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Introduction

Let K be a number field and S a set of primes of K . We write KS/K for the
maximal extension of K unramified outside S and GK ,S for its Galois group.

The goal of this talk is to prove the following generalization of the
Neukirch-Uchida theorem under as few assumptions as possible:
“For i = 1, 2, let Ki be a number field and Si a set of primes of Ki . If GK1,S1 and
GK2,S2 are isomorphic, then K1 and K2 are isomorphic.”

For this, as in the proof of the Neukirch-Uchida theorem, we first
characterize group-theoretically the decomposition groups in GK ,S , and then
obtain an isomorphism of fields using them.
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Notations

• G (L/K )
def
= Gal(L/K ) : the Galois group of a Galois extension L/K

• K : a separable closure of a field K

• GK
def
= G (K/K )

• K : a number field (i.e. a finite extension of the field of rational numbers Q)

• P = PK : the set of primes of K

• P∞ = PK ,∞ : the set of archimedean primes of K

• Pl = PK ,l : the set of primes of K above a prime number l

• S : a subset of PK

• Sf
def
= S \ PK ,∞

• S(L) : the set of primes of L above the primes in S for an algebraic extension
L/K

For convenience, we consider that an algebraic extension L/K is ramified at a
complex prime of L if it is above a real prime of K .
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Previous works

The Neukirch-Uchida theorem (Uchida, 1976).

Let K1 and K2 be number fields. If GK1 ' GK2 , then K1 ' K2.

This is in the case that Si = PKi for i=1,2.
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Previous works

Theorem (Ivanov, 2017).

For i = 1, 2, let Ki be a number field and Si a set of primes of Ki . Assume
GK1,S1 ' GK2,S2 and that the following conditions hold:

(a) Ki/Q is Galois for i = 1, 2 and K1 is totally imaginary.

(b) There exist two odd prime numbers p such that PK1,p ⊂ S1.

(c) There exists an odd prime number p such that PK2,p ⊂ S2 and Si is sharply
p-stable for i = 1, 2.

(d) For i = 1, 2, Si is 2-stable and is sharply p-stable for almost all p.

Then K1 ' K2.

Let K be a number field and S a set of primes of K . We say that S is stable if
there are a subset S0 ⊂ S and an ε ∈ R>0 such that for any finite subextension
KS/L/K , S0(L) has Dirichlet density δ(S0(L)) > ε.
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One of main results

Theorem 4.2.
For i = 1, 2, let Ki be a number field and Si a set of primes of Ki with
PKi ,∞ ⊂ Si . Assume GK1,S1 ' GK2,S2 and that the following conditions hold:

(a) Ki/Q is Galois for i = 1, 2 and K1 is totally imaginary.

(b) There exist two different prime numbers p such that for i = 1, 2, PKi ,p ⊂ Si .

(c) For one i , there exists a totally real subfield Ki,0 ⊂ Ki and a set of
nonarchimedean primes Ti,0 of Ki,0 such that δ(Ti,0(Ki )) 6= 0.a

(d) For the other i , δ(Si ) 6= 0.

Then K1 ' K2.

aLet K be a number field and S a set of primes of K . We say that δ(S) ̸= 0 if S
has positive Dirichlet density or does not have Dirichlet density.
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Previous works

Theorem (Ivanov, 2013).

Let K be a number field and P∞ ⊂ S a finite set of primes of K . Assume that
there exist two different prime numbers p such that Pp ⊂ S , and write l for one of
them. Assume (GK ,S , l) are given. Then the data of the l-adic cyclotomic
character of an open subgroup of GK ,S is equivalent to the data of the
decomposition groups in GK ,S at primes in Sf (KS).

In the proof, the injectivity of

H2(GK ,S , µl∞)→
⊕
p∈S

H2(Dp, µl∞)

plays an impotant role.
Even if S is not finite, we can obtain the “bi-anabelian” version of this

result. In order to use this, in §1 we recover the l-adic cyclotomic character of an
open subgroup of GK ,S .
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§1. Recovering the l-adic cyclotomic character (1/7)

Let K be a number field, and fix a prime number l .

