Local p-Rank and Semi-Stable Reduction of Curves
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Abstract

In the present paper, we investigate the local p-ranks of coverings of stable curves.
Let G be a finite p-group, f : Y — X a morphism of stable curves over a complete
discrete valuation ring with algebraically closed residue field of characteristic p > 0,
x a singular point of the special fiber X, of X. Suppose that the generic fiber X, of
X is smooth, and the morphism of generic fibers f, is a Galois étale covering with
Galois group G. Write Y’ for the normalization of X in the function field of Y,
Y :Y' — X for the resulting normalization morphism. Let 3’ € ¢~ !(x) be a point
of the inverse image of x. Suppose that the inertia group I, C G of 3/’ is an abelian
p-group. Then we give an explicit formula for the p-rank of a connected component
of f~!(z). Furthermore, we prove that the p-rank is bounded by #I,, — 1 under
certain assumptions, where {1, denotes the order of I,,. These results generalize
the results of M. Saidi concerning local p-ranks of coverings of curves to the case
where I,y is an arbitrary abelian p-group.

Keywords: p-rank, semi-stable reduction, semi-stable covering, semi-graph with
p-rank.
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1 Introduction and ideas

Let R be a complete valuation ring with algebraically closed residue field k of characteristic
p > 0, K the quotient field of R, and K an algebraic closure of K. We use the notation
S to denote the spectrum of R. Write n,7 and s for the generic point, the geometric
generic point, and the closed point corresponding to the natural morphisms Spec K — S,
Spec K — S, and Speck — S, respectively. Let X be a stable curve of genus gx over
S. Write X,, X5, and X, for the generic fiber, the geometric generic fiber, and the special
fiber, respectively. Moreover, we suppose that X, is smooth over 7.

Let Y, be a geometrically connected curve over n, f, : ¥, — X, a finite Galois étale
covering over 1 with Galois group GG. By replacing S by a finite extension of S, we may
assume that Y, admits a stable model over S. Then f, extends uniquely to a G-stable
covering (cf. Definition 3.3) f : Y — X over S (cf. [L2, Theorem 0.2] or Remark 3.3.1 of
the present paper). We are interested in understanding the structure of the special fiber
Y, of Y. If the order G of G is prime to p, then by the specialization theorem for log étale
fundamental groups, fs is an admissible covering (cf. [Y1]); thus, Y; may be obtained by
gluing together tame coverings of the irreducible components of X,. On the other hand,
if p|4G, then f, is not a finite morphism in general. For example, if char(K) = 0 and
char(k) = p > 0, then there exists a Zariski dense subset Z of the set of closed points of
X, which may in fact be taken to be X when £ is an algebraic closure of [F,, such that
for any x € Z, after possibly replacing K by a finite extension of K, there exist a finite
group H and an H-stable covering fy : W — X such that the fiber (fw) *(z) is not
finite (cf. [T], [Y2]).

If f~!(z) is not finite, we shall call = a vertical point associated to f and call f~!(x) the
vertical fiber associated to x (cf. Definition 3.4). In order to investigate the properties of
Y, we focus on a geometric invariant o(Y;) which is called the p-rank of Y (cf. Definition
3.1 and Remark 3.1.1). By the definition of the p-rank of a stable curve, to calculate
o(Yy), it suffices to calculate the rank of H'(T'y,,Z) (where I'y. denotes the dual graph
of Y;), the p-ranks of the irreducible components of Y which are finite over X, and the
p-ranks of the vertical fibers of f. In the present paper, we study the p-rank of a vertical
fiber and consider the following problem:

Problem 1.1. Let G be a finite p-group, x be a vertical point associated to the G-stable
covering f: Y — X, f~1(z) the vertical fiber associated to x.

(a) Does there exist a minimal bound on the p-rank o(f~'(x)) (note that o(f~'(x)) is
always bounded by the genus of Ys)?

(b) Does there exist an explicit formula for the p-rank o(f~'(z))?

We will answer Problem 1.1 under certain assumptions (cf. Theorem 1.5 and Theorem
1.10). First, let us review some well-known results concerning Problem 1.1.
If = is a nonsingular point, M. Raynaud proved the following result (cf. [R, Théoreme

1]):

Theorem 1.2. If x is a non-singular point of X, and G is an arbitrary p-group, then
the p-rank o(f~'(x)) is equal to 0.



By Theorem 1.2, in order to resolve Problem 1.1, it is sufficient to consider the case
where x is a singular point of X,. In order to explain the results obtained in the present
paper, let us introduce some notations. Write X; and X, for the irreducible components
of X, which contain x, ¢ : Y’ — X for the normalization of X in the function field of Y.
Let ¥/ € ¢~'(x) be a point in the inverse image of x. Write I, C G for the inertia group
of . In order to calculate the p-rank of f~!(x), since Y/I, — X is finite étale over z,
by replacing X by the stable model of the quotient Y/I,, (note that Y/I,, is a semi-stable
curve over S (cf. [R, Appendice, Corollaire])), we may assume that G is equal to I,.

Thus, from the point of view of resolving Problem 1.1, we may assume without loss
of generality that G = I,,. In the remainder of this section, we shall assume that G = I,
is of order p” for some positive integer r. Then f~!(z) is connected. With regard to
Problem 1.1 (a), M. Saidi proved the following result (cf. [S, Theorem 1]), by applying
Theorem 1.2:

Theorem 1.3. If G is a cyclic p-group, then we have o(f~*(z)) < G — 1, where 1G
denotes the order of G.

Furthermore, there is an open problem posed by Saidi as follows (cf. [S, Question]):

Problem 1.4. If G is an arbitrary p-group, does there exist a minimal bound on the
p-rank o(f~(z)) that depends only on the order 4G ?

Let us introduce some notations. Suppose that G is an abelian p-group. Let
¢: {1} =G, CG_1C---CGy=G

be a maximal filtration of G (i.e., G;/Gi11 = Z/pZ for i = 0,...,r —1). It follows from
[R, Appendice, Corollaire], that for i =0,...,r, Y; := Y/G,; is a semi-stable curve over S.
Write X for Y/G and g for the resulting morphism g : X** — X induced by f. Then
we obtain a sequence of Z/pZ-semi-stable coverings (cf. Definition 3.3)

dr—1

oY =Y, s v, Ly Yy=Xt 2 X

In the following, we use the subscript “red” to denote the reduced induced closed sub-
scheme associated to a scheme. Foreachi =1,..., 7, write ¢; : Y; — Y|, for the composite
morphism d; o- - -od;. For simplicity, we suppose that C := ¢~ (2)eq = Uj_, P, where, for
each j = 1,...,n, P; is isomorphic to P* and meets the other irreducible components of
the special fiber X of X* at precisely two points (i.e., a chain of P'). Thus, the p-rank
o(f~'(x)) is equal to (¢, 1(C)). For each i = 1,...,r, we define a set of subcurves of C
associated to ®;, which plays a key role in the present paper, as follows: ¢

é‘f)f := ¢;(the étale locus of di|¢jl(0)red O

)

1(C’)red — QS;jl(C)red) c C.

We shall call £’i¢f the i-th étale-chain associated to ®¢ and call the disjoint union

£ — Héaf’f



the étale-chain associated to ®;. For each connected component E of @@f)f , we use the
notation [(E) to denote the cardinality of the set of the irreducible components of E and

call [(E) the length of F.
We generalize Saidi’s result as follows (see also Theorem 3.15):

Theorem 1.5. If G is an arbitrary abelian p-group, and &; is connected for each i =
1,...,n, then we have o(f~(z)) < 4G — 1.

Remark 1.5.1. If 4G is equal to p, then we may construct a Z/pZ-stable covering f :
Y — X such that there exists a singular vertical point x such that the p-rank of o(f~*(z))
is equal to p — 1 (cf. [Y4, Section 4]). Thus, at least in the case where G = p, §G — 1 is
the minimal bound for o(f~!(x)).

Next, let us consider Problem 1.1 (b). Let {V;}!!; be a set of irreducible components
of the special fiber Y; of Y such that the following conditions are satisfied: (i) ¢,(V;) = P;
ifi=1,...,n; (i) ¢.(Vo) = X1 and ¢,.(V,11) = Xo; (iii) the union U?:Jrol‘/; is a connected
semi-stable subcurve of the special fiber Y; of Y. Write Ip, C G for the inertia subgroup
of V;. Note that since GG is an abelian p-group, Ip, does not depend on the choices of V.

If G is a cyclic p-group, Saidi obtained an explicit formula of the p-rank o(f~!(z)) as
follows (cf. [S, Proposition 1]):

Theorem 1.6. If G is a cyclic p-group, and Ip, is equal to G, then we have
o(f () = 4G/ Luin) = 8(G/Ip,..),

where I;, denotes the group ﬂ?jollpi.

For a G-covering of semi-graphs with p-rank, we develop a general method to compute
the p-rank (cf. Theorem 2.8). As an application, we generalize Saidi’s formula to the case
where G is an arbitrary abelian p-group as follows (cf. Theorem 3.9 and Remark 3.9.1):

Theorem 1.7. If G is an arbitrary abelian p-group, then we have

n+1

o(f7H @) = D_H(G/Ip) = 3 UG/ (Ip, + Ip)) + 1.

Finally, I would mention that by using the theory of semi-graphs with p-rank, we can
generalize Theorem 1.8 to the case where G is an arbitrary p-group. Furthermore, we can
obtain a global p-rank formula for the special fiber Y; (cf. [Y5]).

The present paper contains two parts. In Section 2, we develop the theory of semi-
graphs with p-rank and calculate the p-ranks of G-coverings. In Section 3, we construct a
semi-graph with p-rank from a vertical fiber of a G-stable covering in a natural way and
apply the results of Section 2 to prove Theorem 1.5 and Theorem 1.8.

2 Semi-graphs with p-rank

In this section, we develop the theory of semi-graphs with p-rank. We always assume that
G is an abelian p-group with order p".



2.1 Definitions

We begin with some general remarks concerning semi-graphs (cf. [M]). A semi-graph G
consists of the following data: (i) A set Vg whose elements we refer to as vertices; (ii) A
set £€ whose elements we refer to as edges. Any element e € £€ is a set of cardinality 2
satisfying the following property: For any e # ¢ € £¢, we have e N e/ = @; (iii) A set of
maps {¢C}.cee such that ¢, : e — VU {V} is a map from the set e to the set VU {V}.
For an edge e € £%, we shall refer to an element b € e as a branch of the edge e. An
edge e € EC is called closed (resp. open) if (1({V®}) = O (resp. (C1({VE}) # 0). A
semi-graph will be called finite if both its set of vertices and its set of edges are finite.
In the present paper, we only consider finite semi-graphs. Since a semi-graph can be
regarded as a topological space, we shall call G a connected semi-graph if G is connected
as a topological space.

Let G be a semi-graph. Write v(G) for the set of vertices of G, e(G) for the set of closed
edges of G, and ¢'(G) for the set of open edges of G. For any element v € v(G), write
b(v) for the set of branches Ueec(cyue ()¢ H(v). For any element e € e(G) U ¢/(G)), write
v(e)for the set which consists of the elements of v(G) which are abutted by e. A morphism
between semi-graphs G — H is a collection of maps v(G) — v(H); e(G) U €'(G) —
e(H) U €e'(H); and for each eg € e(G) U €'(G) mapping to eg € e(H) U €'(H), a bijection
eg — eg; all of which are compatible with the {¢® bece(@)uer (@) and {(gﬂ}eee(H)Uel(H).

A sub-semi-graph G’ of G is a semi-graph satisfying the following properties: (i) v(G’)
(resp. e(G') U€'(G')) is a subset of v(G) (resp. e(G) U €' (G)); (ii) If e € e(G’), then we
have (%' (e) = ¢B(e); (iii) If e = {b1, by} is an element of ¢/(G’) such that ¢(&(b,) € v(G')
and (®(by) € v(G'), then we have (& (b;) = (®(b1) and (& (by) = {v(G')}.

