Local p-Rank and Semi-Stable Reduction of Curves

Yu Yang

Abstract

In the present paper, we investigate the local p-ranks of coverings of stable curves. Let G be a finite p-group, $f : Y \rightarrow X$ a morphism of stable curves over a complete discrete valuation ring with algebraically closed residue field of characteristic $p > 0$, x a singular point of the special fiber X_s of X. Suppose that the generic fiber X_0 of X is smooth, and the morphism of generic fibers f_0 is a Galois étale covering with Galois group G. Write Y' for the normalization of X in the function field of Y, $\psi : Y' \rightarrow X$ for the resulting normalization morphism. Let $y' \in \psi^{-1}(x)$ be a point of the inverse image of x. Suppose that the inertia group $I_{y'} \subseteq G$ of y' is an abelian p-group. Then we give an explicit formula for the p-rank of a connected component of $f^{-1}(x)$. Furthermore, we prove that the p-rank is bounded by $\#I_{y'} - 1$ under certain assumptions, where $\#I_{y'}$ denotes the order of $I_{y'}$. These results generalize the results of M. Saüdi concerning local p-ranks of coverings of curves to the case where $I_{y'}$ is an arbitrary abelian p-group.

Keywords: p-rank, semi-stable reduction, semi-stable covering, semi-graph with p-rank.

Mathematics Subject Classification: Primary 14E20; Secondary 14H30.

Contents

1 Introduction and ideas 2

2 Semi-graphs with p-rank 4
 2.1 Definitions .. 5
 2.2 p-ranks and étale-chains of abelian coverings 8
 2.3 Bounds of p-ranks of abelian coverings 18

3 p-ranks of vertical fibers of abelian stable coverings 23
 3.1 p-ranks and stable coverings 23
 3.2 Semi-graphs with p-rank associated to vertical fibers 27
 3.3 p-ranks of vertical fibers 30

4 Appendix 32
1 Introduction and ideas

Let R be a complete valuation ring with algebraically closed residue field k of characteristic $p > 0$, K the quotient field of R, and K an algebraic closure of K. We use the notation S to denote the spectrum of R. Write $\eta, \overline{\eta}$ and s for the generic point, the geometric generic point, and the closed point corresponding to the natural morphisms $\text{Spec } K \to S$, $\text{Spec } K \to S$, and $\text{Spec } k \to S$, respectively. Let X be a stable curve of genus g_X over S. Write X_η, $X_{\overline{\eta}}$, and X_s for the generic fiber, the geometric generic fiber, and the special fiber, respectively. Moreover, we suppose that X_η is smooth over η.

Let Y_η be a geometrically connected curve over η, $f_\eta : Y_\eta \to X_\eta$ a finite Galois étale covering over η with Galois group G. By replacing S by a finite extension of S, we may assume that Y_η admits a stable model over S. Then f_η extends uniquely to a G-stable covering (cf. Definition 3.3) $f : Y \to X$ over S (cf. [L2, Theorem 0.2] or Remark 3.3.1 of the present paper). We are interested in understanding the structure of the special fiber Y_s of Y. If the order $\sharp G$ of G is prime to p, then by the specialization theorem for log étale fundamental groups, f_s is an admissible covering (cf. [Y1]); thus, Y_s may be obtained by gluing together tame coverings of the irreducible components of X_s. On the other hand, if $p\sharp G$, then f_s is not a finite morphism in general. For example, if $\text{char}(K) = 0$ and $\text{char}(k) = p > 0$, then there exists a Zariski dense subset Z of the set of closed points of X, which may in fact be taken to be X when k is an algebraic closure of \mathbb{F}_p, such that for any $x \in Z$, after possibly replacing K by a finite extension of K, there exist a finite group H and an H-stable covering $f_W : W \to X$ such that the fiber $(f_W)^{-1}(x)$ is not finite (cf. [T], [Y2]).

If $f^{-1}(x)$ is not finite, we shall call x a vertical point associated to f and call $f^{-1}(x)$ the vertical fiber associated to x (cf. Definition 3.4). In order to investigate the properties of Y_s, we focus on the geometric invariant $\sigma(Y_s)$ which is called the p-rank of Y_s (cf. Definition 3.1 and Remark 3.1.1). By the definition of the p-rank of a stable curve, to calculate $\sigma(Y_s)$, it suffices to calculate the rank of $H^1(\Gamma_Y, \mathbb{Z})$ (where Γ_Y denotes the dual graph of Y_s), the p-ranks of the irreducible components of Y_s which are finite over X_s, and the p-ranks of the vertical fibers of f. In the present paper, we study the p-rank of a vertical fiber and consider the following problem:

Problem 1.1. Let G be a finite p-group, x be a vertical point associated to the G-stable covering $f : Y \to X$, $f^{-1}(x)$ the vertical fiber associated to x.

(a) Does there exist a minimal bound on the p-rank $\sigma(f^{-1}(x))$ (note that $\sigma(f^{-1}(x))$ is always bounded by the genus of Y_s)?

(b) Does there exist an explicit formula for the p-rank $\sigma(f^{-1}(x))$?

We will answer Problem 1.1 under certain assumptions (cf. Theorem 1.5 and Theorem 1.10). First, let us review some well-known results concerning Problem 1.1.

If x is a nonsingular point, M. Raynaud proved the following result (cf. [R, Théorème 1]):

Theorem 1.2. If x is a non-singular point of X_s, and G is an arbitrary p-group, then the p-rank $\sigma(f^{-1}(x))$ is equal to 0.
By Theorem 1.2, in order to resolve Problem 1.1, it is sufficient to consider the case where \(x \) is a singular point of \(X_s \). In order to explain the results obtained in the present paper, let us introduce some notations. Write \(X_1 \) and \(X_2 \) for the irreducible components of \(X_s \) which contain \(x \), \(\psi : Y' \to X \) for the normalization of \(X \) in the function field of \(Y \). Let \(y' \in \psi^{-1}(x) \) be a point in the inverse image of \(x \). Write \(I_{y'} \subseteq G \) for the inertia group of \(y' \). In order to calculate the \(p \)-rank of \(f^{-1}(x) \), since \(Y/I_{y'} \to X \) is finite étale over \(x \), by replacing \(X \) by the stable model of the quotient \(Y/I_{y'} \) (note that \(Y/I_{y'} \) is a semi-stable curve over \(S \) (cf. [R, Appendice, Corollaire])), we may assume that \(G \) is equal to \(I_{y'} \).

Thus, from the point of view of resolving Problem 1.1, we may assume without loss of generality that \(G = I_{y'} \). In the remainder of this section, we shall assume that \(G = I_{y'} \) is of order \(p^r \) for some positive integer \(r \). Then \(f^{-1}(x) \) is connected. With regard to Problem 1.1 (a), M. Saïd proved the following result (cf. [S, Theorem 1]), by applying Theorem 1.2:

Theorem 1.3. If \(G \) is a cyclic \(p \)-group, then we have \(\sigma(f^{-1}(x)) \leq \sharp G - 1 \), where \(\sharp G \) denotes the order of \(G \).

Furthermore, there is an open problem posed by Saïd as follows (cf. [S, Question]):

Problem 1.4. If \(G \) is an arbitrary \(p \)-group, does there exist a minimal bound on the \(p \)-rank \(\sigma(f^{-1}(x)) \) that depends only on the order \(\sharp G \)?