• Σ = ΣK
def
= {l ,∞}(K ) = Pl ∪ P∞

• K∞/K : a Zl -extension

• Γ = G (K∞/K )

• K∞,0/K : the cyclotomic Zl -extension

• Γ0 = ΓK ,0
def
= G (K∞,0/K )

Note that K∞/K is unramified outside Σ.

• γp : the Frobenius element in Γ at p ∈ PK \ Σ
• Γp = 〈γp〉 : the decomposition group in Γ at p ∈ PK \ Σ
• S : a set of primes of K

In §1, we assume that Σ ⊂ S . Then µl∞ ⊂ KS , and we write χ(l) = χ
(l)
K for the

l-adic cyclotomic character GK ,S → Aut(µl∞) = Zl
∗.
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§1. Recovering the l-adic cyclotomic character (2/7)

We set l̃
def
=

{
4 if l = 2,

l if l 6= 2.
We have the following commutative diagram:

GK ,S
χ(l)

//

����

Zl
∗ (1 + l̃Zl)× (Zl

∗)tor

pr1
����

Γ0
w // 1 + l̃Zl

We write w = wK : Γ0 → 1 + l̃Zl for the bottom homomorphism.
Note that χ(l)|GK(µ

l̃
),S(K(µ

l̃
))
= (GK ,S ↠ Γ0

w→ 1 + l̃Zl)|GK(µ
l̃
),S(K(µ

l̃
))
.

The goal of this section is the following.

Theorem 1.7.

Assume that δ(S) 6= 0. Then the surjection GK ,S ↠ Γ0 and the character

w : Γ0 → 1 + l̃Zl are characterized group-theoretically from GK ,S (and l).

We will see the sketch of the proof of Theorem 1.7.
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§1. Recovering the l-adic cyclotomic character (3/7)

• Λ = ΛΓ def
= Zl [[Γ]] = lim←−n

Zl [Γ/Γ
ln ] : the complete group ring of Γ

• XS = X Γ
S

def
= (Ker(GK ,S ↠ Γ)(l))ab

Note that XS is constructed group-theoretically from GK ,S ↠ Γ by its very
definition, and XS has a natural structure of Λ-module.

• (S \ Σ)fd def
= {p ∈ S \ Σ | p is finitely decomposed in K∞/K}

• (S \ Σ)cd def
= {p ∈ S \ Σ | p is completely decomposed in K∞/K}

Note that S \ Σ = (S \ Σ)fd
⨿
(S \ Σ)cd .

For p ∈ (S \ Σ)fd with µl ⊂ Kp, the local l-adic cyclotomic character
GKp
→ Aut(µl∞) = Zl

∗ factors as GKp
↠ Γp → Zl

∗ because

Γp = G (Kp(µl∞)/Kp), where we write χ
(l)
p : Γp → Zl

∗ for the second

homomorphism. Further, when µl̃ ⊂ Kp and Γ = Γ0, we have w |Γp
= χ

(l)
p .
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§1. Recovering the l-adic cyclotomic character (4/7)

We have the following structure theorem for the Λ-module XS .

Lemma 1.1.

Assume that the weak Leopoldt conjecture holds for K∞/K . Then there exists an
exact sequence of Λ-modules

0→
∏

p∈S\Σ

Jp → XS → XΣ → 0,

where XΣ is a finitely generated Λ-module and

Jp =


Λ/〈γp − χ

(l)
p (γp)〉, µl ⊂ Kp and p ∈ (S \ Σ)fd ,

Λ/l tp , µl ⊂ Kp and p ∈ (S \ Σ)cd ,
0, µl 6⊂ Kp,

where l tp = #µ(Kp)[l
∞].

We set J = JΓ
def
=

∏
p∈S\Σ

Jp ⊂ XS .
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§1. Recovering the l-adic cyclotomic character (5/7)

Lemma 1.2.

The weak Leopoldt conjecture is true for K∞/K if and only if
H2(G (KS/K∞), Ql/Zl) = 0. Further, the weak Leopoldt conjecture is true for
K∞,0/K .

Note that H2(G (KS/K∞), Ql/Zl) can be reconstructed group-theoretically from
GK ,S ↠ Γ since G (KS/K∞) = Ker(GK ,S ↠ Γ) and Ql/Zl is a trivial
G (KS/K∞)-module.

