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1. INTRODUCTION

The main question of interest in the anabelian geometry of curves is, roughly speaking,
the following:

how much geometric information about the isomorphism class of a curve

is contained in various versions of its fundamental group?
1
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In this paper, we study the anabelian geometry of curves over algebraically closed fields
of positive characteristic, and prove that

if a pointed stable curve over an algebraic closure of a finite field satisfies
certain conditions, then the isomorphism class of the admissible funda-
mental group of the pointed stable curve completely determines the iso-
morphism class of the pointed stable curve as a scheme.

Let X* := (X, Dx) be a pointed stable curve of type (gx,nx) over an algebraically
closed field k. Here, X denotes the underlying scheme of X*, and Dy denotes the set of
marked points of X*. Write Gx. for the semi-graph of anabelioids of PSC-type arising
from X*. We do not recall the theory of semi-graphs of anabelioids in the present paper.
Roughly speaking, a semi-graph of anabelioids (cf. [M4, Definition 2.1]) is a semi-graph
(cf. [M4, Section 1]) which is equipped with a Galois category at each vertex and each
edge, together with gluing isomorphisms that satisfy certain conditions; a semi-graph of
anabelioids of PSC-type (cf. [M5, Definition 1.1]) is a semi-graph of anabelioids that is
isomorphic to the semi-graph of anabelioids that arises from a pointed stable curve defined
over an algebraically closed field.

Suppose that the characteristic char(k) of k£ is 0. Then the admissible fundamental
group 9™ (X*) (cf. Definition 2.2) of X* depends only on (gx,nx) and is known to
admit a presentation as follows:

T (X0) 2 {ar, g b By e Gy |

[al, bl] . [CLgX, ng]Cl o Cpy = 1>pr0,

P2 denotes the profinite completion of (—). Thus, we obtain that (gx,nx)

where (—)
and Gxe are not completely determined by the isomorphism class of the profinite group
madm(Xe),

On the other hand, when char(k) = p > 0, the situation is quite different from the
characteristic 0 case. First, let us explain briefly some well-known results concerning the
anabelian geometry of curves over algebraically closed fields of characteristic p > 0. In
the remainder of the introduction, we assume that X* is a pointed stable curve of type
(9x,nx) over an algebraically closed field k of characteristic p > 0.

Suppose that X* is smooth over k. By applying techniques based on subtle properties of
wildly ramified coverings, A. Tamagawa proved that (gx,nx) can be reconstructed group-
theoretically from the étale fundamental group m (X \ Dx) of X \ D, and moreover, that

if gx = 0, then we can detect whether X* can be defined over F, (i.e.,
there exists a curve X over F, such that X* = X} XF, k) or not, group-
theoretically form 7, (X \ Dx); moreover, if k = F,, then the isomorphism

class of the profinite group m (X \ Dx) completely determines the isomor-
phism class of the scheme X \ Dy (cf. [T1]).

Afterwards, by generalizing M. Raynaud’s theory of theta divisors, Tamagawa proved
that similar results hold if one replaces m(X \ Dyx) by the tame fundamental group
mieme(X \ Dyx) of X \ Dx (cf. [T3]). Since m{*™¢(X \ Dx) can be reconstructed group-
theoretically from 71 (X \ Dx) (cf. [T1, Corollary 1.10]), the tame fundamental group
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versions are stronger than the étale fundamental group versions. In the case of curves of
higher genus, we have the following finiteness result:

if k= Fp, then there are only finitely many isomorphism classes of smooth

pointed stable curves over k£ whose tame fundamental groups are isomor-

phic to 7t™e(X \ Dy).
This finiteness result was proved by Raynaud, F. Pop, and M. Saidi under certain condi-
tions and by Tamagawa in full generality (cf. [R], [PS], [T4]). Note that, by the definition
of the admissible fundamental group 72 (—) (cf. Definition 2.2), we have a natural
isomorphism 7t™e(X \ Dy) = g8dm(X*) if X* is smooth over k.

In the present paper, we consider a generalization of the results of Tamagawa mentioned

above to the case where X* is an arbitrary pointed stable curve over an algebraically closed
field k of characteristic p > 0. We were motivated by the following question.

Question 1.1. Can the isomorphism class of the semi-graph of anabelioids of PSC-type
Gxe

be reconstructed group-theoretically from the profinite group w@™(X*)? If we assume
further that k = E), then is the isomorphism class of the scheme

X\ Dx
determined completely by the isomorphism class of the profinite group 4™ (X*®)?

Next, we explain the main results of the present paper. Let F be a geometric object
and Ilx a profinite group associated to the geometric object F. Given an invariant
Invy depending on the isomorphism class of F (in a certain category), we shall say that
Invz can be reconstructed group-theoretically from Ilr if Iz = II%, (as profinite
groups) implies that Invz, = Invg, for two such geometric objects F; and F2. Moreover,
suppose that we are given an additional structure Addz (e.g., a family of subgroups) on
the profinite group Il depending functorially on F; then we shall say that Addz can
be reconstructed group-theoretically from Ilx if all isomorphisms [Ix = Ilx, (as
profinite groups) preserve the structures Addz, and Addz,. In Section 6, we prove the
following theorem (cf. Theorem 6.9).

Theorem 1.2. Write Gxe for the semi-graph of anabelioids of PSC-type arising from
X*. Then p := char(k) can be reconstructed group-theoretically from w24™(X*®). If, more-
over, p := char(k) > 0, then the isomorphism class of Gxe can be reconstructed group-
theoretically from wdd™(X*).

Remark 1.2.1. Write I'y. for the dual semi-graph of X* and v(I'xe) for the set of
vertices of I'xs. For each v € v(I'xe), we write X, for the normalization of the irreducible
component of X corresponding to v and

X = (X,, D)

for the smooth pointed stable curve of type (g,,n,) over k, where the underlying curve
is X,, and the divisor of marked points Dg is determined by the inverse images (via
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the natural morphism )~(U — X) in )’EU of the nodes and the marked points of X*®. Then
Theorem 1.2 implies that the following data can be reconstructed group-theoretically from
madm(Xe):

e (gx,nyx) and I'xe;

e the conjugacy class of the inertia group of every marked point of X® in w3dm(X*);

e the conjugacy class of the inertia group of every node of X* in w24m(X*):

e for each v € v(I"xe), (g, ny) and the conjugacy class of the admissible fundamental

group mm(Xe) of X in 7idm(X*).

Theorem 1.2 may be regarded as a version of the combinatorial Grothendieck
conjecture in positive characteristic (cf. Remark 6.9.1 for more details on the com-
binatorial Grothendieck conjecture which plays a central role in combinatorial anabelian
geometry).
Remark 1.2.2. Write G54 for the semi-graph of anabelioids of pro-solvable PSC-type
arising from X*® and 724m(X*)*! for the maximal pro-solvable quotient of 3™ (X*®). If
one replaces Gxo and m39M(X*) by G52 and 72dm(X*)*! respectively, then the proof of

Theorem 1.2 implies that the solvable version of Theorem 1.2 also hold.

We maintain the notations introduced above. By combining Tamagawa’s results and
Theorem 1.2, we obtain the following result, which is the main theorem of the present
paper (see Theorem 7.6 and Theorem 7.9 for more details). Theorem 1.3 generalizes
Tamagawa’s results to the case of (possibly singular) pointed stable curves.