Let us introduce some notations. Suppose that \(G \) is an abelian \(p \)-group. Let

\[
\Phi : \{1\} = G_r \subset G_{r-1} \subset \cdots \subset G_0 = G
\]

be a maximal filtration of \(G \) (i.e., \(G_i/G_{i+1} \cong \mathbb{Z}/p\mathbb{Z} \) for \(i = 0, \ldots, r - 1 \)). It follows from [R, Appendice, Corollaire], that for \(i = 0, \ldots, r \), \(Y_i := Y/G_i \) is a semi-stable curve over \(S \). Write \(X^{\text{sst}} \) for \(Y/G \) and \(g \) for the resulting morphism \(g : X^{\text{sst}} \to X \) induced by \(f \). Then we obtain a sequence of \(\mathbb{Z}/p\mathbb{Z} \)-semi-stable coverings (cf. Definition 3.3)

\[
\Phi_f : Y = Y_r \xrightarrow{d_r} Y_{r-1} \xrightarrow{d_{r-1}} \cdots \xrightarrow{d_1} Y_0 = X^{\text{sst}} \xrightarrow{g} X.
\]

In the following, we use the subscript “\(\text{red} \)” to denote the reduced induced closed subscheme associated to a scheme. For each \(i = 1, \ldots, r \), write \(\phi_i : Y_i \to Y_0 \) for the composite morphism \(d_1 \circ \cdots \circ d_i \). For simplicity, we suppose that \(C := g^{-1}(x)_{\text{red}} = \bigcup_{j=1}^n P_j \), where, for each \(j = 1, \ldots, n, P_j \) is isomorphic to \(\mathbb{P}^1 \) and meets the other irreducible components of the special fiber \(X^{\text{sst}}_s \) of \(X^{\text{sst}} \) at precisely two points (i.e., a chain of \(\mathbb{P}^1 \)). Thus, the \(p \)-rank \(\sigma(f^{-1}(x)) \) is equal to \(\sigma(\phi_i^{-1}(C)) \). For each \(i = 1, \ldots, r \), we define a set of subcurves of \(C \) associated to \(\Phi_f \), which plays a key role in the present paper, as follows:

\[
\mathcal{E}_i^{\Phi_f} := \phi_i(\text{the étale locus of } d_1|_{\phi_i^{-1}(C)_{\text{red}}} : \phi_i^{-1}(C)_{\text{red}} \to \phi_{i-1}^{-1}(C)_{\text{red}}) \subset C.
\]

We shall call \(\mathcal{E}_i^{\Phi_f} \) the \(i \)-th étale-chain associated to \(\Phi_f \) and call the disjoint union

\[
\mathcal{E}_f^{\Phi_f} := \coprod_i \mathcal{E}_i^{\Phi_f}
\]
the étale-chain associated to \(\Phi_f \). For each connected component \(E \) of \(\mathcal{E}_i^{\Phi_f} \), we use the notation \(l(E) \) to denote the cardinality of the set of the irreducible components of \(E \) and call \(l(E) \) the length of \(E \).

We generalize Saïdi’s result as follows (see also Theorem 3.15):

Theorem 1.5. If \(G \) is an arbitrary abelian \(p \)-group, and \(\mathcal{E}_i \) is connected for each \(i = 1, \ldots, n \), then we have \(\sigma(f^{-1}(x)) \leq \sharp G - 1 \).

Remark 1.5.1. If \(\sharp G \) is equal to \(p \), then we may construct a \(\mathbb{Z}/p\mathbb{Z} \)-stable covering \(f : Y \rightarrow X \) such that there exists a singular vertical point \(x \) such that the \(p \)-rank of \(\sigma(f^{-1}(x)) \) is equal to \(p - 1 \) (cf. [Y4, Section 4]). Thus, at least in the case where \(\sharp G = p \), \(\sharp G - 1 \) is the minimal bound for \(\sigma(f^{-1}(x)) \).

Next, let us consider Problem 1.1 (b). Let \(\{V_i\}_{i=0}^{n+1} \) be a set of irreducible components of the special fiber \(Y_s \) of \(Y \) such that the following conditions are satisfied: (i) \(\phi_r(V_i) = P_i \) if \(i = 1, \ldots, n \); (ii) \(\phi_r(V_0) = X_1 \) and \(\phi_r(V_{n+1}) = X_2 \); (iii) the union \(\cup_{i=0}^{n+1} V_i \) is a connected semi-stable subcurve of the special fiber \(Y_s \) of \(Y \). Write \(I_P \subseteq G \) for the inertia subgroup of \(G \). Note that since \(G \) is an abelian \(p \)-group, \(I_P \) does not depend on the choices of \(V_i \).

If \(G \) is a cyclic \(p \)-group, Saïdi obtained an explicit formula of the \(p \)-rank \(\sigma(f^{-1}(x)) \) as follows (cf. [S, Proposition 1]):

Theorem 1.6. If \(G \) is a cyclic \(p \)-group, and \(I_{P_0} \) is equal to \(G \), then we have
\[
\sigma(f^{-1}(x)) = \sharp(G/I_{\text{min}}) - \sharp(G/I_{P_{n+1}}),
\]
where \(I_{\text{min}} \) denotes the group \(\cap_{i=0}^{n+1} I_{P_i} \).

For a \(G \)-covering of semi-graphs with \(p \)-rank, we develop a general method to compute the \(p \)-rank (cf. Theorem 2.8). As an application, we generalize Saïdi’s formula to the case where \(G \) is an arbitrary abelian \(p \)-group as follows (cf. Theorem 3.9 and Remark 3.9.1):

Theorem 1.7. If \(G \) is an arbitrary abelian \(p \)-group, then we have
\[
\sigma(f^{-1}(x)) = \sum_{i=1}^{n} \sharp(G/I_{P_i}) - \sum_{i=1}^{n+1} \sharp(G/(I_{P_{i-1}} + I_{P_i})) + 1.
\]

Finally, I would mention that by using the theory of semi-graphs with \(p \)-rank, we can generalize Theorem 1.8 to the case where \(G \) is an arbitrary \(p \)-group. Furthermore, we can obtain a global \(p \)-rank formula for the special fiber \(Y_s \) (cf. [Y5]).

The present paper contains two parts. In Section 2, we develop the theory of semi-graphs with \(p \)-rank and calculate the \(p \)-ranks of \(G \)-coverings. In Section 3, we construct a semi-graph with \(p \)-rank from a vertical fiber of a \(G \)-stable covering in a natural way and apply the results of Section 2 to prove Theorem 1.5 and Theorem 1.8.

2 Semi-graphs with \(p \)-rank

In this section, we develop the theory of semi-graphs with \(p \)-rank. We always assume that \(G \) is an abelian \(p \)-group with order \(p^r \).
2.1 Definitions

We begin with some general remarks concerning semi-graphs (cf. [M]). A semi-graph G consists of the following data: (i) A set V_G whose elements we refer to as vertices; (ii) A set E_G whose elements we refer to as edges. Any element $e \in E_G$ is a set of cardinality 2 satisfying the following property: For any $e \neq e' \in E_G$, we have $e \cap e' = \emptyset$; (iii) A set of maps $\{G^e\}_{e \in E_G}$ such that $\zeta_e : e \to V \cup \{V\}$ is a map from the set e to the set $V \cup \{V\}$. For an edge $e \in E_G$, we shall refer to an element $b \in e$ as a branch of the edge e. An edge $e \in E_G$ is called closed (resp. open) if $\zeta_e^{-1}\{\{V\}\} = \emptyset$ (resp. $\zeta_e^{-1}(\{V\}) \neq 0$). A semi-graph will be called finite if both its set of vertices and its set of edges are finite. In the present paper, we only consider finite semi-graphs. Since a semi-graph can be regarded as a topological space, we shall call G a connected semi-graph if G is connected as a topological space.

