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Abstract

In the present paper, we investigate the p-ranks of coverings of stable curves.
Let G be a p-group, f : Y −→ X a morphism of semi-stable curves over a complete
discrete valuation ring R with algebraically closed residue field of characteristic
p > 0. Write η for the generic point of S := SpecR and s for the closed point of S.
Let x be a singular point of the special fiber Xs of X. Suppose that the generic fiber
Xη of X is smooth over η, and that the morphism fη : Yη −→ Xη induced by f on
the generic fibers is a Galois étale covering whose Galois group is isomorphic to G.
Write Y ′ for the normalization of X in the function field of Y , ψ : Y ′ −→ X for the
resulting normalization morphism. Let y′ ∈ ψ−1(x) be a point of the inverse image
of x. Write Iy′ for the inertia group of y′. We prove that if Iy′ is an abelian p-group,
then there exists a bound on the p-rank of a connected component of f−1(x) which
only depends on ♯Iy′ , where ♯Iy′ denotes the order of Iy′ . This result gives an answer
to an open problem posed by M. Säıdi in the case where Iy′ is abelian. On the other
hand, we prove that the p-rank of f−1(x) (resp. Ys) is determined by a certain
collection of purely combinatorial data associated to f and x (resp. associated
to f and the p-ranks of the normalizations of the irreducible components of Xs).
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1 Introduction

Let R be a complete discrete valuation ring with algebraically closed residue field k of
characteristic p > 0. Write K for the quotient field of R; S := SpecR; η : SpecK −→ S
and s : Spec k −→ S for the natural morphisms. Let K be an algebraic closure of K.
Write η : SpecK −→ S for the natural morphism. Let G be a finite p-group and X a
semi-stable curve of genus gX over S. WriteXη, Xη, andXs for the result of base-changing
X by η, η, and s, respectively. Moreover, we suppose that Xη is a smooth curve over η.

Let Yη be a geometrically connected curve over η and fη : Yη −→ Xη a finite Galois
étale covering over η whose Galois group is isomorphic to G. By replacing S by a finite
extension of S (i.e., the spectrum of the normalization of R in a finite extension of K),
we may assume that Yη admits a semi-stable model over S. Then fη extends uniquely to
a G-semi-stable covering (cf. Definition 2.1) f : Y −→ X over S (cf. [Y, Proposition
3.4]). We are interested in understanding the structure of the special fiber Ys of Y .
Note that the morphism fs : Ys −→ Xs induced by f on the special fibers is not a finite
morphism in general. Let x be a closed point of Xs. If f

−1(x) is not finite, we shall call x a
vertical point associated to f and call f−1(x) the vertical fiber associated to x (cf.
Definition 2.2). In order to investigate the properties of Ys (resp. f

−1(x)), we focus on a
geometric invariant σ(Ys) := dimFpH

1
ét(Ys,Fp) (resp. σ(f

−1(x)) := dimFpH
1
ét(f

−1(x),Fp))
which is called the p-rank of Ys (resp. the p-rank of f−1(x)). In the present paper, we
apply the formulas for σ(Ys) and f−1(x) obtained in [Y] to study the boundedness and
graph-theoreticity of p-ranks of G-semi-stable coverings.

First, let us consider the boundedness of p-ranks of G-semi-stable coverings. Note
that we always have σ(Ys) ≤ gYη

= σ(Yη)/2 := dimFpH
1
ét(Yη,Fp)/2 if char(K) = 0 and

σ(Ys) ≤ σ(Yη) ≤ gYη
if char(K) = p > 0, where gYη

denotes the genus of Yη := Yη ×η η.
Moreover, σ(Yη) can be calculated by applying the Riemann-Hurwitz formula if char(K) =
0 and the Deuring-Shafarevich formula (cf. [C]) if char(K) = p > 0, respectively. Thus,
σ(Ys) is bounded by a quantity which is completely determined by ♯G and σ(Xη) :=
dimFpH

1
ét(Xη,Fp). In the present paper, we consider the boundedness of σ(f−1(x)). Note

that σ(f−1(x)) is always bounded by gYη
. If x is a smooth point of Xs, M. Raynaud

proved the following result (cf. [R, Théorème 2]):

Theorem 1.1. If x is a smooth point of Xs, and G is an p-group, then the p-rank
σ(f−1(x)) is equal to 0.

By Theorem 1.1, we only need to treat the case where x is a singular point of Xs.
In order to explain our results, let us introduce some notations. Write ψ : Y ′ −→ X
for the normalization of X in the function field of Y . Let y′ ∈ ψ−1(x) be a point in
the inverse image of x. Write Iy′ ⊆ G for the inertia group of y′. [Y, Proposition 3.4]
implies that the morphism Yη/Iy′ −→ Xη over η induced by f extends to a semi-stable
covering YIy′ −→ X over S. In order to calculate the p-rank of f−1(x), since (by the
definition of Iy′ !) the morphism YIy′ −→ X is finite étale over x, by replacing X by YIy′ ,
we may assume without loss of generality that G is equal to Iy′ . In the remainder of this
subsection, we shall assume that G = Iy′ . Then f−1(x) is connected. If Iy′ is cyclic, M.
Säıdi proved the following result (cf. [S, Theorem 1]), by applying Theorem 1.1:
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Theorem 1.2. If G is a cyclic p-group, then we have σ(f−1(x)) ≤ ♯G − 1, where ♯G
denotes the order of G.

Furthermore, there is an open problem posed by Säıdi as follows (cf. [S, Question]):

Problem 1.3. If G is an arbitrary p-group, does there exist a bound on the p-rank
σ(f−1(x)) that depends only on the order ♯G?

