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1. Introduction

The main question of interest in the anabelian geometry of curves is, roughly speaking,

the following:

how much geometric information about the isomorphism class of a curve

is contained in various versions of its fundamental group?
1
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In this paper, we study the anabelian geometry of curves over algebraically closed fields

of positive characteristic, and prove that

if a pointed stable curve over an algebraic closure of a finite field satisfies

certain conditions, then the isomorphism class of the admissible funda-

mental group of the pointed stable curve completely determines the iso-

morphism class of the pointed stable curve as a scheme.

Let X• := (X,DX) be a pointed stable curve of type (gX , nX) over an algebraically

closed field k. Here, X denotes the underlying scheme of X•, and DX denotes the set of

marked points of X•. Write GX• for the semi-graph of anabelioids of PSC-type arising

from X•. We do not recall the theory of semi-graphs of anabelioids in the present paper.

Roughly speaking, a semi-graph of anabelioids (cf. [M4, Definition 2.1]) is a semi-graph

(cf. [M4, Section 1]) which is equipped with a Galois category at each vertex and each

edge, together with gluing isomorphisms that satisfy certain conditions; a semi-graph of

anabelioids of PSC-type (cf. [M5, Definition 1.1]) is a semi-graph of anabelioids that is

isomorphic to the semi-graph of anabelioids that arises from a pointed stable curve defined

over an algebraically closed field.

Suppose that the characteristic char(k) of k is 0. Then the admissible fundamental

group πadm
1 (X•) (cf. Definition 2.2) of X• depends only on (gX , nX) and is known to

admit a presentation as follows:

πadm
1 (X•) ∼= ⟨a1, . . . , agX , b1, . . . , bgX , c1, . . . , cnX

|

[a1, b1] . . . [agX , bgX ]c1 . . . cnX
= 1⟩pro,

where (−)pro denotes the profinite completion of (−). Thus, we obtain that (gX , nX)

and GX• are not completely determined by the isomorphism class of the profinite group

πadm
1 (X•).

On the other hand, when char(k) = p > 0, the situation is quite different from the

characteristic 0 case. First, let us explain briefly some well-known results concerning the

anabelian geometry of curves over algebraically closed fields of characteristic p > 0. In

the remainder of the introduction, we assume that X• is a pointed stable curve of type

(gX , nX) over an algebraically closed field k of characteristic p > 0.

Suppose thatX• is smooth over k. By applying techniques based on subtle properties of

wildly ramified coverings, A. Tamagawa proved that (gX , nX) can be reconstructed group-

theoretically from the étale fundamental group π1(X \DX) of X \DX , and moreover, that

if gX = 0, then we can detect whether X• can be defined over Fp (i.e.,

there exists a curve X•
0 over Fp such that X• ∼= X•

0 ×Fp
k) or not, group-

theoretically form π1(X \DX); moreover, if k = Fp, then the isomorphism

class of the profinite group π1(X \DX) completely determines the isomor-

phism class of the scheme X \DX (cf. [T1]).

Afterwards, by generalizing M. Raynaud’s theory of theta divisors, Tamagawa proved

that similar results hold if one replaces π1(X \ DX) by the tame fundamental group

πtame
1 (X \ DX) of X \ DX (cf. [T3]). Since πtame

1 (X \ DX) can be reconstructed group-

theoretically from π1(X \ DX) (cf. [T1, Corollary 1.10]), the tame fundamental group
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versions are stronger than the étale fundamental group versions. In the case of curves of

higher genus, we have the following finiteness result:

if k = Fp, then there are only finitely many isomorphism classes of smooth

pointed stable curves over k whose tame fundamental groups are isomor-

phic to πtame
1 (X \DX).

This finiteness result was proved by Raynaud, F. Pop, and M. Säıdi under certain condi-

tions and by Tamagawa in full generality (cf. [R], [PS], [T4]). Note that, by the definition

of the admissible fundamental group πadm(−) (cf. Definition 2.2), we have a natural

isomorphism πtame
1 (X \DX) ∼= πadm

1 (X•) if X• is smooth over k.

In the present paper, we consider a generalization of the results of Tamagawa mentioned

above to the case whereX• is an arbitrary pointed stable curve over an algebraically closed

field k of characteristic p > 0. We were motivated by the following question.

Question 1.1. Can the isomorphism class of the semi-graph of anabelioids of PSC-type

GX•

be reconstructed group-theoretically from the profinite group πadm
1 (X•)? If we assume

further that k = Fp, then is the isomorphism class of the scheme

X \DX

determined completely by the isomorphism class of the profinite group πadm
1 (X•)?

Next, we explain the main results of the present paper. Let F be a geometric object

and ΠF a profinite group associated to the geometric object F . Given an invariant

InvF depending on the isomorphism class of F (in a certain category), we shall say that

InvF can be reconstructed group-theoretically from ΠF if ΠF1
∼= ΠF2 (as profinite

groups) implies that InvF1 = InvF2 for two such geometric objects F1 and F2. Moreover,

suppose that we are given an additional structure AddF (e.g., a family of subgroups) on

the profinite group ΠF depending functorially on F ; then we shall say that AddF can

be reconstructed group-theoretically from ΠF if all isomorphisms ΠF1
∼= ΠF2 (as

profinite groups) preserve the structures AddF1 and AddF2 . In Section 6, we prove the

following theorem (cf. Theorem 6.9).

Theorem 1.2. Write GX• for the semi-graph of anabelioids of PSC-type arising from

X•. Then p := char(k) can be reconstructed group-theoretically from πadm
1 (X•). If, more-

over, p := char(k) > 0, then the isomorphism class of GX• can be reconstructed group-

theoretically from πadm
1 (X•).

Remark 1.2.1. Write ΓX• for the dual semi-graph of X• and v(ΓX•) for the set of

vertices of ΓX• . For each v ∈ v(ΓX•), we write X̃v for the normalization of the irreducible

component of X corresponding to v and

X̃•
v := (X̃v, DX̃v

)

for the smooth pointed stable curve of type (gv, nv) over k, where the underlying curve

is X̃v, and the divisor of marked points DX̃v
is determined by the inverse images (via
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the natural morphism X̃v → X) in X̃v of the nodes and the marked points of X•. Then

Theorem 1.2 implies that the following data can be reconstructed group-theoretically from

πadm
1 (X•):

• (gX , nX) and ΓX• ;

• the conjugacy class of the inertia group of every marked point of X• in πadm
1 (X•);

• the conjugacy class of the inertia group of every node of X• in πadm
1 (X•);

• for each v ∈ v(ΓX•), (gv, nv) and the conjugacy class of the admissible fundamental

group πadm
1 (X̃•

v ) of X̃
•
v in πadm

1 (X•).

Theorem 1.2 may be regarded as a version of the combinatorial Grothendieck

conjecture in positive characteristic (cf. Remark 6.9.1 for more details on the com-

binatorial Grothendieck conjecture which plays a central role in combinatorial anabelian

geometry).

Remark 1.2.2. Write Gsol
X• for the semi-graph of anabelioids of pro-solvable PSC-type

arising from X• and πadm
1 (X•)sol for the maximal pro-solvable quotient of πadm

1 (X•). If

one replaces GX• and πadm
1 (X•) by Gsol

X• and πadm
1 (X•)sol, respectively, then the proof of

Theorem 1.2 implies that the solvable version of Theorem 1.2 also hold.

We maintain the notations introduced above. By combining Tamagawa’s results and

Theorem 1.2, we obtain the following result, which is the main theorem of the present

paper (see Theorem 7.6 and Theorem 7.9 for more details). Theorem 1.3 generalizes

Tamagawa’s results to the case of (possibly singular) pointed stable curves.

Theorem 1.3. (a) Suppose that gv = 0 for each v ∈ v(ΓX•). Then we can detect whether

X• can be defined over Fp or not, group-theoretically form πadm
1 (X•). Moreover, suppose

that k = Fp, and that X• is irreducible. Then the isomorphism class of the profinite

group πadm
1 (X•) completely determines the isomorphism class of the scheme X \DX .

(b) Suppose that k = Fp. Then there are only finitely many k-isomorphism classes

of pointed stable curves over k whose admissible fundamental groups are isomorphic to

πadm
1 (X•).