Let G be a semi-graph. Write $v(G)$ for the set of vertices of G, $e(G)$ for the set of closed edges of G, and $e'(G)$ for the set of open edges of G. For any element $v \in v(G)$, write $b(v)$ for the set of branches $\cup_{e \in e(G), e' \in e'(G)} \zeta_e^{-1}(v)$. For any element $e \in e(G) \cup e'(G)$, write $v(e)$ for the set which consists of the elements of $v(G)$ which are abutted by e. A morphism between semi-graphs $G \to \mathbb{H}$ is a collection of maps $v(G) \to v(\mathbb{H})$; $e(G) \cup e'(G) \to e(\mathbb{H}) \cup e'(\mathbb{H})$; and for each $e_G \in e(G) \cup e'(G)$ mapping to $e_H \in e(\mathbb{H}) \cup e'(\mathbb{H})$, a bijection $e_G \to e_H$; all of which are compatible with the $\{G^e\}_{e \in e(G) \cup e'(G)}$ and $\{G^e\}_{e \in e(G) \cup e'(G)}$.

A sub-semi-graph G' of G is a semi-graph satisfying the following properties: (i) $v(G')$ (resp. $e(G') \cup e'(G')$) is a subset of $v(G)$ (resp. $e(G) \cup e'(G)$); (ii) If $e \in e(G')$, then we have $\zeta_e^{G'}(e) = \zeta_e^G(e)$; (iii) If $e = \{b_1, b_2\}$ is an element of $e'(G')$ such that $\zeta_e^{G'}(b_1) \in v(G')$ and $\zeta_e^{G'}(b_2) \not\in v(G')$, then we have $\zeta_e^{G'}(b_1) = \zeta_e^G(b_1)$ and $\zeta_e^{G'}(b_2) = \{v(G')\}$.

Definition 2.1. Let G' be a sub-semi-graph of a semi-graph G. We define a semi-graph $G \setminus G'$ as follows: (i) The set of vertices $v(G \setminus G')$ is $v(G) \setminus v(G')$; (ii) The set of closed edges $e(G \setminus G')$ is $e(G) \setminus e(G')$; (iii) The set of open edges $e'(G \setminus G')$ is $\{e \in e(G) \mid v(e) \cap v(G') \neq \emptyset \text{ in } G\}$; (iv) For any $e = \{b_1, \ldots, b_k\} \subset e(G \setminus G') \cup e'(G \setminus G')$, we have $\zeta_e^{G \setminus G'}(b_1) = \zeta_e^G(b_1)$ (resp. $\zeta_e^{G \setminus G'}(b_1) = \{v(G \setminus G')\}$) if $\zeta_e^G(b_1) \not\in v(G')$ (resp. $\zeta_e^G(b_1) \in v(G')$).

Definition 2.2. (a) Let n be a positive natural number and \mathbb{P}_n a semi-graph such that the following conditions hold: (i) $v(\mathbb{P}_n) = \{p_1, \ldots, p_n\}$, $e(\mathbb{P}_n) = \{e_{1,2}, \ldots, e_{n-1}\}$ and $e'(\mathbb{P}_n) = \{e_{0,1}, e_{n,n+1}\}$; (ii) $v(e_{i,i+1}) = \{p_i, p_{i+1}\}$; (iii) $v(e_{0,1}) = \{p_1\}$ and $v(e_{n,n+1}) = \{p_n\}$. We define \mathcal{G} to be a triple $(G, \sigma_\mathcal{G}, \beta_\mathcal{G})$ which consists of a semi-graph G, a map $\sigma_\mathcal{G} : v(G) \to \mathbb{Z}$ and a morphism of semi-graphs $\beta_\mathcal{G} : G \to \mathbb{P}_n$. We shall call \mathcal{G} a n-semigraph with p-rank. We shall refer to G as the underlying semi-graph of \mathcal{G}, $\sigma_\mathcal{G}$ as the p-rank map of \mathcal{G}, $\beta_\mathcal{G}$ as the base morphism of \mathcal{G}, respectively. We define $\mathbb{P}_n = (\mathbb{P}_n, \sigma_\mathbb{P}_n, \beta_\mathbb{P}_n)$ as follows: $\sigma_\mathbb{P}_n(p_i)$ is equal to 0 for each $i = 1, \ldots, n$, and $\beta_\mathbb{P}_n = \text{id}_{\mathbb{P}_n}$ is an identity morphism of semi-graph \mathbb{P}_n. We shall call \mathbb{P}_n a n-chain.

(b) We define the p-rank $\sigma(\mathcal{G})$ of \mathcal{G} as follows:

$$\sigma(\mathcal{G}) := \sum_{v \in v(G)} \sigma(v) + \sum_{G_i \in \pi_0(\mathcal{G})} \text{rank}_\mathbb{Z} H^1(G_i, \mathbb{Z}),$$

where $\pi_0(-)$ denotes the set of connected components of $(-)$.

(c) \mathcal{G} is called connected if the underlying semi-graph G is a connected semi-graph.
From now on, we only consider connected n-semi-graphs with p-rank. Let $\mathcal{G}^1 := (G^1, \sigma_{G^1}, \beta_{G^1})$ and $\mathcal{G}^2 := (G^2, \sigma_{G^2}, \beta_{G^2})$ be two n-semi-graphs with p-rank. A morphism between \mathcal{G}^1 and \mathcal{G}^2 is defined by a morphism of the underlying semi-graphs $\beta : G^1 \rightarrow G^2$ such that $\beta_{G^2} \circ \beta = \beta_{G^1}$. We use the notation $b : \mathcal{G}^1 \rightarrow \mathcal{G}^2$ to denote the morphism of semi-graphs with p-rank determined by $\beta : G^1 \rightarrow G^2$ and call β the underlying morphism of b. Note that for any n-semi-graph with p-rank $\mathcal{G} := (G, \sigma_\mathcal{G}, \beta_\mathcal{G})$, there is a natural morphism $b_\mathcal{G} : \mathcal{G} \rightarrow \mathcal{P}_n$ determined by the morphism of underlying semi-graphs $\beta_\mathcal{G} : G \rightarrow \mathbb{P}_n$.

Write b_i^1 (resp. b_i^2) for $\zeta_{i-1,i_1}^1(p_i)$ (resp. $\zeta_{i-1,i_2}^2(p_i)$). For any element $v_i \in \beta_{\mathcal{G}^1}^{-1}(p_i)$, write $b_{l}(v_i)$ (resp. $b_{r}(v_i)$) for the set

$$\{b \in b(v_i) \mid \beta_\mathcal{G}(b) = b_i^1\}$$

(resp. $\{b \in b(v_i) \mid \beta_\mathcal{G}(b) = b_i^2\}$).

Definition 2.3. Let $b : \mathcal{G}^1 := (G^1, \sigma_{G^1}, \beta_{G^1}) \rightarrow \mathcal{G}^2 := (G^2, \sigma_{G^2}, \beta_{G^2})$ be a morphism of n-semi-graphs with p-rank, β the underlying morphism of b, $e \in e(G^1) \cup e'(G^1)$ an edge, v_1 a vertex of G^1 contained in $\beta_{\mathcal{G}^1}^{-1}(p_i)$, and $v_2 := \beta(v_1) \in \beta_{\mathcal{G}^2}^{-1}(p_i)$ the image of v_1.