Theorem 1.3. (a) Suppose that g, = 0 for each v € v(I'xs). Then we can detect whether
X* can be defined over Fp or not, group-theoretically form m39m(X*®). Moreover, suppose
that k = Fp, and that X* is irreducible. Then the isomorphism class of the profinite
group w4™(X*) completely determines the isomorphism class of the scheme X \ Dx.

(b) Suppose that k = Fp. Then there are only finitely many k-isomorphism classes
of pointed stable curves over k whose admissible fundamental groups are isomorphic to

madm(xe),

Remark 1.3.1. Theorem 1.3 (a) prove a generalized form of a conjecture of Tamagawa
in a special case (cf. Conjecture 7.2 and Conjecture 7.5).

On the other hand, various versions of Theorem 1.3 (a) are also known in the case
where X* is a smooth pointed stable curve of type (1,1) (cf. Remark 7.4.1, [S], [T6]).
These versions in the case of smooth pointed stable curves of (1,1) allow us to obtain a
slightly more general form of Theorem 1.3 (a) (cf. Remark 7.6.2).
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2. p-RANK AND p-AVERAGE

In this section, we recall some definitions and results which will be used in the present
paper.

Definition 2.1. Let G := (v(G), e(G), {(®}ece(@)) be a semi-graph. Here, v(G), e(G),
and {Cf’}eee(q;,) denote the set of vertices of G, the set of edges of G, and the set of
coincidence maps of G, respectively.

(a) We define e°P(G) (resp. e(G)) to be the set of open (resp. closed) edges of G.

(b) Let v € v(G). We shall call G 2-connected at v if G\ {v} is either empty or
connected.

(c) We define an one-point compactification G of G as follows: if e?(G) = (), we
set GP' = G; otherwise, the set of vertices of G is v(G") := v(G) [ [{veo}, the set of
edges of GP* is e(G") := ¢(G), and each edge e € eP(G) C e(G®") connects vy, with
the vertex that is abutted by e.

(d) For each v € v(G), we set

where b.(v) € {0, 1,2} denotes the number of times that e meets v. Moreover, we set
v(G)=' = {v € v(G) | b(v) < 1}.
We fix some notations. Let k be an algebraically closed field and
X* = (X, Dx)

a pointed stable curve of type (gx,nx) over k. Here, X denotes the underlying scheme
of X*, and Dx denotes the set of marked points of X*®. Write

Ty

for the dual semi-graph of X* and I'x for the dual graph of X. Note that by the definitions
of I'xe and I'x, we have a natural embedding 'y < ['y.; then we may identify v(I'x)
(resp. e(I'x)) with v(T'xe) (resp. e?(I'xe)) via the natural embedding I'y < T'ye. We
denote by

<. and IT%2
the étale fundamental group of X*® and the profinite completion of the topological funda-
mental group of I'xe, respectively, and write 7x for dime(H' (I xe, C)).

Definition 2.2. Let Y* := (Y, Dy) be a pointed stable curve over k and
oYt - X*

a morphism of pointed stable curves over Spec k.
We shall call f* a Galois admissible covering over Speck (or Galois admissible
covering for short) if the following conditions hold:
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(1) there exists a finite group G C Aut,(Y*®) such that Y*/G = X*, and f*
is equal to the quotient morphism Y* — Y*/G;

(ii) for each y € Y™™ \ Dy, f* is étale at y, where (=)™ denotes the
smooth locus of (—);

(iii) for any y € Y*™8 the image f*(y) is contained in X®"8 where
(—)*"& denotes the singular locus of (—);

(iv) for each y € Y*™8  the local morphism between two nodes induced
by f® may be described as follows:

Ox.pop = kllu, o]l /uv = O, = kl[s.t]] /st
U — s"
v — t",
where (n,char(k)) = 1 if char(k) > 0; moreover, write D, C G for the
decomposition group of y and #D,, for the cardinality of D,; then

7(s) = Cup,s and 7(t) = Cﬁ)yt
for each 7 € D,, where (4p, is a primitive #D,-th root of unit;

(v) the local morphism between two marked points induced by f*® may
be described as follows:

Oxpoty) 2 Klla]] — O, = K[B]
a — b,
where (m, char(k)) = 1 if char(k) > 0 (i.e., a tamely ramified extension).

Moreover, we shall call f* an admissible covering if there exists a morphism of pointed
stable curves (f*)" : (Y*)" — Y over Spec k such that the composite morphism f®o(f*) :
(Y*) — X* is a Galois admissible covering over Speck. Let Z* be the disjoint union of
finitely many pointed stable curves over Spec k. We shall call a morphism

Z* = X*
over Spec k multi-admissible covering if the restriction of Z®* — X* to each connected
component of Z* is admissible.
We define a category Cov*™™(X*) as follows:
(i) each object of Cov™™(X*) is either an empty object or a multi-admissible
covering of X*;
(i) for any A, B € Cov*™(X*), Hom(A, B) consists of all the morphisms
whose restriction to each connected component of B is a multi-admissible
covering.
It is well-known that Cov*™™(X*) is a Galois category. Thus, by choosing a base point
r € X5\ Dy, we obtain a fundamental group 739 (X*®, z) which is called the admissible
fundamental group of X*. For simplicity of notation, we omit the base point and denote
by
IIxe
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the admissible fundamental group of X*. Then we have the following natural surjections
Mxe —» TS, — TT5%.

For more details on admissible coverings and the admissible fundamental groups for
pointed stable curves, see [M1, Section 3|, [M2, Section 2], and [M3, Appendix, Pointed
Stable Curves].

Remark 2.2.1. Let Mg,n be the moduli stack of pointed stable curves of type (g,n)
over SpecZ and My, the open substack of /\_/lgvn parametrizing pointed smooth curves.

Write Mlg(ji for the log stack obtained by equipping Mg,n with the natural log structure
associated to the divisor with normal crossings

My, \ My, C Mg,

relative to SpecZ. The pointed stable curve X*® — Spec k induces a morphism Spec k —
MQX MX " S
structure is the pulling-back log structure induced by the morphism Speck — M

gx,mx-

Write sl)‘;g for the log scheme whose underlying scheme is Spec k, and whose log

. . log 1 7log . .
We obtain a natural morphism sy — M, ' induced by the morphism Speck —
M, ny and a stable log curve
log T log
X8 1= 508 X ioe M
X D Mgy T 9xmxt+l

log

over sy~ whose underlying scheme is X. Then the admissible fundamental group IIxe

of X* is naturally isomorphic to the geometric log étale fundamental group of X'°¢ (i.e.,
ker (7 (X1°8) — 71 (s%2))).

Remark 2.2.2. If X* is smooth over k, by the definition of admissible fundamental
groups, then the admissible fundamental group of X* is naturally isomorphic to the tame
fundamental group of X \ Dx.

In the remainder of this section, we suppose that the characteristic of k is p > 0.

Definition 2.3. We define the p-rank of X* to be
o(X*) := dimg, (113 ® F,) = dimg, M§ @ F,),
where (—)? denotes the abelianization of (—).

Remark 2.3.1. For each v € v(I'xs), write X, for the irreducible components of X
corresponding to v. Then it is easy to prove that

o(X*)=o(X)= Y o(X,)+rx,
vev(Tye)

where (—) denotes the normalization of (—).