Remark 1.3.1. Theorem 1.3 (a) prove a generalized form of a conjecture of Tamagawa

in a special case (cf. Conjecture 7.2 and Conjecture 7.5).

On the other hand, various versions of Theorem 1.3 (a) are also known in the case

where X• is a smooth pointed stable curve of type (1, 1) (cf. Remark 7.4.1, [S], [T6]).

These versions in the case of smooth pointed stable curves of (1, 1) allow us to obtain a

slightly more general form of Theorem 1.3 (a) (cf. Remark 7.6.2).
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2. p-rank and p-average

In this section, we recall some definitions and results which will be used in the present

paper.

Definition 2.1. Let G := (v(G), e(G), {ζGe }e∈e(G)) be a semi-graph. Here, v(G), e(G),

and {ζGe }e∈e(G) denote the set of vertices of G, the set of edges of G, and the set of

coincidence maps of G, respectively.

(a) We define eop(G) (resp. ecl(G)) to be the set of open (resp. closed) edges of G.

(b) Let v ∈ v(G). We shall call G 2-connected at v if G \ {v} is either empty or

connected.

(c) We define an one-point compactification Gcpt of G as follows: if eop(G) = ∅, we
set Gcpt = G; otherwise, the set of vertices of Gcpt is v(Gcpt) := v(G)

⨿
{v∞}, the set of

edges of Gcpt is e(Gcpt) := e(G), and each edge e ∈ eop(G) ⊆ e(Gcpt) connects v∞ with

the vertex that is abutted by e.

(d) For each v ∈ v(G), we set

b(v) :=
∑

e∈e(G)

be(v),

where be(v) ∈ {0, 1, 2} denotes the number of times that e meets v. Moreover, we set

v(G)b≤1 := {v ∈ v(G) | b(v) ≤ 1}.

We fix some notations. Let k be an algebraically closed field and

X• = (X,DX)

a pointed stable curve of type (gX , nX) over k. Here, X denotes the underlying scheme

of X•, and DX denotes the set of marked points of X•. Write

ΓX•

for the dual semi-graph ofX•, and ΓX for the dual graph ofX. Note that by the definitions

of ΓX• and ΓX , we have a natural embedding ΓX ↪→ ΓX• ; then we may identify v(ΓX)

(resp. e(ΓX)) with v(ΓX•) (resp. ecl(ΓX•)) via the natural embedding ΓX ↪→ ΓX• . We

denote by

Πét
X• and Πtop

X•

the étale fundamental group of X• and the profinite completion of the topological funda-

mental group of ΓX• , respectively, and write rX for dimC(H
1(ΓX• ,C)).

Definition 2.2. Let Y • := (Y,DY ) be a pointed stable curve over k and

f • : Y • → X•

a morphism of pointed stable curves over Spec k.

We shall call f • a Galois admissible covering over Spec k (or Galois admissible

covering for short) if the following conditions hold:
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(i) there exists a finite group G ⊆ Autk(Y
•) such that Y •/G = X•, and f •

is equal to the quotient morphism Y • → Y •/G;

(ii) for each y ∈ Y sm \ DY , f
• is étale at y, where (−)sm denotes the

smooth locus of (−);

(iii) for any y ∈ Y sing, the image f •(y) is contained in Xsing, where

(−)sing denotes the singular locus of (−);

(iv) for each y ∈ Y sing, the local morphism between two nodes induced

by f • may be described as follows:

ÔX,f•(y)
∼= k[[u, v]]/uv → ÔY,y

∼= k[[s, t]]/st

u 7→ sn

v 7→ tn,

where (n, char(k)) = 1 if char(k) > 0; moreover, write Dy ⊆ G for the

decomposition group of y and #Dy for the cardinality of Dy; then

τ(s) = ζ#Dys and τ(t) = ζ−1
#Dy

t

for each τ ∈ Dy, where ζ#Dy is a primitive #Dy-th root of unit;

(v) the local morphism between two marked points induced by f • may

be described as follows:

ÔX,f•(y)
∼= k[[a]] → ÔY,y

∼= k[[b]]

a 7→ bm,

where (m, char(k)) = 1 if char(k) > 0 (i.e., a tamely ramified extension).

Moreover, we shall call f • an admissible covering if there exists a morphism of pointed

stable curves (f •)′ : (Y •)′ → Y • over Spec k such that the composite morphism f • ◦ (f •)′ :

(Y •)′ → X• is a Galois admissible covering over Spec k. Let Z• be the disjoint union of

finitely many pointed stable curves over Spec k. We shall call a morphism

Z• → X•

over Spec k multi-admissible covering if the restriction of Z• → X• to each connected

component of Z• is admissible.

We define a category Covadm(X•) as follows:

(i) each object of Covadm(X•) is either an empty object or a multi-admissible

covering of X•;

(ii) for any A,B ∈ Covadm(X•), Hom(A,B) consists of all the morphisms

whose restriction to each connected component of B is a multi-admissible

covering.

It is well-known that Covadm(X•) is a Galois category. Thus, by choosing a base point

x ∈ Xsm\DX , we obtain a fundamental group πadm
1 (X•, x) which is called the admissible

fundamental group ofX•. For simplicity of notation, we omit the base point and denote

by

ΠX•
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the admissible fundamental group of X•. Then we have the following natural surjections

ΠX• ↠ Πét
X• ↠ Πtop

X• .

For more details on admissible coverings and the admissible fundamental groups for

pointed stable curves, see [M1, Section 3], [M2, Section 2], and [M3, Appendix, Pointed

Stable Curves].

Remark 2.2.1. Let Mg,n be the moduli stack of pointed stable curves of type (g, n)

over SpecZ and Mg,n the open substack of Mg,n parametrizing pointed smooth curves.

Write Mlog

g,n for the log stack obtained by equipping Mg,n with the natural log structure

associated to the divisor with normal crossings

Mg,n \Mg,n ⊂ Mg,n

relative to SpecZ. The pointed stable curve X• → Spec k induces a morphism Spec k →
MgX ,nX

. Write slogX for the log scheme whose underlying scheme is Spec k, and whose log

structure is the pulling-back log structure induced by the morphism Spec k → MgX ,nX
.

We obtain a natural morphism slogX → Mlog

gX ,nX
induced by the morphism Spec k →

MgX ,nX
and a stable log curve

X log := slogX ×Mlog
gX,nX

Mlog

gX ,nX+1

over slogX whose underlying scheme is X. Then the admissible fundamental group ΠX•

of X• is naturally isomorphic to the geometric log étale fundamental group of X log (i.e.,

ker(π1(X
log) → π1(s

log
X ))).

Remark 2.2.2. If X• is smooth over k, by the definition of admissible fundamental

groups, then the admissible fundamental group of X• is naturally isomorphic to the tame

fundamental group of X \DX .

In the remainder of this section, we suppose that the characteristic of k is p > 0.

Definition 2.3. We define the p-rank of X• to be

σ(X•) := dimFp(Π
ab
X• ⊗ Fp) = dimFp(Π

ét,ab
X• ⊗ Fp),

where (−)ab denotes the abelianization of (−).

Remark 2.3.1. For each v ∈ v(ΓX•), write Xv for the irreducible components of X

corresponding to v. Then it is easy to prove that

σ(X•) = σ(X) =
∑

v∈v(ΓX• )

σ(X̃v) + rX ,

where (̃−) denotes the normalization of (−).

Definition 2.4. Let Π be a profinite group, n a natural number, and ℓ a prime number.

(a) We denote by Π(n) the topological closure of the subgroup [Π,Π]Πn of Π. Note

that Π/Π(n) = Πab ⊗ (Z/nZ).
(b) We set γℓ := dimFℓ

(Π/Π(ℓ)) ∈ Z≥0 ∪ {∞}.
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(c) Let n be a natural number such that [Π : Π(n)] <∞. We define ℓ-average of Π to

be

γavℓ (n)(Π) := γℓ(Π(n))/[Π : Π(n)] ∈ Q≥0 ∪ {∞}.

The following highly nontrivial result concerning p-average of ΠX• was proved by Tam-

agawa (cf. [T5, Theorem 3.10]).

Proposition 2.5. For any natural number t ∈ N, we set

γavp (pt − 1)(X•) := γavp (pt − 1)(ΠX•).