In the present paper, by applying a formula for p-ranks of vertical fibers obtained in
[Y], we generalize Säıdi’s result (i.e., Theorem 1.2) and give an answer to Problem 1.3 in
the case where G is an abelian group as follows (cf. Theorem 3.4 and Remark 3.4.1):

Theorem 1.4. If G is an abelian p-group, then we have (cf. Definition 3.2 for the
definitions of M(G) and B(♯G))

σ(f−1(x)) ≤M(G) · ♯G− 1 ≤ B(♯G) · ♯G− 1,

where B(♯G) only depends on ♯G. In particular, if G is a cyclic p-group, we have

σ(f−1(x)) ≤ ♯G− 1.

Next, let us consider the graph-theoreticity of p-ranks of G-semi-stable coverings. We
pose a problem as follows:

Problem 1.5. Is σ(Ys) (resp. σ(f−1(x))) completely determined by ♯G and a suitable
collection of purely combinatorial data associated to f (resp. f and x)?

By using the resolution of nonsingularites over marked points of pointed semi-stable
coverings, we construct a semi-graph Γf -etd

Ys
associated to f , which is called the extended

dual semi-graph of Ys associated to f (resp. a semi-graph Γf -etd
x associated to x and

f which is called the extended dual semi-graph of f−1(x)). Moreover, we define a
certain collection of purely combinatorial data

Comf := (Γf -etd
Ys

,ΓX sst
s
, βf -etd

f : Γf -etd
Ys

−→ ΓX sst
s
, ♯G)

(resp. Comf
x := (Γf -etd

x , ♯G))

associated to f (resp. associated to x and f) which depends only on f (resp. f and x)
(cf. Definition 4.2 (resp. Definition 4.7)), where X sst is a pointed semi-stable curve over
S associated to Y/G (see Section 4 for the construction of X sst), and ΓX sst

s
denotes the

dual semi-graph of the special fiber of X sst. We give an answer to Problem 1.5 as follows
(cf. Theorem 4.5, Corollary 4.6, Theorem 4.8, and Corollary 4.9):

Theorem 1.6. We maintain the notations introduced above. Then the p-rank σ(Ys) is

completely determined by Comf and {σ(X̃v)}v∈v(ΓX sst
s

), where X̃v denotes the normaliza-

tion of the irreducible component Xv of X sst
s corresponding to v. Let f−1(x) be the vertical

fiber associated to the vertical point x. Then the p-rank σ(f−1(x)) is completely deter-
mined by Comf

x. Moreover, σ(f−1(x)) is completely determined by any stem of Γf-etd
x (cf.

Definition 4.7) and ♯G.
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Next, let h : Z −→ W be an J-semi-stable covering over S. Suppose that (α1, α2) :

Comf ∼→ Comh is an isomorphism of quadruples (cf. Definition 4.2) such that σ(X̃v) =

σ(W̃α2(v)) for each v ∈ v(ΓX sst
s
), where W̃α2(v) denotes the normalization of the irreducible

component Wα2(v) of W sst
s corresponding to α2(v). Then we have

σ(Ys) = σ(Zs).

Let w be a vertical point associated to h. Suppose that w is a singular point of the special
fiber Ws of W , that h−1(w) is connected, and that α : Comf

x
∼→ Comh

w is an isomorphism
of pairs (cf. Definition 4.7). Then we have

σ(f−1(x)) = σ(h−1(w)).

The present paper is organized as follows. In Section 2, we give some definitions and
recall the formulas for σ(Ys) and σ(f

−1(x)) obtained in [Y]. In Section 3, by applying the
general theory of semi-stable curves and the formula for σ(f−1(x)), we prove Theorem
1.4. In Section 4, by applying the resolution of nonsingularites over marked points of
pointed semi-stable coverings, we define the extended dual graphs associated to Ys and
f−1(x). Then we prove Theorem 1.6 by using the formulas for σ(Ys) and σ(f

−1(x)).

2 p-ranks of G-semi-stable coverings

2.1 Definitions

Let W := (W,EW ) be a pointed semi-stable curve over a scheme A. We shall call W the
underlying curve of W and EW the set of marked points of W (each of which is a section
A −→ W of W −→ A). Write ImEW

for the scheme theoretic images of the elements of
EW ; we identify EW with ImEW

.
From now on, let R be a complete discrete valuation ring with algebraically closed

residue field k of characteristic p > 0. Write K for the quotient field, S for the spectrum of
R, η for the generic point corresponding to the natural morphism SpecK −→ S, and s for
the closed point corresponding to the natural morphism Spec k −→ S. Let X := (X,EX)
be a pointed semi-stable curve over S. Write Xη := (Xη, EXη) and Xs := (Xs, EXs) for
the generic fiber over η and the special fiber over s, respectively. Moreover, we suppose
that Xη is a smooth pointed curve over η.

Definition 2.1. Let f : Y := (Y,EY ) −→ X be a morphism of pointed semi-stable
curves over S and G a finite group. The morphism f is called a pointed semi-stable
covering (resp. G-pointed semi-stable covering) over S if the morphism fη : Yη =
(Yη, EYη) −→ Xη = (Xη, EXη) over η induced by f on generic fibers is a finite generically
étale morphism (resp. a Galois covering whose Galois group is isomorphic to G) such
that the following conditions are satisfied: (i) the branch locus of fη is contained in EXη ;
(ii) f−1

η (EXη) = EYη ; (iii) the following universal property holds: if g : Z −→ X is a
morphism of pointed semi-stable curves over S such that the generic fiber Zη of Z and
the morphism gη : Zη −→ Xη induced by g on generic fibers are equal to Yη and fη,
respectively, then there exists a unique morphism h : Z −→ Y such that f = g ◦ h.
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We shall call f a pointed stable covering (resp. G-pointed stable covering) over
S if f is a pointed semi-stable covering (resp. G-pointed semi-stable covering) over S,
and X is a pointed stable curve. We shall call f a semi-stable covering (resp. stable
covering, G-semi-stable covering, G-stable covering) over S if f is a pointed semi-
stable covering (resp. pointed stable covering, G-pointed semi-stable covering, G-pointed
stable covering) over S, and EX is empty.