Definition 2.1. Let G’ be a sub-semi-graph of a semi-graph G. We define a semi-graph
G\ G as follows: (i) The set of vertices v(G\G') is v(G)\v(G'); (ii) The set of closed edges
e(G\G') is e(G)\e(G'); (iii) The set of open edges €' (G\G’) is {e € e(G) | v(e)Nv(G\G') #
@ in G}; (iv) For any e = {b;}ie12) € (G \ G') U ¢/ (G \ G), we have (&% (b;) = ¢E(b)
(resp. (&% (b;) = {v(G \ @)} if (E(b:) & (') (resp. (E(bi) € v(G)),

Definition 2.2. (a) Let n be a positive natural number and P,, a semi-graph such that
the following conditions hold: (i) v(P,) = {p1,-..,0n}, €(Pn) = {€12,...,€nn_1} and
e(P,) = {60,1,€n,n+1}§ (ii) v(ei,iJrl) = {pi, pit1 }; (iii) 0(60,1) = {p1} and v(en,n+1) = {pn}-
We define & to be a triple (G, o, fs) which consists of a semi-graph G, a map og :
v(G) — Z and a morphism of semi-graphs Sy : G — P,,. We shall call & a n-semi-
graph with p-rank. We shall refer to G as the underlying semi-graph of &, og as the p-rank
map of &, B as the base morphism of &, respectively. We define B, := (P,,, op,,, Bp,,) as
follows: oy, (p;) is equal to 0 for each i = 1,...,n, and By, = idp, is an identity morphism
of semi-graph P,,. We shall call *33,, a n-chain.
(b) We define the p-rank o(®) of & as follows:

o(®) = Z o(v) + Z rank;H'(G;, Z),

vev(G) Giemo(G)

where my(—) denotes the set of connected components of (—).
(c) & is called connected if the underlying semi-graph G is a connected semi-graph.
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From now on, we only consider connected n-semi-graphs with p-rank. Let &! :=
(G, 041, Be1) and B2 := (G2, 0g2, Be2) be two n-semi-graphs with p-rank. A morphism
between &' and &2 is defined by a morphism of the underlying semi-graphs 3 : G! — G2
such that g2 o B = [Bs1. We use the notation b : &' — &2 to denotes the morphism
of semi-graphs with p-rank determined by 8 : G! — G? and call 8 the underlying
morphism of b. Note that for any n-semi-graph with p-rank & := (G, 0g, fs), there is a
natural morphism bg : & — B, determined by the morphism of underlying semi-graphs
,3@ G — P,.

Write b (resp. b%) for (1 (pi) (vesp. (1. (pi)). For any element v; € 5" (p;), write

€i—1,i €i,it1

bi(v;) (resp. b,(v;)) for the set
{b € b(v) | Bs(b) = by}

(vesp. {b € b(vy) | Be(b) = bi)).

Definition 2.3. Let b : &' := (G', 041, 8s1) — &2 := (G?, 02, Bs2) be a morphism of
n-semi-graphs with p-rank, 3 the underlying morphism of b, e € ¢(G') U €/(G!) an edge,
v1 a vertex of G! contained in ﬁ;ll (pi), and ve := B(v1) € 5@1 (p;) the image of v;.

(a) We shall call b p-étale (resp. p-purely inseparable) at e if $371(B(e)) = p (resp.
867" (B(e)) = 1). We shall call b p-generically étale at v, € B (p;) if one of the following
étale types holds:

(Type-I) 48" (v3) = p and o1 (v1) = 02 (va);

(Type-II) §87(v2) = 1, tbi(v1) = ptbi(v2), b, (v1) = pibr(vs), and

oe1(v1) — 1 = p(oe2(v2) — 1);
(Type-III) If §67" (v2) = 1, tbi(v1) = fbi(ve), b, (v1) = ptb,(v2), and
oe1(v1) =1 = p(oe2(v2) — 1) + (§bi(v1))(p — 1);
(Type-IV) 87 (v2) = 1, 2i(v1) = ptbi(va), b, (v1) = b (v2), and
oe1(v1) =1 = p(oe2(v2) —1) + (86, (01))(p — 1);
(Type-V) 887 (v2) = 1, 2hi(v1) = $bi(va), b, (v1) = b (v2), and
oe1(v1) =1 = p(oe2(v2) — 1) + (§bu(v1) + b, (v1))(p — 1).

(b) We shall call b purely inseparable at v, € 58}(}%) if #87 (ve) = 1, by (v1) = by (ve),
ﬂbr(vl> = ljbr<v2)7 and 0@l (Ul) = O0@2 (UQ) hold.

(c) We shall call b a p-covering if the following conditions hold: (i) There exists a
Z/pZ-action (which may be trivial) on G' (resp. a trivial Z/pZ-action on G?), and the
underlying morphism S of b is compatible with the Z/pZ-actions. Then the natural
morphism G'/Z/pZ — G? induced by b is an isomorphism; (ii) For any v € v(G'), b is
either p-generically étale or purely inseparable at v; (iii) Let e € e(G') and v(e) = {v,v'}.
If b is p-generically étale at v and o', then b is p-étale at e; (iv) For any v € v(G'), then
oe1(v) = og1(7(v)) holds for each 7 € Z/pZ.



Note that by the definition of p-covering, the identity morphism of a semi-graph with
p-rank is a p-covering.
(d) We shall call b a covering if b is a composite of p-coverings.

(e) We shall call
(I)I{l}:GTCGT71C"'CG1CG0:G

an mazimal filtration of G it G;/G+1 = Z/pZ for each j = 1,...,r — 1. Suppose that
G' (resp. G?) admits a (resp. trivial) G-action (which may be trivial). Then for any
maximal filtration ® of G, there is a sequence of semi-graphs induced by ®:

Gl=G, ¢, X PG,

where G; denotes the quotient of G! by G;. We shall call b a G-covering if for any maximal
filtration ® of G, there exists a set of p-coverings {b; : &, — &;_, j =1,...,7} such
that the following conditions hold: (i) the underlying morphism £ of b is compatible with
the G-actions, and the natural morphism G'/G — G? induced by f is an isomorphism;
(i) The underlying graph of &; is equal to G; for each j =0, ...,r; (iii) The underlying
morphism G; — G;_; of b; is equal to ; for each j = 1,...,r; (iv) The composite
morphism by o--- 0 b, is equal to b. Then we obtain a sequence of p-coverings:

By Bl =6, B, M g =6

We shall call ®g1 a sequence of p-coverings induced by .

(f) Let & be a n-semi-graph with p-rank. We shall call & a covering (resp. G-covering)
over B, if be is a covering (resp. G-covering).

(g) Let b : 8 — &2 be a G-covering, v € v(G) a vertex, and e € ¢(G) U ¢'(G) an
edge. For any subgroup H C G, by Definition 2.3 (e), there exists a maximal filtration
®H and the sequence of p-coverings

H 1 b/ b, b 2
P 18 =6, —/— 6, — ... — B =6

induced by ®# such that there exists 7 such that the underlying graph of &; is isomorphic
to G'/H. We write &' /H for ;. Thus, the natural morphism b7o---0b? : &' /H — &2
is a covering. Then we define five subgroups of G as follows:

D, ={reG|7(v) =0},

I, := the maximal element of {H C G | &' — &'/H is purely inseparable at v},
I'(b) := {r € D, | 7(b) = b for a branch b € by(v)}/I,,
I(b) := {7t € D, | 7(b) = b for a branch b € b.(v)}/I,,
I. . ={1e€G|T1(e) =e}.
We shall call D, (resp. I, I'(b), I"(b), 1.) the decomposition group of v (resp. the inertia

P}

group of v, the inertia group of a left branch b, the inertia group of a right branch b, the
inertia group of e). Moreover, since G is an abelian p-group, the group I.(b) (resp. I"(b))
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does not depend on the choice of b € b;(v) (resp. b € b.(v)), then we denote this group
briefly by I! (resp. I7). Define

Dy =D,/(L/I,NL) & L/(I,NL) @ LN I & L)
Then we have the following exact sequence
0— I/ IInerrr/IIn)elnll oI, — D, — DS — 0.

Remark 2.3.1. Let & be a G-covering over B,, and v; € B (p;) a vertex of the underlying
graph of &. Then we have the following Deuring-Shafarevich type formula (cf. Proposition
3.2 for the Deuring-Shafarevich formula for curves)

Let & be a G-covering over B,,. By the definition of G-coverings, for any maximal
filtration ® of G, we have a sequence of p-coverings of n-semi-graphs with p-rank

by

Dg:B=06, — 7 @, s By =P,

induced by ®. For each j = 1,...,7, we write V§* for the set
{v € v(G;) | b; is étale at v},

&S for the set
{e € e(G;) U€'(Gy) | b; is étale at e}.

Since (V§', £') admits a natural structure of semi-graph induced by G;, we may regard

(V;’t,gft) as a sub-semi-graph of G;. Thus, the image B@j((Vft,Ej’t)) can be regarded as

a sub-semi-graph of P,,.

Definition 2.4. We shall call E}® = B, (V' E)) (resp. the disjoint union E®e :=

[1; JE;%) the j-th étale-chain (resp. the étale-chain) associated to Pg.

2.2 p-ranks and étale-chains of abelian coverings

Let & := (G, 0g, fs) be a G-covering over B,,. We introduce two operators for &.

Operator I: First, let us define a G-covering &*[p;] over B,,. For any p; € v(P,), let v;
be an element of S5 (p;).

If 435" (p:) = 1 (i.e.,, D,, = G), then we define G*[p;] to be G; If §35" (i) # 1, we
define a new semi-graph G*[p;] as follows.

Define v(G*[p;]) (resp. e(G*[p;])Ue/(G*[pi])) to be the disjoint union (v(G)\Bg ' (p:)) [T{v*}
(resp. e(G) U€(G)).

The collection of maps {¢5 e i]}e is as follows: (i) For any branch b ¢ Uveﬁgl(pi)b(v),
f’*[””(b) = (%(b) if b € e and Cf*[pi](b) = Qif b & e; (ii) For any v € B4 (p;) and any
branch b € b(v), S’*[pi](b) =0v*if b € e and Cf’*[p"}(b) =0if b ¢&e.



We define a map og«pp,) : v(G*[p;]) — Z as follows: (i) If v* # v € v(G*[p;]), then we
have 0+, (v) := 0s(v); (ii) If v = v*, then we have

0o (07) == —H(G/L)+ Y D GLG) -+ > > (L) -

vedy (pi) bEN(V) veg (pi) bEb(0)

= —4(G/ 1) + $((G/1.,)/1,)(3T,, = 1) + 4((G/1,) /T, ) (81}, — 1) + 1.

We define a morphism of semi-graphs Bg«p,) : G*[p;] — P, as follows: (i) For any
v € V(G [pi)), Borpp(v) = pi if v = v and Be-p(v) = Bo(v) if v & By (pi); (i) If
e € e(G*[p;]) U € (G*[pi]), then we have Sg-,,1(e) = Bs(e).

Thus, the triple &*[p;] := (G*[p;], 0¢+pi], Bo+p)) IS & n-semi-graph with p-rank.

Moreover, G*[p;] admits a natural G-action as follows: (i) the action of G on v(G*[p;])\
{v*} (resp. e(G*[pi]) Ue'(G*[pi])) is the action of G on v(G)\ B (i) (resp. e(G)Ue'(G));
(ii) For any 7 € G, we have 7(v*) = v*.

Let us explain that with the G-action defined above, &*[p;] is a G-covering over B,,.
Let

CI)Z{l}ZGTCGT_lC"'CG1CG0:G

be an arbitrary maximal filtration of G. Write

brfl b1

q)@:ﬁzéﬁrL)@T_l Gy =P

for the sequence of p-coverings of n-semi-graphs with p-rank induced by ®. Note that for
each j =0,...,r, &;is a G/Gj-covering over B,,. By the construction of &[p;], we have

% by [pi] X by _1[pi] b% [ps]
Derppy - & [pi] = BF[pi] —25 &7 [pi] —— ... 5 P,

is a sequence of p-coverings of n-semi-graphs with p-rank. Thus, &*[p;] can be regarded

as a G-covering over 3,,.

e, ,
Note that by the construction of &*[p;], we see that IE;P“ =E; il foreach j =1,...,r.

Operator II: Let us define a G-covering &*[p;] over B,,. For any p; € v(P,), let v; be an
element of 3, Y(p), I, the inertia group of v;. Since G is a abelian group, we may write
{vi'}uea/p,, for Bg'(pi), and {v}}ueq/p,, admits an natural action of G on the index set
G/D,,. We define a new semi-graph G*[p;] as follows. If §85"(p;) = £(G/1,,), we define
G*[pi] to be G. If ﬁﬁ@ (pi) # 4(G/1,,), we have Bqﬁ (bz) = {bWSt}ueG/Dv sely /I N5 teDg, -

Then 8 (b)) = {bzuSt}ueG/Dvi,selgi/léimlgi,teDsi admits a natural action of G as follows.
for 7 € G, T(by">") = b if 1 ¢ D,,, where 7 denotes the image of 7 under the
quotient G — G/D,,, T(by"™") = o™ if v o€ In /1L N I, 7w (b)) = byt if
T ¢ I, + I, + I,,, where 7 denotes the image of 7 under the quotient D,, — D¢, , and
T(b;"u’&t) = b§7u’87t if 7 € Iw +Iql)1 Simﬂaﬂ}"v ﬁél(bi) = {bi’u’s’t}uEG/Dui,self),/If,,ﬂ[,’;.,tEDg‘ also
admits a natural action of G. S
Define v(G*[p;]) (resp. e(G*[p;]) Ue'(G*[p;])) to be the disjoint union (v(G)\ Bg" (p;))
[I{v} fueccyp,, ep;, (resp. e(G) U €'(G)). {v] }tuec/p,, tepg, admits a natural G-action



as follows: For each 7 € G, 7(v};) = v&,,, if 7 & D, 7(v;;) = vj; if T € D, and
T, =vs, if T eIl + 1 +1,,.
The collection of maps {(. *[pi]}e is as follows: (i) For any branch b & U, b(v),
Sy =CEo)itbeeand (CPIB) =it b e; (i) ¢CPIB) = vg, ifb=b"" ce
(resp. ¢& P (p) = vp, if b=b"%" € e) and Sy =0ifb e
We define a map og+[p,) : v(G*[pi]) — Z as follows: If v}, # v € v(G*[p]), then we
have og«[p,)(v) := 06 (v); If v = v} ;, then we have

0ol (Vi) 1= —8(L, + L) + 8((I3, + 1) /1) (81, — 1) + 8L, + 1)/, ) (815, — 1) + 1.