Suppose that, for any v ∈ v(Γcpt
X•), Γ

cpt
X• is 2-connected at v. Then we have

lim
t→∞

γavp (pt − 1)(X•) = gX − rX −#(v(ΓX•)b≤1).

Remark 2.5.1. Tamagawa proved Proposition 2.5 as a main theorem of [T3] in the case

where X• is a smooth pointed stable curve over k by developing a general theory of

Raynaud’s theta divisor; this result means that the genus of X• can be reconstructed

group-theoretically from the tame fundamental group of X \ DX . Afterwards, in [T5],

Tamagawa extends the result to the case where X• is a certain pointed stable curve over

k by using a result concerning the abelian injectivity of admissible fundamental groups.

3. The set of irreducible components

We maintain the notations introduced in Section 2. Let X• be a pointed stable curve

over an algebraically closed field k of characteristic p > 0. In this section, we study the

set of irreducible components of X•.

Definition 3.1. Let Z• := (Z,DZ) be any pointed stable curve over Spec k. Write ΓZ• for

the dual semi-graph of Z•. We shall call Z• untangled (resp. sturdy) if each irreducible

component of Z• is smooth (resp. the genus of the normalization of each irreducible

component of Z• is ≥ 2). Write Irr(Z•) for the set of irreducible components of Z. We

define a set of irreducible components of Z to be

Irr(Z•)σ>0 := {Zv, v ∈ v(ΓZ•) | σ(Z̃v) > 0} ⊆ Irr(Z•).

We have the following Proposition.

Proposition 3.2. There exists a connected Galois admissible covering

f • : Y • → X•

over Spec k such that Y • is untangled and sturdy, and Irr(Y •)σ>0 = Irr(Y •).

Proof. The proposition follows immediately from [M2, Lemma 2.9] and Proposition 2.5.

□
In the remainder of this section, we suppose that Irr(X•)σ>0 ̸= ∅. Write MX• and

M top
X• for H1

ét(X
•,Fp) and H1(ΓX• ,Fp), respectively. Note that there is a natural injection

M top
X• ↪→MX• induced by the natural surjection ΠX• ↠ Πtop

X• . We set

Mntop
X• := coker(M top

X• ↪→MX•).
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The elements of MX• correspond to étale, Galois abelian coverings of X• of degree p. Let

V ∗ ⊆ MX• be the subset of elements whose image in Mntop
X• is not 0. Let α ∈ V ∗. Write

f •
α : X•

α → X• for the étale covering correspond to α. Then we obtain a map

ι : V ∗ → Z

that ι(α) = #(Irr(X•
α)). Let V ⊆ V ∗ be the subset of elements α, where ι attains its

maximum. We set

m := #{Xv ⊆ Irr(X•) | f •
α is a non-trivial étale covering over Xv}.

Then we have

ι(α) = p(#Irr(X•)−m) +m.

Thus, ι attains its maximum if and only if ι(α) = p(#Irr(X•)−1)+1. Moreover, if α ∈ V ,

we write X•,α for the admissible covering corresponding to α, ΓX•,α for the dual semi-

graph of X•,α, rXα for dimC(H
1(ΓX•,α ,C)), and Xα

v for the unique irreducible component

of X• over which f •
α is a non-trivial étale covering. We observe that

ι(α) = p(#Irr(X•)− 1) + 1

if and only if

rXα = prX .

Next, we define a pre-equivalence relation ∼ on V as follows:

let α, β ∈ V ; then α ∼ β if , for each λ, µ ∈ F×
p for which λα + µβ ∈ V ∗,

we have λα + µβ ∈ V .

Then we have the following lemma.

Lemma 3.3. Suppose that Irr(X•)σ>0 ̸= ∅. The pre-equivalence relation ∼ on V is an

equivalence relation, and, moreover, the quotient set V/ ∼ is naturally isomorphic to

Irr(X•)σ>0 that maps [α] 7→ Xα
v , where [α] denotes the image of α ∈ V in V/ ∼.

Proof. For any δ ∈ V , if ι(δ) attains its maximum it implies that there exists a unique

irreducible component IδX•
δ
⊆ X•

δ whose decomposition group is not trivial. We write

IδX• ⊆ X• for the image of IδX•
δ
of the covering morphism X•

δ → X•. Note that IδX• ∈
Irr(X•)σ>0. Then V = ∅ if and only if Irr(X•)σ>0 = ∅.

We suppose that Irr(X•)σ>0 ̸= ∅. Let α, β ∈ V . If IαX• = IβX• , then, for each λ, µ ∈ F×
p

for which λα + µβ ∈ V ∗, we have Iλα+µβ
X• = IαX• = IβX• . Thus, α ∼ β. On the other

hand, if α ∼ β, we have IαX• = IβX• ; otherwise, there exist two irreducible components of

X•
α+β whose decomposition groups are not trivial. Thus, α ∼ β if and only if IαX• = IβX• .

This means that ∼ is an equivalence relation on V . Then we obtain a natural morphism

κ : V/ ∼→ Irr(X•)σ>0 that maps δ 7→ IδX• .

Let us prove that κ is a bijection. It is easy to see that κ is an injection. For any

irreducible component Xv ∈ Irr(X•)σ>0, since the p-rank of the normalization of Xv is

not 0, we may construct an étale, Galois abelian covering f • : Y • → X• of degree p such

that Xv is the unique irreducible component of X• such that (f •)−1(X•
v ) is connected.

Then #(Irr(Y •)) = p(#(Irr(X•))−1)+1. Thus, we obtain an element of V corresponding

to Y •. This means that κ is a surjection. We complete the proof of the lemma. □
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Remark 3.3.1. Suppose that ΓX• is 2-connected. Let γ ∈ M top
X• , α ∈ MX• , X•

γ →
X• the admissible covering corresponding to γ, and X•

α → X• the admissible covering

corresponding to α. Write X•
α,γ for the fiber product X•

α ×X• X•
γ . Note that the dual

semi-graphs ΓX•
γ
and ΓX•

α,γ
of X•

γ and X•
α,γ, respectively, are 2-connected, and the dual

semi-graph ΓX•
α
of X•

α is not 2-connected if α ∈ V . Then it is easy to see that α ∈ V if

and only if the Betti numbers satisfies the following

rX•
α,γ

= prX•
γ
+ p2 − 2p+ 1.

4. Geometry of admissible coverings

We maintain the notations introduced in the previous sections. Let X• be a pointed

stable curve over an algebraically closed field k of characteristic p > 0. In this section, we

study the admissible coverings of X•.

Lemma 4.1. Let ℓ ̸= 2 be a prime number and

n∑
i=1

xi = 0

a linear indeterminate equation. Suppose that n ≥ 2. Then there exists a solution

(a1, . . . , an) ∈ (Z/ℓZ)⊕n such that ai ̸= 0 for each i = 1, . . . , n.

Proof. The lemma follows from elementary computation. □

Condition 4.2. Let Z• := (Z,DZ) be any pointed stable curve over Spec k. Write

Cusp(Z•) for the set of marked points DZ of Z•. We shall say that Z• satisfies Con-

dition 4.2 if the following conditions hold:

(a) Z• is untangled and sturdy;

(b) for any two irreducible components Zv, Zv′ ⊆ Z distinct from each

other, if Zv ∩ Zv′ ̸= ∅, we have #(Zv ∩ Zv′) ≥ 3;

(c) for each irreducible component Zv ⊆ Z, if Zv ∩ Cusp(Z•) ̸= ∅, we
have #(Zv ∩ Cusp(Z•)) ≥ 3.

We have the following propositions.

Proposition 4.3. Suppose that Cusp(X•) ̸= ∅, and X• satisfies Condition 4.2. Let

q ∈ Cusp(X•). Then, for any prime number ℓ ̸= 2 distinct from p, there exists a Galois

admissible covering f • : Y • → X• of degree ℓ such that f • is étale over q, and f • is totally

ramified over Cusp(X•) \ {q}.

Proof. Since the maximal pro-ℓ quotient of admissible fundamental groups of pointed

stable curves of type (g, n) do not depend on the moduli, without loss of generality, we

may assume that #Irr(X•) = 1. If X• is smooth over Spec k, then #(Cusp(X•)\{q}) ≥ 2.