Lemma 1.3.

Assume that µl ⊂ K . Then #(S \ Σ)cd <∞ if and only if XS [l
∞] is a finitely

generated Λ-module. Further, (S \ Σ)cd = ∅ for K∞,0/K .

Note that XS [l
∞] also can be reconstructed group-theoretically from GK ,S ↠ Γ.
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§1. Recovering the l-adic cyclotomic character (6/7)

Definition 1.4.

Let M ⊂ XS be a Λ-submodule whose quotient XS/M is a finitely generated
Λ-module. We set

AΓ
M

def
=

{
ρ : Γ → 1 + l̃Zl

∣∣∣∣ For (γ, α) ∈ (Γ× (1 + l̃Zl ))
prim and x ∈ M \ {0}

with γ − α ∈ AnnΛ(x), ρ(γ) = α

}
,

where (Γ× (1 + l̃Zl))
prim def

= (Γ× (1 + l̃Zl)) \ (Γ× (1 + l̃Zl))
l .

Note that this set is constructed from M and Γ.

Proposition 1.5.

Assume that µl̃ ⊂ K , Γ = Γ0 and #S =∞. Let M ⊂ J be a Λ-submodule whose

quotient J/M is a finitely generated Λ-module. Then AΓ0

M = {w}.

Proposition 1.6.

Assume that µl̃ ⊂ K , Γ 6= Γ0, δ(S) 6= 0, the weak Leopoldt conjecture is true for
K∞/K and #(S \ Σ)cd <∞. Let M ⊂ XS be a Λ-submodule whose quotient
XS/M is a finitely generated Λ-module. Then AΓ

M = ∅.
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§1. Recovering the l-adic cyclotomic character (7/7)

We can show the main theorem of §1 using the results obtained so far.

Theorem 1.7.

Assume that δ(S) 6= 0. Then the surjection GK ,S ↠ Γ0 and the character

w : Γ0 → 1 + l̃Zl are characterized group-theoretically from GK ,S (and l).

Proof. Assume that µl̃ ⊂ K . (In the other case, the assertion follows from that of
this case.) By Lemma 1.2 and Lemma 1.3, we can distinguish purely
group-theoretically whether or not a given Zl -quotient Γ of GK ,S satisfies the
following conditions:

• The weak Leopoldt conjecture is true for K∞/K .

• #(S \ Σ)cd <∞ (for K∞/K ).

Let Γ be a Zl -quotient of GK ,S satisfying these conditions and M ⊂ X Γ
S a

Λ-submodule whose quotient XS/M is a finitely generated Λ-module.
If Γ 6= Γ0, for any M ⊂ X Γ

S , A
Γ
M = ∅ by Proposition 1.6.

If Γ = Γ0, for sufficiently small M ⊂ X Γ
S , A

Γ
M = {w} by Proposition 1.5. □
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§2. Local correspondence and recovering the local invariants (1/4)

Definition 2.1.
For i = 1, 2, let Ki be a number field, Si a set of primes of Ki , Ti ⊂ Si,f , and

σ : GK1,S1

∼→ GK2,S2 an isomorphism. We say that the local correspondence
between T1 and T2 holds for σ, if the following conditions are satisfied:

• For any p1 ∈ T1(K1,S1), there is a unique prime σ∗(p1) ∈ T2(K2,S2) with
σ(Dp1

) = Dσ∗(p1)
, such that σ∗ : T1(K1,S1)→ T2(K2,S2), p1 7→ σ∗(p1) is a

bijection.

Then σ∗ induces a bijection σ∗,K1 : T1
∼→ T2.
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§2. Local correspondence and recovering the local invariants (2/4)

Definition 2.1. (continued)

Moreover, we say that the good local correspondence between T1 and T2 holds
for σ, if the following conditions are satisfied:

• The local correspondence between T1 and T2 holds for σ.

• For any p1 ∈ T1(K1,S1), the sets of Frobenius liftsa correspond to each other

under σ|Dp1
: Dp1

∼→ Dσ∗(p1)
.