1. We shall call b p-étale (resp. p-purely inseparable) at e if $\sharp \beta^{-1}(\beta(e)) = p$ (resp. $\sharp \beta^{-1}(\beta(e)) = 1$). We shall call b p-generically étale at $v_1 \in \beta_{\mathcal{G}^1}^{-1}(p_i)$ if one of the following étale types holds:
 - **(Type-I)** $\sharp \beta^{-1}(v_2) = p$ and $\sigma_{\mathcal{G}^1}(v_1) = \sigma_{\mathcal{G}^2}(v_2)$;
 - **(Type-II)** $\sharp \beta^{-1}(v_2) = 1$, $\sharp b_l(v_1) = p \sharp b_l(v_2)$, $\sharp b_r(v_1) = p \sharp b_r(v_2)$, and $\sigma_{\mathcal{G}^1}(v_1) - 1 = p(\sigma_{\mathcal{G}^2}(v_2) - 1)$;
 - **(Type-III)** If $\sharp \beta^{-1}(v_2) = 1$, $\sharp b_l(v_1) = \sharp b_l(v_2)$, $\sharp b_r(v_1) = p \sharp b_r(v_2)$, and $\sigma_{\mathcal{G}^1}(v_1) - 1 = p(\sigma_{\mathcal{G}^2}(v_2) - 1) + (\sharp b_l(v_1))(p - 1)$;
 - **(Type-IV)** $\sharp \beta^{-1}(v_2) = 1$, $\sharp b_l(v_1) = p \sharp b_l(v_2)$, $\sharp b_r(v_1) = \sharp b_r(v_2)$, and $\sigma_{\mathcal{G}^1}(v_1) - 1 = p(\sigma_{\mathcal{G}^2}(v_2) - 1) + (\sharp b_r(v_1))(p - 1)$;
 - **(Type-V)** $\sharp \beta^{-1}(v_2) = 1$, $\sharp b_l(v_1) = \sharp b_l(v_2)$, $\sharp b_r(v_1) = \sharp b_r(v_2)$, and $\sigma_{\mathcal{G}^1}(v_1) - 1 = p(\sigma_{\mathcal{G}^2}(v_2) - 1) + (\sharp b_l(v_1) + \sharp b_r(v_1))(p - 1)$.

2. We shall call b purely inseparable at $v_1 \in \beta_{\mathcal{G}^1}^{-1}(p_i)$ if $\sharp \beta^{-1}(v_2) = 1$, $\sharp b_l(v_1) = \sharp b_l(v_2)$, $\sharp b_r(v_1) = \sharp b_r(v_2)$, and $\sigma_{\mathcal{G}^1}(v_1) = \sigma_{\mathcal{G}^2}(v_2)$ hold.

3. We shall call b a p-covering if the following conditions hold: (i) There exists a $\mathbb{Z}/p\mathbb{Z}$-action (which may be trivial) on G^1 (resp. a trivial $\mathbb{Z}/p\mathbb{Z}$-action on G^2), and the underlying morphism β of b is compatible with the $\mathbb{Z}/p\mathbb{Z}$-actions. Then the natural morphism $G^1/\mathbb{Z}/p\mathbb{Z} \rightarrow G^2$ induced by b is an isomorphism; (ii) For any $v \in v(G^1)$, b is either p-generically étale or purely inseparable at v; (iii) Let $e \in e(G^1)$ and $v(e) = \{v, v'\}$. If b is p-generically étale at v and v', then b is p-étale at e; (iv) For any $v \in v(G^1)$, then $\sigma_{\mathcal{G}^1}(v) = \sigma_{\mathcal{G}^1}(\tau(v))$ holds for each $\tau \in \mathbb{Z}/p\mathbb{Z}$.

6
Note that by the definition of p-covering, the identity morphism of a semi-graph with p-rank is a p-covering.

(d) We shall call b a covering if b is a composite of p-coverings.

(e) We shall call

$$\Phi : \{1\} = G_r \subset G_{r-1} \subset \cdots \subset G_1 \subset G_0 = G$$

an maximal filtration of G if $G_j/G_{j+1} \cong \mathbb{Z}/p\mathbb{Z}$ for each $j = 1, \ldots, r - 1$. Suppose that G^1 (resp. G^2) admits a (resp. trivial) G-action (which may be trivial). Then for any maximal filtration Φ of G, there is a sequence of semi-graphs induced by Φ:

$$G^1 = G_r \xrightarrow{\beta_r} G_{r-1} \xrightarrow{\beta_{r-1}} \cdots \xrightarrow{\beta_1} G_0,$$

where G_j denotes the quotient of G^1 by G_j. We shall call b a G-covering if for any maximal filtration Φ of G, there exists a set of p-coverings $\{b_j : G_j \twoheadrightarrow G_{j-1}, j = 1, \ldots, r\}$ such that the following conditions hold: (i) the underlying morphism β of b is compatible with the G-actions, and the natural morphism $G^1/G \twoheadrightarrow G^2$ induced by β is an isomorphism; (ii) The underlying graph of G_j is equal to G_j for each $j = 0, \ldots, r$; (iii) The underlying morphism $G_j \twoheadrightarrow G_{j-1}$ of b_j is equal to β_j for each $j = 1, \ldots, r$; (iv) The composite morphism $b_1 \circ \cdots \circ b_r$ is equal to b. Then we obtain a sequence of p-coverings:

$$\Phi_{G} : G^1 = G_r \xrightarrow{b_r} G_{r-1} \xrightarrow{b_{r-1}} \cdots \xrightarrow{b_1} G_0 = G^2.$$

We shall call Φ_{G} a sequence of p-coverings induced by Φ.

(f) Let G be a n-semi-graph with p-rank. We shall call G a covering (resp. G-covering) over G, if b is a covering (resp. G-covering).

(g) Let $b : G^1 \twoheadrightarrow G^2$ be a G-covering, $v \in v(G)$ a vertex, and $e \in e(G) \cup e'(G)$ an edge. For any subgroup $H \subseteq G$, by Definition 2.3 (e), there exists a maximal filtration Φ^H and the sequence of p-coverings

$$\Phi^H_{G} : G^1 = G_r \xrightarrow{b^H_r} G_{r-1} \xrightarrow{b^H_{r-1}} \cdots \xrightarrow{b^H_1} G_0 = G^2$$

induced by Φ^H such that there exists i such that the underlying graph of G_i is isomorphic to G^1/H. We write G^1/H for G_i. Thus, the natural morphism $b^H_1 \circ \cdots \circ b^H_r : G^1/H \twoheadrightarrow G^2$ is a covering. Then we define five subgroups of G as follows:

$$D_v := \{\tau \in G \mid \tau(v) = v\},$$

$$I_v := \text{the maximal element of } \{H \subseteq G \mid G^1/H \text{ is purely inseparable at } v\},$$

$$I^l_v(b) := \{\tau \in D_v \mid \tau(b) = b \text{ for a branch } b \in b_l(v)\}/I_v,$$

$$I^l_v(b) := \{\tau \in D_v \mid \tau(b) = b \text{ for a branch } b \in b_r(v)\}/I_v,$$

$$I_e := \{\tau \in G \mid \tau(e) = e\}.$$
does not depend on the choice of \(b \in b_i(v) \) (resp. \(b \in b_r(v) \)), then we denote this group briefly by \(I_v^i \) (resp. \(I_v^r \)). Define

\[
D_v^e = D_v/(I_v^i / (I_v^i \cap I_v^r) \oplus I_v^r / (I_v^r \cap I_v^i) \oplus I_v^i \cap I_v^r \oplus I_v).
\]

Then we have the following exact sequence

\[
0 \longrightarrow I_v^i / (I_v^i \cap I_v^r) \oplus I_v^r / (I_v^r \cap I_v^i) \oplus I_v^i \cap I_v^r \oplus I_v \longrightarrow D_v \longrightarrow D_v^e \longrightarrow 0.
\]

Remark 2.3.1. Let \(\mathfrak{G} \) be a \(G \)-covering over \(\mathfrak{P}_n \) and \(v_i \in \beta_{\mathfrak{G}}^{-1}(p_i) \) a vertex of the underlying graph of \(\mathfrak{G} \). Then we have the following Deuring-Shafarevich type formula (cf. Proposition 3.2 for the Deuring-Shafarevich formula for curves)

\[
\sigma_{\mathfrak{G}}(v_i) - 1 = -\sharp D_{v_i}/I_{v_i} + \sharp((D_{v_i}/I_{v_i})/I_{v_i}^i)(\sharp I_{v_i}^r - 1) + \sharp((D_{v_i}/I_{v_i})/I_{v_i}^r)(\sharp I_{v_i}^i - 1).
\]