We define a morphism of semi-graphs Bg«p,] : G*[p;] — P, as follows: (i) For any
v € v(G*[pi), then Bep,(v) = pi if v € {v] }ucayp,, teps, and Bep)(v) = Po(v) if
v & {v  Juec/p,, eps, ; (if) If € € e(G*[p;]) U €(G*[p;]), then we have Be«p,)(€) = Bo(e).

Thus, the triple &*[p;] := (G*[p;], 06+[p,], Be+[p,]) is a n-semi-graph with p-rank.

Moreover, G admits a natural G-action as follows: (i) the action of G on v(G*[p;]) \
{vs 1 Juec/p,, tepe. (tesp. e(G*[pi]) Ue'(G*[p;])) is the action of G on v(G) \ B (pi) (resp.
e(G)U(G)); (iiz) The action of G on {v}, ,}uea/p,, tepe. is the action defined above.

Let us explain that with the G-action defined above, &*[p;] is a G-covering over B,,.
Let

(I)I{l}:GTCGT_lC"'CG1CG0:G

be an arbitrary maximal filtration of G. Write

Bp: B =0, — s B, N g =p,
for the sequence of p-coverings of n-semi-graphs with p-rank induced by ®. Note that for
each j =0,...,r, &;is a G/Gj-covering over B,,. By the construction of &[p;], we have
N bk [pl N b7 [pi] b7 [pi]
Doepp : O*[pi] = B1[pi] —— &;_\[p] —— ... —— Pn.

is a sequence of p-coverings of n-semi-graphs with p-rank. Thus, &*[p;] can be regarded
as a G-covering over 33,,.

Note that by the construction of &*[p;], we see that E?"j —E;

&*[p;] -
; foreachj=1,...,r.

Definition 2.5. Let & := (G, 0g, Bs) be a G-covering over B,,, p; a vertex of v(P,). We

define an operator =/, (resp. =) from a G-covering to a G-covering to be

‘_H (pi)(8) = & [pi]

(resp. =1 (p)(®) == &*[pi]).
Lemma 2.6. Let & be a G-covering over B,, and G the underlying semi-graph of &.
Let G° be a semi-graph defined as follows: (i) v(G®) = v(G) U {vo, vni1}; (1) e(G®) =

e(G) Ue(G) and €'(G) = O (iii) ¢ = (F if Po(e) & {eor, enns1}; (i) If e = {V, 07}
such that the image Be(e) = eg1 and (C(b') = {v(G)} (resp. the image Be(€) = €nn+1 and

") = {v(G)}), we have (& (V') = vy (resp. (& (V") = vpyr). Let Iy, (resp. Ie,,.,)
be the inertia group of an element of B (e01) (Tesp. Bg'(€nnt1)). Note that since G is
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an abelian group, I.,, (resp. I, .., ) does not depend on the choice of the elements of
Bl (eo1) (resp. By (énmi1)). Then we have

rankzH'(G®, Z) — rank;H" (G, Z) = 4G/I.,, — 1+ 1G/I,, .., — 1.
Proof. The lemma follows from the construction of G¢ immediately. O

Proposition 2.7. Let & := (G, 0g, 8s) be a G-covering over B, and p; a vertex of v(P,).
Then we have (&) = o(&*[p;]) and o(&) = o(&*[py]).

Proof. Let v; € Bg'(pi). If 85" (pi) = 1 (resp. #8 (p;) = £G/L,,), by the definition
of Operator I (resp. Operator II), the proposition is trivial. Then we may assume that
885" (pi) # 1 (vesp. 885" (pi) # 4G/L,). Write L., (resp. I, ) for the inertia group of
an element of 3" (ep1) (resp. 6gl(en,n+1)).

First, we will prove the proposition under the assumption that I.,, = I., ., = G
holds. Write (—) for the rank of a semi-graph (—) (i.e., the rank of H'((—),Z) as a free
Z-module). Thus, we have

@)= 3 ce+ S oev)+r(C\ G )

vy (pi) vev(G\Bg ' (pi))

+7(G) — (G \ Bg ' (1)),

o (&7 [pi]) = Ty (V) + > 0o (V) + (& [pi] \ Byl (P1)
vev(&*[pil\Bg- ) (P))

r(@°[i]) — (6" [pi]\ By (i)

and

o0& )= Y Tepv)+ > 06+ (V) + (&[] \ Bgap,y (P2))

V€8t (1) ven(®* [pi\Bgly,, (1)

(@ [pi]) — (& [pi] \ By (pi):

Note that we have 7(G\ S5 ' (p;)) = r(&*[pi]\Bs " (p:)) = 7(&*[p:]\Bg ' (pi)) and ZUEU(G\Bgl(pi)) os(v)
- Zv@(@*[pi]\ﬁgi[piﬁpi)) Te- () (V) Zvev(ﬁ*[pi]\ﬂgi[m](m)) Tepi] (0)-
First, let us prove (®) = o(&*[p;]). We follow the notations of Operator I. We have

o(®)= Y oel)+ Y 0s(®) +r(G\ G (p)

vy (pi) veu(G\Bg ' (pi))

11



+ Y oe(v) +7(G\ B (m)

vev(G\Bg ' (pi))

=4G/L, — 1+ > os(v) +7(G\ B (1))
vev(G\Bg ' (pi))

On the other hand, we have
0(&*[pi]) = 0w (v°) + 8((G/ 1) /1) = 1+ 28((G/ 1) /1) =1

+ Y gepl©) +7(G\ By (p)
veu(6\Bg (p1))
= —#(G/ L) + t((G/ L)/ I,) (8, = 1) + 4((G/ L)/ 1, ) (81, = 1) + 1
+4((G/1,)/1,) = 1+ 4((G/L,)/I;,) — 1
+ Y o) +7(G\ B (p)

vev(G\Bg ' (i)
=tG/L, -1+ > oep) +7(G\ By (p).
vev(G\Bgl(pi))
Thus, (&) = o(&*[p;]) holds.
Suppose that either I, or [

en,n+1
o(B)= > o)+ Y,  0s)+7(C\ s (m)
vEB " (pi) vev(G\Bg " (pi)

+JjG/sz(ﬁ((sz/Iw)/Illzz) -1+ ﬁ((sz/Ivz)/];) - 1) + JjG/sz —1- ﬁG/IGO,l - ﬁG/]en,n+1

is not equal to G. By Lemma 2.6, we have

+ Y oe() +1(G\ By (p)

vev(G\Bg ' (pi))

G/ Do, (2((Do, / 1,) [ 1,) = 148((Do, /1) [ 11,) =) +4G [ Dy, = 1—4G Lo ,+1 4G/ I, +1

=1G/L,+ > os(0)+7(G\ B (0:) — 4G/ Ly, — 1G/L, 0 + 1.
vEV(G\Bg ' (pi))

On the other hand, we have
0(&*[pi]) = 0w (v°) + 8((G/ 1) /1) = 1+ 28((G/ 1) /1) — 1
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+ Y () + (G B (pi) = £G/ Ly, + 1= 4G/ I, ., + 1
vev(G\Bg " (i)
= —#(G/L,) + 4((G/L,)/T. )41, — 1) + 4((G/L,) /15 ) (4I; — 1) + 1
HG/L)/1L) =1+ 4((G/1,)/15) — 1
+ Y o) +7(G\ By () — 4G/ Ly, +1— 4G/ I, ., + 1

vev(G\Bg * (pi)

= ﬁG/[Uz + Z O®*p;] (U) + T(G \ qul(pl)) - ﬂG/ISOJ - ij/Ien,n-H + 1
vev(G\Bg ' (p:))

Thus, o(&) = o(&*[p;]) holds.
Next, let us compute o(&*[p;]). First, suppose that I.,, = I,

en,n+1 = G hOldS. Write
W for the group

(G/L,)/ (I, + I},).
We have
(@ p]) = D e ) HIW = 1HW (L +10) /1) — L+ 8((I, + 1) /1) — 1)

Ueﬁgi[pi] (ps)

+ Z Tex[p,] (V) +T’(G\ﬁq;1<pi>>

vev(G\Bg ' (1))

= AW (4L, + 1) + 8((15, + 1) /1) (815, = 1) + 8L, + 1) /1) (817, — 1) + 1)
HW = L+ gW (L + 1)/L,) — 1+ 80 + 1)/1) = 1)
Y depl) +r(G\ B (p)

vev(G\Bg ' (i)

—1G/L,— 1+ Y oep(v) +7(G\ Bg ' (p1).
vev(G\Bg ' (pi))
Thus, we have 0(®) = o(&*[p;]).
Suppose that either I, or [

enns1 18 NOL equal to G. By Lemma 2.6, we have

oG )= Y O (V) AW = LW (L, + 1) /1) — 18I, + 1) /15) — 1)
Ueﬁgi[pi](m)
+ Y Gep(v) +7(G\ B (1) — tG/ Iy, +1— 4G/, +1

vev(G\Bg ' (i)
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= AW (=4(L, + 1) + 8((15, + L) /1) 815, = 1) + 8L, + L) /15 (817, — 1) + 1)
HW = LW (L, + 1,)/L,) = 1+ 80, + 1)/15) = 1)

+ Z 0-6*[]31‘](/0) + T(G \ qul(pl)) - ﬁG/IGO,I +1- ﬁG/]en,nﬂ +1
vev(G\By ' (pi)

=4G/1+ Y e (0) (G B (1) = 8G/Legy — 4G/ Loy + 1.
vEu(G\By ' (12))

Thus, we have 0(8) = o(&*[p;]).
We complete the proof of the proposition. Il

Remark 2.7.1. Let & be a G-covering over B,,. By the definition of coverings, for any
maximal filtration of GG, there exists a sequence of p-coverings induced by the maximal
filtration of G:

=6, T B, Y 8, =P

By Proposition 2.7, for calculating the p-rank o(®), we may assume that b; do not have
either étale Type-I for all ¢ or Type-II for all .

Theorem 2.8. Let G be an abelian p-group with order p”, ® a maximal filtration of G,
and & := (G, 0p, Bs) a G-covering over *B,,. Write

br—l

e B=06, —23 &, v U B, =,

for the sequence of p-coverings of n-semi-graphs with p-rank induced by ® and E®® for
the étale-chain associated to ®g. For each j = 1,...,n, write E*®(p;) (resp. E%(bz),
E®e(b5)) for the disjoint union

H E2e  (resp. H Ee. H E2e).

s s.t. ijv(IEfQS) 5 s.t. béee(Efé)Ue’(E;P@) s s.t. b;ee(]E?@)Ue/(IEjﬁ)

Then we have

n

n—1
o(®) = Z(pﬂlE% (pj) _ pﬁE% o) _ prtE% (v7) ) + Z HE® e (b7)
J=1

j=1

Z (PO ) — R0 _ pERe ) 4 1y 4§ (pE ) ).

7j=1 7j=2

Proof. By Remark 2.7.1, we may assume that b; do not have étale Type-I for all j. Thus,
we obtain v(G) = {vi,...,v,}, where for each j, v; denotes the unique vertex 8" (p;).
Then for each 7 =1,...,n, we have

06, (v;) = —pFE o) 4 BRSO (T ()BT () 1) 4 piETe B) (ERe () —ERR () 1) 41
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(BP0 (p;) _ HETO () _ gEPe (b)) | g

=P -D -Pp
On the other hand, the rank of H'(G,Z) as a free Z-module is

n—1 n
P ' Dy (1l
D EEEO —1) = () — 1.
j=1 Jj=2
Then we have
n—1
Z fE®S (p;) ]E‘Pci(bé.) _ ﬁE‘I’QS(bT Z HET® (b7)
P )+
j=1 Jj=1

Z HE®® (pj) _ E%(bp _pﬁIE‘I’@(b;) +1)+ (pﬁlEée(bg) —1).
g =2
This completes the proof of the theorem. n

Corollary 2.9. Let G;,i € {1,2} be an abelian p-group with order p", ®° a mazimal
filtration of Gy, &" := (G', 0, Be:) a Gi-covering over B,,. Write

bi_, bt

D, G =6 T B, & =P,

for the sequence of p-coverings of n-semi-graphs with p-rank induced by ®', and E®es
for the étale-chain associated to ®gi. Suppose that E®et = E®e2 holds. Then we have
o(6!) =o(6?).

