \| \\ \kappa_1(\kappa_1^{(\infty)} \cap \\ \| \end{matrix}$ $\begin{matrix} \mathcal{K}_1^{(\infty)} \cap \mathcal{K}_2^{(\infty)} \\ \big| \end{matrix}$ This contradicts the above estimate. Thus, $K_1 = K_1 \cap K_2^{(\infty)}$, so that $K_1 \subset K_2^{(\infty)}$ K_1 $K_1 \cap K_2^{(\infty)}$

Finally we see the three main results in this talk.

By Theorem 2.4 and Theorem 3.2, we obtain the following theorem.

Theorem 4.1.

For i = 1, 2, let K_i be a number field and S_i a set of primes of K_i with

 $P_{K_i,\infty} \subset S_i$. Assume $G_{K_1,S_1} \simeq G_{K_2,S_2}$ and that the following conditions hold:

- (a) K_i/\mathbb{Q} is Galois for i = 1, 2.
- (b) There exist two different prime numbers p such that for $i = 1, 2, P_{K_i, p} \subset S_i$.
- (c) For one *i*, there exist a totally real subfield $K_{i,0} \subset K_i$ and a set of nonarchimedean primes $T_{i,0}$ of $K_{i,0}$ such that $\delta_{sup}(T_{i,0}(K_i)) > 1/2$.

(d) For the other *i*, $\delta(S_i) \neq 0$.

Then $K_1 \simeq K_2$.

By Theorem 2.4 and Theorem 3.4, we obtain the following theorem.

Theorem 4.2.

For i = 1, 2, let K_i be a number field and S_i a set of primes of K_i with $P_{K_i,\infty} \subset S_i$. Assume $G_{K_1,S_1} \simeq G_{K_2,S_2}$ and that the following conditions hold:

- (a) K_i/\mathbb{Q} is Galois for i = 1, 2 and K_1 is totally imaginary.
- (b) There exist two different prime numbers p such that for $i = 1, 2, P_{K_i,p} \subset S_i$.
- (c) For one *i*, there exist a totally real subfield $K_{i,0} \subset K_i$ and a set of nonarchimedean primes $T_{i,0}$ of $K_{i,0}$ such that $\delta(T_{i,0}(K_i)) \neq 0$.
- (d) For the other *i*, $\delta(S_i) \neq 0$.

Then $K_1 \simeq K_2$.

If the Dirichlet densities are large enough, we can omit some assumptions.

Theorem 4.3.

For i = 1, 2, let K_i be a number field and S_i a set of primes of K_i with $P_{K_i,\infty} \subset S_i$. Assume $G_{K_1,S_1} \simeq G_{K_2,S_2}$ and that the following conditions hold: (A) K_1/\mathbb{Q} is Galois. (B) $\delta_{\sup}(S_1) > 1 - \frac{1}{2[K_1:\mathbb{Q}]}$.

(C) $\delta_{\sup}(S_1) + \delta_{\inf}(S_2)$ or $\delta_{\inf}(S_1) + \delta_{\sup}(S_2)$ is larger than $2 - \frac{1}{[K_1:\mathbb{Q}]([K_2:\mathbb{Q}]!)}$, where $[K_2:\mathbb{Q}]!$ is the factorial of $[K_2:\mathbb{Q}]$. Then $K_1 \simeq K_2$.

In the proof, we show that the conditions in Theorem 4.2 hold.

This theorem is a generalization of Neukirch's original result.

Future issues are to weaken the assumptions on K_i and S_i .

In particular, we have the following questions:

- To recover the *I*-adic cyclotomic character from G_{K_i,S_i} when $\delta(S_i) = 0$.
- To study the structures of the decomposition groups in G_{K_i,S_i} in the case where we cannot use the result of [Chenevier-Clozel], and to recover local invariants.
- To prove $K_1 \simeq K_2$ without assuming "Galois over \mathbb{Q} ".
- To search for counterexamples when $\delta(S_i) = 0$.

References

- Chenevier, G., Clozel, L., Corps de nombres peu ramifiés et formes automorphes autoduales, J. of the AMS, vol. 22 (2009), no. 2, 467-519.
- Ivanov, A., Arithmetic and anabelian theorems for stable sets in number fields, Dissertation, Universität Heidelberg, 2013.
- Ivanov, A., On some anabelian properties of arithmetic curves, Manuscripta Mathematica 144 (2014), no. 3, 545-564.
- Ivanov, A., On a generalization of the Neukirch-Uchida theorem, Moscow Mathematical J. 17 (2017), no. 3, 371-383.
- Neukirch, J., Kennzeichnung der *p*-adischen und der endlichen algebraischen Zahlkörper, Invent. Math. 6 (1969), 296–314.
 - Neukirch, J., Kennzeichnung der endlich-algebraischen Zahlkörper durch die Galoisgruppe der maximal auflösbaren Erweiterungen, J. Reine Angew. Math. 238 (1969), 135–147.
- Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of number fields, Second edition, Grundlehren der Mathematischen Wissenschaften, 323. Springer-Verlag, Berlin, 2008.

- Saïdi, M. and Tamagawa, A., The *m*-step solvable anabelian geometry of number fields, preprint, arXiv:1909.08829.
- Serre, J.-P., Abelian *I*-adic representations and elliptic curves, Second edition, Advanced Book Classics, Addison-Wesley, Redwood City, 1989.