Let \(\mathfrak{G} \) be a \(G \)-covering over \(\mathfrak{P}_n \). By the definition of \(G \)-coverings, for any maximal filtration \(\Phi \) of \(G \), we have a sequence of \(p \)-coverings of \(n \)-semi-graphs with \(p \)-rank

\[
\Phi_{\mathfrak{G}} : \mathfrak{G} = \mathfrak{G}_r \xrightarrow{b_r} \mathfrak{G}_{r-1} \xrightarrow{b_{r-1}} \ldots \xrightarrow{b_1} \mathfrak{G}_0 = \mathfrak{P}_n
\]

induced by \(\Phi \). For each \(j = 1, \ldots, r \), we write \(\mathcal{V}_{j}^{\text{et}} \) for the set

\[
\{ v \in v(\mathfrak{G}_j) \mid b_j \text{ is étale at } v \},
\]

\(\mathcal{E}_{j}^{\text{et}} \) for the set

\[
\{ e \in e(\mathfrak{G}_j) \cup e'(\mathfrak{G}_j) \mid b_j \text{ is étale at } e \}.
\]

Since \((\mathcal{V}_{j}^{\text{et}}, \mathcal{E}_{j}^{\text{et}}) \) admits a natural structure of semi-graph induced by \(\mathfrak{G}_j \), we may regard \((\mathcal{V}_{j}^{\text{et}}, \mathcal{E}_{j}^{\text{et}}) \) as a sub-semi-graph of \(\mathfrak{G}_j \). Thus, the image \(\beta_{\Phi_j}((\mathcal{V}_{j}^{\text{et}}, \mathcal{E}_{j}^{\text{et}})) \) can be regarded as a sub-semi-graph of \(\mathfrak{P}_n \).

Definition 2.4. We shall call \(\mathbb{E}_{j}^{\Phi} := \beta_{\Phi_j}((\mathcal{V}_{j}^{\text{et}}, \mathcal{E}_{j}^{\text{et}})) \) (resp. the disjoint union \(\mathbb{E}^{\Phi} := \bigsqcup_{j} \mathbb{E}_{j}^{\Phi} \)) the \(j \)-th étale-chain (resp. the étale-chain) associated to \(\Phi_{\mathfrak{G}} \).

2.2 \(p \)-ranks and étale-chains of abelian coverings

Let \(\mathfrak{G} := (\mathfrak{G}, \sigma_{\mathfrak{G}}, \beta_{\mathfrak{G}}) \) be a \(G \)-covering over \(\mathfrak{P}_n \). We introduce two operators for \(\mathfrak{G} \).

Operator I: First, let us define a \(G \)-covering \(\mathfrak{G}^*[p_i] \) over \(\mathfrak{P}_n \). For any \(p_i \in v(\mathfrak{P}_n) \), let \(v_i \) be an element of \(\beta_{\mathfrak{G}}^{-1}(p_i) \).

If \(\sharp \beta_{\mathfrak{G}}^{-1}(p_i) = 1 \) (i.e., \(D_{v_i} = G \)), then we define \(\mathfrak{G}^*[p_i] \) to be \(\mathfrak{G} \); If \(\sharp \beta_{\mathfrak{G}}^{-1}(p_i) \neq 1 \), we define a new semi-graph \(\mathfrak{G}^*[p_i] \) as follows.

Define \(v(\mathfrak{G}^*[p_i]) \) (resp. \(e(\mathfrak{G}^*[p_i])\cup e'(\mathfrak{G}^*[p_i]) \)) to be the disjoint union \((v(G)\setminus\beta_{\mathfrak{G}}^{-1}(p_i))\bigsqcup\{v^*\} \) (resp. \(e(G)\cup e'(G) \)).

The collection of maps \(\{\zeta_e^{\mathfrak{G}^*[p_i]}\}_e \) is as follows: (i) For any branch \(b \notin \cup_{v \in \beta_{\mathfrak{G}}^{-1}(p_i)} b(v) \), \(\zeta_e^{\mathfrak{G}^*[p_i]}(b) = \zeta_e^{\mathfrak{G}}(b) \) if \(b \in e \) and \(\zeta_e^{\mathfrak{G}^*[p_i]}(b) = \emptyset \) if \(b \notin e \); (ii) For any \(v \in \beta_{\mathfrak{G}}^{-1}(p_i) \) and any branch \(b \in b(v) \), \(\zeta_e^{\mathfrak{G}^*[p_i]}(b) = v^* \) if \(b \in e \) and \(\zeta_e^{\mathfrak{G}^*[p_i]}(b) = \emptyset \) if \(b \notin e \).
We define a map \(\sigma_{\ast}[p_i] : v(G^*[p_i]) \rightarrow \mathbb{Z} \) as follows: (i) If \(v^* \neq v \in v(G^*[p_i]) \), then we have \(\sigma_{\ast}[p_i](v) := \sigma(v) \); (ii) If \(v = v^* \), then we have

\[
\sigma_{\ast}[p_i](v^*) := -\sharp(G/I_{v}) + \sum_{v \in \beta_{\phi}^{-1}(p_i)} \sum_{b \in b_i(v)} (\sharp I^b_v - 1) + \sum_{v \in \beta_{\phi}^{-1}(p_i)} \sum_{b \in b_i(v)} (\sharp I^b_v - 1) + 1
\]

Thus, the triple \(\mathfrak{G}^*[p_i] := (G^*[p_i], \sigma_{\ast}[p_i], \beta_{\phi}[p_i]) \) is a \(n \)-semi-graph with \(p \)-rank.

Moreover, \(G^*[p_i] \) admits a natural \(G \)-action as follows: (i) The action of \(G \) on \(v(G^*[p_i]) \setminus \{v^*\} \) (resp. \(e(G^*[p_i]) \cup e'(G^*[p_i]) \)) is the action of \(G \) on \(v(G) \setminus \beta_{\phi}^{-1}(p_i) \) (resp. \(e(G) \cup e'(G) \)); (ii) For any \(\tau \in G \), we have \(\tau(v^*) = v^* \).

Let us explain that with the \(G \)-action defined above, \(\mathfrak{G}^*[p_i] \) is a \(G \)-covering over \(\mathfrak{P}_n \). Let

\[\Phi : \{1\} = G_r \subset G_{r-1} \subset \cdots \subset G_1 \subset G_0 = G \]

be an arbitrary maximal filtration of \(G \). Write

\[\Phi_\theta : \mathfrak{G} = G_r \xrightarrow{b_r} G_{r-1} \xrightarrow{b_{r-1}} \cdots \xrightarrow{b_1} \mathfrak{G}_0 = \mathfrak{P}_n \]

for the sequence of \(p \)-coverings of \(n \)-semi-graphs with \(p \)-rank induced by \(\Phi \). Note that for each \(j = 0, \ldots, r \), \(\mathfrak{G}_j \) is a \(G/J_{G_j} \)-covering over \(\mathfrak{P}_n \). By the construction of \(\mathfrak{G}_j^*[p_i] \), we have

\[\Phi_{\ast}^*[p_i] : \mathfrak{G}_j^*[p_i] = (\mathfrak{G}_j^*[p_i]_1 \xrightarrow{b_j[p_i]} \mathfrak{G}_{j-1}^*[p_i] \xrightarrow{b_{j-1}[p_i]} \cdots \xrightarrow{b_1[p_i]} \mathfrak{P}_n) \]

is a sequence of \(p \)-coverings of \(n \)-semi-graphs with \(p \)-rank. Thus, \(\mathfrak{G}^*[p_i] \) can be regarded as a \(G \)-covering over \(\mathfrak{P}_n \).

Note that by the construction of \(\mathfrak{G}^*[p_i] \), we see that \(E_j^\Phi = E_j^{\Phi_{\ast}^*[p_i]} \) for each \(j = 1, \ldots, r \).