Proof. Slince E®er = IQELI)f’s2 holds, we see that fEe! (pj) = HE e (pj), HE o1 (b)) = HE e (o),
and ﬁE%l(bg) = {E%s> (v%) for all j. Thus, by Theorem 2.8, we obtain ¢(&') = o(&?).
This completes the proof of the corollary. n

Theorem 2.10. Let G be an abelian p-group with order p", ®¢ a maximal filtration of
G, and & a G-covering over B,,. Write

br—1 b

D B =06, —23 &, s U By =P

for the sequence of p-coverings of n-semi-graphs with p-rank induced by @, and {Eg)"j Yies
for the set of j-th étale-chains associated to ®s. Let I :={j1,...,Jr} be a new index set.
For each v = 1,...,r, write E; for Eiﬁ. Then there exist an elementary abelian group
A with order p", a maximal filtration ® 4 of A, and an A-covering § over B,, such that
the i-th étale-chain E?g associated to the sequence of p-coverings of n-semi-graphs with
p-rank @z induced by O 4 is equal to E; for eachi=1,... r

Proof. Since the operator =1, does not change the étale-chain E®®, we may assume that
b; do not have étale Type-I for all i. Let A;, i € {1,...,r}, be a cyclic abelian p-group
with order p. We construct a semi-graph with p-rank § step by step.

Fy := (v(Fy), e(Fy) U e (Fy), {¢F}.) is a semi-graph as follows:

(i) v(F1) == {ul,. .., 0L}
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(ii) e(F) U €/ (F) consists of the following elements:

(a) {eiisr = {bileff1) br(eliy1) } brea, is a set associated to e;;y1 if €541 € e(Ey) U
€/<]E1)’

(b) efiv1 = {bu(e, ,br( eiip1)} is aset associated to e;iy1 if €501 & e(Ey) U e/ (Ey);

(i) 5 (et 1) = o) (resp. € (h(eThr) = o) i 7 £ 0 and G (bi(el, ) — v(F)
(resp. ¢ (h(erty)) = o(E1)) if i = 0

(1) by (61 1)) = vy (resp. G (by(eT ) = o) i £ and Co(br(elyy)) = o(F)
(resp. (1 (br(efhyy)) = U(Fl)) if 1 = n.

We have a natural morphism Sz, : F; — P, defined as follows: (i) Sz, (v}) = p;; (ii)
B, ((ei ;1)) = €iivr (vesp. By, (bilefs 1)) = €iigr)-

Next, we define a p-rank map oz, : v(F;) — Z as follows: (i) If p; € v(E;) and
885, (b)) = 165 (b.) = 1, then we have

o5 (v)) = —p+p—1l+p-—1+1l=p-1
(i) If p; € v(Ey), ﬁﬁ;(b}) =1, and ﬁﬁgll(bf,) = p, then we have
o5 (v) = —p+p—1+1=0;
(iii) If p; € v(Eq), §65, (b)) = p, and #83; (b) = 1, then we have
o5 (v}) = —p+p—1+1=0;
(iv) If p; € v(Ey) and §65' (b)) = 455, (bL) = p, then we have

0-31(1)1'1) =-p+1

(v) If p; & v(Ey), then we have
0-31( ) = 0.

Moreover, §; admits a natural action of A; as follows: (i) The action of A; on v(F;)
is trivial; (11) For any e € e(F1) U ¢/(Fy) and any element 7 € Ay, T.e/,,; = €}, and
T(eiii1) = €40 forall 7 € Ay

Thus, with the action of Ay, §1 := (F1,03,, B3, ) is an A;j-covering over B,,. Next, let
us construct §a.

Fy := (v(IFy), e(Fy) U €/(Fy), {¢F2}.) is a semi-graph as follows:

(i) v(Fy) := {vi, ..., v2};

(ii) e(F9) U €'(Fq) consists of the following elements:

(a) {ellfjl = {b(e Zlfjl) (e zz+1>}}T2€A2 is a set associated to e} e 1f B (e “H) €
B(Eg) Ue (EQ)

(b) {eisfi =={bi(e; ;1) br(€7:11) raeas briea, Is a set associated to e if By, (e]5,) €
e(Eqy) U e (Eg)

(c) e ”H = {b(e ”H) (ei’iq)} is a set associated to eiiﬂ if Bgl(eilﬂ-ﬂ) ¢ e(Eq) U

e'(Es);

(d {eflil = {b(e :ﬁl) (e 7,+1>}}7'1€Al is a set associated to e}, if Bz (€] 1) &

e(E2) U e'(Ey);
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(ifi) C2(bi(e;)) = vf (vesp. ¢2(bilefih)) = o7, G2 (ule; 7)) = v, G2 (bi(e]iT3)) =
vF) if i # 0 and 2 (bu(e;,)) = v(F2) (vesp. ¢ (bi(e]iry)) = v(F2), ¢ (bile;71)) = v(Fa),
sz(bz( €;i11)) = v(F2)) if o = 0;

(iv) G2 (i (€)= vi (resp. G (be(efih)) = 7, ¢ (0 2(61131)) vi, G2 (b (e lzﬁzfl))
v) if i # noand (2 (by(e; 7)) = v(F2) (resp. (2 (br(efiiy)) = v(Fa2), 2 (be(e; ) =
v(F2), ¢ (by(e;11)) = v(F2)) if i = n.

We have a natural morphism ay : Fy — Fy as follows: (i) as(v?) = vf; (ii)
042((63,&1)) = eil,iJrl (vesp. (12<<€;1if1)) = eﬁﬂa 042((63,7131)) = ezl,iJrl? 042((‘9;{&3:21» = 61‘7,17;+1)-
We define (5, to be the composite morphism Sz, o as.

We define a p-rank map o3, : v(Fy) — Z as follows: (i) If £b(v?) = piib(v}) and
t, (v?) = piib,(v}), then we have

U&(”?) —1= p(O'gl(Uil) - 1>;
(i) I #h(0?) = tbu(v}) amd 8b, (v2) = pib, (u1), we have

05, (v7) — 1= p(og, (v;) = 1) + (hu(vi)) (p — 1);
(iii) If #b;(v?) = pib(v}) and b, (v?) = tb,(v}), we have

05, (v7) — 1 = plog, (v;) — 1) + (80 (v;))(p — 1);
(iv) If by (v?) = £b(v?) and b, (v?) = £b.(v?), we have

05, (v7) — 1= plog, (v;) — 1) + (hu(vi) + b, () (p — 1)

Moreover, there is a natural A; @ As-action on Fo defined as follows: (i) The action of
Ay @ Ay on v(Fy) is trivial; (ii) For any e € e(Fy) U€'(IFy) and any element (7,7) € A; @
1,2 1,2 2 oT1,2 1, 1,70 ,
Ay, (1,7).€5 il = €1 (7, T’)-ez‘T,lz‘H = 62,1‘111 , (7, T,)'ei,z'?-l = 62‘,11172 and (7, T’)-ez‘T,lz‘ﬁ =
ToTy,7 0T
Qi+l
Thus, with the action of A1 & As, §2 := (F2, 03,, f5,) is an Ay & As-covering over B,,.
The maximal filtration

0C Ay C A D A,

determines a sequence of p-coverings of n-semi-graphs with p-rank

g, T 2 T — Fo =P

. @ o
Furthermore, by the construction, we have E,* = E, and E,** = E,.
By repeating the process above, we obtain an A := @]_, A;-covering §, over B,, and a
maximal filtration

P, 0CA CABA, 1 C.---CPR_ A =A.

Then &, induces a sequence of p-coverings of n-semi-graphs with p-rank

i 1 F=F — Foot — ... — Fo =P

By the construction, we have the ¢-th étale-chain E?“ associated to @, is equal to E; for
each t =1,...,r. We complete the proof of the theorem. n
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Remark 2.10.1. For the sequence

D F=F — Foor —5 s Fo =P,

constructed in Theorem 2.10, by Remark 2.7.1, we may assume that a; do not have étale
Type-1I for all i. Furthermore, by Corollary 2.9, we have 0(®) = o(F).

2.3 Bounds of p-ranks of abelian coverings

Let G be a finite abelian p-group with order p". In this subsection, we calculate a bound
of p-rank of a G-covering over ,,.

First, let us fix some notations. Let & be a G-covering over 33, and & a maximal
filtration of G. Write

b1 b

Dp: G =6, —s &,_, Ly By =P

for the sequence of p-coverings of n-semi-graphs with p-rank induced by ® and {IE‘,;P"j }; for
the set of j-th étale-chains associated to ®g. If E?Qs is empty, we have 0(®;) = o(B;_);
thus, for calculating the bound of the p-rank o(®), we may assume that E;P"j are not
empty for all 5. Moreover, by Remark 2.10.1, we may assume that for each j =1,...,r
and each v € v(G;), b; is not étale Type-1I at v.

Let ey € B (€o1) (resp. eni1 € By (€nn+1)). Write I, (vesp. I.,,,) for the inertia
group of eg (resp. e,41). Note that since G is an abelian group, the group I, (resp. I, .,)
does not depend on the choice of the elements of 35" (eg1) (resp. By (€nnr1)). Moreover,
according to Definition 2.3 (c-iii), G is generated by I, and I, ,.

For each j = 1,...,r, since E;% is a sub-semi-graph of P,, U(Ef"j) C{p1,... o}t =
v(P,) admits a natural order which is induced by the order of natural number N; then
we may define the initial verter and the terminal vertez for E?QS. Write z(]E;PQ‘) (resp.
t(IE;DQ‘)) for the initial (resp. the terminal) vertex of U(IE‘,?)@)7 l(]E?Q‘) for ﬁv(E;b@). For
an element p; € v(P,), we shall say that p; is Al-type (resp. Al-type; G} -type; P-type;
P-type) at IE;I)@ if p; is equal to i(E?“‘), and b; is étale at ngl (p;) with Type-III (resp. p;
is equal to t(]E;pQ‘), and b; is étale at ﬁgjl(pi) with Type-1V; U(]E;PGS) is equal to {p;}, and
b, is étale at 5@; (p;) with Type-V; b; is purely inseparable at qujl (pi); pi is contained in
U(E;.I’Q‘), and b; is étale at ngl (p;) with Type-I). Write g (]Ef’@) for the cardinality of the
connected components of IE;I)Q‘. Note that since we assume that IE;-I)“S is not empty for each
j=1,...,r, we have ﬁWO(E?’j) > 1.

We define a sub-semi-graph P, , of P, as follows: (i) v(P,,) = {ps,...,py}; (ii)

e(Pm,y) - {ex,:ﬂ—l-la"‘?ey—l,y} and el(Pm,y) - {em—l,xaey,y—i-l}; (111) 51111 (bl(ez‘,i—i-l)) = Di

and C&ﬂ(br(@i,wl)) = piq1 if @ & {x - 179} (iV) ]Eaiyl,x(bl(e:v—l,m)) = U(Pz,y) (resp.

P, Py, P,

6y,;,y+1(br(€y,y+1)) = U(Px,y)) and Cez}l,z(b”'(ex_laz)) = Pz (reSp. Cey,yyﬂ(br(eyy-i-l)) = py)~
Note that P,, is a sub-semi-graph of P,, and the semi-graph with p-rank ‘B,, :=
P2y, o, |o(e,.,)- 1dp, ) can be regarded as a (y — = + 1)-chain.

Lemma 2.11. Suppose that ﬁ?TO(E;I)@) =1 for all j, and either I.,, or I is trivial.

