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The Grothendieck’s anabelian conjecture (GC) 3/26

In this talk, a curve over a field k is defined as a one-dimensional scheme
geometrically connected, separated and of finite type over k.

Definition

Let X be a smooth proper curve over k and U an non-empty open subscheme
of X. Set S := X − U . Let g(U) be the genus of X and r(U) := |S(k)|. We
say that U is hyperbolic if 2− 2g(U)− r(U) < 0.

For curves, the main anabelian question is the reconstruction of the isom class
from fundamental groups. Exactly:

The Grothendieck’s anabelian conjeture (cf. [Mochizuki]1)

Let k be a sub-p-adic field (e.g. field fin. gen. over Q), and U,U ′ hyperbolic
curves over k. Then the following holds.

π1(U) ∼=
Gk

π1(U
′) =⇒ U ∼=

k
U ′

1The local pro-p anabelian geometry of curves. Invent. Math., 138(2):319−423, 1999.
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What is m-step solvable GC? 4/26

Let G be a profinite group. Set G[0] := G, G[m] := [G[m−1], G[m−1]]
(m ∈ N.) We call Gm := G/G[m] the maximal m-step solvable quotient
of G.

π
(m)
1 (U) := π1(U)/π1(Uksep)[m]. This satisfies:

1 → π1(Uksep )m → π
(m)
1 (U) → Gk → 1 (exact).

The m-step solvable Grothendieck conjecture

Let U,U ′ be hyperbolic curves over k. Then the following holds.

π
(m)
1 (U) ∼=

Gk

π
(m)
1 (U ′) =⇒ U ∼=

k
U ′

[Nakamura1]2 m = 2, k: a number field (+conditions), (g, r) = (0, 4)

[Mochizuki] m ≥ 5, k: a sub-p-adic field, (g, r): general

It is desirable to prove the m-step solvable GC for as small m as possible
(m = 2 is smallest expected).

2Rigidity of the arithmetic fundamental group of a punctured projective line. J. Reine Angew.
Math., 405:117−130, 1990.
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Plan of this talk 5/26

In this talk, we prove a result on the m-step solvable GC. To be more specific:

Main result

k: a field finitely generated over the prime field, p := ch(k) ≥ 0.

U,U ′: genus 0 hyperbolic curves over k.

m ≥ 3.

If p > 0, we assume a non-isotrivial condition of U (more about that later).

Then the m-step solvable GC (with suitable modification when p > 0) holds.

§2: We explain the reconstruction of decomposition groups at cusps,
which is the main ingredient of the proof of the main result.

§3 We give the exact statement of the main result and explain the outline
of the proof in detail.

Many of the proofs and definitions refer to [Nakamura2]3.

3Galois rigidity of the étale fundamental groups of punctured projective lines. J. Reine Angew.
Math., 411:205−216, 1990.
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Center-freeness of free pro-C groups 7/26

Fix a non-empty non-trivial class of finite groups C which is closed under
taking quotients, subgroups and extensions. We set ZC := ẐC .

Proposition 2.1.

Let F be a free pro-C group and X ⊂ F a set of free generators. If m ≥ 2 and
|X| ≥ 2, then for any n ∈ Z− {0} and x ∈ X, the following holds.

ZFm(xn) = ⟨x⟩

Here, ZFm(xn) is the centralizer of xn in Fm. In particular, Fm is center-free.

Proof
(Step 1) ZFm(xn) ⊂ ⟨x⟩ · F [m−1]/F [m]

(Step 2) ZC [[F1]] ∋ xn − 1 is a non-zero-divisor.
(Step 3) xn − 1 is a non-zero-divisor ⇔ ZF2(xn) = ⟨x⟩

(In this step, we use pro-C Branchfield-Lyndon theory.)
(Step 4) The induction on m ≥ 2.
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Separatedness of decomposition groups at cusps 8/26

We introduce the following notation.

Define Π as the maximal pro-C quotient of π1(Uksep).

Π(m) := π1(U)/Ker(π1(Uksep) → Π
m
). This satisfies:

1 → Π
m → Π(m) → Gk → 1. (exact)

Ũm → Uksep , X̃m → Xksep : the covers corresponding to Π
m
.

Iy (resp. Dy): the stabilizer of y ∈ X̃m − Ũm w.r.t Π
m ↷ X̃m − Ũm

(resp. Π(m) ↷ X̃m − Ũm).

Corollary 2.2.

U : a hyperbolic curve over k with r(U) ≥ 2.

Z/pZ /∈ C

m ≥ 2

For all distinct pairs y, y′ ∈ X̃m − Ũm, the following hold.

(1) Iy = NΠ
m(Iy) and Dy = NΠ(m)(Iy).

(2) Iy and Iy′ are not commensurable. In particular, Dy ̸= Dy′ .
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Main result of §2 9/26

We consider the following assumptions.