Thus, the proposition follows from the structure of the maximal pro-ℓ quotient of the

admissible fundamental group of ΠX• and Lemma 4.1. This completes the proof of the

proposition. □
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Proposition 4.4. Write Nod(X•) for the set of nodes of X•. Suppose that

Nod(X•) ̸= ∅,

and X• satisfies Condition 4.2. Let q ∈ Nod(X•). Then, for any prime number ℓ ̸= 2

distinct from p, there exists a Galois admissible covering f • : Y • → X• of degree ℓ such

that f • is étale over q, and f • is totally ramified over Nod(X•) \ {q}.

Proof. We prove the proposition by induction on #Irr(X•) ≥ 2. Suppose that #Irr(X•) =

2. Write Xq for an irreducible component of X which contains q. We set

Cusp(Xq) := Xq ∩ Cusp(X•)

and

Sing(Xq) := Xq ∩ Nod(X•).

Write X\q for the irreducible component of X distinct from Xq. We set

Cusp(X\q) := X\q ∩ Cusp(X•)

and

Sing(X\q) := X\q ∩ Nod(X•).

Moreover, we define two pointed stable curves over Spec k to be

X•
q := (Xq,Cusp(Xq) ∪ Sing(Xq))

and

X•
\q := (X\q,Cusp(X\q) ∪ Sing(X\q)).

Note that we have a natural bijection θ : Sing(Xq)
∼→ Sing(X\q) determined by X•.

SinceX• satisfies Condition 4.2, Lemma 4.1 implies that there exists a solution (aν)ν∈Sing(Xq)\{q}
(resp. (bν)ν∈Cusp(Xq), (cν)ν∈Cusp(X\q)) of the linear indeterminate equation∑

ν∈Sing(Xq)\{q}

xν = 0 (resp.
∑

ν∈Cusp(Xq)

xν = 0,
∑

ν∈Cusp(X\q)

xν = 0)

in Z/ℓZ such that aν ̸= 0 (resp. bν ̸= 0, cν ̸= 0) for each ν ∈ Sing(Xq) \ {q} (resp.

ν ∈ Cusp(Xq), ν ∈ Cusp(X\q)). For any ν ∈ Sing(Xq) \ {q}, we set dθ(ν) := −aν . Then

(dθ(ν))ν∈Sing(Xq)\{q} is a solution of the linear indeterminate equation∑
ν∈Sing(X\q)\{θ(q)}

xν = 0

in Z/ℓZ.
Write Πℓ,ab

X•
q

(resp. Πℓ,ab
X•

\q
) for the abelianization of the maximal pro-ℓ quotient of the

admissible fundamental group of X•
q (resp. X•

\q). Moreover, for each ν ∈ Sing(Xq) (resp.

ν ∈ Cusp(Xq), ν ∈ Sing(X\q), ν ∈ Cusp(X\q)), we write αν (resp. βν , δν , γν) for a

generator of the inertia group associated to ν in Πℓ,ab
X•

q
(resp. Πℓ,ab

X•
q
, Πℓ,ab

X•
\q
, Πℓ,ab

X•
\q
). The

structure of Πℓ,ab
X•

q
(resp. Πℓ,ab

X•
\q
) implies that we may construct a morphism from Πℓ,ab

X•
q

(resp. Πℓ,ab
X•

\q
) to Z/ℓZ that maps αν 7→ aν for ν ∈ Sing(X•

q ) \ {q}, αq 7→ 0, and βν 7→ bν
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for ν ∈ Cusp(X•
q ) \ {q} (resp. δν 7→ dθ(ν) for dθ(ν) ∈ Sing(X•

\q) \ {θ(q)}, δθ(q) 7→ 0, and

γν 7→ cν for ν ∈ Cusp(X•
\q)). Then we obtain two Galois admissible coverings

f •
q : Y •

q → X•
q

and

f •
\q : Y

•
\q → X•

\q

over Spec k of degree ℓ; moreover, f •
q is totally ramified over

(Cusp(Xq) ∪ Sing(Xq)) \ {q}

and étale over q, f •
\q is totally ramified over

(Cusp(X\q) ∪ Sing(X\q)) \ {θ(q)}

and étale over θ(q).

Thus, by gluing f •
q and f •

\q together, we obtain a Galois admissible covering f • : Y • →
X• of degree ℓ such that f • is étale over q, and f • is totally ramified over Cusp(X•) and

Nod(X•) \ {q}.
Suppose that #Irr(X•) ≥ 3. Let X1 be an irreducible component such that q ̸∈ X1.

Write X2 for {X \X1}, where {−} denotes the closure of {−}. We define two pointed

stable curves over k to be

X•
1 := (X1, (Cusp(X

•) ∪ Sing(X•)) ∩X1)

and

X•
2 := (X2, (Cusp(X

•) ∪X1) ∩X2)).

By induction, we have a Galois admissible covering

f •
2 : Y •

2 → X•
2

of degree ℓ such that f •
2 is totally ramified over (Cusp(X•)∪X1)∩X2) and (X2∩Sing(X•))\

{q}, and étale over q. Moreover, we may construct a Galois admissible covering

f •
1 : Y •

1 → X•
1

such that f •
1 is totally ramified over (Cusp(X•) ∪ Sing(X•)) ∩ X1, and that f •

1 and f •
2

can be glued along X1 ∩X2 as an admissible covering of X•. Thus, by gluing f •
1 and f •

2

together, we obtain a Galois admissible covering f • : Y • → X• of degree ℓ such that f • is

étale over q, and f • is totally ramified over Cusp(X•) and Nod(X•)\{q}. This completes

the proof of the proposition.

□

5. A result of pro-ℓ combinatorial anabelian geometry

Let ℓ be a prime number. In this section, we prove a result of pro-ℓ combinatorial

anabelian geometry.
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Definition 5.1. Let G be a semi-graph of anabelioids of PSC-type. Write ΠG for the

fundamental group of G and ΓG for the underlying semi-graph of G.
(a) We shall call G untangled (resp. sturdy) if G is isomorphic to the semi-graph of

anabelioids of PSC-type arising from a untangled (resp. sturdy) pointed stable curve over

an algebraically closed field (cf. [HM, Section 0 Semi-graphs] (resp. [M5, Definition 1 (ii)]

and [M5, Remark 1.1.5])).

(b) For any open normal subgroup H ⊆ ΠG, write GH for the Galois covering of G
determined by H, and write ΓGH

for the underlying semi-graph of GH . We shall denote

by Π
ab/edge
GH

the quotient of Πab
GH

by the closed subgroup generated by the images in Πab
GH

of the edge-like subgroups (cf. [HM, Definition 1.3 (i)]).

In the remainder of this section, we suppose that G is the semi-graph of anabelioids of

PSC-type arising from a pointed stable curve over an algebraically closed field of char-

acteristic p > 0; moreover, we suppose that ℓ ̸= p, and we write Gℓ for the semi-graph

of anabelioids of pro-ℓ PSC-type induced by G (cf. [M5, Definition 1.1 (i)]). Write ΠGℓ

for the fundamental group of Gℓ. Then ΠGℓ is naturally isomorphic to the maximal pro-ℓ

quotient of ΠG.

Condition 5.2. We shall say that Gℓ satisfies Condition 5.2 if, for any open normal

subgroup H ⊆ ΠGℓ, the set of vertices v(ΓGℓ
H
) of ΓGℓ

H
, the morphism

v(ΓGℓ
H
) → v(ΓGℓ)

induced by the Galois covering Gℓ
H → Gℓ determined by H, and Π

ab/edge

Gℓ
H

can be recon-

structed group-theoretically from H and ΠG.

Then we have the following result.

Proposition 5.3. Suppose that Gℓ satisfies Condition 5.2. Then the isomorphism class

of Gℓ can be reconstructed group-theoretically from ΠG.

Proof. Since Gℓ satisfies Condition 5.2, the set of vertical-like groups of ΠGℓ can be recon-

structed group-theoretically from ΠG; furthermore, [HM, Lemma 1.6] implies that the set

of edges-like groups of ΠGℓ can be reconstructed group-theoretically from ΠG.