€0,1 €n,n+1
Then the p-rank o(®) is equal to 0.
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Proof. For each j = 1,...,r, write v/ for an element ﬁgjl (pi). Since jij(IE?QS) = 1 hold for
all j, and I, (resp. I, ., ) is trivial, b; is not étale Type-III (resp. étale Type-IV) and
étale Type-V at v/. Then we obtain Oy, (v)) = 0 by applying Remark 2.3.1. Moreover,
the underlying semi-graph of &; is an tree. Thus, we obtain ¢(®;) = 0. In particular, we
have o(®) = 0. We complete the proof of the lemma. O

Lemma 2.12. Let G;,i € {1,2} be an abelian p-group with order p", ® a mazimal
filtration of Gy, and &' := (G, 0g:, Be:) a G;-covering over B,,. Write

. . b . bi_, b 4
Ppi : &' =6 —— &' y L. —— B =,

for the sequence of p-coverings of n-semi-graphs with p-rank induced by ®°, and E®e for
the étale-chain associated to ®gi. Suppose that for each j = 1,...,7r, IjWO(Ej)“ji) =1,
i(]E?QSl) = @'(]Ej)"ﬂ), and t(Ej)"jl) = t(E?QSQ). Moreover, we suppose that E?"jl is equal
to Ef"ﬂ if i(Ej)"jl) # 1 and t(E?QSl) # n. Let e} € Bgi(eo1) and €} € Bga(eoq) (resp.
el 1 € Byi(enns1) and €2, € Bgs (ennt1)). Write Iy and Lz (resp. Ii  and Iz ) for
the inertia groups of ey and ef, respectively (resp. e, ., and €2, respectively), D (resp.
Dy 1) for Gi/I (resp. G/l ). Furthermore, we suppose that Iz and I.2  are equal
to Go. Then we have

o(&") + Dy —1+14D, , — 1 =0(&?).

Proof. By Remark 2.7.1, we may assume that bé- do not have étale Type-I. For any
pu € v(P,), write v/, for the unique element of Bq;-l (pu)- Then D,; is equal to G;.

If n = 1, note that since E;I)@ are not empty for all j, both I,y and I, are trivial. Then
we have

0(&") = oe1(vy) = —4G1 + Dy (g — 1) + 4D (Bl — 1) + 1.
On the other hand, since both Iz and Ieiﬂ are equal to Gy, we obtain
0(8%) = 01 (v]) = Gy +§Gy — 1+ 4Gy — 1+ 1 = §G5 — 1.

Thus, we have
o(&") +4Dy — 1 +4D) ., — 1 =o(&?).

If n > 1, by the assumptions of {Ej)@l },; and {IEI;?"52 };, we obtain
Z o1(v) = Z oe2(V)
vev(G)\{v],vi} vev(G)\{vf w3}

and
rank;H'(G', Z) = rank;H'(G?, Z).

On the other hand, since both Iz and Iei+1 are equal to G5, we have
062(v1) — 061 (v1) = §Go — 1 — 4Dy (81 — 1) = £G1 — 1 — 8Dy (8L — 1) = £Dg — 1
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and

02 (Ui) —Oet (U}z> =§Gy—1— IjDiJrl(lj[e}lH -1)=tG—1- ﬂD}Hl (ﬁI@iH —-1)= ﬂDrlwrl —L

Thus, we obtain
o(&) +4Dy —1+4Dp.  — 1

= Z og1(v) + rankzH' (G', Z) 4 01 (v1) + 01 (vs) + 8Dy — 1 + 4D}, — 1
vev(GH)\{v],v}}

= Z 02 (V) + rankzH (G?, Z) + 0¢2(v3) + 02 (v2) = o (&?).
vev(G2)\{v?,v2}

We have the following theorem.

Theorem 2.13. Let & be a G-covering over P, and ® a mazximal filtration of G. Write

br—1 b

D : G =06, —23 &, s U By =P

for the sequence of p-coverings of n-semi-graphs with p-rank induced by ®, and {Eg)"j }
for the set of j-th étale-chains associated to ®g. Suppose that ﬁﬂ'o(E?@) = 1 hold for all
7. Then we have

o(®B) <p —1.

Proof. We prove the theorem by induction. If 7 = 1, since mo(EJ") = 1, let us check
the theorem case by case. If either I, or I, ., is trivial, then by Lemma 2.11, we have
o(®) = 0. If Both I, and I.,,, are non-trivial, and I(E{") is 1, we obtain rank;H"(G, Z)
is equal to 0; for each v € v(G), 0s(v) is equal to 0 if B (v) is not contained in v(ET®),
and 0 (v) is equal to p — 1 if Bg(v) is contained in v(ET®); thus, we obtain o(&) = p — 1.
If Both I, and I, , are non-trivial, and {(E?") is > 2, we have rank;H'(G, Z) is equal
to p — 1, and og(v) are equal to 0 for all v € v(G). Thus, we have o(®) = p — 1. This
completes the proof of the theorem if » = 1. From now on, we assume that r is > 2.

For each i = 1,...,n, let v; be an element of Bg'(p;) C v(&), I, the inertia group
of v;. Write d for min{i | I,, # G}. If d # 1, then we have 6@|Bgl(lP’n\Pd,n) L Bet (P, \
Psn) — Pa, is an isomorphism of semi-graphs. Then we have &' := (G \ B (P, \
Pyn), 06|U(G\5Q_§1(Pn\]pd’n)),BﬁlG\ﬂgl(Pn\Pdm)) is a (n — d + 1)-semi-graph with p-rank. Fur-
thermore, G \ B (P, \ Ps,) admits a natural action of G induced by the action of G' on
G. Thus, we may regard &' is a G-covering over By,,. Note that we have og(v;) = 0 for
i < d—1 and rankzH' (85" (P, \ Pan),Z) = 0. Then o(®') is equal to o(&). Thus, by
replacing & (resp. P,) by &’ (resp. Pa4,), we may assume that I, is not equal to G.
Similar arguments to the arguments given above imply that we may assume that [, is
not equal to G.

Write S; (resp. Sa, S3, S4, Ss) for the set

{E;Pes’ p1 is Al-type at ]Ef"j} (resp. {E;p@\ p1 is Aj-type at E;DQS}7
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{IE;D"5| p1 is G} -type at IE;%}, {Efﬂ p1 is P-type at ]Efﬁ},
{E;D"5| p1 is P'-type at IE;%}).
Write ¢ for max{t(Ef@) ] Z(E;D@) € S1USyUS3U S5}, Ty (resp. Ty, Ty, Ty, Ts) for

{E;Pcs’ py is Al-type at ]E;%} (resp. {E;D"j\ Py is Aj-type at E}I’@},

{E7°| p; is G,,-type at E}®}, {E7®| p; is P-type at EJ¢},
{ET®| p; is P'-type at E}®}).

For i € {1,2,3,4,5}, write n; for £5;. Write m, for §77, my for #(S, NT5), mgs for §73, my
for #(S, N'Ty), ms for 875, ay for §(.S1 NTy), and ay for §(S; N Ty). Write by (resp. by) for

ﬁ{Efé e SyNTy | Z(E;%) > 2 and t(IEfQ‘) <t—1}

(resp. ${E7® € SyNTy | i(E7®) >t +1}).

Note that we have 2?21 = r and by + by = my. Since ¢ is the maximal element of
{Z(E?’@) | i(Ef"j) € S, US,} and #m(E®) = 1, we obtain 327, m; = ny and a; +ag = .
Let {Eq,...,E,.} be aset of étale-chains associated to ® with a new index set such that
the following conditions: (i) T5 = {Ey,...,E,. }; (1) SanNTy = {Enst1, - -+ By }5 (i)
T = {Em5+m4+1’ s >Em5+M4+M1}; (iV) SaNTy = {EM5+M4+m1+1’ s >Em5+M4+m1+MQ}; (V>
S1NTy = {Em5+m4+m1+m2+17 s 7Em5+m4+m1+m2+a1}; (Vl) S1NTy = {Em5+m4+m1+m2+a1+17
T Em5+m4+m1+m2+n1}; (Vii) T = {Em5+m4+m1+m2+n1+17 ce 7En1+n4}; (Viii) Sy = {En1+n4+17
e 7En1+n2+n4}; (1X> S3 = {En1+n2+n4= T 7]En1+n2+n3+n4}; <X> 55 = {En1+n2+n3+n4+17 s 7]ET}‘
By Theorem 2.10, there exist an elementary abelian p-group A, a maximal filtration ® 4
of A, an A-covering § := (F, 05, f3) over B, and the sequence of p-coverings of n-semi-
graphs with p-rank induced by ® 4

D F=F —— Foos —5 . Fo =P,

such that the j-th étale-chain E?S associated to ®z is equal to E; for each j = 1,... 7.
Since o(®) is equal to o(F), in order to prove the theorem, it is sufficient to calculate the
bound of o(F). Let u; be an element of ,Bg_l(pi), eo (resp. e€,41) an element of Bgl(eoﬂ)
(resp. ;' (enmt1)). Moreover, by Lemma 2.12, for calculating the bound of o(§), we may
assume that G = I, = I, , hold. Then we have ny = 0 and ns = 0. In particular, we

have #6," (p1) = §65"' (pn) = 1.

Case 1: If t=1and n =1, since G =1I,, = [

enss hold, we obtain n3 = r and

o(§) = oz(ur) = (=1)p™ +2(p™ —1)+1=p™ —1=p" -1
Thus, the theorem follows.
Case 2: If t =1 and n # 1, since I, is not trivial, B3|ﬁ§1(]?2 e Bgl(IP’M) — Py, is not

an isomorphism. Write §"! (resp. §*") for (F\ Bgl(Pl,l)vU&h(F\ﬁ?(Pm))a5&‘]1?\,3;1(%1))
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(ﬁgl(PQ,n),aglv(ﬁgl(wn)),ﬁg|65_1(@27n))). 4 (resp. F*") is a G-covering over P (resp.
Po.n). Since /Dy, — Pi1 (resp. F*" — F>"/D,,) is a composite of p-coverings
which are purely inseparable, we see that o(F4!) = o(F"1/D.,) (resp. o(F*>") = o(F>"/Dy,)).
Moreover, g4 (resp. ") can be regarded as a D,,,-covering over 3, ; (resp. a A/D,,-
covering over Py ,). Since o(F) = o(F') + o(F*"),4D,, < p", and tA/D,, < p", by
induction, we have

o(F) <tD, —1+8A/D,, —1<p" —1.

Thus, the theorem follows.

Case 3: If t = n and n # 1, write S’ for the set {E; | i(E;) = 1 and t(E;) = n}, S” for
the complement {E,,...,E,.}\S’". Note that 5" is not empty. Let {E},...,E.} be a set of
étale-chains associated to @z such that the following conditions: (i) S” = {Ej, ..., Eis/};
(ii) 8" = {Elgn,y, ..., E}. By Theorem 2.10, there exist an elementary abelian p-group
A’, a maximal filtration ® 4 of A’, and an A’-covering § over J,, such that the j-th étale-

chain Ej)@' associated to the sequence of p-coverings of n-semi-graphs with p-rank induced
by CIDA/

a, a._ a
Py F =% —— F_, — ... — F =%,
is equal to E for each j = 1,...,r. Then since §S” is < r — 1, by induction, we have

o(hsn) < p*¥" — 1. Note that since bOt}i I, and I, ., 1 1 1
Up, 41, up) for the unique element of f5"(p1) (vesp. Bz (pa), By, (p1), By (Pn)). Then
we have

/ : !/
are equal to A’, we write u} (resp.

oz (uy) = p* (o, (u)) = 1) +p** —1+1=p" 0y _ (uf)

uS// uS//
and
oz (u)) =p* (og_ (ul) — 1)+ p* —1+1=p* oy (ul).

ﬁSN ﬁS"

Thus, we have
0(3) = 0(F) = 1 (0(Flsr) — 75y, () — 75, () + 0 () + 7 (1) + 7 —1 < pr = 1.
Thus, the theorem follows.

Case 4: If n # 1 and t &€ {l,n}, we write Flas] for Fomstmsrmitmoing, S *|as]
(resp. F1"[ay]) for the (t — 1)-semi-graph with p-rank (537[(112](]13’1&1), US’[aQ}‘fu(ﬁgﬁm](ﬁﬁl’til))?

B31as) |6§[22](P17t+1)) (resp. the (n—t)-semi-graph with p-rank (ﬁg[(lm] (Pit1,0)5 OFlas) ’v(ﬁg[iQ](lP’m,n))’
Blas)| B3t (Pesa ))) Similar arguments to the arguments given in the proof of Case 3 imply
ag )

that
U(gl,t—l[aﬂ) < pn1+m2+b1+m5 -1

(resp. o(F 1" ay]) < pmthetms 1),
Moreover, by Lemma 2.12, we obtain

O.(S:Lt—l[aﬂ) < pn1+m2+b1+7n5 _ pm5+n1+m2
(resp. U(Stﬂm[az]) < pm1+b2+m5 _pm5+m1)'
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Thus, we obtain

U(S[GQ]) _ U(Sl,t—l[az])+o_(3t+l,n[a2])+ Z 03[a2}(v)+pm5 (pm2+n1_1+pm1_1)+pm5_1
'Ueﬁg[iﬂ(pt)

< pm+m2+b1+M5 +pm1+b2+m5 —p™ =1+ Z O5laz] (U>

’UGﬂg[(lLZ] (Pt)

Write vy [ag] for the unique element of ﬁg[;](pl). Note that oy, (v1]as]) is equal to 0.