Setting of §2

k: a field finitely generated over the prime field, p := ch(k)

U : a hyperbolic curve over k with r(U) ≥ 3.

Z/pZ /∈ C

Under the assumption, we show:

Main result of §2
The decomposition groups at cusps of Π(m)(U) can be recovered
group-theoretically from Π(m+2)(U) → Gk.

Flow of the proof
To prove, we define the maximal cyclic subgroups of cyclotomic type (CSCT),
and show that the inertia groups can be characterized as the images of CSCT.
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The maximal cyclic subgroup of cyclotomic type (CSCT) 10/26

Definition

Let J
cl
< Π

m
. If J satisfies the following conditions, then J is called the

maximal cyclic subgroup of cyclotomic type (CSCT).

(i) J ∼= ZC

(ii) J ≃ J(:= the image J by Π
m → Π

ab
) and Π

ab
/J is torsion-free.

(iii) prU/k(NΠ(m)(J)))
op
< Gk.

(iv) The following diagram is commutative.

NΠ(m)(J)
conjugate //

prU/k ��

Aut(J)

Gk

χcycl // Z×
C

=
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Reconstruction of the inertia groups 11/26

Proposition 2.3.

For any I
cl
< Π

m
, the following conditions are equivalent.

(a) I is an inertia group.

(b) There exists a CSCT J of Π
m+2

whose image by Π
m+2 → Π

m
coincides

with I.

Sketch of (b) ⇒ (a)

In this case, for all H
op
< Π

m+2
containing Π

[m+1]
/Π

[m+2]
, we reconstruct

IH = ⟨inertia groups⟩ ⊂ Hab, and we show that the image of J ∩H is
contained in IH .

The pro-ℓ setting

If C coincides with {ℓ-group}, then m+ 2 can be replaced with m+ 1.
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Proof of Main result of §2 12/26

Setting of §2

k: a field finitely generated over the prime field, p := ch(k)

U : a hyperbolic curve over k with r(U) ≥ 3.

Z/pZ /∈ C

Main result of §2
The decomposition groups at cusps of Π(m)(U) can be recovered
group-theoretically from Π(m+2)(U) → Gk.

Proof
We reconstructed the inertia groups of Π

m
, group-theoretically (Proposition

2.3). Since the decomposition groups at cusps are the normalizer of the inertia
groups if m ≥ 2 (Corollary 2.2), the assertion holds if m ≥ 2. When m = 1, we
must use the maximal nilpotent quotient of Π

m
.

The pro-ℓ setting

If C coincides with {ℓ-group}, then m+2 can be replaced with m+1 (m ≥ 2).
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Assumption 14/26

In this section, we assume that:

Setting of §3

(1) k: a field finitely generated over the prime field, p :=ch(k).

(2) U,U ′ : genus 0 hyperbolic curves over k.

(3) C contains Z/ℓZ for all primes ℓ ̸= p.

By (2), we get r(U) ≥ 3. Then we can use the results of §2.
By (3), The group Π (cf. §2) coincides with the maximal prime to p
quotient of the fundamental group. In other word, we have

Π = π
(p)′

1 (Uksep).

First, we introduce the following notation.

Definition

Let p > 0 and k0 := k ∩ Fp. A curve X over k is isotrivial if there exists a
curve X0 over k0 such thtat X0 ×k0

k ∼=
k

Xk.
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Main Theorem 15/26

Setting of §3

k: a field finitely generated over the prime field, p :=ch(k).

U,U ′ : genus 0 hyperbolic curves over k.

C contains Z/ℓZ for all primes ℓ ̸= p.

The following theorem is the main result of this talk.

Main theorem

m ≥ 3

If p > 0, we assume:

∀R ⊂ (Uk)
cpt − Uk with |R| = 4, (Uk)

cpt −R is non-isotrivial.

Then the following hold.

Π(m)(U) ∼=
Gk

Π(m)(U ′) =⇒

U ∼=
k
U ′ p = 0

∃n, n′ ∈ N ∪ {0} s.t. U(n) ∼=
k
U ′(n′) p > 0

Here, U(n), U ′(n′) are Frobenius twist of U,U ′

Naganori Yamaguchi, RIMS Kyoto University, Japan The m-step solvable GC for genus 0 curves over finitely generated fields



Introduction
Reconstruction of decomposition groups at cusps

The m-step solvable GC for genus 0 hyperbolic curves

Basic flow of the proof of Main theorem 16/26

Proof in the case of U = P1
k − {0,∞, 1, λ}

(Π(3)(U) → Gk)
§2−−−−−−−−−→ (Π(1)(U) → Gk) and deco-groups at cusps

step 1−−−−−−−−−→ k(⟨λ⟩
1
ℓn ), k(⟨1− λ⟩

1
ℓn )

step 2−−−−−−−−−→ k× ⊃ ⟨λ⟩, ⟨1− λ⟩ (+Frobenius twists)

step 3−−−−−−−−−→ λ (+Frobenius twists)