Operator II: Let us define a \(G \)-covering \(\mathfrak{G}^*[p_i] \) over \(\mathfrak{P}_n \). For any \(p_i \in v(\mathfrak{P}_n) \), let \(v_i \) be an element of \(\beta_{\phi}^{-1}(p_i) \). Since \(G \) is a abelian group, we may write \(\{v_i^u\}_{u \in G/D_{v_i}} \) for \(\beta_{\phi}^{-1}(p_i) \), and \(\{v_i^u\}_{u \in G/D_{v_i}} \) admits an natural action of \(G \) on the index set \(G/D_{v_i} \). We define a new semi-graph \(G^*[p_i] \) as follows. If \(\beta_{\phi}^{-1}(p_i) \neq \emptyset \) (resp. \(e(G^*[p_i]) \cup e'(G^*[p_i]) \)), then \(G^*[p_i] \) to be \(G \). If \(\beta_{\phi}^{-1}(p_i) = \emptyset \), then we have \(\beta_{\phi}^{-1}(p_i)(e) = \beta_{\phi}(e) \).

Then \(\beta_{\phi}^{-1}(b_i) = \{b_i^u \}_{u \in G/D_{v_i}, s \in I_{v_i}^u \cap I_{v_i}^u \cap I_{v_i} \cap D_{v_i}} \) admits a natural action of \(G \) as follows:

\[
\tau(b_i^u, s) = b_i^u, \tau(s) \quad \text{if } \tau \in G/D_{v_i} \]

and

\[
\tau(b_i^u, s) = b_i^u, \tau(s) \quad \text{if } \tau \notin G/D_{v_i}.
\]

Define \(v(G^*[p_i]) \) (resp. \(e(G^*[p_i]) \cup e'(G^*[p_i]) \)) to be the disjoint union \(v(G) \setminus \beta_{\phi}^{-1}(p_i) \)

\[\prod \{v_i^u \}_{u \in G/D_{v_i}, s \in D_{v_i}} \]

(resp. \(e(G) \cup e'(G) \)). \{v_i^u \}_{u \in G/D_{v_i}, s \in D_{v_i}} \) admits a natural \(G \)-action.
as follows: For each \(\tau \in G \), \(\tau(v^*_{u,t}) = v^*_{\tau u,t} \) if \(\tau \not\in D_{vi} \), \(\tau(v^*_{u,t}) = v^*_{u,\tau t} \) if \(\tau \in D_{vi} \), and \(\tau(v^*_{u,t}) = v^*_{u,t} \) if \(\tau \in I_{vi}^l + I_{vi}^r + I_{vi} \).

The collection of maps \(\{ \zeta_{vi}^{G^*[p_1]} \}_e \) is as follows: (i) For any branch \(b \not\in \cup_{v \neq v_i} b(v) \), \(\zeta_{vi}^{G^*[p_1]}(b) = \zeta_i^{G}(b) \) if \(b \in e \) and \(\zeta_{vi}^{G^*[p_1]}(b) = \emptyset \) if \(b \not\in e \); (ii) \(\zeta_{vi}^{G^*[p_1]}(b) = v^*_{u,t} \) if \(b = b_i^{u,s,t} \in e \) (resp. \(\zeta_{vi}^{G^*[p_1]}(b) = 0 \) if \(b \not\in e \)).

We define a map \(\sigma_{G^*[p_1]} : v(G^*[p_1]) \to \mathbb{Z} \) as follows: If \(v^*_{u,t} \neq v \in v(G^*[p_1]) \), then we have \(\sigma_{G^*[p_1]}(v) = \sigma_{G}(v) \); If \(v = v^*_{u,t} \) then we have

\[
\sigma_{G^*[p_1]}(v) = -z(I_{vi}^l + I_{vi}^r) + \sharp((I_{vi}^l + I_{vi}^r)/I_{vi}^l)(\#I_{vi}^l - 1) + \sharp((I_{vi}^l + I_{vi}^r)/I_{vi}^l)(\#I_{vi}^l - 1) + 1.
\]

We define a morphism of semi-graphs \(\beta_{G^*[p_1]} : G^*[p_1] \to \mathbb{P}_n \) as follows: (i) For any \(v \in v(G^*[p_1]) \), then \(\beta_{G^*[p_1]}(v) = p_i \) if \(v \in \{ v_{u,t} \}_{u \in G/D_{vi}, t \in D_{vi}^e} \) and \(\beta_{G^*[p_1]}(v) = \beta_{G}(v) \) if \(v \not\in \{ v_{u,t} \}_{u \in G/D_{vi}, t \in D_{vi}^e} \); (ii) If \(e \in e(G^*[p_1]) \cup e'(G^*[p_1]) \), then we have \(\beta_{G^*[p_1]}(e) = \beta_{G}(e) \).

Thus, the triple \(G^*[p_1] := (G^*[p_1], \sigma_{G^*[p_1]}, \beta_{G^*[p_1]}) \) is a n-semi-graph with p-rank.

Moreover, \(G \) admits a natural G-action as follows: (i) the action of \(G \) on \(v(G^*[p_1]) \setminus \{ v_{u,t} \}_{u \in G/D_{vi}, t \in D_{vi}^e} \) (resp. \(e(G^*[p_1]) \cup e'(G^*[p_1]) \)) is the action of \(G \) on \(v(G) \setminus \beta^{-1}(p_1) \) (resp. \(e(G) \cup e'(G) \)); (ii) The action of \(G \) on \(\{ v_{u,t} \}_{u \in G/D_{vi}, t \in D_{vi}^e} \) is the action defined above.

Let us explain that with the G-action defined above, \(G^*[p_1] \) is a G-covering over \(\mathbb{P}_n \).

Let \(\Phi : \{ 1 \} = G_r \subset G_{r-1} \subset \cdots \subset G_1 \subset G_0 = G \) be an arbitrary maximal filtration of \(G \). Write

\[
\Phi_{G} : G = G_r \xrightarrow{b_r} G_{r-1} \xrightarrow{b_{r-1}} \cdots \xrightarrow{b_1} G_0 = \mathbb{P}_n
\]

for the sequence of p-coverings of n-semi-graphs with p-rank induced by \(\Phi \). Note that for each \(j = 0, \ldots, r \), \(G_j \) is a G/G_j-covering over \(\mathbb{P}_n \). By the construction of \(G_j^*[p_1] \), we have

\[
\Phi_{G^*[p_1]} : G^*[p_1] = G^*[p_1] \xrightarrow{b_r^*[p_1]} G^*[p_1]_{r-1} \xrightarrow{b_{r-1}^*[p_1]} \cdots \xrightarrow{b_1^*[p_1]} \mathbb{P}_n
\]

is a sequence of p-coverings of n-semi-graphs with p-rank. Thus, \(G^*[p_1] \) can be regarded as a G-covering over \(\mathbb{P}_n \).

Note that by the construction of \(G^*[p_1] \), we see that \(E_j^{\Phi_{G^*[p_1]}} = E_j^{G^*[p_1]} \) for each \(j = 1, \ldots, r \).

Definition 2.5. Let \(G := (G, \sigma_G, \beta_G) \) be a G-covering over \(\mathbb{P}_n, p_i \) a vertex of \(v(\mathbb{P}_n) \). We define an operator \(\Rightarrow_{II} \) (resp. \(\Rightarrow_{I} \)) from a G-covering to a G-covering to be

\[
\Rightarrow_{II} (p_i)(G) = G^*[p_1]
\]

(resp. \(\Rightarrow_{I} (p_i)(G) := G^*[p_1] \)).

