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Today’s Talk

Let S be a scheme, ♦/S a set of properties of S-schemes, and
Sch♦/S the full subcategory of Sch/S determined by
the objects X ∈ Sch♦/S that satisfy every property of ♦/S.

In this talk, I will explain how to reconstruct S from Sch♦/S .
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Notations and Conventions

S : Scheme

♦/S : a set of properties of S-schemes

Sch♦/S :

{
the full subcategory of Sch/S determined by

the objects X ∈ Sch♦/S that satisfy every property of ♦/S
×, lim : the fiber product, limit in Sch

×♦, lim♦ : the fiber product, limit in Sch♦/S

In the present talk, we shall mainly be concerned with the properties

♦ ⊂ {red, qcpt, qsep, sep} .
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Previous Research

Mochizuki 2004 : ♦/S = f.t./S, S: locally Noetherian

(+ log scheme version)

van Dobben de Bruyn 2019 : ♦ = ∅, S: arbitrary

Wakabayashi 2010 : superscheme version of the case of Mochizuki

Anabelian Geometry : ♦/S = fét/S

These research and my research are motivated by anabelian geometry.
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Main Theorem

Main Theorem

(1) S: locally Noetherian normal scheme, ♦ ⊂ {red, qcpt, qsep, sep} .　
Then the following may be reconstructed category-theoretically from
Sch♦/S :

(a) the structure of T as a scheme (for every object T ∈ Sch♦/S),
(b) the structure of f as a morphism of schemes (for every morphism

(f : X → Y ) ∈ Sch♦/S).

(2) S, T : quasi-separated,
♦,♢ ⊂ {red, qcpt, qsep, sep} s.t. {qsep, sep} 6⊂ ♦, {qsep, sep} 6⊂ ♢
Then, Sch♦/S ∼= Sch♢/T ⇒ ♦ = ♢.

(3) S, T : locally Noetherian normal schemes, ♦ ⊂ {red, qcpt, qsep, sep}.
Then, the following natural functor is equivalent:

Isom(S, T ) → Isom(Sch♦/T ,Sch♦/S)

f 7→ f∗
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Outline

Since a scheme is constructed by

• the underlying set,

• the underlying topological space, and

• the structure sheaf,

to reconstruct a scheme,
it suffices to reconstruct these structures.

In the present talk,
I explain how to reconstruct the underlying sets, and
give category-theoretic characterizations of various properties used to
reconstruct the underlying topological spaces and the structure sheaves.
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Remark: the Fiber Product in Sch♦/S

Lemma

f : Y → X, g : Z → X : morphisms in Sch♦/S .
Suppose that either f or g is quasi-compact.

Then, the fiber product Y ×♦X Z in Sch♦/S exists,
and the following assertions hold:

If red 6∈ ♦, then Y ×♦X Z ∼= Y ×X Z.

If red ∈ ♦, then Y ×♦X Z ∼= (Y ×X Z)red.

In particular, Y ×X Z and Y ×♦X Z have same underlying top.
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An Idea to Reconstruct the Underlying Sets

Observation

A point x ∈ X may be determined by

f : Y → X s.t. |Y |: 1pt. set, and Im(f) = {x}.

Hence,

giving a point of X ⇐⇒
giving a certein equivalence class of f : Y → X s.t. |Y |: 1pt. set.

To reconstruct the underlying set, it suffices to characterize

one-pointed schemes (i.e., schemes whose underlying sets are 1pt. sets)

cat.-theoretically.
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Characterization of the One-Pointed Schemes

Let X ∈ Sch♦/S .

Characterization of the 1pt. Scheme

|X| is not 1pt. set ⇐⇒
∃Y, Z 6= ∅ , ∃Y → X,Z → X s.t. Y ×♦X Z = ∅

∵)
X has two distinct pts. x1, x2 ⇒ Spec(k(x1))×♦X Spec(k(x2)) = ∅.
X satisfies the condition ⇒ y ∈ Y, z ∈ Z determine two distinct pts. of X.
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Reconstruction of the Underlying Set 1

Let X ∈ Sch♦/S . We define

Pt♦/S(X) :
def
=

{
(pZ : Z → X) ∈ Sch♦/S | |Z|: 1pt. set

}
/ ∼,

where

(pZ : Z → X) ∼ (pZ′ : Z ′ → X) :
def⇐⇒ Z ×♦pZ ,X,pZ′ Z

′ 6= ∅.