Definition 2.2. Let f : Y −→ X be a semi-stable covering over S. A closed point
x ∈ Xs is called a vertical point associated to f , or for simplicity, a vertical point
when there is no fear of confusion, if f−1(x) is not a finite set. The inverse image f−1(x)
is called the vertical fiber associated to x.

Definition 2.3. Let C be a projective curve over an algebraically closed field of charac-
teristic p > 0. We define the p-rank of C as follows:

σ(C) := dimFpH
1
ét(C,Fp).

2.2 Formulas for p-ranks of G-semi-stable coverings

From now on, we assume that G is a finite p-group. Let f : Y −→ X be a G-semi-
stable covering over S and x a vertical point associated to f . For simplicity, we write
Y and X for Y and X , respectively. Write Xsst for the semi-stable curve Y/G over S
(cf. [R, Appendice Corollaire]). Then we obtain two morphisms of semi-stable curves
h : Y −→ Xsst and g : Xsst −→ X such that g ◦ h = f . Write ΓXs , ΓXsst

s
, and ΓYs for the

dual graphs of the special fiber Xs of X, the special fiber Xsst
s of Xsst, and the special

fiber Ys of Y , respectively.
Let G be a semi-graph (cf. [M] or the beginning of Section 2.1 of [Y]). Write v(G)

(resp. ecl(G), elp(G) ⊆ ecl(G), eop(G)) for the set of vertices (resp. the set of closed edges,
the set of loops, the set of open edges) of G. For each v ∈ v(G), write e(v) (resp. v(e),
elp(v)) for the set of edges which abut to v (resp. the set of vertices which are abutted by
e, the set of loops which abut to v).

Let v be an element of v(ΓXsst
s
), Xv the irreducible component of Xs corresponding to

v, and Yv an irreducible component such that h(Yv) = Xv. Write IYv ⊆ G for the inertia
group of Yv. Since ♯IYv does not depend on the choices of Yv, we use the notation ♯Iv to
denote ♯IYv . For the p-rank σ(Ys), we have the following theorem (cf. [Y, Theorem 4.5]).

Theorem 2.4. We follow the notations above. Then we have

σ(Ys) =
∑

v∈v(Γ
Xsst

s
)

(♯G/♯Iv(σ(X̃v)− 1) +
∑

e∈e(v)\elp(v)

♯G/♯Ive(♯Ive/♯Iv − 1) + 1)

+
∑

e∈ecl(Γ
Xsst

s
)\elp(Γ

Xsst
s

)

(♯G/♯Ive − 1) +
∑

v∈v(Γ
Xsst

s
)

♯elp(v)(♯G/♯Iv − 1) + dimCH
1(ΓXsst

s
,C),

where X̃v denotes the normalization of the irreducible component Xv of X
sst
s corresponding

to v, ♯Ive denotes max{♯Iv}v∈v(e).
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Next, let us consider the p-rank of f−1(x). Write Y ′ for the normalization of X in the
function field K(Y ) induced by the natural injection K(X) ↪→ K(Y ) induced by f , and
ψ for the resulting normalization morphism Y ′ −→ X. Then Y ′ admits a natural action
of G induced by the action of G on Y . Let y′ ∈ ψ−1(x). Write Iy′ ⊆ G for the inertia
group of y′. In order to calculate the p-rank σ(f−1(x)), since Y/Iy′ −→ X is finite étale
above x, by replacing X and G by the semi-stable curve Y/Iy′ and Iy′ , we may assume
that G = Iy′ . In the remainder of this section, we shall assume that G = Iy′ . Then f

−1(x)
is connected. On the other hand, if the vertical point x is a smooth point of Xs, then [R,
Théorème 2] implies that σ(f−1(x)) is 0. Then we only need to treat the case where x is
a node of Xs and assume that x is a singular point of Xs.

Let X ′
1 and X ′

2 (which may be equal) be the irreducible components of Xs which
contain x. Write X1 and X2 for the strict transforms of X ′

1 and X ′
2 under the birational

morphism g : Xsst −→ X, respectively. By the general theory of semi-stable curves,
g−1(x)red ⊆ Xsst

s is a semi-stable curve over s whose irreducible components are isomorphic
to P1

k, where (−)red denotes the reduced induced closed subscheme of (−). Write C for
the semi-stable subcurve of g−1(x)red which is a chain of projective lines ∪n

i=1Pi such that
the following conditions hold: (i) for any s, t = 1, . . . , n, Ps ∩ Pt = ∅ if |s − t| ≥ 2 and
Ps ∩ Pt is reduced to a point if |s − t| = 1; (ii) P1 ∩ X1 (resp. Pn ∩ X2) is reduced to a
point; (iii) C ∩ {Xsst \ C} = (P1 ∩X1)∪ (Pn ∩X2), where {Xsst \ C} denotes the closure
of Xsst \ C in Xsst.

Let {Vi}n+1
i=0 be a set of irreducible components of the special fiber Ys of Y such that

the following conditions hold: (i) h(Vi) = Pi for i = 1, . . . , n; (ii) h(V0) = X1 and
h(Vn+1) = X2; (iii) the union ∪n+1

i=0 Vi ⊆ Ys is a connected semi-stable curve over s. Write
IVi

⊆ G, i = 0, . . . , n + 1 for the inertia group of Vi. [Y, Corollary 4.4] implies that for
any i = 0, . . . , n, either IVi

⊆ IVi+1
or IVi

⊇ IVi+1
holds.