Lemma 2.6. Let \(G \) be a G-covering over \(\mathbb{P}_n \) and \(G \) the underlying semi-graph of \(G \). Let \(G^c \) be a semi-graph defined as follows: (i) \(v(G^c) = v(G) \cup \{ v_0, v_{n+1} \} \); (ii) \(e(G^c) = e(G) \cup e'(G) \) and \(e'(G') = 0 \); (iii) \(e^c_{G'} = e^c_{G} \) if \(\beta_G(e) \not\in (e_0, 1, e_{n+1}) \); (iv) \(e = \{ b', b' \} \) such that the image \(\beta_G(e) = e_0 + 1 \) and \(e^c_G(b') = v(G) \) (resp. the image \(\beta_G(e) = e_{n+1} + 1 \) and \(e^c_G(b') = v(G) \), we have \(e^c_G(b') = v_0 \) (resp. \(e^c_G(b') = v_{n+1} \)). Let \(I_{e_0} \) (resp. \(I_{e_{n+1}} \)) be the inertia group of an element of \(\beta_G^{-1}(e_0) \) (resp. \(\beta_G^{-1}(e_{n+1}) \)). Note that since \(G \) is...
an abelian group, $I_{e_0,1}$ (resp. $I_{e_{n+1}}$) does not depend on the choice of the elements of $\beta^{-1}_\varnothing(e_{0,1})$ (resp. $\beta^{-1}_\varnothing(e_{n,n+1})$). Then we have

$$\text{rank}_\mathbb{Z} \text{H}^1(G^c, \mathbb{Z}) - \text{rank}_\mathbb{Z} \text{H}^1(G, \mathbb{Z}) = \sharp G/I_{e_0,1} - 1 + \sharp G/I_{e_{n+1}} - 1.$$

Proof. The lemma follows from the construction of G^c immediately. □

Proposition 2.7. Let $\mathfrak{G} := (G, \sigma, \beta)$ be a G-covering over \mathfrak{P}_n and p, a vertex of $v(\mathfrak{P}_n)$. Then we have $\sigma(\mathfrak{G}) = \sigma(\mathfrak{G}^*[p])$ and $\sigma(\mathfrak{G}) = \sigma(\mathfrak{G}^*[p])$.

Proof. Let $v_1 \in \beta^{-1}_\varnothing(p)$. If $\sharp \beta^{-1}_\varnothing(p) = 1$ (resp. $\sharp \beta^{-1}_\varnothing(p) = \sharp G/I_{e_0,1}$), by the definition of Operator I (resp. Operator II), the proposition is trivial. Then we may assume that $\sharp \beta^{-1}_\varnothing(p) \neq 1$ (resp. $\sharp \beta^{-1}_\varnothing(p) \neq \sharp G/I_{e_0,1}$). Write $I_{e_0,1}$ (resp. $I_{e_{n+1}}$) for the inertia group of an element of $\beta^{-1}_\varnothing(e_{0,1})$ (resp. $\beta^{-1}_\varnothing(e_{n,n+1})$).

First, we will prove the proposition under the assumption that $I_{e_0,1} = I_{e_{n+1}} = G$ holds. Write $(-)$ for the rank of a semi-graph $(-)$ (i.e., the rank of $\text{H}^1((-), \mathbb{Z})$ as a free \mathbb{Z}-module). Thus, we have

$$\sigma(\mathfrak{G}) = \sum_{v \in \beta^{-1}_\varnothing(p)} \sigma(v) + \sum_{v \in (G \setminus \beta^{-1}_\varnothing(p))} \sigma(v) + \text{r}(G \setminus \beta^{-1}_\varnothing(p)),

\sigma(\mathfrak{G}^*[p]) = \sigma^*[p](v^*), + \sum_{v \in (G \setminus \beta^{-1}_\varnothing(p))} \sigma(v) + \text{r}(G \setminus \beta^{-1}_\varnothing(p))

$$

and

$$\sigma(\mathfrak{G}^*[p]) = \sum_{v \in \beta^{-1}_\varnothing(p)} \sigma^*[p](v) + \sum_{v \in (G \setminus \beta^{-1}_\varnothing(p))} \sigma(v) + \text{r}(G \setminus \beta^{-1}_\varnothing(p))

\sigma(\mathfrak{G}^*[p]) = \sum_{v \in \beta^{-1}_\varnothing(p)} \sigma^*[p](v) + \sum_{v \in (G \setminus \beta^{-1}_\varnothing(p))} \sigma(v) + \text{r}(G \setminus \beta^{-1}_\varnothing(p))

Note that we have $\text{r}(G \setminus \beta^{-1}_\varnothing(p)) = \text{r}(G^*[p] \setminus \beta^{-1}_\varnothing(p)) = \text{r}(G^*[p] \setminus \beta^{-1}_\varnothing(p))$ and $\sum_{v \in (G \setminus \beta^{-1}_\varnothing(p))} \sigma(v) = \sum_{v \in (G \setminus \beta^{-1}_\varnothing(p))} \sigma^*[p](v) = \sum_{v \in (G \setminus \beta^{-1}_\varnothing(p))} \sigma^*[p](v).

First, let us prove $\sigma(\mathfrak{G}) = \sigma(\mathfrak{G}^*[p])$. We follow the notations of Operator I. We have

$$\sigma(\mathfrak{G}) = \sum_{v \in \beta^{-1}_\varnothing(p)} \sigma(v) + \sum_{v \in (G \setminus \beta^{-1}_\varnothing(p))} \sigma(v) + \text{r}(G \setminus \beta^{-1}_\varnothing(p))

+ \sharp G/D_{v_1}(\sharp ((D_{v_1}/I_{v_1})/I_{v_1}^1) - 1 + \sharp ((D_{v_1}/I_{v_1})/I_{v_1}^1) - 1) + \sharp G/D_{v_1} - 1

= \sharp G/D_{v_1}(-\sharp D_{v_1}/I_{v_1} + \sharp ((D_{v_1}/I_{v_1})/I_{v_1}^1)(\sharp I_{v_1}^1 - 1) + \sharp ((D_{v_1}/I_{v_1})/I_{v_1}^1)(\sharp I_{v_1}^1 - 1) + 1)$$

11
Thus, \(\sigma(\mathcal{G}) = \sigma(\mathcal{G}^{*}[p_i]) \) holds.

Suppose that either \(I_{e_{0,1}} \) or \(I_{e_{n,n+1}} \) is not equal to \(G \). By Lemma 2.6, we have

\[
\sigma(\mathcal{G}) = \sum_{v \in \mathcal{G}(p_i)} \sigma(\mathcal{G}) + \sum_{v \in \mathcal{G}(\beta^{-1}(p_i))} \sigma(\mathcal{G}) + r(\mathcal{G} \setminus \beta^{-1}(p_i))
\]

\[
+ \tau G/D_{v_i}\left(\tau((D_{v_i}/I_{v_i})/I^1_{v_i}) - 1 + \tau((D_{v_i}/I_{v_i})/I^r_{v_i}) - 1\right) + \tau G/D_{v_i} - 1
\]

\[
= \tau G/I_{v_i} - 1 + \sum_{v \in \mathcal{G}(\beta^{-1}(p_i))} \sigma(\mathcal{G}) + r(\mathcal{G} \setminus \beta^{-1}(p_i)).
\]

On the other hand, we have

\[
\sigma(\mathcal{G}^{*}[p_i]) = \sum_{v \in \mathcal{G}(\beta^{-1}(p_i))} \sigma(\mathcal{G}^{*}[p_i])(v^*) + \tau((G/I_{v_i})/I^1_{v_i}) - 1 + \tau((G/I_{v_i})/I^r_{v_i}) - 1
\]

\[
+ \tau((G/I_{v_i})/I^1_{v_i}) - 1 + \tau((G/I_{v_i})/I^r_{v_i}) - 1 + \tau G/D_{v_i} - 1
\]

\[
= \tau G/I_{v_i} - 1 + \sum_{v \in \mathcal{G}(\beta^{-1}(p_i))} \sigma(\mathcal{G}^{*}[p_i])(v^*) + r(\mathcal{G} \setminus \beta^{-1}(p_i)).
\]
We have

Thus, we have

Thus, we have

Thus, \(\sigma(\mathfrak{S}) = \sigma(\mathfrak{S}^*[p_i]) \) holds.