• σ∗,K1 preserves the residue characteristics and the residual degrees of all
primes in T1.

aFor a Galois extension λ/κ of p-adic fields, we say that an element of G(λ/κ) is a
Frobenius lift if its image under G(λ/κ) ↠ G(λ/κ)/I (λ/κ) is equal to the Frobenius
element, where I (λ/κ) is the inertia subgroup of G(λ/κ).

17 / 35



§2. Local correspondence and recovering the local invariants (3/4)

Lemma 2.2.

For i = 1, 2, let pi be a prime number, κi a pi -adic field and λ1/κ1 a Galois
extension. Assume that there exists an isomorphism σ : G (λ1/κ1)

∼→ Gκ2 . Then
p1 = p2, the residual degrees of κ1 and κ2 coincide and σ induces a bijection
between the sets of Frobenius lifts. Further, [κ1 : Qp1 ] ≥ [κ2 : Qp2 ].

In the proof,

G ab
κi
' Ẑ× Z/(qi − 1)Z× Z/pi aZ× Z[κi :Qpi

]
pi

plays an impotant role, where qi is the order of the residue field of κi and a ∈ Z≥0.

Proposition 2.3 (Chenevier-Clozel, 2009).

Let K be a totally real number field and S a set of primes of K . Assume that
there exists a prime l with Pl ∪ P∞ ⊂ S . Then the decomposition groups in GK ,S

at primes in (Sf \ Pl)(KS) are full.a

aFor p ∈ Sf (KS ) and p ∈ Sf with p|p, we say that Dp,KS/K
is full if the canonical

surjection GKp ↠ Dp,KS/K
is an isomorphism.
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§2. Local correspondence and recovering the local invariants (4/4)

We obtain the following using results so far.

Theorem 2.4.
For i = 1, 2, let Ki be a number field, Si a set of primes of Ki with PKi ,∞ ⊂ Si and

σ : GK1,S1

∼→ GK2,S2 an isomorphism. Assume that the following conditions hold:

• There exist two different prime numbers p such that for i = 1, 2, PKi ,p ⊂ Si .

• For i = 1, 2, δ(Si ) 6= 0.

Then the local correspondence between S1,f and S2,f holds for σ. Further, let
T1 ⊂ S1,f and T2 ⊂ S2,f be subsets between which the local correspondence holds
for σ and assume that for one i , there exist a totally real subfield Ki,0 ⊂ Ki and a
set of primes Ti,0 of Ki,0 such that Ti,0(Ki ) = Ti . Then the good local
correspondence between T1 and T2 holds for σ.
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§3. The existence of an isomorphism of fields (1/11)

For a number field K and a set of primes S of K , we set

δsup(S)
def
= lim sup

s→1+0

∑
p∈Sf

N(p)−s

log 1
s−1

, δinf(S)
def
= lim inf

s→1+0

∑
p∈Sf

N(p)−s

log 1
s−1

.

Note that δ(S) 6= 0 if and only if δsup(S) > 0.

In §3, for i = 1, 2, we set as follows:

• Ki : a number field

• Si : a set of primes of Ki with PKi ,∞ ⊂ Si

• Ti ⊂ Si,f : a subset

• σ : GK1,S1

∼→ GK2,S2 : an isomorphism

Fix an algebraic closure Q of Q, and suppose that all number fields and all
algebraic extensions of them are subfields of Q.

The goal of §3 is to prove the following theorems:
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§3. The existence of an isomorphism of fields (2/11)

Theorem 3.2.
Assume that the following conditions hold:

(a) Ki/Q is Galois for i = 1, 2.

(b) The good local correspondence between T1 and T2 holds for σ.

(c) δsup(Ti ) > 1/2 for one i .

Then K1 ' K2.

Theorem 3.4.
Assume that the following conditions hold:

(a) Ki/Q is Galois for i = 1, 2 and K1 is totally imaginary.

(b) The good local correspondence between T1 and T2 holds for σ.

(c) δ(Ti ) 6= 0 for one i .

(d) There exist two different prime numbers p such that for i = 1, 2, PKi ,p ⊂ Ti .

Then K1 ' K2.
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§3. The existence of an isomorphism of fields (3/11)

Lemma 3.1.
Assume that the following conditions hold:

(a) Ki/Q is Galois for i = 1, 2.

(b) The good local correspondence between T1 and T2 holds for σ.