Proof in the case of genus 0 curves.

case of P1
k − {0,∞, 1, λ} step 4−−−−−−−−→ case of P1

k − S (S ⊂ P1
k(k))

step 5−−−−−−−−→ case of genus 0 hyperbolic curves
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Rigidity invariant 17/26

Let x1, x2, x3, x4 be distinct elements of k − {0, 1}. We define the rigifity
invariant of {x1, x2, x3, x4} by

κn(x1, x2, x3, x4) :=

(
The fixed field of

∪
H

∩
y

pU/k(H ∩Dy) ⊂ Gk in ksep

)
.

Here, y ∈ X̃1 − Ũ1 run through all closed points above x3, x4, and H runs
through the all open subgroups of Π(1)(P1

k − {x1, x2, x3, x4}) that satisfy the
following conditions.

(i) H := H ∩Π
1
contains all inertia groups at {x3, x4}.

(ii) Π
1
/H ∼= Z/nZ

(iii) pU/k(H) = Gk(µn)

(iv) p−1
U/k(Gk(µn))▷H

By definition, the rigidity invariant is defined by

Π(1)(P1
k − {x1, x2, x3, x4}) → Gk and decomposition groups at cusps.
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step 1 18/26

Proof in the case of U = P1
k − {0,∞, 1, λ}

(Π(3)(U) → Gk)
step 1−−−−−−−−−→ k(⟨λ⟩

1
ℓn ), k(⟨1− λ⟩

1
ℓn )

We can caluculate rigidity invariant of {x1, x2, x3, x4} by the following
proposition.

Proposition 3.1.

κℓn(x1, x2, x3, x4) = k

(
µℓn ,

(
x4 − x1

x4 − x2

x3 − x2

x3 − x1

) 1
ℓn
)

(n ∈ N ∪ {0})

By the following calucuration, we get k(⟨λ⟩
1
ℓn ) and k(⟨1− λ⟩

1
ℓn ) for all n.

If {x1, x2, x3, x4} = {0,∞, 1, λ}, then
(

x4−x1
x4−x2

x3−x2
x3−x1

)
= λ

If {x1, x2, x3, x4} = {λ, 0,∞, 1}, then
(

x4−x1
x4−x2

x3−x2
x3−x1

)
= 1− λ
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step2 19/26

We can reconstruct k× ⊃ ⟨λ⟩ and ⟨1− λ⟩ (+Frobenius twists) from{
k(⟨λ⟩

1
ℓn )

}
ℓ,n

and
{
k(⟨1− λ⟩

1
ℓn )

}
ℓ,n

, respectively. Exactly, we can prove:

Proposition

Let λ, λ′ ∈ k×. If k(⟨λ⟩
1
ℓn ) = k(⟨λ′⟩

1
ℓn ) for all ℓ different from p and all

n ∈ N ∪ {0}, then the following hold.

(1) If p = 0, then ⟨λ⟩ = ⟨λ′⟩.

(2) If p ̸= 0, there exists σ ∈ Z such that ⟨λ⟩pσ = ⟨λ′⟩. If, moreover, λ ∈ k× is not a
torsion element, then such σ is unique.

Remark

If k is an algebraic number field, step 1 and 2 are proved in [Nakamura1][Nakamura2].
The argument can be extended to the case of that k is a finitely generated field with
arbitrary characteristic.
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step 3 (characteristic 0 version) 20/26

Proof in the case of U = P1
k − {0,∞, 1, λ}

(Π(3)(U) → Gk)
step 2−−−−−−−−−→ k× ⊃ ⟨λ⟩, ⟨1− λ⟩ (+Frobenius twists)

step 3−−−−−−−−−→ λ (+Frobenius twists)

Lemma 3.2. (p = 0)

Let λ, λ′ ∈ k× − {1}. If ⟨λ⟩ = ⟨λ′⟩ and ⟨1− λ⟩ = ⟨1− λ′⟩ in k×, then

λ = λ′ or
{
λ, λ′} =

{
ρ, ρ−1} (ρ : primitive 6-th root of unity)

Proof
Suppose λ ̸= λ′. If either |λ| ̸= 1 or |1− λ| ̸= 1, we can get a contradiction by
calculation. Then {λ, λ′} =

{
ρ, ρ−1

}
.
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step 3 (positive characteristic version) 21/26

Lemma 3.3. (p > 0)

Let λ, λ′ ∈ k× − {1} be non-torsion elements and u, v ∈ Z. If ⟨λ⟩p
u

= ⟨λ′⟩
and ⟨1− λ⟩p

v

= ⟨1− λ′⟩ in k
×
, then there exists a unique n ∈ Z such that

λpn = λ′.