Definition 2.4. Let II be a profinite group, n a natural number, and ¢ a prime number.
(a) We denote by II(n) the topological closure of the subgroup [II, IIJII" of II. Note
that I1/T(n) = I** @ (Z/nZ).
(b) We set v, := dimg, (II/TI(¢)) € Z>o U {o0}.
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(c) Let n be a natural number such that [II : II(n)] < co. We define (-average of I to
be

7" (n)(T) == e(Il(n)) /[T - TI(n)] € Qxo U {oo}.

The following highly nontrivial result concerning p-average of Il y. was proved by Tam-
agawa (cf. [T5, Theorem 3.10]).

Proposition 2.5. For any natural number t € N, we set

% (= D(X*) =9 (" — 1) (Txe).

Suppose that, for any v € U(Fg?f), P}pf 1s 2-connected at v. Then we have
lim (0 = 1)(X*) = gx —rx — #(v(Tx)"=").

Remark 2.5.1. Tamagawa proved Proposition 2.5 as a main theorem of [T3] in the case
where X* is a smooth pointed stable curve over k£ by developing a general theory of
Raynaud’s theta divisor; this result means that the genus of X*® can be reconstructed
group-theoretically from the tame fundamental group of X \ Dy. Afterwards, in [T5],
Tamagawa extends the result to the case where X* is a certain pointed stable curve over
k by using a result concerning the abelian injectivity of admissible fundamental groups.

3. THE SET OF IRREDUCIBLE COMPONENTS

We maintain the notations introduced in Section 2. Let X*® be a pointed stable curve
over an algebraically closed field k£ of characteristic p > 0. In this section, we study the
set of irreducible components of X°.

Definition 3.1. Let Z* := (Z, D7) be any pointed stable curve over Spec k. Write I" 7« for
the dual semi-graph of Z°*. We shall call Z* untangled (resp. sturdy) if each irreducible
component of Z* is smooth (resp. the genus of the normalization of each irreducible
component of Z°® is > 2). Write Irr(Z°*) for the set of irreducible components of Z. We
define a set of irreducible components of Z to be

Irr(Z°)77% .= {Z,,v € v(l'ze) | 0(Z,) > 0} C Irr(Z°).
We have the following Proposition.

Proposition 3.2. There exists a connected Galois admissible covering
oYt —X°
over Speck such that Y® is untangled and sturdy, and Irr(Y*)7>0 = Trr(Y'®).

Proof. The proposition follows immediately from [M2, Lemma 2.9] and Proposition 2.5.
O

In the remainder of this section, we suppose that Irr(X*®)7>% £ (. Write Mx. and
MP for HY, (X*,F,) and H'(T'x., F,), respectively. Note that there is a natural injection
MY < Mx. induced by the natural surjection Iy — II'05. We set

M = coker( MY < Mxs).
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The elements of Mx. correspond to étale, Galois abelian coverings of X*® of degree p. Let
V* C My be the subset of elements whose image in Mys® is not 0. Let a € V*. Write
fa: X3 — X* for the étale covering correspond to a. Then we obtain a map

L V= 7Z

that t(a) = #(Irr(X?2)). Let V' C V* be the subset of elements «, where ¢ attains its
maximum. We set

m = #{X, C Irr(X*®) | f3 is a non-trivial étale covering over X,}.

Then we have

t(a) = p(#Irr(X®) — m) +m.
Thus, ¢ attains its maximum if and only if ¢(a)) = p(#Irr(X®)—1)+1. Moreover, if « € V,
we write X*¢ for the admissible covering corresponding to «, 'y« for the dual semi-
graph of X*% rxa for dimc(H' (I xe.a,C)), and X for the unique irreducible component
of X*® over which f? is a non-trivial étale covering. We observe that

t(a) = p(#Irr(X*) — 1) + 1
if and only if
rxa = Prx.
Next, we define a pre-equivalence relation ~ on V' as follows:

let a, 8 € V; then o ~ B if | for each A, u € F) for which Ao + pf8 € V*,
we have Aa+ uf € V.

Then we have the following lemma.

Lemma 3.3. Suppose that Irr(X*)°>° £ (). The pre-equivalence relation ~ on V is an
equivalence relation, and, moreover, the quotient set V/ ~ is naturally isomorphic to
Irr(X*)°>Y that maps [a] — X

v

where [«] denotes the image of a« € V in V/ ~.

Proof. For any § € V, if «(0) attains its maximum it implies that there exists a unique
irreducible component [ 55 C XJ whose decomposition group is not trivial. We write
I%. C X* for the image of ]}5(5 of the covering morphism Xg — X*. Note that I{. €
Irr(X*)?>% Then V = ( if and only if Trr(X*)7>0 = ().

We suppose that Irr(X®)°>% £ (. Let o, 8 € V. If I$e = Iﬁ., then, for each A, i € F
for which Aa + puf € V*, we have ];\(O‘.+“ﬁ = I%. = If(.. Thus, a ~ 3. On the other
hand, if o ~ 3, we have [, = 1 )ﬁ(.; otherwise, there exist two irreducible components of
Xa 15 whose decomposition groups are not trivial. Thus, a ~ § if and only if I%. = 1 f(..
This means that ~ is an equivalence relation on V. Then we obtain a natural morphism
K V/ ~— Trr(X*)>° that maps 6 — [%..

Let us prove that s is a bijection. It is easy to see that x is an injection. For any
irreducible component X, € Irr(X*®)7>%, since the p-rank of the normalization of X, is
not 0, we may construct an étale, Galois abelian covering f*®:Y*® — X* of degree p such
that X, is the unique irreducible component of X*® such that (f*)~'(X?) is connected.
Then #(Irr(Y®)) = p(#(Irr(X*)) — 1)+ 1. Thus, we obtain an element of V' corresponding
to Y*. This means that x is a surjection. We complete the proof of the lemma. U
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Remark 3.3.1. Suppose that ['xe is 2-connected. Let v € M)t(o.p, a € Mye, X5 —
X* the admissible covering corresponding to v, and X — X* the admissible covering
corresponding to a. Write X3 | for the fiber product X3 Xy« X3. Note that the dual
semi-graphs I'xs and I'x, of X* and X _, respectively, are 2-connected, and the dual

semi-graph I'xe of X} is not 2-connected if @ € V. Then it is easy to see that o € V' if
and only if the Betti numbers satisfies the following

TXs., = DPIxs +p?—=2p+1.

4. GEOMETRY OF ADMISSIBLE COVERINGS

We maintain the notations introduced in the previous sections. Let X*® be a pointed
stable curve over an algebraically closed field k of characteristic p > 0. In this section, we
study the admissible coverings of X*.

Lemma 4.1. Let ¢ # 2 be a prime number and

=1

a linear indeterminate equation. Suppose that n > 2. Then there exists a solution

(a1,...,a,) € (Z/UZ)®"™ such that a; # 0 for each i =1,...,n.
Proof. The lemma follows from elementary computation. 0

Condition 4.2. Let Z* := (Z,Dyz) be any pointed stable curve over Speck. Write
Cusp(Z°®) for the set of marked points Dy of Z*. We shall say that Z* satisfies Con-
dition 4.2 if the following conditions hold:

(a) Z* is untangled and sturdy;

(b) for any two irreducible components Z,, Z, C Z distinct from each
other, if Z, N\ Zy # 0, we have #(Z, N Zy) > 3;

(c) for each irreducible component Z, C Z, if Z, N Cusp(Z°®) # 0, we
have #(Z, N Cusp(Z*)) > 3.

We have the following propositions.