Then the following assertions hold:

(i) δsup(T1) = δsup(T2)

(ii) For i = 1, 2, δsup(Ti (K1K2)) = [K1K2 : Ki ]δsup(Ti ).

The similar assertions hold for δinf .

Proof. (i): By the good local correspondence between T1 and T2, for s > 1,∑
p1∈T1

N(p1)
−s

log 1
s−1

=

∑
p2∈T2

N(p2)
−s

log 1
s−1

.

Therefore,

δsup(T1) = lim sup
s→1+0

∑
p1∈T1

N(p1)
−s

log 1
s−1

= lim sup
s→1+0

∑
p2∈T2

N(p2)
−s

log 1
s−1

= δsup(T2).
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Lemma 3.1.

(ii) For i = 1, 2, δsup(Ti (K1K2)) = [K1K2 : Ki ]δsup(Ti ).

(ii): We set cs(K/Q)
def
= {p : a prime number | p splits completely in K/Q} for a

number field K . We prove the case for i = 1. By the good local correspondence
between T1 and T2, for any prime number p below a prime in T1 which is
unramified in K1K2/Q,
“p ∈ cs(K1/Q)” ⇔ “there exists p1 ∈ T1 of residual degree 1 such that p1|p”

⇔ “there exists p2 ∈ T2 of residual degree 1 such that p2|p”
⇔ “p ∈ cs(K2/Q)”
⇔ “p ∈ cs(K1K2/Q)”.

Therefore,

δsup(T1(K1K2)) = δsup(cs(K1K2/Q)(K1K2) ∩ T1(K1K2))

= lim sup
s→1+0

∑
p∈cs(K1K2/Q)(K1K2)∩T1(K1K2)

N(p)−s

log 1
s−1

= lim sup
s→1+0

∑
p1∈cs(K1/Q)(K1)∩T1

[K1K2 : K1]N(p1)
−s

log 1
s−1

= [K1K2 : K1]δsup(cs(K1/Q)(K1) ∩ T1)

= [K1K2 : K1]δsup(T1). □
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§3. The existence of an isomorphism of fields (5/11)

Theorem 3.2.
Assume that the following conditions hold:

(a) Ki/Q is Galois for i = 1, 2.

(b) The good local correspondence between T1 and T2 holds for σ.

(c) δsup(Ti ) > 1/2 for one i .

Then K1 ' K2.

Proof. By Lemma 3.1, we have δsup(T1) = δsup(T2) > 1/2 and
1 ≥ δsup(Ti (K1K2)) = [K1K2 : Ki ]δsup(Ti ) for i = 1, 2. Hence we have
[K1K2 : Ki ] = 1 for i = 1, 2, so that K1 ⊂ K2 and K1 ⊃ K2.
Thus, K1 = K2. □

24 / 35



§3. The existence of an isomorphism of fields (6/11)

Lemma 3.3.
Assume that the following conditions hold:

(b) The good local correspondence between T1 and T2 holds for σ.

(d) There exist two different prime numbers p such that for i = 1, 2, PKi ,p ⊂ Ti .

Then [K1 : Q] = [K2 : Q].

Proof. The assertion follows from the fact that [Ki : Q] =
∑

p∈PKi ,p
[Ki,p : Qp]. □
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The proof of Theorem 3.4 (7/11)

Theorem 3.4.
Assume that the following conditions hold:

(a) Ki/Q is Galois for i = 1, 2 and K1 is totally imaginary.

(b) The good local correspondence between T1 and T2 holds for σ.

(c) δ(Ti ) 6= 0 for one i .

(d) There exist two different prime numbers p such that for i = 1, 2, PKi ,p ⊂ Ti .

Then K1 ' K2.

Proof. Take a prime number l such that for i = 1, 2, PKi ,l ⊂ Ti . (By (d), we can
take at least two different such prime numbers.) For i = 1, 2, we set

GKi ,Si ↠ Γi
def
= G

ab,(l),/tor
Ki ,Si

' Zri
l and write K

(∞)
i = K

(∞,l)
i for the corresponding

subextension of Ki,Si/Ki with this surjection. Note that rC(Ki ) + 1 ≤ ri ≤ [Ki : Q]

by class field theory. σ induces σ : Γ1
∼→ Γ2, so that r1 = r2 for which we write r .