Write vy (resp. v;) for the unique (resp. an element) element of 85 ' (p1) (85 ' (p:)). We
have
og(vi) = —p™" T £ p" (P — 1) Fp" T — 14 L =ph T — p™

and

OS(”t) _ _pm1+m2+m3+a1 +pa1+m2 (pm1+m3 _ 1) _|_pm1 (pa1+m2+m3 . 1) +1

— pMmitma+msz+tal

P _ pm2+a1 _ pml + 1.

Since we have

o(F) —os(v1) = Y 05(v) = 0(Blar]) — ogaa(valaz]) = D i) (v)

veBz (pe) V€0, (P1)
< prtmatbitms | pmitbetms _pms
and ﬁﬁgl(pt) = p™5, we obtain
0'(3) S pn1+m2+b1+m5 +pm1+b2+m5 o pms — 1+ pn1+n3 _ pnl

+pm5 <pm1+m2+m3+a1 o pm2+a1 - pml + 1)

__ nit+me+bi+ms mi+ma+maz+ai+ms ms+ba+my n1+ns3
=D +p +p +p

ms+mo+ta; pm1+7n5 _ pnl -1

—-Pp
By Lemma 4.1 in Appendix, we obtain
oF) <p —1.

Thus, we complete the proof of the theorem. Il

3 p-ranks of vertical fibers of abelian stable coverings

3.1 p-ranks and stable coverings

Definition 3.1. Let C be a disjoint union of projective curves over an algebraically closed
field of characteristic p > 0. We define the p-rank of C as follows:

o(C) := dimg H{ (C, F,).
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Remark 3.1.1. Let C' be a semi-stable curve over an algebraically closed field of char-
acteristic p > 0. Write I'c for the dual graph of C, v(I'¢) for the set of vertices of T'c.
Then we have .

o(C) = Z o(Cy) + rankz;H (T'¢, Z),

vev(Te)

where for v € o(I), C, denotes the normalization of the irreducible component of C
corresponding to v.

The p-rank of a p-Galois covering (i.e., the extension of function fields induced by the
morphism of curves is a Galois extension, and the Galois group is a p-group) of a smooth
projective curve can be calculated by the Deuring-Shafarevich formula as follows (cf. [C]):

Proposition 3.2. Let h : C" — C be a Galois covering (possibly ramified) of smooth
projective curves over an algebraically closed field of characteristic p > 0, whose Galois
group is a finite p-group G. Then we have

o(C) ~1=4G(e(C) ~ )+ 3 (e —1),

C/E(C’)Cl

where (C")! denotes the set of closed points of C', ey denotes the ramification index at ¢,

and 4G denotes the order of G.

In the following of this subsection, let R be a complete discrete valuation ring with
algebraically closed residue field k of characteristic p > 0, K the quotient field, and K an
algebraic closure of K. We use the notation S to denote the spectrum of R, n,7 and s
stand for the generic point, the geometric generic point, the closed point corresponding
to the natural morphisms Spec Kk — S, Spec K — S and Speck — S, respectively.
Let X be a semi-stable curve over S. Write X,,, X5 and X, for the generic fiber, the
geometric generic fiber and the special fiber, respectively. Moreover, we suppose that X,
is smooth over n and the genus gy, of X5 is > 2.

Definition 3.3. Let f : Y — X be a morphism of semi-stable curves over S, G a finite
group. Then f is called a semi-stable covering (resp. G-semi-stable covering) over S if
the morphism of generic fibers f, is an étale covering (resp. an étale covering with Galois
group (7), and the following universal property is satisfied: if g : Z — X is a morphism
of semi-stable curves over S such that 7, =Y, and g, = f,, then there exists a unique
morphism h : Z — Y such that f = go h (cf. Remark 3.3.1 for the existence of V). We
call f a stable covering (resp. G-stable covering) over S if f is a semi-stable covering, and
X is a stable curve. Note that by the construction of semi-stable coverings in Remark
3.3.1, if f is a stable covering over S, then Y is a stable curve over S.

Remark 3.3.1. Let W be a semi-stable curve over s. We shall called a semi-stable
subcurve C' C W a chain if all the irreducible components of C' are isomorphic to P!, the
dual graph of C'is a tree, and for each irreducible component C; C C', C; meets the other
irreducible components of W at at most two points.

Let f, : Y, — X, be an étale covering. Suppose that Y, admits a semi-stable
reduction over S. Write Y’ for the normalization of X in the function field K(Y), Y!
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for the unique minimal desingularization over S (cf. [L1, Proposition 9.3.32]) which is
a semi-stable curve over S. Then Y’ (resp. Y') admits an G-action induced by the
action of G on Y,. We denote by f':Y! — X the composite of Y' — Y’ and the
normalization morphism Y’ — X. Write C for the set of the maximal elements (under
the relationship “C”) of

{C a chain of the special fiber Y;' of Y' | f}(C) is a closed point of X,}.

Contracting C'%, we obtain a semi-stable curve Y2 over S (cf. [L1, Lemma 10. 3.31]).
Moreover, we have a natural morphism f? : Y2 — X induced by f'. Write C% for the
set of the maximal elements (under the relationship “C”) of

{C a chain of the special fiber Y of Y? | f*(C) is a closed point of X,}.

Contracting C%, we obtain a semi-stable curve Y3 over S (cf. [L1, Lemma 10. 3.31]).
Moreover, we have a natural morphism f2 : Y3 — X induced by f?. Repeating the
process above, we obtain a semi-stable curve of Y over S, a contracting morphism cy :
Y! — Y, and f, extends to a morphism f:Y — X over S.

Netx, let us prove that Y satisfies the universal property defined in Definition 3.3. Let
Z be a semi-stable curve over S and g : Z — X a morphism of semi-stable curves over
S such that g, = f,. If Z is regular, since Y! is the minimal desingularization over S, we
obtain a morphism Z — Y. Thus, we have g factors through f. If Z is not regular,
write Z™® for the minimal desingularization of Z over S. Then we obtain a commutative
diagram as follows:

JASS b Yl

.

Write Czree for the set of (—1)-curves of Z*¢ whose images under the morphism b are
closed points of Y. Contracting r(Czwes), we obtain a semi-stable curve Z’ over S, a
morphism Y — Z’, and the following commutative diagram:

zreg h ; Yl

z —= 7.
Write V., (resp. V) for the set of irreducible components of Y! such that for each element
E €V, (resp. E € V), cy(E) (resp. '(F)) is a closed point of Y (resp. the special

fiber Z! of Z'). By the constructions of Y and Z’, we have V;» C V., . Then there is
contracting morphism Z’ — Y, and the following commutative diagram holds:

|-l
7 2y
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Then ¢ factors through f. Note that the uniqueness of contracting implies that the
uniqueness of the morphism h:=cgz ocy: Z — Y.

Note that if f: Y — X is a finite morphism of semi-stable curves over S, and the
morphism of generic fibers f,, is étale, then f is a semi-stable covering.

Definition 3.4. Let f : Y — X be a semi-stable covering over S. Suppose that the
morphism of special fibers f; : Yy, — X, is not finite. A closed point z € X is called a
vertical point associated to f, or for simplicity, a vertical point when there is no fear of
confusion, if f~1(z) is not a finite set. The inverse image f~!(z) is called the vertical fiber
associated to x.

If a vertical point z is nonsingular, the following result was proved by Raynaud (cf.
[R, Théoréme 1 and Proposition 1]).

Proposition 3.5. Let G be a finite p-group, f :Y — X a G-semi-stable covering and
x a vertical point associated to f. If x is a smooth point of X, then the p-rank of each
connected component of the vertical fiber f~'(z) associated to x is equal to 0. On the
other hand, by contracting the vertical fibers f~'(x), we obtain a curve Y over S. Write
c:Y — Y for the contracting morphism. Then the points c(f~(x)) are geometrically
unibranch.

Proposition 3.6. Let G be a finite group, f : Y — X a G-semi-stable covering, and
x a vertical point associated to f. If x is a smooth point or a node which is contained
in only one irreducible component (resp. a node which is contained in two different irre-
ducible components), we use the notation X, (resp. X,, and X,,) to denote the irreducible
component which contains x (resp. the irreducible components which contain x). Write
Y Y — X for the normalization of X in the function field of Y. Let y' € ¢¥~(z) be
a point of the inverse image of x, Y, (resp. Y. and Y] ) for an irreducible component
(resp. two irreducible components) of Y] such that ¥s(Y)) = X, and y € Y, (resp. (i)
V(Yy,) = Xy, and (V) = Xoy; (i) y € Y, and y' €Y, ). Write I, € G (resp.
I, € G and I,, € G) for the inertia subgroup of Y, (resp. the inertia subgroups of Y,
and Y, , respectively).

Suppose that G is a p-group (resp. an abelian group). Then we have I, # {1} (resp.
I, # {1} or I, # {1}). Moreover, write I, C G for the inertia subgroup of y', then I,
is equal to I, (resp. 1, is generated by I,, and I, ).

Proof. Since Y is normal, we obtain a natural morphism ¢ : Y — Y’. By using [BLR,
6.7 Proposition 4], we may contract the connected component of f;!(x) whose image
under the morphism ¢ is y. Thus, we obtain a contraction morphism ¢ : Y — Y. Since
Y"” is a blowing-up of Y, Y is a fiber surface over S (i.e., normal and flat over S) and
there is natural commutative diagram as follows:

Y, — Y

}/;71/

Y//



where ¢, is an identity morphism.

Write Y, (resp. Y, and Y,’) for the unique irreducible component whose image under
the natural morphism Y” — Y" is Y]/ (resp. Y, , Y, ), v for the image c¢(¢~'(3/)). Note
that the inertia group of Y, (resp. Y., Y,") is equal to I, (resp. Iy, I,,).

If x is a smooth point, G is a p-group, and I, is trivial, then f!|y, is generically étale.
By Proposition 3.5, we have y” is geometrically unibranch. Thus, 3" is contained in only
one irreducible component of Y. By applying Zariski-Nagata purity, we have f!'|y» is
étale at y”. Thus, 3" is a smooth point. Then Y” is a semi-stable curve. This contradicts
to the minimal properties of semi-stable coverings.

If x is a node and I, (resp. I, and I,,) is (resp. are) trivial, since G is abelian,
f7 is étale over an open neighborhood of . The completion of the local ring at x is
Ox.» = R[[u,v]]/(uv — 7"), where 7 denotes an uniformizer of R and (n’,p) = 1. Since
the étale fundamental group of Spec Oy, \ {#} is isomorphic to Z/n'Z (cf. [T, Lemma
2.1 (iii)]), where Z denotes the closed point of Spec @ny, we have y” is a node. Then Y”
is a semi-stable model of Y;7” over S in either case, so that this contradicts to the minimal
properties of semi-stable coverings. Thus, I, # {1} (resp. I, # {1} or I, # {1}). This
completes the proof of the proposition. Il

3.2 Semi-graphs with p-rank associated to vertical fibers

In this subsection, we construct a semi-graph with p-rank defined in Section 1 from a
vertical fiber, and we apply the theory developed in Section 1 to calculate the bound of
the p-rank of the vertical fiber.

First, we fix some notations. Let G be a finite p-group, f : ¥ — X a G-stable
covering over S, x € X, a vertical point. Suppose that x is a node contained in two
irreducible components X; and X, (which may be equal) of X;. Write ¢ : Y/ — X
for the normalization of X in the function field of Y. Let 3’ € ¥~!(z) be a point of the
inverse image of x. Write I, for the inertia group of y'. Note that the natural morphism
Y/I, — X induced by f is finite étale over z. Thus, by replacing X by the stable model
of Y/I,, in order to calculate the p-rank of the vertical fiber f~!(z), we may assume that
I, is equal to G. From now on, we may assume that G'= I, is a p-group with order p".
Then f~!(z) is connected.

Let X' be the quotient of Y by G. By [R, Appendice, Corollaire], X" is a semi-
stable curve with generic fiber X,. Then we obtain a quotient morphism h : Y — X
and a birational morphism ¢ : X®'* — X such that the composite morphism ¢ o h is
equal to f. We still write X; and X, for the strict transforms of X; and X5 under the
birational morphism g, respectively. By the general theory of semi-stable curves, g~!(z) is
a semi-stable subcurve of X' whose irreducible components are isomorphic to P;. Write
C for the semi-stable subcurve of g~!(z) which is a chain of projective lines U!" ; P; such
that the following conditions: (i) P; is not equal to P; if i # j; (ii) A N X, are P, N X,
are not empty; (iii) P, meets P,4; at only one point; (iv) P, N P; is empty if j is not equal
toer—1,70r ¢+ 1. Then we have

g '(r)=CUB,
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where B denotes the topological closure of g7'(x) \ C'in g~!(x). Write B; for the union
of the connected components of B which intersect with P; are not empty.