Proposition 4.3. Suppose that Cusp(X*®) # 0, and X* satisfies Condition 4.2. Let
q € Cusp(X®). Then, for any prime number { # 2 distinct from p, there ezists a Galois

admissible covering f® : Y* — X of degree ¢ such that f* is étale over q, and f* is totally
ramified over Cusp(X*®) \ {q}.

Proof. Since the maximal pro-¢ quotient of admissible fundamental groups of pointed
stable curves of type (g,n) do not depend on the moduli, without loss of generality, we
may assume that #Irr(X*®) = 1. If X*® is smooth over Spec k, then #(Cusp(X*)\{q¢}) > 2.
Thus, the proposition follows from the structure of the maximal pro-f quotient of the
admissible fundamental group of IIxe and Lemma 4.1. This completes the proof of the
proposition. 0
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Proposition 4.4. Write Nod(X?®) for the set of nodes of X*®. Suppose that
Nod(X*®) # 0,

and X* satisfies Condition 4.2. Let ¢ € Nod(X?®). Then, for any prime number { # 2
distinct from p, there exists a Galois admissible covering f* : Y® — X* of degree ¢ such
that f* is étale over q, and f* is totally ramified over Nod(X*) \ {q}.

Proof. We prove the proposition by induction on #Irr(X*®) > 2. Suppose that #Irr(X*®) =
2. Write X, for an irreducible component of X which contains g. We set

Cusp(X,) := X, N Cusp(X*)

and
Sing(X,) := X, N Nod(X*).

Write X\, for the irreducible component of X distinct from X,. We set

Cusp(X\,) := X\g N Cusp(X*)
and

Sing(X\4) := X\ N Nod(X*).
Moreover, we define two pointed stable curves over Spec k to be

X3 = (X, Cusp(X,) USing(X,))
and
X\'q = (X\4, Cusp(Xy4) U Sing(Xyg)).

Note that we have a natural bijection 6 : Sing(X,) = Sing(X\,) determined by X*.
Since X* satisfies Condition 4.2, Lemma 4.1 implies that there exists a solution (a,),cging( X\ {a}
(resp. (by)vecusp(xy)s (Cv)vecusp( X\q)) of the linear indeterminate equation

Z x, = 0 (resp. Z x, =0, Z x, =0)

veSing(Xq)\{q} veCusp(Xy) veCusp(X\q)

in Z/¢Z such that a, # 0 (resp. b, # 0, ¢, # 0) for each v € Sing(X,) \ {q} (resp.
v € Cusp(X,), v € Cusp(Xyy)). For any v € Sing(X,) \ {¢}, we set dgry := —a,. Then
(dow))vesing(x,)\{q} 15 @ solution of the linear indeterminate equation

>
veSing(X\)\{0(a)}
in Z/lZ.
Write Hﬁ’("z.b (resp. Hi’(?.b) for the abelianization of the maximal pro-f quotient of the
q

admissible fundamental group of XJ (resp. X? ). Moreover, for each v € Sing(X,) (resp.

v € Cusp(Xy), v € Sing(X\y), v € Cusp(X\,)), we write o, (resp. [, 6,, v7,) for a

generator of the inertia group associated to v in H_l;’f;.b (resp. Hf;’%b, Hi’f\ib, I1%%). The
q q

£,ab l,aby - . . £,ab
structure of II Xe (resp. 1I X\‘q) implies that we may construct a morphism from HX(;

(resp. Héf\i];) to Z/¢Z that maps o, + a, for v € Sing(X?) \ {q}, oy = 0, and 3, > b,
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for v € Cusp(Xy) \ {g} (resp. 0, — dy) for dy() € Sing(X?)) \ {0(q)}, dog) + 0, and
Y = ¢, for v e Cusp(X\‘q)). Then we obtain two Galois admissible coverings

fe Y] = X

q
and
AVER (Vi i v

over Spec k of degree {; moreover, f7 is totally ramified over

(Cusp(X,) U Sing(X,)) \ {¢}

and étale over g, f\'q is totally ramified over

(Cusp(X\4) U Sing(X\,)) \ {0(q)}

and étale over 0(q).
Thus, by gluing f7 and f\'q together, we obtain a Galois admissible covering f®:Y*® —
X* of degree ¢ such that f* is étale over ¢, and f* is totally ramified over Cusp(X*®) and

Nod(X*)\ {q}.
Suppose that #Irr(X*®) > 3. Let X; be an irreducible component such that g ¢ Xj.

Write Xy for {X \ X1}, where {—} denotes the closure of {—}. We define two pointed
stable curves over k to be

X7 == (X1, (Cusp(X*®) USing(X*)) N X3)
and
X3 = (X2, (Cusp(X*®) U X1) N X2)).
By induction, we have a Galois admissible covering
f3 Yy = X3

of degree ¢ such that f3 is totally ramified over (Cusp(X*)UX;)NX,) and (XaNSing(X*®))\
{q}, and étale over q. Moreover, we may construct a Galois admissible covering

Y —=X]

such that f is totally ramified over (Cusp(X*®) U Sing(X*®)) N X, and that f; and fs
can be glued along X; N X, as an admissible covering of X*. Thus, by gluing f; and f3
together, we obtain a Galois admissible covering f® : Y* — X* of degree ¢ such that f* is
étale over ¢, and f* is totally ramified over Cusp(X*®) and Nod(X*)\ {¢}. This completes

the proof of the proposition.
O

5. A RESULT OF PRO-{ COMBINATORIAL ANABELIAN GEOMETRY

Let ¢ be a prime number. In this section, we prove a result of pro-¢ combinatorial
anabelian geometry.
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Definition 5.1. Let G be a semi-graph of anabelioids of PSC-type. Write IlIg for the
fundamental group of G and I'g for the underlying semi-graph of G.

(a) We shall call G untangled (resp. sturdy) if G is isomorphic to the semi-graph of
anabelioids of PSC-type arising from a untangled (resp. sturdy) pointed stable curve over
an algebraically closed field (cf. [HM, Section 0 Semi-graphs| (resp. [M5, Definition 1 (ii)]
and [M5, Remark 1.1.5])).

(b) For any open normal subgroup H C Ilg, write Gy for the Galois covering of G
determined by H, and write I'g,, for the underlying semi-graph of Gy. We shall denote
by Hagz/edge the quotient of Hgl; by the closed subgroup generated by the images in Hg‘;
of the edge-like subgroups (cf. [HM, Definition 1.3 (i)]).

In the remainder of this section, we suppose that G is the semi-graph of anabelioids of
PSC-type arising from a pointed stable curve over an algebraically closed field of char-
acteristic p > 0; moreover, we suppose that ¢ # p, and we write G* for the semi-graph
of anabelioids of pro-¢ PSC-type induced by G (cf. [M5, Definition 1.1 (i)]). Write Ilg
for the fundamental group of G. Then Ilg is naturally isomorphic to the maximal pro-¢
quotient of Ilg.

Condition 5.2. We shall say that G' satisfies Condition 5.2 if, for any open normal
subgroup H C lge, the set of vertices U(Fgé) of Fgg, the morphism

v(lge ) = v(T'ge)

ab/edge

. can be recon-
Gu

induced by the Galois covering Gt — G° determined by H, and 11
structed group-theoretically from H and Ilg.

Then we have the following result.

Proposition 5.3. Suppose that G* satisfies Condition 5.2. Then the isomorphism class
of G* can be reconstructed group-theoretically from Ilg.