Since Ki is Galois over Q for i = 1, 2, K
(∞)
i and K

(∞)
1 K

(∞)
2 are also.

It suffices to prove that K1 ⊂ K
(∞)
2 . Indeed, then K1 ⊂ ∩lK (∞,l)

2 = K2, so
that we obtain K1 = K2 by [K1 : Q] = [K2 : Q]
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The proof of Theorem 3.4 (8/11)

K
(∞)
1 K

(∞)
2

K
(∞)
1 K2 K1K

(∞)
2

finite

K
(∞)
1 K

(∞)
2

K
(∞)
1 ∩ K

(∞)
2

First, we prove [K
(∞)
1 : K

(∞)
1 ∩ K

(∞)
2 ] <∞.

For this, it suffices to prove K
(∞)
1 K

(∞)
2 = K1K

(∞)
2 .
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K
(∞)
1 K

(∞)
2

Γ

K
(∞)
1 K2 K1K

(∞)
2

K
(∞)
1

Γ′
1

Γ1

K
(∞)
2

Γ′
2

Γ2

K1K2

K
(∞)
1 ∩ K1K2 K

(∞)
2 ∩ K1K2

K1 K2

We set Γ
def
= G (K

(∞)
1 K

(∞)
2 /K1K2) and for i = 1, 2, Γ′i

def
= G (K

(∞)
i /K

(∞)
i ∩ K1K2).

We write π1 for Γ ↠ G (K
(∞)
1 K2/K1K2)

restriction
∼→ Γ′1 ↪→ Γ1 and define π2 : Γ→ Γ2

similarly. It suffices to prove that π2 is injective. Note that (π1, π2) : Γ ↪→ Γ1 × Γ2
is injective.
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K (∞)
1 K (∞)

2

Γ

K (∞)
1 K2 K1K

(∞)
2

K (∞)
1

Γ′1

Γ1

K (∞)
2

Γ′2

Γ2

K1K2

K (∞)
1 ∩ K1K2 K (∞)

2 ∩ K1K2

K1 K2

Since δ(T1(K1K2)) 6= 0, the closed subgroup of Γ generated by Frobenius
elements at primes in T1(K1K2) \ PK1K2,l of degree 1 is open by the Chebotarev
density theorem. By the good local correspondence between T1 and T2, for
p ∈ T1(K1K2) \ PK1K2,l of degree 1, we have σ ◦ π1(Frobp) = Frobσ∗,K1 (p|K1 ) and
π2(Frobp) = Frobp|K2 . Hence ∃τ ∈ G (K2/Q) s.t. τ∗ ◦ σ ◦ π1(Frobp) = π2(Frobp).
Therefore, ∃τ ∈ G (K2/Q) s.t. τ∗ ◦ σ ◦ π1 = π2, so that
Ker(π2) = Ker(τ∗ ◦ σ ◦ π1) = Ker(π1). Thus, π1 and π2 are injective.
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The proof of Theorem 3.4 (11/11)

Since Γ1(' Zr
l ) is torsion free, K

(∞)
1 = K1(K

(∞)
1 ∩ K

(∞)
2 ). Hence

Γ1

restriction
∼→ G (K

(∞)
1 ∩ K

(∞)
2 /K1 ∩ K

(∞)
2 ) is an isomorphism, so that the number r ′

of independent Zl -extensions of K1 ∩K (∞)
2 satisfies that r ≤ r ′ ≤ [K1 ∩K (∞)

2 : Q].

K
(∞)
1

Γ1

finite
K1(K

(∞)
1 ∩ K

(∞)
2 )

K
(∞)
1 ∩ K

(∞)
2

K1

K1 ∩ K
(∞)
2

Here, assume that K1 6= K1 ∩ K
(∞)
2 . Then

[K1 ∩ K
(∞)
2 : Q] ≤ [K1 : Q]/2 ∵ K1 6= K1 ∩ K

(∞)
2

= rC(K1) ∵ K1 is totally imaginary

< rC(K1) + 1

≤ r

This contradicts the above estimate.
Thus, K1 = K1 ∩ K

(∞)
2 , so that

K1 ⊂ K
(∞)
2 . □
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The proof of Theorem 3.4 (11/11)

Since Γ1(' Zr
l ) is torsion free, K

(∞)
1 = K1(K

(∞)
1 ∩ K

(∞)
2 ). Hence

Γ1

restriction
∼→ G (K

(∞)
1 ∩ K

(∞)
2 /K1 ∩ K

(∞)
2 ) is an isomorphism, so that the number r ′

of independent Zl -extensions of K1 ∩K (∞)
2 satisfies that r ≤ r ′ ≤ [K1 ∩K (∞)

2 : Q].