Let (u,w) ∈ {0, . . . , n + 1} × {0, . . . , n + 1} be a pair such that u ≤ w. We shall call
a group Imin

u,w a minimal element of {IVi
}n+1
i=0 if one of the following conditions holds: (i)

(u,w) = (0, n + 1) and for any IVi
, i = 0, . . . , n + 1, Imin

0,n+1 = IVi
; (ii) (u,w) = (0, w) ̸=

(0, n + 1), Imin
0,w = IV0 = IV1 = · · · = IVw ⊂ IVw+1 ; (iii) (u,w) = (u, n + 1) ̸= (0, n + 1),

IVu−1 ⊃ IVu = IVu+1 · · · = IVn+1 = Imin
u,n+1; (iv) u ̸= 0, w ̸= n+ 1, and IVu−1 ⊃ Imin

u,w = IVu =

IVu+1 · · · = IVw ⊂ IVw+1 . We shall call a group Jmax
u,w a maximal element of {IVi

}n+1
i=0 if one

of the following conditions hold: (i) (u,w) = (0, n + 1) and for any IVi
, i = 0, . . . , n + 1,

Jmax
0,n+1 = IVi

; (ii) (u,w) = (0, w) ̸= (0, n + 1), Jmax
0,w = IV0 = IV1 = · · · = IVw ⊃ IVw+1 ; (iii)

(u,w) = (u, n + 1) ̸= (0, n + 1), IVu−1 ⊂ IVu = IVu+1 · · · = IVn+1 = Jmax
u,n+1; (iv) u ̸= 0,

w ̸= n+ 1, and IVu−1 ⊂ Jmax
u,w = IVu = IVu+1 · · · = IVw ⊃ IVw+1 . We define Min to be

{Imin
u,w }(u,w)∈{1,...,n}×{1,...,n+1} or {Imin

0,n+1}
and Max to be

{Imax
u,w }(u,w)∈{0,...,n+1}×{0,...,n+1}.

Note that Min may be an empty set. We have the following formula (cf. [Y, Theorem
4.7]).

Theorem 2.5. We follows the notations above, we have

σ(f−1(x)) =
n∑

i=1

♯G/♯IVi
−

n+1∑
i=1

♯G/♯⟨IVi−1
, IVi

⟩+ 1
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=
n∑

i=1

♯G/♯IVi
−

n+1∑
i=1

♯G/♯Ii−1,i + 1

where for each i = 1, . . . , n + 1, ⟨IVi−1
, IVi

⟩ denotes the subgroup of G generated by IVi−1

and IVi
, and ♯Ii−1,i denotes max{♯IVi−1

, ♯IVi
}. Note that ♯IVi

, i = 0, . . . , n + 1, does not
depend on the choices of Vi. Moreover, we have

σ(f−1(x)) =
∑
I∈Min

♯G/♯I −
∑

J∈Max

♯G/♯J + 1, if Min ̸= {Imin
0,n+1},

and
σ(f−1(x)) = 0 if Min = {Imin

0,n+1}.

3 Bounds of p-ranks of vertical fibers of abelian G-

semi-stable coverings

In this section, we follow the notations of Section 2.2. Moreover, we assume that G is an
abelian p-group, and that f−1(x) is connected.

Since G is abelian, IVi
, i = 0, . . . , n+1, does not depend on the choices of Vi. Then we

use the notation IPi
to denote IVi

for each i = 0, . . . , n + 1. First, we have the following
key proposition.

Proposition 3.1. Suppose that ♯Min ≥ 2. Let I ′ and I ′′ be two different elements of Min.
Then neither I ′ ⊆ I ′′ nor I ′ ⊇ I ′′ holds.

Proof. Without loss of generality, we may assume that I ′ = IPa and I ′′ = IPb
such that

0 ≤ a < b ≤ n+ 1, IPa ̸= IPa+1 , and IPb−1
̸= IPb

. Note that by the definition of Min, IPa+1

(resp. IPb−1
) contains IPa (resp. IPb

).
If I ′ ⊆ I ′′, we consider the quotient curve Y/I ′′. Then we obtain two morphisms of

semi-stable curves ξ1 : Y −→ Y/I ′′ and ξ2 : Y/I ′′ −→ Xsst such that ξ2 ◦ ξ1 = h. Write
Va and Vb for the irreducible components of Ys such that h(Va) = Pa and h(Vc) = Pc,
respectively. By contracting ∪b−1

i=a+1Pi and ξ−1
2 (∪b−1

i=a+1Pi)red (cf. [BLR, 6.7 Proposition
4]), we obtain two contracting morphisms cXsst : Xsst −→ (Xsst)∗ and cY/I′′ : Y/I

′′ −→
(Y/I ′′)∗. Moreover, ξ2 induces a morphism ξ∗2 : (Y/I ′′)∗ −→ (Xsst)∗ such that the following
commutative diagram:

Y/I ′′
cY/I′′−−−→ (Y/I ′′)∗

ξ2

y ξ∗2

y
Xsst

cXsst−−−→ (Xsst)∗.

Note that (Xsst)∗ is a semi-stable curve over S.
Since I ′ = IPa ⊆ I ′′ = IPb

, ξ∗2 is étale at the generic points of cY/I′′ ◦ ξ1(Va) and
cY/I′′ ◦ ξ1(Vb). Thus, by applying Zariski-Nagata purity and [T, Lemma 2.1 (iii)], we
obtain that ξ∗2 is étale at cY/I′′(Va) ∩ cY/I′′(Vb) (i.e., the inertia group of each point of
cY/I′′(Va) ∩ cY/I′′(Vb) is trivial). On the other hand, since IPb−1

contains IPb
, we have the
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inertia group of each point of cY/I′′(Va)∩ cY/I′′(Vb) is IPb−1
/I ′′. Then we obtain IPb−1

= I ′′.
This is a contradiction. Then I ′ is not contained in I ′′.

Similar arguments to the arguments given in the proof above imply that I ′′ is not
contained in I ′. Then we complete the proof of the proposition.

Remark 3.1.1. We follow the notations of Proposition 3.1. If there is an element I ∈ Min
such that I = ∩n+1

i=0 IPi
(e.g. G is cyclic), then we have

σ(f−1(x)) = ♯G/♯I − ♯G/♯IP0 − ♯G/♯IPn+1 + 1.

Definition 3.2. Let N be a finite p-group and H a subgroup of N . We define I(H) to be
a maximal set satisfied the following conditions: (i) H ∈ I(H); (2) for any two different
elements H ′ and H ′′ of I(H), neither H ′ ⊆ H ′′ nor H ′ ⊇ H ′′ holds. Write Sub(N) for the
set of the subgroups of N . We set

M(N) := max{♯I(N ′)}I(N ′), N ′⊆Sub(N).