Proof. Since G* satisfies Condition 5.2, the set of vertical-like groups of Ilg can be recon-
structed group-theoretically from Ilg; furthermore, [HM, Lemma 1.6] implies that the set
of edges-like groups of Ilge can be reconstructed group-theoretically from Ilg.

On the other hand, by applying [HM, Lemma 1.9 (ii)] (resp. [HM, Lemma 1.7] and
[HM, Lemma 1.9 (i)] ), we have the set of vetices v(I'ge) (resp. the set of edges e(I'ge))
of the underlying semi-graph T'g: of G* can be reconstructed group-theoretically from
II;. Moreover, [HM, Lemma 1.7] implies that the set of coincidence maps of I'ge can be

reconstructed group-theoretically from Ilg. This completes the proof of the proposition.
O

Remark 5.3.1. Suppose that G* satisfies Condition 5.2. Note that the reconstruction of
G* from Ilg is functorial. Let H C Ilg: be a normal open subgroup and Gf — G° the
covering corresponding to H. Then it is easy to see that the morphism of underlying

graphs Fg}z{ — T'ge induced by G% — G can be reconstructed group-theoretically from H
and ITge.
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6. A VERSION OF THE GROTHENDIECK CONJECTURE FOR SEMI-GRAPHS OF
ANABELIOIDS OF PSC-TYPE IN POSITIVE CHARACTERISTIC

We maintain the notations introduced in the previous sections. Let X*® be a pointed
stable curve over an algebraically closed field k. Write Gxo for the semi-graph of an-
abelioids of PSC-type arising from X°®. In this section, we will give a group-theoretic
reconstruction for Gye from Il ye.

For any open normal subgroup H C Ilx., we write X}; — X*® for the Galois ad-
missible covering of X* determined by H, I'xs for the dual semi-graph of X3, rx, for
dim@Hl(FX;{,(C), gx, for the genus of X}, and nx, for the cardinality of the set of
marked points of X7;,. Then in order to reconstruct Gxe group-theoretically from Ilxe.,
we need to prove that, for any open normal subgroup H C Ilx., the morphism of dual
semi-graphs I'ys — I'xe induced by the Galois admissible covering X7, — X* determined
by H can be reconstructed group-theoretically from IIxe.

In this section, we only assume that [Ix. is the admissible fundamental group
of a pointed stable curve X* defined over an algebraically closed field k. First,
we have the following basic proposition.

Proposition 6.1. The characteristic p := char(k) can be reconstructed group-theoretically
from 1l x..

Proof. Suppose that p > 0. If
dimg, (I1¥. @ F,) = dimg,, (115 ® Fy)
holds for any two prime numbers ¢ and ¢, then either
char(k) = gx =2gx +nx — 1

or

char(k) = gx = 2¢gx
holds. Thus, we obtain that either (gx,nx) = (0,1) or (¢9x,nx) = (0,0) holds. Since
ITx. is the admissible fundamental group of a pointed stable curve, this is a contradiction.
Thus, if dimg, (113 ® F,) = dimg,, (IT3% ® Fy) holds for any two prime numbers ¢ and
¢, we have p = 0. Then we can detect whether p > 0 or not, group-theoretically from

[Tx.. Moreover, if p > 0, then p is the unique prime number such that dime(H_%}). ®F,) #
dimp, (I13% ® Fy) for each prime number ¢ # p. O

In the remainder of this section, we assume that p := char(k) > 0. Next, let us
introduce some conditions on semi-graphs.

Condition 6.2. Let G be a semi-graph. We shall say that G satisfies Condition 6.2 if
G°P* is 2-connected and

#(v(G)*=") = 0.

Remark 6.2.1. If I'y. satisfies Condition 6.2, Proposition 2.5 implies that
: av (.t .
Jim ¥ (p" = 1)(X7) = gx —rx.
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Lemma 6.3. There exists an open characteristic subgroup N C Ilxe such that the fol-
lowing conditions hold:

(a) the order of N is prime to p;
(b) X satisfies Condition 4.2;
(c) T'xs, satisfies Condition 6.2;
(d) N can be reconstructed group-theoretically from Tx..

Proof. Let ¢ >> 0 be a prime number distinct from p. Write IT. for the maximal pro-/
quotient of Ix., and prf : Ixe — II%. for the natural quotient morphism. Let ¢ be a
prime number distinct from p, and let {G¢};c; be a set of semi-graphs of anabelioids of
pro-¢ PSC-type such that the following conditions hold:
(i) Hge = I1%. for each i € I;
(ii) for any semi-graph of anabelioids of pro-f PSC-type G, if 15 = 1%,
then there exists Gf € {Gf}ier such that G = Gf;
(iii) for any 4,5 € I, Gf = Qf if and only if i = j.

Let H be a semi-graph of anabelioids of pro-¢ PSC-type arising from a pointed stable
curve W* over an algebraically closed field and 'y, the underlying semi-graph of H.
Then the isomorphism class of H is determined completely by I'y, and the genera of
irreducible components of W* corresponding to the vertices of I'y;. Thus, we obtain that
the set of isomorphism classes of the semi-graphs of anabelioids of pro-¢ PSC-type whose
fundamental groups are isomorphic to I1%. is finite. This means that [ is a finite set.

For each i € I, let Gf. — Gf and (Gf, )1, — Gk, be two Galois coverings whose Galois
groups are isomorphic to

K; :=ker(Ilge — 1122 @ Fy)
and
L =ker(Ilg — 115 ©F,),

respectively. It is easy to see that (Qf(i) L, 1s isomorphic to the semi-graph of anabelioids
of pro-¢ PSC-type arising from a pointed stable curve satisfying Condition 4.2, and that
the underlying semi-graph of (G )., satisfies Condition 6.2. Let N; be a maximal open
characteristic subgroup of Ilg contained in L;. Thus, gf;i is isomorphic to the semi-graph
of anabelioids of pro-¢ PSC—tgfpe arising from a pointed stable curve satisfying Condition
4.2, and the underlying semi-graph of Qﬁ,i satisfies Condition 6.2. We set

YY)
iel
Then the lemma follows. O

If the dual semi-graph I'xe satisfies Condition 6.2, we have the following result.

Lemma 6.4. Write 115" for the mazimal pro-p quotient of TI'y. Suppose that T xe

satisfies Condition 6.2. Then
Hp-tOP
X.
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can be reconstructed group-theoretically from Ilxe; moreover,
gx,nx, and rx
can be reconstructed group-theoretically from Ilxe.

Proof. Let H be any open normal subgroup of Il xe such that the limit of p-average associ-
ated to Xp is convergence. We note that, if Ilx./H is a p-group, then the decomposition
group of every irreducible component of X7, is trivial if and only if

9Xg — TXg = #(HX'/H)(gX - TX)'
Thus, we may detect whether the equality
9xy — rxy = #(Uxe/H)(9x — 7x)

holds or not, group-theoretically from IIxs and H if I'xe is 2-connected.
We set
Top, (Ilxs) := {H C Ilx. open normal | [Ix./H is a p-group

and, for any characteristic subgroup @ C Ilxe,
9Xuno — T"Xbno = #(HXC'Q/(H N Q))(QXQ - TXQ)}‘
Then IT5: can be reconstructed group-theoretically from ITy. as follows:
P =Ix./( () H).
HeTop, (I xe)

Thus, we obtain that TI%? and rx = dime(IT%2™* @ C) can be reconstructed group-
theoretically from IIx.. Moreover, the genus gx can be reconstructed group-theoretically
from Ilye.