Reconstruction of the Underlying Set

Pt♦/S : Sch♦/S → Set is naturally isomorphic to the functor

USet
♦/S : Sch♦/S → Set.
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Reconstruction of the Underlying Set 2

Since the functor Pt♦/S is defined category-theoretically, the following
corollary holds:

Corollary

If F : Sch♦/S → Sch♢/T is an equivalence, then USet
♦/S

∼= USet
♢/T ◦ F .

Sch♦/S
F−−−−→
∼

Sch♢/T

USet
♦/S

y yUSet
♢/T

Set Set .

11 / 30



Regular Monomorphisms

C: category, (f : X → Y ) ∈ C.

Definition

f is a regular monomorphism

:
def⇐⇒ ∃g, h : Y → Z, s.t., f is the equalizer of (g, h).

Property of reg. mono. in Sch♦/S

S: q.s., (f : X → Y ) ∈ Sch♦/S : reg. mono. ⇒ f : immersion.

∵) f : reg. mono. ⇒ f : b.c. of the diagonal (details omitted).

Corollary (Cat.-Theoretic Characterization of Red. Schemes)

X ∈ Sch♦/S is red. ⇐⇒ [f : Y → X: surj. reg. mono. ⇒ f : isom.]

∵) a surj. reg. mono. is a surj. closed immersion.

12 / 30



Closed Immersions

Closed immersions may be characterized as follows:

Characterization of Closed Immersions

S: q.s., (f : X → Y ) ∈ Sch♦/S .
f : closed immersion if and only if

• f : reg. mono.

• ∀(T → Y ), the b.c. X♦,T = X ×♦Y T exists.

• ∀(T → Y ), ∀t ∈ T : closed pt. s.t. t 6∈ Im(f♦,T : X♦,T → T ),
X♦,T

∐
Spec(k(t)) → T : reg. mono.

Hence to give a cat.-theoretic characterization of closed immersions,
it suffices to characterize the closed pt.
In particular, it suffices to characterize the relation x1 ⇝ x2.
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Strongly Local 1

S: q.s., X ∈ Sch♦/S , x1, x2 ∈ X.

Definition (Strongly Local)

(X,x1, x2) is strongly local in Sch♦/S :
def⇐⇒

• X: connected.

• ∀(f : Z → X): reg. mono., [x1, x2 ∈ Im(f),⇒ f : isom.].

• Spec(k(x1))
∐

Spec(k(x2)) → X: epi.

• Spec(k(x1)) → X: reg. mono.

• ∀(f : Z → X): reg. mono.,
[x1 6∈ Im(f), Z 6= ∅ ⇒ Z

∐
Spec(k(x1)) → X: not a reg. mono.].

Remark

The property that (X,x1, x2) is strongly local is defined cat.-theoretically
from the data (Sch♦/S , X, x1, x2).
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Strongly Local 2

S: q.s., X ∈ Sch♦/S , x1, x2 ∈ X.

Properties of Strongly Local Objects

If (X,x1, x2): strongly local, then

(1) X ∼= Spec(local domain)

(2) One of x1, x2 is the closed pt., and the other is the generic pt.

In particular, x1 ⇝ x2 or x2 ⇝ x1.

Let V = Spec(valuation ring), v ∈ V : closed pt., η ∈ V : generic pt.

Proposition (Spec. of Valuation Rings are Strongly Local)

(V, v, η): strongly local.
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Cat.-Theoretic Characterization of “x1 ⇝ x2 or x2 ⇝ x1”

S: q.s., X ∈ Sch♦/S , x1, x2 ∈ X.

Cat.-Theoretic Characterization of “x1 ⇝ x2 or x2 ⇝ x1”.

“x1 ⇝ x2 or x2 ⇝ x1” ⇐⇒
∃Z ∈ Sch♦/S , ∃z1, z2 ∈ Z, ∃(f : Z → X) ∈ Sch♦/S , s.t.,
(Z, z1, z2): str. loc., and {f(z1), f(z2)} = {x1, x2}.

By using the above characterization,
we can characterize the relation x1 ⇝ x2 (details omitted).

Corollary

(1) Closed immersions may be characterized cat.-theoretically.