For any 1 ≤ d ≤ ♯N , write Cd(N) for the set of the subgroups of N with order d. Let A
be an elementary abelian p-group such that ♯A = ♯N . We set

B(♯N) := ♯Sub(A),

where Sub(A) denotes the set of the subgroups of A. Note that B(♯N) depends only on
♯N .

We have the following lemma.

Lemma 3.3. Let A be an elementary abelian p-group with order ♯G and 1 ≤ d ≤ ♯G an
integer number. Then we have

♯Cd(G) ≤ ♯Cd(A).

In particular, we have
M(N) ≤ B(♯N).

Proof. Since G is a p-group, G has non-trivial central subgroup. Fix a central subgroup
Z of order p in G. Write CZ

d (G) (resp. C
\Z
d (G)) for the set of subgroups of order d which

contain Z (resp. do not contain Z). If H is a subgroup of G/Z, let C
(Z,H)
d (G) be the set of

L ∈ C
(Z)
d (G) whose projection on G/Z is H. Let CZ

d [G/Z] be the set of H ∈ Cd(G/Z) for

which C
(Z,H)
d (G) ̸= ∅. If H ∈ CZ

d [G/Z], then there is a natural bijection from C
(Z,H)
d (G)

to Hom(H,Z). Denote G∗ = G/(Gp[G,G]).
If d = 1, the lemma is trivial. Then we may assume that p divides d. We have

♯Cd(G) = ♯CZ
d (G) + ♯C

\Z
d (G) = ♯Cd/p(G/Z) + ♯C

\Z
d (G)

= ♯Cd/p(G/Z) +
∑

H∈CZ
d [G/Z]

♯C
(Z,H)
d (G)

= ♯Cd/p(G/Z) +
∑

H∈CZ
d [G/Z]

♯(Hom(H∗, Z)).
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Thus, we obtain

♯Cd(G) ≤ ♯Cd/p(G/Z) +
∑

H∈CZ
d [G/Z]

♯(Hom((G/Z)∗, Z))

= ♯Cd/p(G/Z) + ♯CZ
d [G/Z]♯(Hom((G/Z)∗, Z))

≤ ♯Cd/p(G/Z) + ♯Cd(G/Z)♯(Hom((G/Z)∗, Z)).

Write Z ′ ∼= Z/pZ for a subgroup of A. By induction, we have ♯Cd/p(G/Z) ≤ ♯Cd/p(A/Z
′).

Then we obtain

♯Cd(G) ≤ ♯Cd/p(A/Z) + ♯Cd(G/Z)♯(Hom((G/Z)∗, Z)) ≤ ♯Cd(A).

This completes the proof of the lemma.

Theorem 3.4. Let f : Y −→ X be a G-semi-stable covering over S, and x a vertical
point associated to f . Suppose that f−1(x) is connected, and that G is an abelian p-group.
Then we have

σ(f−1(x)) ≤M(G) · ♯G− 1 ≤ B(♯G) · ♯G− 1.

Proof. If x is a smooth point of the special fiberXs ofX, then σ(f−1(x)) = 0 (cf. Theorem
1.1). Thus, we may assume that x is a singular point of Xs.

If Min = ∅, then Theorem 2.5 implies that σ(f−1(x)) = 0. The theorem follows. If
Min ̸= ∅, then we have ♯Max ≥ 2. Thus, by applying Theorem 2.5, we obtain

σ(f−1(x)) =
∑
I∈Min

♯G/♯I −
∑

J∈Max

♯G/♯J + 1

≤ ♯Min · ♯G− 1 ≤M(G) · ♯G− 1 ≤ B(♯G) · ♯G− 1.

Remark 3.4.1. If G is a cyclic p-group, then by the definition ofM(G), we haveM(G) =
1. Thus, if G is a cyclic p-group, we have

σ(f−1(x)) ≤ ♯G− 1.

This is the main theorem of [S].

4 Graphs and p-ranks of G-semi-stable coverings

We follow the notations of Section 2.2. Let f : Y −→ X be a G-semi-stable covering over
S, x a vertical point associated to f , h : Y −→ Xsst := Y/G for the finite G-semi-stable
covering over S induced by f , and g : Xsst −→ X the morphism of semi-stable curves over
S induced by f such that g ◦ h = f . Suppose that f−1(x) is connected. In this section,
by using the resolution of nonsingularities over marked points, we introduce a semi-graph
Γf -etd
Ys

associated f and a semi-graph Γf -etd
x associated to the vertical fiber f−1(x). We

9



will see that together with some data of Xsst
s , the p-rank σ(Ys) is determined by Γf -etd

Ys
.

Moreover, the p-rank σ(f−1(x)) is determined by a sub-semi-graph of Γf -etd
x .

First, let us treat the global case. Let xvs , v ∈ v(ΓXsst
s
), be a smooth point of Xv,

where Xv denotes the irreducible component of Xsst
s corresponding v. By replacing S

by a finite extension of S, there is a S-rational point xvS ∈ Xsst(S) such that xvS|s = xvs .
Moreover, by replacing S by a finite extension of S, we may assume that f−1(xvS)red|η are
η-rational points of the generic fiber Yη of Y . Write EXsst for the set of S-rational points
{xvS}v∈v(ΓXsst

s
) ⊆ Xsst(S). We define a pointed semi-stable curve X sst to be (Xsst, EXsst).

Write X sst
η = (Xsst

η , EXsst
η
) for the generic fiber of X sst, X sst

s = (Xsst
s , EXsst

s
) for the

special fiber of X sst, and ΓX sst
s

for the dual semi-graph of X sst
s . Together with the set of

η-rational points EYη := f−1
η (EXsst

η
), we obtain a pointed semi-stable curve (Yη, EYη) and

a natural morphism of pointed semi-stable curves h•η : (Yη, EYη) −→ X sst
η induced by hη.