On the other hand, by applying [HM, Lemma 1.9 (ii)] (resp. [HM, Lemma 1.7] and

[HM, Lemma 1.9 (i)] ), we have the set of vetices v(ΓGℓ) (resp. the set of edges e(ΓGℓ))

of the underlying semi-graph ΓGℓ of Gℓ can be reconstructed group-theoretically from

ΠG. Moreover, [HM, Lemma 1.7] implies that the set of coincidence maps of ΓGℓ can be

reconstructed group-theoretically from ΠG. This completes the proof of the proposition.

□

Remark 5.3.1. Suppose that Gℓ satisfies Condition 5.2. Note that the reconstruction of

Gℓ from ΠGℓ is functorial. Let H ⊆ ΠGℓ be a normal open subgroup and Gℓ
H → Gℓ the

covering corresponding to H. Then it is easy to see that the morphism of underlying

graphs ΓGℓ
H
→ ΓGℓ induced by Gℓ

H → Gℓ can be reconstructed group-theoretically from H

and ΠGℓ .
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6. A version of the Grothendieck conjecture for semi-graphs of

anabelioids of PSC-type in positive characteristic

We maintain the notations introduced in the previous sections. Let X• be a pointed

stable curve over an algebraically closed field k. Write GX• for the semi-graph of an-

abelioids of PSC-type arising from X•. In this section, we will give a group-theoretic

reconstruction for GX• from ΠX• .

For any open normal subgroup H ⊆ ΠX• , we write X•
H → X• for the Galois ad-

missible covering of X• determined by H, ΓX•
H

for the dual semi-graph of X•
H , rXH

for

dimCH
1(ΓX•

H
,C), gXH

for the genus of X•
H , and nXH

for the cardinality of the set of

marked points of X•
H . Then in order to reconstruct GX• group-theoretically from ΠX• ,

we need to prove that, for any open normal subgroup H ⊆ ΠX• , the morphism of dual

semi-graphs ΓX•
H
→ ΓX• induced by the Galois admissible covering X•

H → X• determined

by H can be reconstructed group-theoretically from ΠX• .

In this section, we only assume that ΠX• is the admissible fundamental group

of a pointed stable curve X• defined over an algebraically closed field k. First,

we have the following basic proposition.

Proposition 6.1. The characteristic p := char(k) can be reconstructed group-theoretically

from ΠX•.

Proof. Suppose that p > 0. If

dimFℓ
(Πab

X• ⊗ Fℓ) = dimFℓ′
(Πab

X• ⊗ Fℓ′)

holds for any two prime numbers ℓ and ℓ′, then either

char(k) = gX = 2gX + nX − 1

or

char(k) = gX = 2gX

holds. Thus, we obtain that either (gX , nX) = (0, 1) or (gX , nX) = (0, 0) holds. Since

ΠX• is the admissible fundamental group of a pointed stable curve, this is a contradiction.

Thus, if dimFℓ
(Πab

X• ⊗ Fℓ) = dimFℓ′
(Πab

X• ⊗ Fℓ′) holds for any two prime numbers ℓ and

ℓ′, we have p = 0. Then we can detect whether p > 0 or not, group-theoretically from

ΠX• . Moreover, if p > 0, then p is the unique prime number such that dimFp(Π
ab
X• ⊗Fp) ̸=

dimFℓ
(Πab

X• ⊗ Fℓ) for each prime number ℓ ̸= p. □
In the remainder of this section, we assume that p := char(k) > 0. Next, let us

introduce some conditions on semi-graphs.

Condition 6.2. Let G be a semi-graph. We shall say that G satisfies Condition 6.2 if

Gcpt is 2-connected and

#(v(G)b≤1) = 0.

Remark 6.2.1. If ΓX• satisfies Condition 6.2, Proposition 2.5 implies that

lim
t→∞

γavp (pt − 1)(X•) = gX − rX .
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Lemma 6.3. There exists an open characteristic subgroup N ⊆ ΠX• such that the fol-

lowing conditions hold:

(a) the order of N is prime to p;

(b) X•
N satisfies Condition 4.2;

(c) ΓX•
N
satisfies Condition 6.2;

(d) N can be reconstructed group-theoretically from ΠX•.

Proof. Let ℓ >> 0 be a prime number distinct from p. Write Πℓ
X• for the maximal pro-ℓ

quotient of ΠX• , and prℓ : ΠX• → Πℓ
X• for the natural quotient morphism. Let ℓ be a

prime number distinct from p, and let {Gℓ
i}i∈I be a set of semi-graphs of anabelioids of

pro-ℓ PSC-type such that the following conditions hold:

(i) ΠGℓ
i

∼= Πℓ
X• for each i ∈ I;

(ii) for any semi-graph of anabelioids of pro-ℓ PSC-type Gℓ, if ΠGℓ
∼= Πℓ

X• ,

then there exists Gℓ
i ∈ {Gℓ

i}i∈I such that Gℓ ∼= Gℓ
i ;

(iii) for any i, j ∈ I, Gℓ
i
∼= Gℓ

j if and only if i = j.

Let H be a semi-graph of anabelioids of pro-ℓ PSC-type arising from a pointed stable

curve W • over an algebraically closed field and ΓH the underlying semi-graph of H.

Then the isomorphism class of H is determined completely by ΓH and the genera of

irreducible components of W • corresponding to the vertices of ΓH. Thus, we obtain that

the set of isomorphism classes of the semi-graphs of anabelioids of pro-ℓ PSC-type whose

fundamental groups are isomorphic to Πℓ
X• is finite. This means that I is a finite set.

For each i ∈ I, let Gℓ
Ki

→ Gℓ
i and (Gℓ

Ki
)Li

→ Gℓ
Ki

be two Galois coverings whose Galois

groups are isomorphic to

Ki := ker(ΠGℓ
i
→ Πab

Gℓ
i
⊗ Fℓ)

and

Li := ker(ΠGℓ
Ki

→ Πab
Gℓ
Ki

⊗ Fℓ),

respectively. It is easy to see that (Gℓ
Ki
)Li

is isomorphic to the semi-graph of anabelioids

of pro-ℓ PSC-type arising from a pointed stable curve satisfying Condition 4.2, and that

the underlying semi-graph of (Gℓ
Ki
)Li

satisfies Condition 6.2. Let Ni be a maximal open

characteristic subgroup of ΠGℓ
i
contained in Li. Thus, Gℓ

Ni
is isomorphic to the semi-graph

of anabelioids of pro-ℓ PSC-type arising from a pointed stable curve satisfying Condition

4.2, and the underlying semi-graph of Gℓ
Ni

satisfies Condition 6.2. We set

N := (prℓ)−1(
∩
i∈I

Ni).

Then the lemma follows. □

If the dual semi-graph ΓX• satisfies Condition 6.2, we have the following result.

Lemma 6.4. Write Πp-top
X• for the maximal pro-p quotient of Πtop

X• . Suppose that ΓX•

satisfies Condition 6.2. Then

Πp-top
X•
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can be reconstructed group-theoretically from ΠX•; moreover,

gX , nX , and rX

can be reconstructed group-theoretically from ΠX•.

Proof. Let H be any open normal subgroup of ΠX• such that the limit of p-average associ-

ated to X•
H is convergence. We note that, if ΠX•/H is a p-group, then the decomposition

group of every irreducible component of X•
H is trivial if and only if

gXH
− rXH

= #(ΠX•/H)(gX − rX).

Thus, we may detect whether the equality

gXH
− rXH

= #(ΠX•/H)(gX − rX)

holds or not, group-theoretically from ΠX• and H if ΓX•
H
is 2-connected.

We set

Topp(ΠX•) := {H ⊆ ΠX• open normal | ΠX•/H is a p-group

and, for any characteristic subgroup Q ⊆ ΠX• ,

gXH∩Q
− rXH∩Q

= #(ΠX•
Q
/(H ∩Q))(gXQ

− rXQ
)}.

Then Πp-top
X• can be reconstructed group-theoretically from ΠX• as follows:

Πp-top
X• = ΠX•/(

∩
H∈Topp(ΠX• )

H).

Thus, we obtain that Πp-top
X• and rX = dimC(Π

p-top,ab
X• ⊗ C) can be reconstructed group-

theoretically from ΠX• . Moreover, the genus gX can be reconstructed group-theoretically

from ΠX• .