Next, we reconstruct nx. Let £ # p be a prime number. If

dimg, (I3 @ Fy) # 2gx,

then we have
nx = dimg, (II3% ® Fy) — 2gx + 1.

Suppose that dimg, (I13% ® Fy) = 2gx. Then nx = 0 if, for any open normal subgroup
H C Mx., dimg,(H* ® F;) = 2gx,. Otherwise, we have nxy = 1. This completes the
proof of the lemma. O

Lemma 6.4 implies that the following corollary.
Corollary 6.5. Suppose that I x« satisfies Condition 6.2. Then the natural exact sequence
0— M — Mxe — MY® —0
can be reconstructed group-theoretically from Ilxe. Moreover, the set
Irr(X*®)7>°

can be reconstructed group-theoretically from Ilxe.
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Proof. Note that Mx. = Hom(IIx.,F,), M5? = Hom(IT%.", F,), and

t

is induced by the natural surjection IIxe — H’;;Op. Then the corollary follows immediately

from Lemma 3.3 and Lemma 6.4. [l

Next, we reconstruct the set of vertices of I'xe from Ilx.. We have the following
proposition.

Proposition 6.6. The set of vertices
U(Fxo)
can be reconstructed group-theoretically from Ilxe. Moreover, for any open normal sub-
group Q C Ilxe, the morphism
U<FX(3) —» U(FXo>
on the sets of vertices induced by the admissible covering X — X*° determined by Q can
be reconstructed group-theoretically from @ and ..

Proof. Let H C Ilxe be any open normal subgroup, and let {a;}icri./z C Ilxe be a set
of lifting of the elements of Ilx./H such that a; — i. Write Mxs for Hj, (X}, F,). Then,
for any i € Ilx./H, the action of i on My is given by the conjugation by a;. Thus, by
applying Lemma 3.3, we have that the action of IIxe/H on M xs, induces an action of
[x«/H on the set Irr(X$)°”% Note that the action of Ilye/H on Irr(X$)°>° does not
depend on the choices of {a;}icriy. . Thus, we obtain a morphism

Irr(X3,)770 — Tre(X3)°70 /(U xe /H) C Irr(X°®).

By applying Lemma 6.3, we obtain a characteristic subgroup NV C Ilxe such that I'xs
satisfies Condition 6.2, and N can be reconstructed group-theoretically from IIx.. For
any open normal subgroup H' C H C Ilx., we have a natural injection

Ire (X )"/ (T /(H O N)) < Ter(X Gy )"/ (Txe /(H OV N)).

We set
Irrye := liny Irr(X3nn)77° /(e /(H N N)).
HCIIxe open normal
Then we see that Irrye C Irr(X*®). Moreover, Proposition 3.2 implies that Irrys = Irr(X*).
By applying Remark 3.3.1 and Corollary 6.5, we have that Irr(X )"
structed group-theoretically from IIx.. Moreover, since the action of IIxe/(H N N) on

can be recon-

Irr (X n )77 can be reconstructed group-theoretically from Ixe, v(T'xe) = Irr(X*®) can
be reconstructed group-theoretically from IIxe.
Let @ C Ilxe be an open normal subgroup. We set Ng := () N N. Then, for any open
normal subgroup H C (), we have a natural morphism
(X Gy, )70/ (Q/H N Ng) — Tre(XGyy) 7" /(Txe /(H N N));
note that H N Ng = H N N. Moreover, we set
Iy =l (X, )™/ (Q/(H N Ng)).

HCQ open normal
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Then we obtain a natural morphism
v(Pxp) = Irr(X§) = Ity — Irrxe = Irr(X°) = 0(T'xe).
Since the morphism
(X, )7 /(Q/H N Ng) — Trr(X Gy ) 7"/ (Txe / (H N N))
can be reconstructed group-theoretically from Ilx., the morphism
v(I'xg) = v(I'xe)
can be reconstructed group-theoretically from Ilxe.. This completes the proof of the
proposition. ]

Next, let us start to reconstruct Gye from Ilx.. Let ¢ be a prime number distinct from
p. Write G%. for the semi-graph of anabelioids of pro-¢ PSC-type induced by Gx.. Then
we have the following lemma.

Lemma 6.7. Suppose that I'xe satisfies Condition 6.2. Then the isomorphism class of
G
can be reconstructed group-theoretically from Ilxe.

Proof. Let H be any open normal subgroup of Ilyxs . By applying Lemma 6.4, we obtain
that nx, and rx, can be reconstructed group-theoretically from H; moreover, Proposition
6.6 implies that the set of vertices v(I'ys ) of I'xs and the morphism v(I'xs ) — v(I'xe)
induced by the Galois covering X3, — X* determined by H can be reconstructed group-
theoretically from H and Ily.. Then, by applying the Euler-Poincaré characteristic for-
mula for I"y., we obtain that

#(e”(Cxy)) = rxy + #(0(Txs)) — 1

can be reconstructed group-theoretically from H.
We set
Et(Ilxe) := {H C IIx. open normal |

nx, + #(Txs,)) = (#xe /H)) (nx + #(e" (Txe)))}-

Then the étale fundamental group IISt. of X*® can be reconstructed group-theoretically
from Ilx. as follows:

Y. :=Myx./ (] H
HEFt(Ixe)
Note that TG = Hg‘j{/ 48 Then HZB/ *€° can be reconstructed group-theoretically from
X.
[Ix.. Thus, the lemma follows from Proposition 5.3 and Proposition 6.6. OJ

Lemma 6.8. Suppose that X*® and Gx. satisfy Condition 4.2 and Condition 6.2, respec-
tively. Then the isomorphism class of

Gxe

can be reconstructed group-theoretically from Ilxe.
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Proof. Let H C Ilx. be any open normal subgroup. In order to prove the lemma, we
only need to prove that the morphism ¢y : I'ys — I'xe on dual semi-graphs induced
by the Galois admissible covering X7, — X°® determined by H can be reconstructed
group-theoretically from Ilxe; moreover, Proposition 6.6 and Lemma 6.7 imply that it is
sufficient to prove that the morphism

¢H|6(FX;{) . 6(1_‘)(;{) — e(FX-)

on the sets of edges induced by ¢y can be reconstructed group-theoretically from H and
IIxe.

Let ¢ # 2 be a prime number distinct from p such that (#(Ilx./H),¢) = 1. For each
element o € Hom(Ilye, Fy), write f2 : Y2 — X* for the admissible covering corresponding
to a. We set

Ly« := {a € Hom(Ilx.,Fy) | #Cusp(Y,?) = #Cusp(X°®) + ¢ — 1}.

Note that, for each o € Lxe., f3 is étale over a unique marked point g, of X*® and is
totally ramified over Cusp(X*®) \ {¢.}. Since we assume that X* satisfies Condition 4.2,
Proposition 4.3 implies that, for each ¢ € Cusp(X?®), there exits @ € Lx. such that
go = q. Moreover, Lemma 6.4 implies that Lxe. can be reconstructed group-theoretically
from IIye.