Then h•η extends uniquely to a G-pointed semi-stable covering h• : Y := (Y ∗, EY ∗) −→
X sst such that h•|η = h•η (cf. [Y, Proposition 3.4]). Write Yη := (Y ∗

η , EY ∗
η
) = (Yη, EYη)

for the generic fiber of Y , Ys := (Y ∗
s , EY ∗

s
) for the special fiber of Y , and ΓYs for the

dual semi-graph of Ys. Note that the morphism of the underlying curves of the generic
fibers h•η : Y ∗

η −→ Xsst
η coincides with hη : Yη −→ Xsst

η over η, and the morphism
of the underlying curves of the special fibers h•s : Y ∗

s −→ Xsst
s does not coincide with

hs : Ys −→ Xs over s in general.

Proposition 4.1. Let v ∈ v(ΓXsst
s
), Xv the irreducible component of the special fiber Xsst

s

corresponding to v, Y ∗
v an irreducible component of the special fiber Y ∗

s of Y ∗ such that
h•s(Y

∗
v ) = Xv. Write DY ∗

v
⊆ G (resp. IY ∗

v
⊆ G) for the decomposition group (resp. the

inertia group) of Y ∗
v . Let xs be a closed point of Xv.

(i) If IY ∗
v
= {1} or xs ∈ Xv \ EXsst

s
, then xs is not a vertical point associated to h•.

(ii) If IY ∗
v
is not trivial and xs ∈ Xv ∩ EXsst

s
, then xs is a vertical point associated

to h•. Moreover, if xs ∈ Xv ∩ EXsst
s

is a vertical point associated to h•, we write Vv for
the set of the connected components of (h•)−1(xs)red which intersect with Yv is not empty.
Then for each element E ∈ Vv (i.e., a connected component of (h•)−1(xs)red), we have
♯E ∩ EY ∗

s
= ♯IY ∗

v
.

Proof. By the construction of h•, we observe that h•s|Y ∗
s \(h•

s)
−1(E

Xsst
s

) : Y
∗
s \(h•s)−1(EXsst

s
) −→

Xsst
s \EXsst

s
coincides with hs|Ys\h−1

s (E
Xsst

s
) : Ys\h−1

s (EXsst
s
) −→ Xs\EXsst

s
. Then (i) follows.

Write xη ∈ EXsst
η

for the marked point of X sst
η such that the reduction of xη is xs.

Write Yv for an irreducible component of Ys such that hs(Yv) = Xv, DYv ⊆ G (resp.
IYv ⊆ G) for the decomposition group (resp. the inertia group) of Yv. Note that we have
♯DYv = ♯DY ∗

v
and ♯IYv = ♯IY ∗

v
.

If IY ∗
v
is not trivial and xs ∈ Xv∩EXsst

s
, then we have ♯h−1

s (x)red = ♯G/♯IY ∗
v
; moreover,

Yv ∩ h−1
s (x)red = ♯DYv/♯IYv = ♯DY ∗

v
/♯IY ∗

v
. Since ♯h−1

η (xη) = ♯G, we obtain that h• does
not coincide with h over xs. This means that xs is a vertical point associated to h•.

Since Vv admits a natural action of G induced by the action of G on Y , we have
♯Vv = ♯DY ∗

v
/♯IY ∗

v
. On the other hand, we have ♯((h•s)

−1(xs)red ∩ (h•s)
−1(Xv)red) = ♯DY ∗

v
.

Thus, for each E ∈ Vv, we obtain ♯(E ∩ EY ∗
s
) = ♯IY ∗

v
. This completes the proof of the

proposition.
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Remark 4.1.1. Since all the vertical points associated to h• are smooth, the dual semi-
graph ΓYs of Ys can be regarded as a sub-semi-graph of ΓYs in a natural way.

Write Vh• for the set of the connected components of the vertical fibers associated to
the vertical points associated to h• (note that Proposition 4.1 implies that all the vertical
points associated to h• are contained in EXsst

s
). For each v ∈ v(ΓYs) ⊆ v(ΓYs), write Y

∗
v

for the irreducible component of Y ∗
s corresponding to v. Write ME for the set EY ∗

s
∩ E

for each E ∈ Vh• . Proposition 4.1 implies that if E ∩ Y ∗
v ̸= ∅, then ♯ME = ♯IY ∗

v
.

We define a semi-graph Γf -etd
Ys

as follows: (i) v(Γf -etd
Ys

) := v(ΓYs)
⨿
{vE}E∈Vh• ; (ii)

ecl(Γetd
Y ) := ecl(ΓYs)

⨿
{eE}E∈Vh• and eop(Γf -etd

Ys
) := eop(ΓYs); (iii) for each e ∈ ecl(Γetd

Y ) \

{eE}E∈Vh• , ζ
Γf-etd
Ys

e = ζ
ΓYs
e ; (iv) for each e = {be1, be2} ∈ {eE}E∈Vh• , ζ

Γf-etd
Ys

e (be1) = ζ
ΓYs
e (be1)

and ζ
Γf-etd
Ys

e (be2) = vE; (v) for each e = {be1, be2} ∈ eop(Γetd
Ys

), write ye for the closed point of

Y ∗
s corresponding to e; we set ζ

Γf-etd
Ys

e (be1) = vE and ζ
Γf-etd
Ys

e (be2) = {v(Γf -etd
Ys

)} if ye ∈ ME,

and ζ
Γf-etd
Ys

e = ζ
ΓYs
e if ye ̸∈ ∪E∈Vh•ME.