Next, we reconstruct nX . Let ℓ ̸= p be a prime number. If

dimFℓ
(Πab

X• ⊗ Fℓ) ̸= 2gX ,

then we have

nX = dimFℓ
(Πab

X• ⊗ Fℓ)− 2gX + 1.

Suppose that dimFℓ
(Πab

X• ⊗ Fℓ) = 2gX . Then nX = 0 if, for any open normal subgroup

H ⊆ ΠX• , dimFℓ
(Hab ⊗ Fℓ) = 2gXH

. Otherwise, we have nX = 1. This completes the

proof of the lemma. □

Lemma 6.4 implies that the following corollary.

Corollary 6.5. Suppose that ΓX• satisfies Condition 6.2. Then the natural exact sequence

0 →M top
X• →MX• →Mntop

X• → 0

can be reconstructed group-theoretically from ΠX•. Moreover, the set

Irr(X•)σ>0

can be reconstructed group-theoretically from ΠX•.
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Proof. Note that MX• = Hom(ΠX• ,Fp), M
top
X• = Hom(Πp-top

X• ,Fp), and

M top
X• ↪→MX•

is induced by the natural surjection ΠX• ↠ Πp-top
X• . Then the corollary follows immediately

from Lemma 3.3 and Lemma 6.4. □
Next, we reconstruct the set of vertices of ΓX• from ΠX• . We have the following

proposition.

Proposition 6.6. The set of vertices

v(ΓX•)

can be reconstructed group-theoretically from ΠX•. Moreover, for any open normal sub-

group Q ⊆ ΠX•, the morphism

v(ΓX•
Q
) ↠ v(ΓX•)

on the sets of vertices induced by the admissible covering X•
Q → X• determined by Q can

be reconstructed group-theoretically from Q and ΠX•.

Proof. Let H ⊆ ΠX• be any open normal subgroup, and let {ai}i∈ΠX•/H ⊂ ΠX• be a set

of lifting of the elements of ΠX•/H such that ai 7→ i. Write MX•
H
for H1

ét(X
•
H ,Fp). Then,

for any i ∈ ΠX•/H, the action of i on MX• is given by the conjugation by ai. Thus, by

applying Lemma 3.3, we have that the action of ΠX•/H on MX•
H

induces an action of

ΠX•/H on the set Irr(X•
H)

σ>0. Note that the action of ΠX•/H on Irr(X•
H)

σ>0 does not

depend on the choices of {ai}i∈ΠX•/H . Thus, we obtain a morphism

Irr(X•
H)

σ>0 ↠ Irr(X•
H)

σ>0/(ΠX•/H) ⊆ Irr(X•).

By applying Lemma 6.3, we obtain a characteristic subgroup N ⊆ ΠX• such that ΓX•
N

satisfies Condition 6.2, and N can be reconstructed group-theoretically from ΠX• . For

any open normal subgroup H ′ ⊆ H ⊂ ΠX• , we have a natural injection

Irr(X•
H∩N)

σ>0/(ΠX•/(H ∩N)) ↪→ Irr(X•
H′∩N)

σ>0/(ΠX•/(H ′ ∩N)).

We set

IrrX• := lim−→
H⊆ΠX• open normal

Irr(X•
H∩N)

σ>0/(ΠX•/(H ∩N)).

Then we see that IrrX• ⊆ Irr(X•). Moreover, Proposition 3.2 implies that IrrX• = Irr(X•).

By applying Remark 3.3.1 and Corollary 6.5, we have that Irr(X•
H∩N)

σ>0 can be recon-

structed group-theoretically from ΠX• . Moreover, since the action of ΠX•/(H ∩ N) on

Irr(X•
H∩N)

σ>0 can be reconstructed group-theoretically from ΠX• , v(ΓX•) = Irr(X•) can

be reconstructed group-theoretically from ΠX• .

Let Q ⊆ ΠX• be an open normal subgroup. We set NQ := Q ∩N . Then, for any open

normal subgroup H ⊆ Q, we have a natural morphism

Irr(X•
H∩NQ

)σ>0/(Q/H ∩NQ) ↠ Irr(X•
H∩N)

σ>0/(ΠX•/(H ∩N));

note that H ∩NQ = H ∩N . Moreover, we set

IrrX•
Q
:= lim−→

H⊆Q open normal

Irr(X•
H∩NQ

)σ>0/(Q/(H ∩NQ)).
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Then we obtain a natural morphism

v(ΓX•
Q
) = Irr(X•

Q) = IrrX•
Q
↠ IrrX• = Irr(X•) = v(ΓX•).

Since the morphism

Irr(X•
H∩NQ

)σ>0/(Q/H ∩NQ) ↠ Irr(X•
H∩N)

σ>0/(ΠX•/(H ∩N))

can be reconstructed group-theoretically from ΠX• , the morphism

v(ΓX•
Q
) ↠ v(ΓX•)

can be reconstructed group-theoretically from ΠX• . This completes the proof of the

proposition. □

Next, let us start to reconstruct GX• from ΠX• . Let ℓ be a prime number distinct from

p. Write Gℓ
X• for the semi-graph of anabelioids of pro-ℓ PSC-type induced by GX• . Then

we have the following lemma.

Lemma 6.7. Suppose that ΓX• satisfies Condition 6.2. Then the isomorphism class of

Gℓ
X•

can be reconstructed group-theoretically from ΠX•.

Proof. Let H be any open normal subgroup of ΠX•
H
. By applying Lemma 6.4, we obtain

that nXH
and rXH

can be reconstructed group-theoretically fromH; moreover, Proposition

6.6 implies that the set of vertices v(ΓX•
H
) of ΓX•

H
and the morphism v(ΓX•

H
) ↠ v(ΓX•)

induced by the Galois covering X•
H → X• determined by H can be reconstructed group-

theoretically from H and ΠX• . Then, by applying the Euler-Poincaré characteristic for-

mula for ΓX• , we obtain that

#(ecl(ΓX•
H
)) = rXH

+#(v(ΓX•
H
))− 1

can be reconstructed group-theoretically from H.

We set

Et(ΠX•) := {H ⊆ ΠX• open normal |
nXH

+#(ecl(ΓX•
H
)) = (#(ΠX•/H))(nX +#(ecl(ΓX•)))}.

Then the étale fundamental group Πét
X• of X• can be reconstructed group-theoretically

from ΠX• as follows:

Πét
X• := ΠX•/

∩
H∈Et(ΠX• )

H.

Note that Πét,ab
X• = Π

ab/edge
GX• . Then Π

ab/edge

Gℓ
X•

can be reconstructed group-theoretically from

ΠX• . Thus, the lemma follows from Proposition 5.3 and Proposition 6.6. □

Lemma 6.8. Suppose that X• and GX• satisfy Condition 4.2 and Condition 6.2, respec-

tively. Then the isomorphism class of

GX•

can be reconstructed group-theoretically from ΠX•.
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Proof. Let H ⊆ ΠX• be any open normal subgroup. In order to prove the lemma, we

only need to prove that the morphism ϕH : ΓX•
H

→ ΓX• on dual semi-graphs induced

by the Galois admissible covering X•
H → X• determined by H can be reconstructed

group-theoretically from ΠX• ; moreover, Proposition 6.6 and Lemma 6.7 imply that it is

sufficient to prove that the morphism

ϕH |e(ΓX•
H
) : e(ΓX•

H
) → e(ΓX•)

on the sets of edges induced by ϕH can be reconstructed group-theoretically from H and

ΠX• .

Let ℓ ̸= 2 be a prime number distinct from p such that (#(ΠX•/H), ℓ) = 1. For each

element α ∈ Hom(ΠX• ,Fℓ), write f
•
α : Y •

α → X• for the admissible covering corresponding

to α. We set

LX• := {α ∈ Hom(ΠX• ,Fℓ) | #Cusp(Y •
α ) = #Cusp(X•) + ℓ− 1}.

Note that, for each α ∈ LX• , f •
α is étale over a unique marked point qα of X• and is

totally ramified over Cusp(X•) \ {qα}. Since we assume that X• satisfies Condition 4.2,

Proposition 4.3 implies that, for each q ∈ Cusp(X•), there exits α ∈ LX• such that

qα = q. Moreover, Lemma 6.4 implies that LX• can be reconstructed group-theoretically

from ΠX• .