(2) Underlying top. may be reconstructed cat.-theoretically.

In particular, top.-theoretic properties of schemes (or morphisms)
may be characterized cat.-theoretically
(ex: q.s., q.c., sep., irred., local (∼= Spec(local ring)), open imm., univ.
closed, etc.).
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Reconstruction of the Underlying Top.

(Similarly to the case of Set)
∀F : Sch♦/S

∼−→ Sch♢/T , the following diagram commutes (up to isom.):

Sch♦/S
∼−−−−→ Sch♢/T

UTop
♦/S

y yUTop
♢/T

Top Top
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An Observation

To reconstruct the structure sheaf of X ∈ Sch♦/S ,
it suffices to characterize the ring scheme A1

X → X cat.-theoretically.

Since A1 is f.p. over a base scheme,
we want to get a cat.-theoretic characterization of f.p. morphisms.

Idea

f.p./S ≓ a “compact object” in Schop/S

More precisely,
X → S: f.p. ⇐⇒
∀(Vλ, fλµ)λ∈Λ: diagram in Sch/S s.t.
Λ: cofiltered, Vλ: affine,
the following natural map is surj. :

φ : colim
λ∈Λop

HomSch/S (Vλ, X) → HomSch/S (lim
♦

λ∈Λ
Vλ, X).
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Locally of Finite Presentation Morphisms 1

S: q.s., (f : X → Y ) ∈ Sch♦/S , x ∈ X.

Proposition

f#
x : OY,f(x) → OX,x: essentially of finite presentation ⇐⇒
∀(Vλ, fλµ)λ∈Λ: diagram in Sch♦/Y s.t.
Λ: cofiltered, Vλ: local, fλµ(closed pt.) = f(x),
the following natural map is surjective :

φ : colim
λ∈Λop

HomSch♦/Y
(Vλ, X) → HomSch♦/Y

(lim♦
λ∈Λ

Vλ, X).

∵) f.p. schemes (over Y ) are cpt. objects in Sch/Y (details omitted).
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Locally of Finite Presentation Morphisms 2

S: q.s., (f : X → Y ) ∈ Sch♦/S .

Cat.-Theoretic Characterization of Loc.F.P. Morphisms

f : loc. of f.p. ⇐⇒
• ∀x ∈ X, f#

x : OY,f(x) → OX,x: essentially of finite presentation.

• ∀(Z → Y ), ∀z ∈ Z, the following natural map is bijective :

φz,X : colim
W∈IZ(z)op

HomSch♦/Y
(W,X) → HomSch♦/Y

( lim♦
W∈IZ(z)

W,X),

where IZ(z) :
def
= {iW : W → Z | iW : open imm., z ∈ Im(iW )}.

∵) f.p. schemes (over Y ) are cpt. objects in Sch/Y (details composited).
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List of Cat.-Theoretic Properties

S: q.s.
∀X ∈ Sch♦/S , |X| has been reconstructed cat.-theoretically, and

the following scheme-theoretic properties have been characterized
cat.-theoretically:

• red., irred., integral, q.c., ∼= Spec(local ring), ∼= Spec(field).

• q.c., q.s., sep., imm., closed imm., open imm., loc. of f.p., f.p., f.p. +
proper (= sep.+ f.p.+ univ. closed).

The following properties have not given yet cat.-theoretic characterizations:

flat, smooth, étale, etc.

21 / 30



An Idea to Reconstruct the Structure Sheaves

To reconstruct the structure sheaf of X ∈ Sch♦/S ,
it suffices to characterize the ring scheme A1

X → X cat.-theoretically.
Since A1

X = P1
X \ {∞},

it suffices to characterize P1
X → X cat.-theoretically.

What to Do

Give a cat.-theoretic characterizaion of P1.
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The Case where X = Spec(k)

P1
k ⇐⇒


• proper over Spec(k)

• the residue field of the generic pt. ∼= k(t)

• “Closest” to Spec(k(t))

∴ it suffices to characterize Spec(k(t)) → Spec(k).
Idea: Lüroth’s theorem.

Cat.-Theoretic Characterization of k(t)/k

f : Y → Spec(k): isom. to Spec(k(t)) → Spec(k) over Spec(k) ⇐⇒
• ∃K : field , Y ∼= Spec(K)

• f : not f.p. (⇔ K/k: not a finite extension)

• k ⊊ ∀L ⊂ K, ∃ isom. K ∼= L over k (Lüroth’s theorem).