Write ΓX sst
s

for the dual semi-graph of X sst
s . There is a natural map β•

f : ΓYs −→ ΓX sst
s

of semi-graphs induced by h•. Note that since h• is not finite, β•
f is not a morphism of

semi-graphs in general. Furthermore, β•
f induces a map βetd

f : Γf -etd
Ys

−→ ΓX sst
s

as follows:

(i) for each v ∈ v(ΓX sst
s
), βetd

f (v) := β•
f (v) if v ̸∈ {vE}E∈Vh• , and if v = vE ∈ {vE}E∈Vh• ,

βetd
f (v) is equal to the open edge corresponding to the marked point of Xs which is the

image of E; (ii) for each e ∈ ecl(Γf -etd
Ys

) ∪ eop(Γf -etd
Ys

), βetd
f (e) = β•

f (e) if e ̸∈ ∪E∈Vh•e(vE),

and βetd
f (e) is equal to the open edge corresponding to the marked point of Xs which is

the image of E.
Note that it is easy to see that ΓX sst

s
and Γf -etd

Ys
do not depend on the choices of the

set of marked points EXsst
s
.

Definition 4.2. Let f : Y −→ X be a G-semi-stable covering over S and βf : ΓYs −→
ΓXsst

s
the morphism of dual graphs induced by the morphism of semi-stable curves h|s :

Ys −→ Xsst
s over s. We shall call the semi-graph Γf -etd

Ys
(resp. the morphism of semi-

graphs βetd
f : Γf -etd

Ys
−→ ΓX sst

s
) constructed above the extended dual semi-graph of Ys

(resp. the extended map of βf ) associated to f . We define Comf associated to the

G-semi-stable covering f to be the quadruple (Γf -etd
Ys

,ΓX sst
s
, βf -etd

f : Γf -etd
Ys

−→ ΓX sst
s
, ♯G).

Let Gi
1 and Gi

2, i ∈ {1, 2}, be two semi-graphs, βi : Gi
1 −→ Gi

2 a map of semi-
graphs, and mi is a positive number. We shall call two quadruples (G1

1,G1
2, β1 : G1

1 −→
G1

2,m1) and (G2
1,G2

2, β2 : G2
1 −→ G2

2,m2) are isomorphic if m1 = m2 and there exist two
isomorphism of semi-graphs α1 : G1

1
∼→ G2

1 and α2 : G1
2

∼→ G2
2 such that the following

commutative diagram holds:
G1

1
α1−−−→ G2

1

β1

y β2

y
G1

2
α2−−−→ G2

2.

We use the notation (α1, α2) to denote the isomorphism of quadruples defined above.

Note that by the definition of Γf -etd
Ys

, ΓYs can be regarded as a sub-semi-graph of Γf -etd
Ys

.
Moreover, we have the following lemma.
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Lemma 4.3. The dual semi-graph ΓYs of the special fiber Ys of Y can be reconstructed by
♯G and the extended dual semi-graph Γf-etd

Ys
of Ys associated to f in a purely graphic way.

Moreover, the morphism of dual graphs βf : ΓYs −→ ΓXsst
s

can be reconstructed by ♯G and

the extended map βetd
f : Γf-etd

Ys
−→ ΓX sst

s
associated to f .

Proof. Write G and H for Γf -etd
Ys

and ΓYs , respectively. Let V be a subset of v(G) defined
as follows:

{v ∈ v(G) | ♯e(v) ∩ eop(G) ̸= ♯G and there is only one vertex v ̸= v′ ∈ v(G)

such that there is an edge e which links v and v′ }.

We define a sub-semi-graph G′ as follows: (i) v(G′) := v(G) \V (note that by Lemma 4.4
below, we obtain v(G′) is not empty); (ii) ecl(G′) := ecl(G) \ {e(v)}v∈V ; (iii) eop(G′) = ∅;
(iv) For each e ∈ ecl(G′), we set ζG

′
e := ζGe . It is easy to see that G′ = H. Thus, ΓYs can

be reconstructed by Γf -etd
Ys

and ♯G.
Moreover, note that ΓXsst

s
is equal to the image βetd

f (ΓYs). Thus, βf : ΓYs −→ ΓXsst
s

can be reconstructed by βetd
f : Γf -etd

Ys
−→ ΓX sst

s
and ♯G. This completes the proof of the

lemma.

Lemma 4.4. Let f : Y −→ X be a G-semi-stable covering over S. Suppose that the
special fiber Xs of X is irreducible, and the morphism of special fibers fs : Ys −→ Xs over
s is not generically étale over Xs. Then Ys is not irreducible.

Proof. If the lemma does not hold, we may assume that Ys is irreducible. Since fs is not
generically étale, by replacing G by the inertia group IYs ⊆ G and replacing X by Y/IYs ,
we may assume that G = IYs . Then we obtain the genus g(Ys) of Ys is equal to the genus
g(Xs) of Xs. On the other hand, since the morphism of generic fibers fη : Yη −→ Xη is a
connected étale covering with a non-trivial Galois group G, we obtain the genus g(Yη) of
Yη is strictly greater than the genus g(Xη) of Xη. This is a contradiction. We complete
the proof of the lemma.

Theorem 4.5. We follow the notations above. The p-rank σ(Ys) is determined by Comf

and {σ(X̃v)}v∈v(ΓX sst
s

), where X̃v denotes the normalization of the irreducible component

Xv of X sst
s corresponding to v.

Proof. The theorem follows from Theorem 2.4, Proposition 4.1, and Lemma 4.3.

Moreover, we have the following corollary.

Corollary 4.6. Let f : Y −→ X (resp. h : Z −→ W ) be a G-semi-stable covering (resp.
J-semi-stable covering) over S, hf : Y −→ Xsst := Y/G (resp. hh : Z −→ W sst := Z/G)
the quotient morphism, ΓYs and ΓXsst

s
(resp. ΓZs and ΓW sst

s
) the dual graphs of the special

fiber Ys of Y (resp. Zs of Z) and the special fiber Xsst
s of Xsst (resp. W sst

s of W sst),
respectively, βf : ΓYs −→ ΓXsst

s
the Γf-etd

Ys
the extended dual semi-graph of Ys associated to f

(resp. Γh-etd
Zs

the extended dual semi-graph of Zs associated to h), and βetd
f : ΓY etd

s
−→ ΓX sst

s

the extended map of βf : ΓYs −→ ΓXsst
s

associated to f (resp. βetd
h : ΓZetd

s
−→ ΓW sst

s
the

extended map of βh : ΓYs −→ ΓXsst
s

associated to h). Suppose that (α1, α2) : Com
f ∼→ Comh
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is an isomorphism of quadruples such that σ(X̃v) = σ(W̃α2(v)) for each v ∈ v(ΓX sst
s
), where

X̃v and W̃α2(v) denote the normalization of the irreducible components Xv and Wα2(v) of
X sst

s and W sst
s corresponding to v and α2(v), respectively. Then we have

σ(Ys) = σ(Zs).