Lemma 3.7. Let V; be an irreducible component of h™*(P,), Iy, € G (resp. Dy. C G)
the inertia group (the decomposition group) of V;, and D; for the image of V; under the
quotient morphism Y — Y/Iy,. Write h; for the natural morphism Y /Iy, — X*.
Then the branch locus of h;|p, : D; — P; are contained in P; N (P11 U P;_q).

Proof. Write E; for the image of D; under the natural morphism Y/I, — Y/Dy.. We
have the restriction of Y/Dy, — X' to E; is an identity morphism. Thus, by replacing
X" by Y/Dy,, we may assume that Dy, is equal to G. Then h; is a G/Iy,-semi-stable
covering. Note that it is easy to see that the branch locus of h;|p, are contained in
PN (P UP_1UB)

By contracting B; (resp. h;'(B;)), we obtain a semi-stable curve (X**)" and a con-
traction morphism cysst : X®' — (X=)’ (resp. a fiber surface (Y/Iy,)’ and a contrac-
tion morphism ¢y, @ Y/Iy, — (Y/Iy;)" ) over S. Moreover, h; induces a morphism
h;: (Y/Iy,) — (X*®')". Then we have the following commutative diagram:

CY/IVi ;
Y/ly, — (Y/1y,)

| .
X sst ﬂ) (Xsst)/'

Since it follows from Proposition 3.5, (h}) ™" (cxst(P; N B)) N ¢yyr, (D;) are geometrically
unibranch, (h})~!(cxs(P;NB)) only are contained in one irreducible component of the spe-
cial fiber of (Y/Iy,)". Moreover, by applying Zariski-Nagata purity to hi, hiln)-1(c e (P)
is contained in the étale locus of hj. Thus, the set of branch points of hifn)-1(c w(p)) 19
contained in the set cxss (PN (P11 UP_1)). Moreover, cy, I, |p, is an isomorphism. Then

we complete the proof of the lemma. Il

Next, we construct a semi-graph with p-rank from a vertical fiber. From now on, we
assume that G is an abelian p-group. Write D¢ for the set of points C'N (X; U X5). Thus,
we may regard C := (C, D¢) as a pointed semi-stable curve over s. Write P, for the dual
graph associated to C, oy, for the map satisfying the property oy, (p;) = o(F;). Then
B = (P, 0p,,idp, ) is a n-chain defined in Section 1.

Let

¢: {1} =G, CG1 CGyaC---CGH CGy=G,

be a filtration of G such that G;/G;1 = Z/pZ,j =0,...,r — 1. The filtration ¢ induces
a sequence of semi-stable coverings ®; as follows:

. dy
Y=Y, sy , Ot By = X
where Y;,7 = 0,...,r, denotes the semi-stable curve Y/G; over S.

For each i = 0, ..., r, write I'; for the dual graph of the special fiber of Y;. First, let us
prove that the map ; : I'; — I';_1,1 <4 < r, induced by d; is a morphism of semi-graphs.
To verify (; is a morphism of semi-graphs, it is sufficient to prove that g;(e(I';)) C e(I';_1),
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where e(—) denotes the set of edges of (—). Let y; be a node of the special fiber (Y;)s of ¥;.
Write Y;' and Y;? for the irreducible components of (Y;), which contain y;, Iy C Gi_1/G;
(resp. Iy2 C G;1/G;, I, C G;_1/G;) for the inertia group of V;' (resp. Y7, y;). Write
1 C Gi_ll /G, for the group generated by Iy and Iy2, qy for the quotient morphism
Y, — Y/I. By the definitions, we obtain I C I,,. Applying Zariski-Nagata purity to
Spec Oyy1.q,. (4i) — Spec Oy,_, a,(y,), we have the morphism Y/I — Y;_; induced by d; is
étale at gy, (y;). This implies that I = I,;. Since for any element 7 € I, we have 7(Y;!) = V!
and 7(Y;?) = Y2, the proof of [R, Appendice, Proposition 5] (or [L1, Proposition 10.3.48])
implies that gy, (y;) is a node of (Y;/I),. Thus, d;(y;) is a node of the special fiber (Y;_1)s
of Y;_1. This means that [3; is a morphism of semi-graphs.

Write ¢;,i = 1,...,r, for the composite morphism d; ods o - - - od;. Note that we have
h = ¢,. The semi-stable subcurve ¢;'(C) with ¢; '(D¢) may be regarded as a pointed
semi-stable curve over s. We use the notation ); to denote the resulting pointed semi-
stable curve (¢; 1(C), #; ' (D¢)). Write G, for the dual graph of );, Be, for the natural
morphism G; — P, induced by the morphism ¢;|y, : V; — C. For each v € v(G;), write
(Y;), for the irreducible component of ; corresponding to v. We define o, to be the map
satisfying the property og,(v) = o((Y;),) for all v € v(G;). Then &, := (G;, 04,, fs,) is a
n-semi-graph with p-rank. Moreover, d;|y, induces a natural morphism of n-semi-graphs
with p-rank b; : &; — &,_;, and & admits a natural action of G induced by the action
of G on }),. Furthermore, ® induces a sequence of morphisms of semi-graphs with p-rank

Dy : G =6, —s &, Ly By =B,

On the other hand, by Lemma 3.7 and Zariski-Nagata purity, it is easy to check that
for each i = 1,...,7, b; is a p-covering. Thus, & is a G-covering over ‘J3,,. For each
1=1,...,r, we write IET;I)“5 for the i-th étale-chain associated to ®g.

On the other hand, write {Y7}; for the set of connected components contained in the
étale locus of d; such that the image ¢;(Y;) are contained in g~'(z) for all j, Y, for the

b1 b

disjoint union [[; Y/, Note that ¢;(Y") \ B is a disjoint union of semi-stable subcurve
of C. For each connected component E of ¢;(Y)\ B, with the set of closed points
Dg = ENC\ E, we may regard £ := (F, Dg) as a pointed semi-stable subcurve of C
over 5. We define &/ as the disjoint union

]_[ E.
EC¢i(YE)\B

We shall call (E’iq)f the i-th étale-chain associated to ®f, and write E; for the disjoint union
of the dual graph of the connected components of é‘f)f . We define &% as the disjoint

union
Q
[1e”.
i

and call &%f the étale-chain associated to ®;. From the construction of E;, it is easy to
see that E; are equal to ET® for all i.

Note that CN B are smooth points of C'. By Proposition 3.5, we have the p-ranks of the
connected components of h~!(B) are equal to 0. Thus, we have o(f~!(z)) = o (¢ 1(C)).
Moreover, by applying Lemma 3.7, we obtain o(¢*(C)) = o(8).
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Summarizing the discussion, we obtain the following proposition.

Proposition 3.8. Let G be a finite abelian p-group with order p”, f: Y — X a G-stable
covering over S, x € X a vertical point. Write ¢ : Y — X for the normalization of X
in the function field of Y. Let y' € ¥~ (z) be a point of the inverse image of x. Write
I, for the inertia group of y'. Suppose that G = 1,,. Let ® be a maximal filtration of G.
Write ®¢ for the sequence of semi-stable curves induced by ® which was constructed in
this subsection, <§f)f for the i-th étale-chain associated to @5 for each i. Then there exist
a semi-graph with p-rank & and a sequence of p-coverings of semi-graphs with p-rank ®g
induced by ® which was constructed in this subsection such that & is a G-covering over
B, and for each 1 = 1,...,r, the i-th étale-chain E?@ associated to P is equal to the

dual graph of éjq)f. Furthermore, we have o(f~(z)) = o(®).

3.3 p-ranks of vertical fibers

We follow the notations of Section 3.2. Let {Z;}7 a subset the set of irreducible compo-
nents of the special fiber Y of Y such that the following conditions hold: (i) ¢,.(Z;) = P; if
i € {0,n+1}; (i) ¢,(Z9) = X1 and ¢,(Z,41) = Xy; (iii) the union U} Z; is a connected
semi-stable subcurve of the special fiber Y; of Y. Write Ip, C G for the inertia subgroup
of Z;. Note that since G is an abelian p-group, Ip, does not depend on the choice of Z;.

By using the theory of étale-chains, we obtain an explicit formula of p-rank of f~!(x)
as follows:

Theorem 3.9. If G is an abelian p-group, then we have

n+1

o(fH(x) = Z 2G/1p) — Z §G/Upy +1p)) + 1,

Proof. We follow the notations of Theorem 2.8. Note that by Zariski-Nagata purity, we
have the inertia group of a point of Z; 1 N Z; (resp. Z;NZ;11) is equal to Ip,_, + Ip, (resp.
Ip, + Ip,,). Then we have fE*®(p;) = log, (G /Ip,) (resp. ﬁE%(bij_) = log,(1G/(Ip,_, +
Ip)), ﬂE%(ij) = log,(#G/(Ip, + Ip,,,))). Thus, we have

o(fH(x)) = Z(ﬁ(G/Ipi)—ﬁ(G/(fPi1+1Pi))—1i(G/(fPi+1+1Pi))+1)+2(ﬂ(G/(IPI-HHPi))—l)

n+1

= Z ﬁ(G/[PZ) - Z ﬁ(G/([Pifl + [Pz)) + 1.
i=1 i=1
This completes the proof of the theorem. Il

Remark 3.9.1. If G is a cyclic p-group, since G is generated by Ip, and Ip, ., we may
assume that Ip, = G. Follows Lemma 3.10 below, there exists u such that

Ipy 21Ip 21Ip,2---21p, C€C---Clp,_, CIp, Clp,,.
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Then we obtain
ﬂ(G/IPz) - ﬁ(G/([Pifl + IPZ)) - ﬂ(G/([PH»l + ]Pz)) +1= _ﬁ<G/(IPi71)) +1

(resp. HG/(Ip., + Ip)) =1 =4G/(Ip)) — 1)
if 1 < u,

#G/Ip) = 8(G/(Up_, + 1p)) = 4(G/(Ipy, + Ip)) +1 = —1(G/(Ip,,)) +1

(resp. ﬁ(G/(IPz+1 + ]Pl)) —1= ﬁ(G/(‘[P1+1)) - 1)
if 7 > v and

Jj(G/[H)_ﬁ(G/(IPz—l+IP1>>_h(G/(]Pz+1+IPz))+1 = Jj(G/IPt>_H(G/]Ptfl)_Jj(G/(IPHl)—i_l

(resp, ﬁ(G/(IPz-H + ]Pz)) 1= ﬁ(G/<IPt+1)) - 1)
if © = u. Thus, by applying Theorem 3.9, we obtain

o(f (@) = 4(G/In,) — 4(G/Ip,..)-
This formula was first obtained by Saidi (cf. [S, Proposition 1]).

Lemma 3.10. If G 2 Z/p"Z is a cyclic group, then there exists 0 < u < n+ 1 such that

Ipy, 2Ip 21Ip,2---21Ip C---Clp,_, Clp, Clip,,,.

In particular, jjwo(@@;bf) < 1 hold for all i, where fmy(—) denotes the cardinality of the
connected components of (—).

Proof. If the lemma is not true, there exist s,¢ and v such that Ip, # Ip , Ip, # Ip, and
Ip, C Ip,, =---=1p, =---=1Ip_, D Ip. Since G is a cyclic group, we may assume
Ip, 2O Ip,.

Considering the quotient of Y by Ip,, we obtain a natural morphism of semi-stable
curves hy : Y/Ip, — X™' over S. By contacting Ps.1, Psio,..., P_1,Bsi1,..., Bi1
(resp. h; Y (Poy1), hy (Psya), -y Ry Y (Pi1), by (Bss1), - - ., 7Y (Bi_1)), we obtain a semi-
stable curve (X®%) (resp. a fiber surface (Y/Ip,)") and a contacting morphism cysst :
X5 — (X (resp. cyyrp, 2 Y/Ip, — (Y/Ip,)"). The morphism h induces a morphism
of fiber surfaces b, : (Y/Ip,)) — (X®')'. Then we have the following commutative

diagram as follows:
Y /Ip,

Y/Ip, (Y/Ip,)

| al

X sst ﬂ) (Xsst)/'
Write P! and P/ for the images cxsst(Ps) and cxst(P,), respectively, and x, for the closed
point P/ N P/ € (X=')". By Proposition 3.6, we have (Y/Ip,)" is a semi-stable curve over

S, moreover, we have b is étale over x/,. Then the inertia groups of the closed points
(RL)~Y(x,) of the special fiber (Y/Ip,), of (Y/Ip,) are trivial.
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On the other hand, since Ip, is a proper subgroup of Ip,, we obtain the natural action of
G/Ip, on the irreducible components of hy'(U'Z} | P;) is trivial. Thus, the inertia groups
of the closed points cyy, (hy'(UiZi, 1 P;)) = (hl)*(a,) of the special fiber (Y/Ip,), of
(Y/Ip,)" are not trivial. This is a contradiction. Then we complete the proof of the
lemma. [l

On the other hand, we obtain a bound of o(f~!(z)).