The assumption of ”non-torsion” is essentially important because there exists a
counterexample of Lemma 3.3 if λ is a torsion element. For example, if p = 7,

⟨3⟩ = ⟨1− 5⟩ = ⟨5⟩ = ⟨1− 3⟩ = F×
7 .

More generally:

Counterexample

Assume that k = Fp. Because k× is a cyclic group having order p− 1, the
cardinarity of subgroups of k× equals to the cardinarity of the divisor of p− 1.
Taking enough large p, we can get this cardinarities ≤ √

p (e.g. p = 47). Thus,
Lemma 3.3 is false in this case.
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Basic flow of the proof of Main theorem 22/26

Proof in the case of U = P1
k − {0,∞, 1, λ}

(Π(3)(U) → Gk)
§2−−−−−−−−−→ (Π(1)(U) → Gk) and deco-groups at cusps

step 1−−−−−−−−−→ k(⟨λ⟩
1
ℓn ), k(⟨1− λ⟩

1
ℓn )

step 2−−−−−−−−−→ k× ⊃ ⟨λ⟩, ⟨1− λ⟩ (+Frobenius twists)

step 3−−−−−−−−−→ λ (+Frobenius twists)

Proof in the case of genus 0 curves.

case of P1
k − {0,∞, 1, λ} step 4−−−−−−−−→ case of P1

k − S (S ⊂ P1
k(k))

step 5−−−−−−−−→ case of genus 0 hyperbolic curves
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Result: P1
k minus 4 points in positive characteristic 23/26

We obtain the following proposition by the discussion so far.

Proposition 3.4. (characteristic p > 0 version)

k: field finitely generated over Fp

λ, λ′ ∈ k − (k ∩ Fp).

U := P1
k − {0, 1,∞, λ}, U ′ := P1

k − {0, 1,∞, λ′}
Then

Π(3)(U) ∼=
Gk

Π(3)(U ′) =⇒ ∃n, n′ ∈ N ∪ {0} s.t. U(n) ∼=
k
U ′(n′)

Remark ( isotrivial cases )

If λ ∈ k ∩ Fp (in other words, λ is a torsion element of k×), Lemma 3.3 is not
true. Hence, if λ ∈ k ∩ Fp, Proposition cannot be proved by our method, the
m-step solvable GC for isotrivial curves is still open.
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Result: P1
k minus 4 points in characteristic 0 24/26

We obtain the following proposition by the discussion so far.

Proposition 3.5. ( characteristic 0 version)

k: field finitely generated over Q
λ, λ′ ∈ k − {0, 1} .
U := P1

k − {0, 1,∞, λ}, U ′ := P1
k − {0, 1,∞, λ′}

Then
Π(3)(U) ∼=

Gk

Π(3)(U ′) =⇒ U ∼=
k
U ′

Proof
If {λ, λ′} ̸=

{
ρ, ρ−1

}
, we reconstructed λ from (Π(1) → Gk) and

decomposition groups at cusps.
Thus, we have only to show that {λ, λ′} ̸=

{
ρ, ρ−1

}
. This step is very

technical, but possible if we start from (Π(3) → Gk). Indeed, (Π
(pro-2,2) → Gk)

and deco-groups at cusps are reconstructed from (Π(3) → Gk). It is sufficient
to show the claim.
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Proof of main theorem 25/26

Proof in the case of genus 0 curves.

case of P1
k − {0,∞, 1, λ} step 4−−−−−−−−→ case of P1

k − S (S ⊂ P1
k(k))

step 5−−−−−−−−→ case of genus 0 hyperbolic curves

Proof

(step 4): Reduce the case of P1
k − S (|S| ≥ 4) to P1

k − {4pt} by dividing
by the inertia groups. In this step, we have to assume the following
assumption (cf. Lemma 3.3).

∀R ⊂ S with |R| = 4, P1
k −R is non-isotrivial.

(step 5): Reduce the case of genus 0 curves to P1
k − S by Galois descent.
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Main theorem 26/26

Setting of §3

k: a field finitely generated over the prime field, p :=ch(k).

U,U ′ : genus 0 hyperbolic curves over k.

C contains Z/ℓZ for all primes ℓ ̸= p.

So, we obtain the main result of this talk.

Main theorem

m ≥ 3

If p > 0, we assume:

∀R ⊂ (Uk)
cpt − Uk with |R| = 4, (Uk)

cpt −R is non-isotrivial.

Then the following hold.

Π(m)(U) ∼=
Gk

Π(m)(U ′) =⇒

U ∼=
k
U ′ p = 0

∃n, n′ ∈ N ∪ {0} s.t. U(n) ∼=
k
U ′(n′) p > 0
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