Let § € Lx.. We obtain a connected Galois admissible covering g3 : Y3 5 := Y3 X xe
Xy — X} Here, g3 is the natural projection. Write Gys and QYB:H for the semi-graphs
of anabelioids of PSC-type arising from X3 and Y3 4, respectively; moreover, write gﬁ(;{
and Q%H for the semi-graphs of anabelioids of pro-f PSC-type induced by Gys and
gyﬁ.,H, réspectively. Then Lemma 6.7 implies that the morphism of dual semi-graphs
VaH FYB.,H — DI'xe induced by gj can be reconstructed group-theoretically from H.
Thus, we have

Oy (eqy) = {e € eP(Txs) | #(53(e)) = 1},
where e,, € e®®(I'y+) denotes the open edge corresponding to gg. Then the morphism
¢H|eop(f‘x;[) 1 eP(Ixs) — e®(I'xe) induced by ¢g on the sets of open edges can be
reconstructed group-theoretically from H and Ilxe.

Together with Proposition 4.4, similar arguments to the arguments given in the proof
eIlye) e?(Txs ) — €?(Ix+) induced by ¢y on the

above imply that the morphism ¢y
sets of closed edges can be reconstructed group-theoretically from IIx.. Then ¢gler,. ) :
H

e(T'xs ) — e(I'xs) can be reconstructed group-theoretically from IIx.. This completes the
proof of the lemma. 0

Next, we prove the main theorem of the present section.

Theorem 6.9. Let X*® be a pointed stable curve over an algebraically closed field k.
Write 1l xe for the admissible fundamental group of X*®, and Gxe for the semi-graph of
anabelioids of PSC-type Gxe arising from X°®. Then p := char(k) can be reconstructed
group-theoretically from Il x.. Moreover, if p := char(k) > 0, then the isomorphism class
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of
Gxe

can be reconstructed group-theoretically from Ilxe.

Proof. Proposition 6.1 implies that the characteristic of k£ can be reconstructed group-
theoretically from ITy.. We only prove the “moreover” part of the theorem.

Suppose that p := char(k) > 0. Let H C IIx. be any open normal subgroup. Propo-
sition 6.6 implies that, to verify the theorem, it is sufficient to prove that the morphism
['xe — I'xe on the sets of edges induced by the Galois covering X7, — X* determined by
H can be reconstructed group-theoretically from Ilxe.

We choose an open characteristic subgroup N C Ilx. such that the conditions of Lemma
6.3. Write Hy for HNN, G Xg for the semi-graph of anabelioids of PSC-type arising from
Xt Since Xz - and the dual semi-graph of T Xt satisfy Condition 4.2 and Condition
6.2, respectively, Lemma 6.8 implies that gX?{N can be reconstructed group-theoretically
from Hy.

Note that the natural action of Ilx./Hy on QX;IN induces an action of Ilxs/Hy on
FXEIN5 moreover, we have ['y. = FX;IN/(HX./H) and I'xs = FX;{N/(H/HN)- Thus, we
obtain a natural morphism

FX?{ = FX;{N/(H/HN) — I'ye = FX;IN/(HX./H)

Thus, I'ys — I'xe can be reconstructed group-theoretically from Ilye. This completes
the proof of the theorem. O

Remark 6.9.1. Let ¥ C ‘PBrimes be a set of prime numbers which does not contain
char(k;) and char(ky), where Brimes denotes the set of prime numbers. The combina-
torial Grothendieck conjecture for semi-graphs of anabelioids of pro-> PSC-type can be
formulated as follows.

Let G1 and Gy be two semi-graphs of anabelioids of pro-¥ PSC-type asso-

ciated to two pointed stable curves over algebraically closed fields ki and

ka, respectively, 1lg, and Ilg, the fundamental groups of Gy and G, re-

spectively, o : lg, — g, an isomorphism of profinite groups, I and I,

profinite groups, pr, : I1 — Out(Ilg,) and py, : Iy — Out(Ilg,) outer Ga-

lois representations, and 3 : I, — Iy an isomorphism of profinite groups.

Suppose that the diagram

I s Out(Ilg,)

BJ/ Out(a) l

I, 225 Out(Ilg,),
is commutative, where Out(a) denotes the isomorphism induced by «.
Then we have Gy = G,.
The combinatorial Grothendieck conjecture for semi-graphs of anabelioids of pro-¥ PSC-

type was proved by S. Mochizuki in the case where p;, and pj, are outer Galois represen-
tations of IPSC-type (cf. [M5]), and by Y. Hoshi and Mochizuki in the case where p;, and
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p1, are certain outer Galois representations of NN-type (cf. [HM]). Furthermore, Theorem
6.9 may be regarded as a version of the combinatorial Grothendieck conjecture
for the semi-graphs of anabelioids of PSC-type arising from pointed stable
curves over algebraically closed fields of characteristic p > 0.

Remark 6.9.2. Theorem 6.9 is a generalized version of a result of Tamagawa that the
tame inertia groups associated to the cusps of smooth pointed stable curves can be re-

constructed group-theoretically from their tame fundamental groups (cf. [T3, Theorem
5.2]).

7. THE ANABELIAN GEOMETRY OF CURVES OVER ALGEBRAICALLY CLOSED FIELDS
OF CHARACTERISTIC p > 0

We maintain the notations introduced in Section 2. Let X*® be a pointed stable curve
over an algebraically closed field £ of characteristic p > 0. In this section, we use Theorem
6.9 to prove some anabelian results for pointed stable curves in positive characteristic.

Definition 7.1. We denote by td(k) the transcendence degree of k over F, C k. We
denote by

ed(X*)
(i.e., essential dimension) the minimum of td(k;), where k; runs over the algebraically
closed subfields of k£ over which there exists a smooth curve X7 such that X* is k-
isomorphic to X7 Xy, k.

Tamagawa posed a conjecture as follows (cf. [T2, Conjecture 5.3 (ii)]).

Conjecture 7.2. If X* is smooth over k, then the essential dimension

ed(X*)

can be reconstructed group-theoretically from wddm(X*).

Tamagawa proved Conjecture 7.2 in the case where gx = 0 and ed(X*) = 0. More
precisely, Tamagawa proved the following theorem (cf. [T3, Theorem 1.2]).

Theorem 7.3. Let Fp C k. Suppose that X*® is a smooth pointed stable curve over k.
If gx = 0, then we can detect whether X* can be defined over F, (i.e., there exits a curve
X$ over F, such that X* = X x5, k) or not, group-theoretically form mi*"¢(X \ Dx);

moreover, if k = F,, then the isomorphism class of the profinite group m{*™¢(X \ Dx)
completely determines the isomorphism class of the scheme X \ Dy

On the other hand, let ¢ be any prime number and F, an algebraic closure of F,. We
define two sets of rational points of moduli stacks as follows:

Ry = |J Myu(Fo)
£ePrimes

and

Ryp = U M, (Fo),

L& PBrimes
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where M, ,, denotes the moduli stack of pointed stable curve of type (g,n) over SpecZ,
and M, , denotes the open substack of Mg,n parametrizing pointed smooth curves of
type (g,n). For any rational point q € R,,, : SpecF, — M,,,, write Xy = (Xq, Dx,)
for the pointed stable curve ﬂgﬂﬂ XMy F, over F, determined by q. We define an
equivalence relation ~*" on Egm as follows: if qq,q2 € Egyn, then q; ~" gy if Xq, \DXql
and X, \ Dy, are isomorphic as schemes (though not necessarily as Fy-schemes). Let
FPG be the category of topologically finitely generated profinite groups. We define an
equivalence relation ~P™ on FPG as follows: if G, Gy € FPG, then G; ~P™ G, if GG; and
(G5 are isomorphic as profinite groups. Then we obtain a natural morphism as follows:

R By s FPG/

that maps the equivalence class of q to the equivalence class of ﬂ?dm(X; ).