Next, let us treat the local case. We only treat the case where x is a singular point of
Xs. Let X

′
1 and X

′
2 (which may be equal) be two irreducible components Xs which contain

x. Write X1 and X2 for the strict transforms of X ′
1 and X

′
2 under the birational morphism

g : Xsst −→ X, C := ∪n
i=1Pi ⊆ g−1(x)red for the chain of P1, Vx for h−1(X1 ∪X2 ∪ C)red,

and V ∗
x for (h•)−1(X1 ∪X2 ∪ C)red. Note that since f−1(x) is connected, Vx and V ∗

x are
connected too. We define a pointed semi-stable curve Vx to be (V ∗

x , EV ∗
x
:= V ∗

x ∩ EY ∗
s
).

Write ΓVx and ΓVx for the dual graphs of Vx and Vx, respectively. Then ΓVx can be
regarded as a sub-semi-graph of ΓVx in a natural way. Write V x

h• for the set

{E ∈ Vh• | E ⊆ V ∗
x }.

We define a semi-graph Γf -etd
x as follows: (i) v(Γf -etd

x ) := v(ΓVx)
⨿
{vE}E∈V x

h•
; (ii)

ecl(Γf -etd
x ) := ecl(ΓVx)

⨿
{eE}E∈V x

h•
and eop(Γf -etd

x ) := eop(ΓVx); (iii) For each e ∈ ecl(Γf -etd
x )\

{eE}E∈V x
h•
, ζΓ

f-etd
x

e = ζ
ΓVx
e ; (iv) For each e = {be1, be2} ∈ {eE}E∈V x

h•
, ζΓ

f-etd
x

e (be1) = ζ
ΓVx
e (be1)

and ζΓ
f-etd
x

e (be2) = vE; (v) For each e = {be1, be2} ∈ eop(Γf -etd
x ), write ye for the closed point

of V ∗
x corresponding to e. We set ζΓ

f-etd
x

e (be1) = vE and ζΓ
f-etd
x

e (be2) = {v(Γf -etd
x )} if ye ∈ME,

and ζΓ
f-etd
x

e = ζ
ΓYs
e if ye ̸∈ ∪E∈V x

h•
ME.

Definition 4.7. Let f : Y −→ X be a G-semi-stable covering over S and x a vertical
point associated to f . Suppose that x is a singular point of the special fiber Xs, and
that the vertical fiber f−1(x) associated to x is connected. We shall call the semi-graph
Γf -etd
x constructed above the extended dual semi-graph associated to the vertical fiber
f−1(x). We shall call a connected sub-semi-graph V ⊆ Γf -etd

x a stem of Γf -etd
x if the

following conditions are satisfied:

(i) v(V) = {v0, . . . , vn+1}∪{v ∈ {vE}E∈V x
h•

| there exist e ∈ ecl(Γf -etd
x ) and v′ ∈ {v0, . . . , vn+1}

such that e links v and v′};
(ii) for each vi ∈ v(V), the irreducible component Y ∗

vi
⊆ V ∗

x corresponding to vi such that
h•s(Y

∗
vi
) = Pi ⊆ C if i ̸= 0, n+ 1, and h•s(Y

∗
vi
) = Xi ⊆ Xsst

s if i = 0, n+ 1;

(iii) ecl(V) ∪ eop(V) := {e = {be1, be2} ∈ ecl(Γf -etd
x ) ∪ eop(Γf -etd

x ) | ζΓ
f-etd
x

e (be1) ∈ v(V) and

ζΓ
f-etd
x

e (be2) ∈ v(V)}.
We define Comf

x associated the G-semi-stable covering f : Y −→ X over S and a vertical
point x associated to f to be the pair (Γf -etd

x , ♯G).
Let G1 and G2 be two semi-graphs, and m1 and m2 two positive integer numbers. We

shall call two pairs (G1,m1) and (G2,m2) are isomorphic if m1 = m2 and there exists
an isomorphism of semi-graphs α : G1

∼→ G2. We also use the notation α to denote this
isomorphism of pairs.
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Note that by the definition of Γf -etd
x , ΓVx can be regarded as a sub-semi-graph of Γf -etd

x

in a natural way. Similar arguments to the arguments given in the proof of Lemma 4.3,
we have the following lemma.

Lemma 4.8. The dual semi-graph ΓVx of Vx can be reconstructed by Γf-etd
x and ♯G in a

purely graphic way. Moreover, there exists a stem V of ΓVx which can be reconstructed by
Γf-etd
x and ♯G.

Theorem 4.9. We follow the notations above. The p-rank σ(f−1(x)) is determined by a
stem of Γetd

x .

Proof. The theorem follows from Theorem 2.4, Proposition 4.1, and Lemma 4.8.

Moreover, we have the following corollary.

Corollary 4.10. Let f : Y −→ X (resp. h : Z −→ W ) be a G-semi-stable covering
(resp. J-semi-stable covering) over S and x (resp. w) a vertical point associated to f
(resp. h). Suppose that x (resp. w) is a singular point of the special fiber Xs of X (resp.
Ws of W ), and that f−1(x) (resp. h−1(w)) is connected. Let Γf-etd

x and Γh-etd
w be the

extended dual graphs associated to the vertical fiber f−1(x) and h−1(w), respectively, and
α : Comf

x
∼→ Comh

w an isomorphism of pairs. Then we have

σ(f−1(x)) = σ(h−1(w)).
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