⇝ We obtain a cat.-theoretic characterization of P1
k → Spec(k).
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An Idea in the Case of General Base Scheme 1

To characterize P1
X → X,

it suffices to characterize P1
S ∈ Sch♦/S .

Since

P1
S ⇐⇒ P1-bundle/S + ∃ 3 sections s1, s2, s3 s.t. si ∩ sj = ∅, (i 6= j),

it suffices to characterize the P1-bundle over S.
⇝ P1-bundle ⇒ each fiber is P1.

Remark

• If red ∈ ♦, then cat.-theoretic fiber 6∼= scheme-theoretic fiber.

• A generic fiber may be presented by a limit of open immersions.
⇝ cat.-theoretic generic fiber ∼= scheme-theoretic generic fiber.
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An Idea in the Case of General Base Scheme 2

A1 = P1 \ {∞} has a ring scheme structure:

Observation

1-dim ring scheme ≓ A1 ??

Lemma (♠♠♠)

R: DVR, V :
def
= SpecR, K :

def
= Frac(R) f : X → V : flat ring scheme /V .

If f satisfies the following conditions, then X ∼= A1
V and f is the proj.:

• The special fiber of f is connected and 1-dim.

• The generic fiber of f is A1
K .

Without connectedness of the special fiber, there is a counterexample:
Spec(R[x, (xp

2 − xp)/π]).
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The Case of General Base Scheme

Theorem

S: locally Noetherian normal, ♢ = ♦ ∪ {red}, (f : X → S) ∈ Sch♦/S .
f is isom. to P1

S → S ⇐⇒ f satisfies the following conditions:

(1) f : f.p. proper.

(2) ∀s ∈ S, f−1(s)red ∼= P1
k(s).

(3) ∀generic pt. η ∈ S, f−1(η) ∼= P1
k(η).

(4) ∃s0, s1, s∞: sections of f s.t. si ∩ sj = ∅, (i 6= j).

(5) ∀i = 0, 1,∞, ∃ a ring structure on X \ si over S in Sch♢/S s.t.
sj : add. unit, sk: mult. unit, and {i, j, k} = {0, 1,∞}.

(6) (g : Y → S) ∈ Sch♦/S , t0, t1, t∞: sections, s.t. satisfy (1),...,(5),
⇒ ∃!h : X → Y : closed imm. s.t. ∀i = 0, 1,∞, f = g ◦ h, h ◦ si = ti.
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Proof

If P1 satisfies (6), then by the uniqueness of (6), “⇐”: ok.
∴ It suffices to prove “⇒” (i.e., P1

S satisfies (6)).
Y : satisfies (1),...,(5). We define

C : Schop/S → Set,

(T → S) 7→

{
i : P1

T → YT

∣∣∣∣∣ i: closed imm.,

0, 1,∞ 7→ t0, t1, t∞

}
.

Then,

• C: algebraic space /S.

• by (2), each fiber of C → S is a 1-pt. set.

• by (3), C → S is birational.

What to Prove

C(S): 1-pt. set.

27 / 30



Proof

W :
def
= Spec(DVR).

∀(W → S), (YW )red \ ti,W : flat ring scheme /W .
∴ ∀W , C(W ): 1-pt. set (⇒ C is a scheme).
By lemma (♠♠♠) and a valuative criterion,
C → S: proper birat. bij. (⇒ finite).
Since S is normal, Cred

∼= S (by ZMT).

In particular, C(S): 1-pt. set.
⇝ Q.E.D.
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The Main Result

(Similarly to the case of Set,Top)
∀F : Sch♦/S

∼−→ Sch♢/T : equiv.,
the following diagram commutes (up to isom.):

Sch♦/S
∼−−−−→ Sch♢/T

USch
♦/S

y yUSch
♢/T

Sch Sch.

Moreover, the following equiv. holds:

Isom(S, T )
∼−→ Isom(Sch♦/T , Sch♦/S).
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Related Works

I also confirmed that the following problem has been solved:

• Reconstructing a Noetherian scheme S from the category of finite
S-schemes.

Since we may consider many properties of schemes,
there are many cat.-theoretic reconstruction problems.

Thank you for your attention.
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