Theorem 3.11. If G is an abelian p-group with order p", and &; is connected for each
i=1,...,n, then we have o(f~*(z)) < p" — 1.

Proof. Together with Theorem 2.13 and Proposition 3.8, the theorem follows. m

4 Appendix

In this appendix, we prove the following elementary lemma which is used in the proof of
Theorem 2.13.

Lemma 4.1. Following the notations of the proof of Theorem 2.13, then we have

n1+ma+bi+ms mi+ma+maz+ai+ms ms-+ba+my n1+ns ms+mao+tai mi+ms 71
p +p +p +p —p —p -p" =1L

<p -1
Proof. We will check this inequality case by case. We denote by M the maximal number
max{m + mo + bl + ms5, M1 + Mo + M3 + ay + My, My + M5 + bg,nl + ng}.

If M =r, we have the following cases.
If ny + mo + by + ms = 7, then we have ny = nz = by = my = m3 =0, my = by and
ng = Mo + by + ms. Thus, we obtain

n1+ma+bi+ms m1+ma+maz+ai+ms ms—+ba+mq n1+ns ms+ma+al mi-+ms n1
p +p +p +p —p —p -pt =1

— pT‘ +pm2+m5+a1 +pm5 +pn1 _ pWLQ+WL5+a1 _pm5 _pnl _ 1 — p’r' o 1

If mq4+mo+ms+a;+ms = r, then we have ny = a; and no = ng = my = by = by = 0.
Thus, we obtain

n1+ma+b1+ms m1+ma+maz+ai+ms ms+ba+m1 ni+ng ms+ma+a mi+ms n1
p +p +p +p —p —p —-pt—1

— pa1+m2+m5 +pr + pm1+m5 + pal _ pa1+m2+m5 _ pm1+m5 _ pal — 1= pr —1.

If ms + by + my = r, then we have ny = a; = ao = m; = mg = nz3 = by = 0 and
my = by. Thus, we obtain

n1+ma+b1+ms m1+ma+ma+ai+ms ms-+ba+my n1+ns3 ms+ma+ai mi+ms n1
p +p +p +p —p —p —pt =1

:pm2+m5_|_pm5 +pr+1_pm5+m2_pm5_1_1:p7“_1.
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If ny + n3 = r, then we have m; = my = m3 = my = ms = by = by = ny = ny = 0.
Thus, we obtain

n1+ma+b1+ms _|_pm1+m2+m3+a1+m5 4 pm5+b2+m1 4 pn1+n3 ms+ma-+al mi+ms pm -1

P —p —p
=p"+p"+1+p —p" —-1—-p" —1=p" —1.

Thus, it is sufficient to assume that M < r — 1.
If M <r— 2, then we have

b : 5 5+b : 5 5
pn1+m2+ 1+ms +pm1+m2+m3+a1+m + pm +b2+my + pm-i—ns _ pm +ma+a; __ pm1+m _ pm -1

< 4p"% — 4.
Since p is a prime number, we have p” — 1 — 4p"~2 4+ 4 > 0. Thus, we obtain
pn1+m2+b1+m5 +pm1+m2+m3+a1+m5 +pm5+b2+m1 +pn1+n3

ms+ma+a; pm1+m5 _ pnl -1

-Pp
<p -1

Thus, we may assume that M =r — 1.
If ny +mo + by + ms =r — 1, we obtain ny + n3 +my +msg + by = 1. If no = 1, then
we have ng = m; = mg = by = 0. We obtain

n1+ma+bi+ms m1+ma+mz+ai+ms ms—+ba+my ni+ng ms+ma+al mi+ms n1
p +p +p +p —pt -1

-D - D
— b pretertms | pmidms | gm gmatartms _gms _pm
<2t -1<p -1
If n3 = 1, then we have ny = m; = ms = by = 0. We obtain
prutmatbibms | mtmatmataitms | metbatmy  pmtng

ms+motar pm1+m5 _ pnl -1

—-Dp
— pr—l +pm2+a1+m5 + pms +pn1+1 o pm2+m5+a1 _ pms _ pm -1
<2t -1<p -1
If m; = 1, then we have ny = ng = m3 = by = 0. We obtain

ni1+ma+b1+ms mi+ma+ms+ai+ms ms—+ba+mq ni+ng ms+ma+ai mi+ms n1
p +p +p +p —D —p —pt—1

— prfl 4 pm1+m2+a1+m5 +pm5+m1 +pn1 _ pm2+m5+a1 _ pms+m1 _ pm -1
<22t -1<p -1,

If ms = 1, then we have ny = ng = my; = by = 0. We obtain

pn1+m2+b1+m5 +pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+7l3 o pm5+m2+a1 o pm1+m5 o pnl -1

— pT—l + pm3+m2+a1+m5 +pm5 +pn1 . pm2+m5+a1 . pms . pnl -1

<2Ppt-1<p -1
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If by = 1, then we have ny = nz3 = m; = mz = 0. We obtain

ni1+mo+bi+ms m1+mo+mgz+ai+ms ms—+ba+mq ni+n3 ms+ma+ai
p +p +p +p

-D
— prfl + pm2+a1+m5 +pm5+b2 +pn1 - pm2+m5+a1

<Yprl-1<p—1.

If ay + mi +mo+mg+ms=1r—1, we obtain as + nyo +n3 + by + by = 1. If ay = 1,

then we have ny = n3 = b; = by = 0. We obtain

b 5 b 5
pn1+m2+ 1+m +pm1+m2+m3+a1+m5 + pms—l— 2+m1 + pn1+n3 ms+ma+al

-Pp
— pn1+m2+m5 + pr—l + pm1+m5 + pm _ pm2+m5+a1 _ pvm—Hns
<pt-1<p -1
If no = 1, then we have as = n3 = by = by = 0. We obtain

n1+mo+bi+ms m1+mo+m3z+ai+ms ms—+ba+mq ni1+n3 ms+mao+ai
p +p +p +p

- p
— pa1+m2+m5 + pr‘*l +pm1+m5 +pn1 _ pm2+m5+a1 _ pm1+m5
=p —1<p —1.
If n3 = 1, then we have ay = ny = by = by = 0. We obtain

pn1+MQ+b1+m5 +pm1+m2+m3+a1+m5 +pm5+b2+m1 +pn1+NB ms+ma+tai

-Pp

pa1+m2+m5 4 pT—l + pm1+m5 + pnl+n3 _ pm2+m5+a1 _ pm1+m5
<2Ppt-1<p -1
If by = 1, then we have ay = ny = nz = by = 0. We obtain

n1+mo+bi+ms m1+mo+m3+ai+ms ms—+ba+mq ni1+n3 ms+mo+ai
p +p +p +p

—-Pp

pa1+m2+b1+m5 + pr—l _|_pm1+m5 _I_pnl . pm2+m5+a1 o pm1+m5
<2 -1<p -1
If by = 1, then we have ay = ny = n3 = by = 0. We obtain

ni1+ma+b1+ms _|_pm1+m2+m3+a1+m5 +pm5+b2+m1 +pn1+n3 ms+ma-+ai

p -Pp

ai1+ma+ms r—1 m1+ms-+ba 1 mao+ms-+al mi1+ms
p +p +p +p —=p - D

<2pt-1<p -1

Ifm1+b2+m5:7"—1, Weobtaina1+a2+n2+n3+m2+m3—l—bl:1. Ifalzl,

then we have as = ny = n3 = mas = mz = by = 0. We obtain

ni1+mo+bi+ms m1+mo+m3z+ai+ms ms—+ba+mq ni1+ng ms+mo+ai
p +p +p +p

- P

_ a1+ms mi1+ai1+ms r—1 n1 a1+ms mi1+ms
=D +p +p +p =D -Dp
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<2 -1<p -1
If as = 1, then we have a; = ny = nz = my = mz = by = 0. We obtain
ms+ma+tai

n1+ma+b1+ms +pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 . pm1+m5 o pm -1

p -p
e A e e e e A S e |
<2Ppt-1<p -1
If ny = 1, then we have a1 = as = n3 = my = m3 = by = 0. We obtain
ms+ma+a

n1+mao—+bi+ms mi+ma+ma+ai+ms ms—+ba+mq ni+ng _ pmitms _ n1
+p +p +p p p 1

p -p
— pms +pm1+m5 +pr—1 +pn1 _ pm5 _ pm1+m5 o pn1 -1
=p —1<p —1.

If ng = 1, then we have a; = as = ny = my = mz = by = 0. We obtain

pn1+m2+b1+m5 +pm1+m2+m3+a1+m5 + pms—l—bg—i—ml + pn1+n3 _ pm5+m2+a1 _ pmﬁ-ms _ pm -1
= P p™E e pT T e e ]
<2t -1<p -1
If my = 1, then we have a1 = as = ny = n3 = m3 = by = 0. We obtain
pn1+m2+b1+m5 +pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 _ pm5+m2+a1 o pm1+m5 _ pm -1
el A e e o e e e e A |
<2Ppt-1<p -1
If mz = 1, then we have a; = as = ny = nz3 = my = by = 0. We obtain
pn1+m2+b1+m5 +pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 _ pm5+m2+a1 . pm1+m5 _ pm -1
o A A i o e e e |
<2 -1<p -1
If by = 1, then we have a; = as = ny = nz = my = mz = 0. We obtain
pn1+m2+b1+m5 +pm1+m2+m3+a1+m5 + pm5+bz+m1 4 pn1+n3 _ pm5+m2+a1 _ pm1+m5 _ pm -1

— pb1+m5 4 pm1+m5 4 pf‘*l +pn1 o pm5 o pm1+m5 o pnl -1
<2Ppt-1<p -1

If ny + ng =r — 1, we obtain ny + mq +ms + ms + my +ms = 1. If ny = 1, then we
have m; = my = ms = b; = by = ms = 0. We obtain

ni1+ma+b1+ms +pm1+m2+m3+a1+m5 4 pm5+b2+m1 4 pn1+n3 ms+ma-+al mi+ms pm -1

p -Pp -D

:pn1+pa1+1+pr—1_pa1_1_pn1_1
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=pl—1<p -1
If m; = 1, then we have ny = my = m3 = by = by = ms = 0. We obtain
mi-+ms

n1+ma+bi+ms +pm1+m2+m3+a1+m5 +pm5+b2+m1 +pn1+n3 ms+ma+ai

p -P -D
— pnl +pa1+m1 +pm1 +pT—1 _ pa1 _ pm1 _ pn1 _ 1
<2t -1<p -1

If my = 1, then we have ny = m; = m3 = by = by = ms = 0. We obtain

pn1+m2+b1+m5 +pm1+m2+m3+a1+m5 4 pm5+bz+m1 4 pn1+n3 _ pm5+m2+al _ pm1+m5
_ pnl—i-mg +pa1+m2 +1 +pT—1 o pa1+m2 -1 _pnl -1
<2pt-1<p -1
If mz = 1, then we have ny = m; = mg = by = by = ms = 0. We obtain
pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 _ pm5+m2+a1 _ pmﬁ-ms
:pm _'_pa1+m3+1_|_pr71_pa1 _1_pn1 _1
<pTt—1<p—1.
If by = 1, then we have ny = my = my = m3 = by = m5 = 0. We obtain
pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 _ pm5+m2+a1 _ pm1+m5
:pn1+b1 +pa1 + 1 +p7’—1 _pal -1 _pnl -1
<2l -1<p -1
If by = 1, then we have ny = m; = my = mg = by = ms = 0. We obtain
pn1+m2+b1+m5 + pm1+m2+m3+al+m5 + pm5+b2+m1 + pn1+n3 o pm5+m2+a1 . pm1+m5
:pn1 +pa1 +p62 _i_prfl _pal _1_pn1 -1
<t -1<p —1.
If ms = 1, then we have ny = m; = mg = m3 = by = by = 0. We obtain
pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 _ pm5+m2+a1 _ pm1+m5

= p" s s s T pts s gt ]
<2Ppt-1<p -1
Thus, we obtain
ms+mo—+ai

ni1+mao+b1+ms mi+mao+ms+ai+ms ms—+ba+my ni+ng mi+ms
+p +p +p

p - P -P
<p" -1

We complete the proof of the lemma.
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