Let β ∈ LX• . We obtain a connected Galois admissible covering g•β : Y •
β,H := Y •

β ×X•

X•
H → X•

H . Here, g
•
β is the natural projection. Write GX•

H
and GY •

β,H
for the semi-graphs

of anabelioids of PSC-type arising from X•
H and Y •

β,H , respectively; moreover, write Gℓ
X•

H

and Gℓ
Y •
β,H

for the semi-graphs of anabelioids of pro-ℓ PSC-type induced by GX•
H

and

GY •
β,H

, respectively. Then Lemma 6.7 implies that the morphism of dual semi-graphs

ψβ,H : ΓY •
β,H

→ ΓX•
H

induced by g•β can be reconstructed group-theoretically from H.

Thus, we have

ϕ−1
H (eqβ) = {e ∈ eop(ΓX•

H
) | #(ψ−1

β,H(e)) = ℓ},

where eqβ ∈ eop(ΓX•) denotes the open edge corresponding to qβ. Then the morphism

ϕH |eop(ΓX•
H
) : eop(ΓX•

H
) → eop(ΓX•) induced by ϕH on the sets of open edges can be

reconstructed group-theoretically from H and ΠX• .

Together with Proposition 4.4, similar arguments to the arguments given in the proof

above imply that the morphism ϕH |ecl(ΓX•
H
) : e

cl(ΓX•
H
) → ecl(ΓX•) induced by ϕH on the

sets of closed edges can be reconstructed group-theoretically from ΠX• . Then ϕH |e(ΓX•
H
) :

e(ΓX•
H
) → e(ΓX•) can be reconstructed group-theoretically from ΠX• . This completes the

proof of the lemma. □

Next, we prove the main theorem of the present section.

Theorem 6.9. Let X• be a pointed stable curve over an algebraically closed field k.

Write ΠX• for the admissible fundamental group of X•, and GX• for the semi-graph of

anabelioids of PSC-type GX• arising from X•. Then p := char(k) can be reconstructed

group-theoretically from ΠX•. Moreover, if p := char(k) > 0, then the isomorphism class
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of

GX•

can be reconstructed group-theoretically from ΠX•.

Proof. Proposition 6.1 implies that the characteristic of k can be reconstructed group-

theoretically from ΠX• . We only prove the “moreover” part of the theorem.

Suppose that p := char(k) > 0. Let H ⊆ ΠX• be any open normal subgroup. Propo-

sition 6.6 implies that, to verify the theorem, it is sufficient to prove that the morphism

ΓX•
H
→ ΓX• on the sets of edges induced by the Galois covering X•

H → X• determined by

H can be reconstructed group-theoretically from ΠX• .

We choose an open characteristic subgroupN ⊆ ΠX• such that the conditions of Lemma

6.3. Write HN for H∩N , GX•
HN

for the semi-graph of anabelioids of PSC-type arising from

X•
HN

. Since X•
HN

and the dual semi-graph of ΓX•
HN

satisfy Condition 4.2 and Condition

6.2, respectively, Lemma 6.8 implies that GX•
HN

can be reconstructed group-theoretically

from HN .

Note that the natural action of ΠX•/HN on GX•
HN

induces an action of ΠX•/HN on

ΓX•
HN

; moreover, we have ΓX• = ΓX•
HN
/(ΠX•/H) and ΓX•

H
= ΓX•

HN
/(H/HN). Thus, we

obtain a natural morphism

ΓX•
H
= ΓX•

HN
/(H/HN) → ΓX• = ΓX•

HN
/(ΠX•/H).

Thus, ΓX•
H

→ ΓX• can be reconstructed group-theoretically from ΠX• . This completes

the proof of the theorem. □
Remark 6.9.1. Let Σ ⊆ Primes be a set of prime numbers which does not contain

char(k1) and char(k2), where Primes denotes the set of prime numbers. The combina-

torial Grothendieck conjecture for semi-graphs of anabelioids of pro-Σ PSC-type can be

formulated as follows.

Let G1 and G2 be two semi-graphs of anabelioids of pro-Σ PSC-type asso-

ciated to two pointed stable curves over algebraically closed fields k1 and

k2, respectively, ΠG1 and ΠG2 the fundamental groups of G1 and G2, re-

spectively, α : ΠG1

∼→ ΠG2 an isomorphism of profinite groups, I1 and I2
profinite groups, ρI1 : I1 → Out(ΠG1) and ρI2 : I1 → Out(ΠG2) outer Ga-

lois representations, and β : I1
∼→ I2 an isomorphism of profinite groups.

Suppose that the diagram

I1
ρI1−−−→ Out(ΠG1)

β

y Out(α)

y
I2

ρI2−−−→ Out(ΠG2),

is commutative, where Out(α) denotes the isomorphism induced by α.

Then we have G1
∼= G2.

The combinatorial Grothendieck conjecture for semi-graphs of anabelioids of pro-Σ PSC-

type was proved by S. Mochizuki in the case where ρI1 and ρI2 are outer Galois represen-

tations of IPSC-type (cf. [M5]), and by Y. Hoshi and Mochizuki in the case where ρI1 and
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ρI2 are certain outer Galois representations of NN-type (cf. [HM]). Furthermore, Theorem

6.9 may be regarded as a version of the combinatorial Grothendieck conjecture

for the semi-graphs of anabelioids of PSC-type arising from pointed stable

curves over algebraically closed fields of characteristic p > 0.

Remark 6.9.2. Theorem 6.9 is a generalized version of a result of Tamagawa that the

tame inertia groups associated to the cusps of smooth pointed stable curves can be re-

constructed group-theoretically from their tame fundamental groups (cf. [T3, Theorem

5.2]).

7. The anabelian geometry of curves over algebraically closed fields

of characteristic p > 0

We maintain the notations introduced in Section 2. Let X• be a pointed stable curve

over an algebraically closed field k of characteristic p > 0. In this section, we use Theorem

6.9 to prove some anabelian results for pointed stable curves in positive characteristic.

Definition 7.1. We denote by td(k) the transcendence degree of k over Fp ⊆ k. We

denote by

ed(X•)

(i.e., essential dimension) the minimum of td(k1), where k1 runs over the algebraically

closed subfields of k over which there exists a smooth curve X•
1 such that X• is k-

isomorphic to X•
1 ×k1 k.

Tamagawa posed a conjecture as follows (cf. [T2, Conjecture 5.3 (ii)]).

Conjecture 7.2. If X• is smooth over k, then the essential dimension

ed(X•)

can be reconstructed group-theoretically from πadm
1 (X•).

Tamagawa proved Conjecture 7.2 in the case where gX = 0 and ed(X•) = 0. More

precisely, Tamagawa proved the following theorem (cf. [T3, Theorem 1.2]).

Theorem 7.3. Let Fp ⊆ k. Suppose that X• is a smooth pointed stable curve over k.

If gX = 0, then we can detect whether X• can be defined over Fp (i.e., there exits a curve

X•
0 over Fp such that X• ∼= X•

0 ×Fp
k) or not, group-theoretically form πtame

1 (X \ DX);

moreover, if k = Fp, then the isomorphism class of the profinite group πtame
1 (X \ DX)

completely determines the isomorphism class of the scheme X \DX

On the other hand, let ℓ be any prime number and Fℓ an algebraic closure of Fℓ. We

define two sets of rational points of moduli stacks as follows:

Rg,n :=
∪

ℓ∈Primes

Mg,n(Fℓ)

and

Rg,n :=
∪

ℓ∈Primes

Mg,n(Fℓ),
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where Mg,n denotes the moduli stack of pointed stable curve of type (g, n) over SpecZ,
and Mg,n denotes the open substack of Mg,n parametrizing pointed smooth curves of

type (g, n). For any rational point q ∈ Rg,n : SpecFℓ → Mg,n, write X
•
q := (Xq, DXq)

for the pointed stable curve Mg,n+1 ×Mg,n
Fℓ over Fℓ determined by q. We define an

equivalence relation ∼sch on Rg,n as follows: if q1, q2 ∈ Rg,n, then q1 ∼sch q2 if Xq1 \DXq1

and Xq2 \ DXq2
are isomorphic as schemes (though not necessarily as Fℓ-schemes). Let

FPG be the category of topologically finitely generated profinite groups. We define an

equivalence relation ∼pro on FPG as follows: if G1, G2 ∈ FPG, then G1 ∼pro G2 if G1 and

G2 are isomorphic as profinite groups. Then we obtain a natural morphism as follows:

πadm
g,n : Rg,n/ ∼sch→ FPG/ ∼pro

that maps the equivalence class of q to the equivalence class of πadm
1 (X•

q ).