We may ask whether or not the moduli spaces of curves can be reconstructed group-

theoretically from fundamental groups. This is equivalent to ask whether or not the map
adm

myq" defined above is an injection. By applying Theorem 6.4, Tamagawa obtained the

following result.

Corollary 7.4. The morphism

ngm|Ro,n/~“h . Ro’n/ ,\,sch;> FPG/ ~pro

induced by m§9™ on the subset R,/ ~* of Ron/ ~*" is an injection.

Remark 7.4.1. By replacing FPG (resp. 72 (—)) by the category of profinite groups
(resp. m(—) (i.e., the étale fundamental group of (—))), we obtain the following natural
morphism:
Tgn : Rgn/ ~P— PG/ ~P

that maps the equivalence class of q to the equivalence class of (X, \ Dx,). Before Tama-
gawa proved Theorem 7.3, he obtained an étale fundamental group version of Theorem 7.3
(i-e., Tom Ry, /~sen is an injection) in a completely different way (by using wildly ramified
coverings) (cf. [T1]). Note that, for any nonsingular pointed stable curve Z°* := (Z, Dy)
over an algebraically closed field of positive characteristic, since 734 (Z*) can be recon-
structed group-theoretically from m1(Z \ D) (cf. [T1, Corollary 1.10]), Theorem 7.3 is
stronger than étale fundamental group version.

Recently, by following Tamagawa’s idea, A. Sarashina (a student of Tamagawa) proved
that 71,1[g, ,/sen is an injection (cf. [S], [T6, Theorem 6 (i)]) if p # 2. Moreover, by
applying the theory of Tamagawa developed in [T3], Sarashina’s result holds also for
739 | Ry 4 jmsen (cf. [T6, Theorem 6 (ii)]).

In the case of pointed stable curves, we may pose a generalized form of Conjecture 7.2
as follows.

Conjecture 7.5. Let X* be pointed stable curves over k. Then the essential dimension
ed(X*®)

can be reconstructed group-theoretically from wd4m(X*).
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First, we generalize Theorem 7.3 as follows.

Theorem 7.6. (i) Let F, C k, and let X* be a pointed stable curve of over k. Then we
have:

(i-a) Conjecture 7.2 implies Congecture 7.5;

(i-b) if the genus of the normalization of each irreducible component of X*® is equal to
0, then we can detect whether ed(X*®) is equal to 0 or not, group-theoretically from I y..

(i1) Let X7 and X3 be two pointed stable curves over ki and ks of positive characteristics,
Hxe and Ilxs the admissible fundamental groups of X7 and X3, Gxs and Gxg for the
semi-graphs of anabelioids of PSC-type arising from X7 and X3, T'xs and I'xy the dual
semi-graphs of X7 and X3, respectively. Suppose that llxs = Ilxs. Then we have:

(id-a) char(k;) = char(ky) and Gxs = Gxg;

(1i-b) let EJ C ki N ky; write v : ['xe it ['xs for the isomorphism of semi-graphs
induced by the isomorphism Gxs = Gxg; suppose that ky = ko = Fp, and that the genus
of the normalization of each irreducible component of X} is 0; then, for each v € v(I'xs),
we obtain X7, is isomorphic to X5 as schemes, where (=)« denotes the irreducible
component of (—) corresponding to the vertex .

Proof. First, let us prove (i). For each v € v(I'yxs), write X for the irreducible component
of X* corresponding to v. It is easy to see that

ed(X') == MaXUEv(Fxo){ed(X;)}'

Thus, (i-a) follows from Theorem 6.9. Moreover, (i-b) follows immediately from Theorem
6.9 and Theorem 7.3.

Next, let us prove (ii). (ii-a) follows immediately from Theorem 6.9. (ii-b) follows
immediately from Theorem 6.9 and Theorem 7.3 (or Corollary 7.4). O

Remark 7.6.1. Theorem 7.6 (i-b) and (ii-b) generalize Theorem 6.9 and Corollary 7.4
to the case of irreducible pointed stable curves (possibly singular).

Remark 7.6.2. By Remark 7.4.1 and Theorem 7.6, we obtain the following generalized
version of Theorem 7.6.
Let E) C k, and let X*® be a pointed stable curve of over k. Write I'xe

for the dual semi-graph of X*. For each v € v(I'xs), write (X,) for the
normalization of the irreducible component of X corresponding to v and

Xg = (X,,Dg)

for the smooth pointed stable curve over Fp determined by j(vv and the
divisor of marked points D determined by the inverse images (via the

natural morphism 3\(; — X) in )?; of the nodes and marked points of X*;
(gv,ny) for the type of)/{,;. Suppose that, for each v € v(I'xe), )fé is either
a smooth pointed stable curve over Fp of genus g, = 0 or a smooth pointed
stable curve over R) of type (1,1). Moreover, suppose that p # 2 if there
exists v € v(['xs) such that (g,,n,) = (1,1). Then we can detect whether
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ed(X*®) is equal to O or not, group-theoretically from lxe. In particular,
the morphism
7Tadrn . }_%g,n/ Nsch(_> FPG/ ~_bro

g,n
is an injection if (g,n) = (1,1).

Next, let us consider the case of higher genus.

Definition 7.7. Let S; — S5 be a morphism of sets. We shall call the morphism S; — S5
quasi-finite if, for any so € S, #((S1 — S2)"!(s2)) is finite.

Theorem 7.8. Let S be an Fy-scheme, and 1 and s points of S such that s € {n} holds.
We denote by 1 and s geometric points on n and s, respectively. Let Z'° be a smooth
pointed stable curve of type (g,n) over S and

spf;im : Wfdm(%' Xy 1) = Wfdm(%' Xs3S)

a specialization map. Suppose that Z'* x, N cannot be defined over an algebraic closure
of Fp, and 2°° x5 can be defined over an algebraic closure of F,. Then spf;flsm s not an
1somorphism. Moreover, the morphism

T st Ry ~M s FPG/ PP

induced by 4™ on the subset Ry, / ~*" of R/~ is quasi-finite.

Remark 7.8.1. Theorem 7.8 was proved by Raynaud (cf. [R]) and Pop-Saidi (cf. [PS])
under certain assumptions of Jacobian, and by Tamagawa in the fully general case (cf.
[T4]).

Next, we generalize Theorem 7.8 to the case of pointed stable curves as follows.

Theorem 7.9. Let S be an IF,-scheme, and n and s points of S such that s € {n} holds.
We denote by 1 and s geometric points on n and s, respectively. Let Z* be a pointed
stable curve of type (g,n) over S,

spf]im : W?dm(%. Xy M) = ﬂfdm(%' XsS)

a specialization map. Suppose that Z'* x, N cannot be defined over an algebraic closure
of Fp, and Z'* x5 can be defined over an algebraic closure of F,. Then sp%im s not an
1somorphism. Furthermore, the morphism

7_‘,adrn . Eg,n/ Nsch_> FPG/ ~_bro

g’n

1S quasi-finite.

Proof. The first part follows immediately from Theorem 6.9. The “furthermore” part
follows immediately from Theorem 6.9 and Theorem 7.8. UJ
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