K
(∞)
1

Γ1

finite
K1(K

(∞)
1 ∩ K

(∞)
2 )

K
(∞)
1 ∩ K

(∞)
2

K1

K1 ∩ K
(∞)
2

Here, assume that K1 6= K1 ∩ K
(∞)
2 . Then

[K1 ∩ K
(∞)
2 : Q] ≤ [K1 : Q]/2 ∵ K1 6= K1 ∩ K

(∞)
2

= rC(K1) ∵ K1 is totally imaginary

< rC(K1) + 1

≤ r

This contradicts the above estimate.
Thus, K1 = K1 ∩ K

(∞)
2 , so that

K1 ⊂ K
(∞)
2 . □
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§4. Main results (1/3)

Finally we see the three main results in this talk.

By Theorem 2.4 and Theorem 3.2, we obtain the following theorem.

Theorem 4.1.
For i = 1, 2, let Ki be a number field and Si a set of primes of Ki with
PKi ,∞ ⊂ Si . Assume GK1,S1 ' GK2,S2 and that the following conditions hold:

(a) Ki/Q is Galois for i = 1, 2.

(b) There exist two different prime numbers p such that for i = 1, 2, PKi ,p ⊂ Si .

(c) For one i , there exist a totally real subfield Ki,0 ⊂ Ki and a set of
nonarchimedean primes Ti,0 of Ki,0 such that δsup(Ti,0(Ki )) > 1/2.

(d) For the other i , δ(Si ) 6= 0.

Then K1 ' K2.
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§4. Main results (2/3)

By Theorem 2.4 and Theorem 3.4, we obtain the following theorem.

Theorem 4.2.
For i = 1, 2, let Ki be a number field and Si a set of primes of Ki with
PKi ,∞ ⊂ Si . Assume GK1,S1 ' GK2,S2 and that the following conditions hold:

(a) Ki/Q is Galois for i = 1, 2 and K1 is totally imaginary.

(b) There exist two different prime numbers p such that for i = 1, 2, PKi ,p ⊂ Si .

(c) For one i , there exist a totally real subfield Ki,0 ⊂ Ki and a set of
nonarchimedean primes Ti,0 of Ki,0 such that δ(Ti,0(Ki )) 6= 0.

(d) For the other i , δ(Si ) 6= 0.

Then K1 ' K2.
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§4. Main results (3/3)

If the Dirichlet densities are large enough, we can omit some assumptions.

Theorem 4.3.
For i = 1, 2, let Ki be a number field and Si a set of primes of Ki with
PKi ,∞ ⊂ Si . Assume GK1,S1 ' GK2,S2 and that the following conditions hold:

(A) K1/Q is Galois.

(B) δsup(S1) > 1− 1
2[K1:Q] .

(C) δsup(S1) + δinf(S2) or δinf(S1) + δsup(S2) is larger than 2− 1
[K1:Q]([K2:Q]!) ,

where [K2 : Q]! is the factorial of [K2 : Q].

Then K1 ' K2.

In the proof, we show that the conditions in Theorem 4.2 hold.

This theorem is a generalization of Neukirch’s original result.
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Future perspectives

Future issues are to weaken the assumptions on Ki and Si .

In particular, we have the following questions:

• To recover the l-adic cyclotomic character from GKi ,Si when δ(Si ) = 0.

• To study the structures of the decomposition groups in GKi ,Si in the case
where we cannot use the result of [Chenevier-Clozel], and to recover local
invariants.

• To prove K1 ' K2 without assuming “Galois over Q”.

• To search for counterexamples when δ(Si ) = 0.
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