We may ask whether or not the moduli spaces of curves can be reconstructed group-

theoretically from fundamental groups. This is equivalent to ask whether or not the map

πadm
g,n defined above is an injection. By applying Theorem 6.4, Tamagawa obtained the

following result.

Corollary 7.4. The morphism

πadm
0,n |R0,n/∼sch : R0,n/ ∼sch↪→ FPG/ ∼pro

induced by πadm
0,n on the subset R0,n/ ∼sch of R0,n/ ∼sch is an injection.

Remark 7.4.1. By replacing FPG (resp. πadm(−)) by the category of profinite groups

(resp. π1(−) (i.e., the étale fundamental group of (−))), we obtain the following natural

morphism:

πg,n : Rg,n/ ∼sch→ PG/ ∼pro

that maps the equivalence class of q to the equivalence class of π1(Xq\DXq). Before Tama-

gawa proved Theorem 7.3, he obtained an étale fundamental group version of Theorem 7.3

(i.e., π0,n|R0,n/∼sch is an injection) in a completely different way (by using wildly ramified

coverings) (cf. [T1]). Note that, for any nonsingular pointed stable curve Z• := (Z,DZ)

over an algebraically closed field of positive characteristic, since πadm
1 (Z•) can be recon-

structed group-theoretically from π1(Z \ DZ) (cf. [T1, Corollary 1.10]), Theorem 7.3 is

stronger than étale fundamental group version.

Recently, by following Tamagawa’s idea, A. Sarashina (a student of Tamagawa) proved

that π1,1|R1,1/∼sch is an injection (cf. [S], [T6, Theorem 6 (i)]) if p ̸= 2. Moreover, by

applying the theory of Tamagawa developed in [T3], Sarashina’s result holds also for

πadm
1,1 |R1,1/∼sch (cf. [T6, Theorem 6 (ii)]).

In the case of pointed stable curves, we may pose a generalized form of Conjecture 7.2

as follows.

Conjecture 7.5. Let X• be pointed stable curves over k. Then the essential dimension

ed(X•)

can be reconstructed group-theoretically from πadm
1 (X•).
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First, we generalize Theorem 7.3 as follows.

Theorem 7.6. (i) Let Fp ⊆ k, and let X• be a pointed stable curve of over k. Then we

have:

(i-a) Conjecture 7.2 implies Conjecture 7.5;

(i-b) if the genus of the normalization of each irreducible component of X• is equal to

0, then we can detect whether ed(X•) is equal to 0 or not, group-theoretically from ΠX•.

(ii) Let X•
1 and X•

2 be two pointed stable curves over k1 and k2 of positive characteristics,

ΠX•
1
and ΠX•

2
the admissible fundamental groups of X•

1 and X•
2 , GX•

1
and GX•

2
for the

semi-graphs of anabelioids of PSC-type arising from X•
1 and X•

2 , ΓX•
1
and ΓX•

2
the dual

semi-graphs of X•
1 and X•

2 , respectively. Suppose that ΠX•
1

∼= ΠX•
2
. Then we have:

(ii-a) char(k1) = char(k2) and GX•
1

∼= GX•
2
;

(ii-b) let Fp ⊆ k1 ∩ k2; write γ : ΓX•
1

∼→ ΓX•
2
for the isomorphism of semi-graphs

induced by the isomorphism GX•
1

∼= GX•
2
; suppose that k1 = k2 = Fp, and that the genus

of the normalization of each irreducible component of X•
1 is 0; then, for each v ∈ v(ΓX•

1
),

we obtain X•
1,v is isomorphic to X•

2,γ(v) as schemes, where (−)∗ denotes the irreducible

component of (−) corresponding to the vertex ∗.

Proof. First, let us prove (i). For each v ∈ v(ΓX•), write X•
v for the irreducible component

of X• corresponding to v. It is easy to see that

ed(X•) = Maxv∈v(ΓX• ){ed(X•
v )}.

Thus, (i-a) follows from Theorem 6.9. Moreover, (i-b) follows immediately from Theorem

6.9 and Theorem 7.3.

Next, let us prove (ii). (ii-a) follows immediately from Theorem 6.9. (ii-b) follows

immediately from Theorem 6.9 and Theorem 7.3 (or Corollary 7.4). □

Remark 7.6.1. Theorem 7.6 (i-b) and (ii-b) generalize Theorem 6.9 and Corollary 7.4

to the case of irreducible pointed stable curves (possibly singular).

Remark 7.6.2. By Remark 7.4.1 and Theorem 7.6, we obtain the following generalized

version of Theorem 7.6.

Let Fp ⊆ k, and let X• be a pointed stable curve of over k. Write ΓX•

for the dual semi-graph of X•. For each v ∈ v(ΓX•), write (̃Xv) for the

normalization of the irreducible component of X corresponding to v and

X̃•
v := (X̃v, DX̃v

)

for the smooth pointed stable curve over Fp determined by X̃v and the

divisor of marked points DX̃v
determined by the inverse images (via the

natural morphism X̃v → X) in X̃v of the nodes and marked points of X•;

(gv, nv) for the type of X̃•
v . Suppose that, for each v ∈ v(ΓX•), X̃•

v is either

a smooth pointed stable curve over Fp of genus gv = 0 or a smooth pointed

stable curve over Fp of type (1, 1). Moreover, suppose that p ̸= 2 if there

exists v ∈ v(ΓX•) such that (gv, nv) = (1, 1). Then we can detect whether
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ed(X•) is equal to 0 or not, group-theoretically from ΠX•. In particular,

the morphism

πadm
g,n : Rg,n/ ∼sch↪→ FPG/ ∼pro

is an injection if (g, n) = (1, 1).

Next, let us consider the case of higher genus.

Definition 7.7. Let S1 → S2 be a morphism of sets. We shall call the morphism S1 → S2

quasi-finite if, for any s2 ∈ S2, #((S1 → S2)
−1(s2)) is finite.

Theorem 7.8. Let S be an Fp-scheme, and η and s points of S such that s ∈ {η} holds.

We denote by η and s geometric points on η and s, respectively. Let X • be a smooth

pointed stable curve of type (g, n) over S and

spadmη,s : πadm
1 (X • ×η η) ↠ πadm

1 (X • ×s s)

a specialization map. Suppose that X • ×η η cannot be defined over an algebraic closure

of Fp, and X • ×s s can be defined over an algebraic closure of Fp. Then spadmη,s is not an

isomorphism. Moreover, the morphism

πadm
g,n |Rg,n/∼sch : Rg,n/ ∼sch→ FPG/ ∼pro

induced by πadm
g,n on the subset Rg,n/ ∼sch of Rg,n/ ∼sch is quasi-finite.

Remark 7.8.1. Theorem 7.8 was proved by Raynaud (cf. [R]) and Pop-Saidi (cf. [PS])

under certain assumptions of Jacobian, and by Tamagawa in the fully general case (cf.

[T4]).

Next, we generalize Theorem 7.8 to the case of pointed stable curves as follows.

Theorem 7.9. Let S be an Fp-scheme, and η and s points of S such that s ∈ {η} holds.

We denote by η and s geometric points on η and s, respectively. Let X • be a pointed

stable curve of type (g, n) over S,

spadmη,s : πadm
1 (X • ×η η) ↠ πadm

1 (X • ×s s)

a specialization map. Suppose that X • ×η η cannot be defined over an algebraic closure

of Fp, and X • ×s s can be defined over an algebraic closure of Fp. Then spadmη,s is not an

isomorphism. Furthermore, the morphism

πadm
g,n : Rg,n/ ∼sch→ FPG/ ∼pro

is quasi-finite.

Proof. The first part follows immediately from Theorem 6.9. The “furthermore” part

follows immediately from Theorem 6.9 and Theorem 7.8. □
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