Next, let us compute \(\sigma(\mathfrak{S}^*[p_i]) \). First, suppose that \(I_{e_{0,1}} = I_{e_{n,1} + 1} = G \) holds. Write \(W \) for the group

We have

Thus, we have \(\sigma(\mathfrak{S}) = \sigma(\mathfrak{S}^*[p_i]) \).

Suppose that either \(I_{e_{0,1}} \) or \(I_{e_{n,1} + 1} \) is not equal to \(G \). By Lemma 2.6, we have

\[
\sigma(\mathfrak{S}^*[p_i]) = \sum_{v \in \beta^{-1}_\mathfrak{S}[p_i]} \sigma_{\mathfrak{S}^*[p_i]}(v) + \mathbb{Z}W - 1 + \mathbb{Z}(\mathbb{Z}(I_{V_{e_{0,1}}}^{I_{V_{e_{0,1}}}^I})/I_{V_{e_{0,1}}}^I - 1 + \mathbb{Z}(I_{V_{e_{0,1}}}^{I_{V_{e_{0,1}}}^I})/I_{V_{e_{0,1}}}^I) - 1)
\]
we obtain

\[\sharp W(-\sharp(I^l_{v_i} + I^r_{v_i}) + \sharp((I^l_{v_i} + I^l_{v_i})/I^l_{v_i})(\sharp I^l_{v_i} - 1) + \sharp((I^l_{v_i} + I^l_{v_i})/I^l_{v_i})(\sharp I^r_{v_i} - 1) + 1) + \sharp W - 1 + \sharp W(\sharp((I^l_{v_i} + I^l_{v_i})/I^l_{v_i}) - 1 + \sharp((I^l_{v_i} + I^l_{v_i})/I^l_{v_i}) - 1) \]

\[+ \sum_{v \in \gamma(G \setminus \beta^{-1}_\Phi(p_i))} \sigma_{\Phi^*}(v) + r(G \setminus \beta^{-1}_\Phi(p_i)) - \sharp G/I_{e_0,1} + 1 - \sharp G/I_{e_{n+1}} + 1 \]

\[= \sharp G/I_{v_i} + \sum_{v \in \gamma(G \setminus \beta^{-1}_\Phi(p_i))} \sigma_{\Phi^*}(v) + r(G \setminus \beta^{-1}_\Phi(p_i)) - \sharp G/I_{e_0,1} - \sharp G/I_{e_{n+1}} + 1. \]

Thus, we have \(\sigma(\mathcal{G}) = \sigma(\mathcal{G}^*_{[p_i]}). \)

We complete the proof of the proposition. \(\square \)

Remark 2.7.1. Let \(\mathcal{G} \) be a \(G \)-covering over \(\mathcal{P}_n \). By the definition of coverings, for any maximal filtration of \(G \), there exists a sequence of \(p \)-coverings induced by the maximal filtration of \(G \):

\[\mathcal{G} = \mathcal{G}_r \xrightarrow{b_r} \mathcal{G}_{r-1} \xrightarrow{b_{r-1}} \ldots \xrightarrow{b_1} \mathcal{G}_0 = \mathcal{P}_n. \]

By Proposition 2.7, for calculating the \(p \)-rank \(\sigma(\mathcal{G}) \), we may assume that \(b_i \) do not have either étale Type-I or Type-II for all \(i \).

Theorem 2.8. Let \(G \) be an abelian \(p \)-group with order \(p^r \), \(\Phi \) a maximal filtration of \(G \), and \(\mathcal{G} := (G, \sigma_\Phi, \beta_\Phi) \) a \(G \)-covering over \(\mathcal{P}_n \). Write

\[\Phi_\Phi : \mathcal{G} = \mathcal{G}_r \xrightarrow{b_r} \mathcal{G}_{r-1} \xrightarrow{b_{r-1}} \ldots \xrightarrow{b_1} \mathcal{G}_0 = \mathcal{P}_n \]

for the sequence of \(p \)-coverings of \(n \)-semi-graphs with \(p \)-rank induced by \(\Phi \) and \(E^\Phi_{s,\Phi} \) for the étale-chain associated to \(\Phi_\Phi \). For each \(j = 1, \ldots, n \), write \(E^\Phi_{s,\Phi}(p_j) \) (resp. \(E^\Phi_{s,\Phi}(b^l_j), E^\Phi_{s,\Phi}(b^r_j) \)) for the disjoint union

\[\prod_{s \text{ s.t. } p_j \in (E^\Phi_{s,\Phi})} E^\Phi_{s,\Phi}, \quad \prod_{s \text{ s.t. } b^l_j \in (E^\Phi_{s,\Phi}) \cup \epsilon'(E^\Phi_{s,\Phi})} E^\Phi_{s,\Phi}, \quad \prod_{s \text{ s.t. } b^r_j \in (E^\Phi_{s,\Phi}) \cup \epsilon'(E^\Phi_{s,\Phi})} E^\Phi_{s,\Phi}. \]

Then we have

\[\sigma(\mathcal{G}) = \sum_{j=1}^n (p^{E^\Phi_{s,\Phi}(p_j)} - p^{E^\Phi_{s,\Phi}(b^l_j)} - p^{E^\Phi_{s,\Phi}(b^r_j)} + 1) + \sum_{j=2}^{n-1} (p^{E^\Phi_{s,\Phi}(b^r_j)} - 1). \]

\[= \sum_{j=1}^n (p^{E^\Phi_{s,\Phi}(p_j)} - p^{E^\Phi_{s,\Phi}(b^l_j)} - p^{E^\Phi_{s,\Phi}(b^r_j)} + 1) + \sum_{j=2}^{n} (p^{E^\Phi_{s,\Phi}(b^l_j)} - 1). \]

Proof. By Remark 2.7.1, we may assume that \(b_j \) do not have étale Type-I for all \(j \). Thus, we obtain \(\gamma(G) = \{v_1, \ldots, v_n\} \), where for each \(j \), \(v_j \) denotes the unique vertex \(\beta^{-1}_\Phi(p_j) \).

Then for each \(j = 1, \ldots, n \), we have

\[\sigma_{\Phi}(v_j) = -p^{E^\Phi_{s,\Phi}(p_j)} + p^{E^\Phi_{s,\Phi}(b^l_j)} (p^{E^\Phi_{s,\Phi}(p_j)} - p^{E^\Phi_{s,\Phi}(b^l_j)} - 1) + p^{E^\Phi_{s,\Phi}(b^r_j)} (p^{E^\Phi_{s,\Phi}(p_j)} - p^{E^\Phi_{s,\Phi}(b^r_j)} - 1) + 1 \]
\[p^{E\Phi_e(p_j)} - p^{E\Phi_e(b'_j)} - p^{E\Phi_e(b''_j)} + 1. \]

On the other hand, the rank of \(H^1(G, \mathbb{Z}) \) as a free \(\mathbb{Z} \)-module is
\[
\sum_{j=1}^{n-1} (p^{E\Phi_e(b'_j)} - 1) = \sum_{j=2}^{n} (p^{E\Phi_e(b''_j)} - 1).
\]

Then we have
\[
\sigma(\mathcal{G}) = \sum_{j=1}^{n} (p^{E\Phi_e(p_j)} - p^{E\Phi_e(b'_j)} - p^{E\Phi_e(b''_j)} + 1) + \sum_{j=1}^{n-1} (p^{E\Phi_e(b'_j)} - 1)
\]
\[
= \sum_{j=1}^{n} (p^{E\Phi_e(p_j)} - p^{E\Phi_e(b'_j)} - p^{E\Phi_e(b''_j)} + 1) + \sum_{j=2}^{n} (p^{E\Phi_e(b''_j)} - 1).
\]

This completes the proof of the theorem.

Corollary 2.9. Let \(G_i, i \in \{1, 2\} \) be an abelian \(p \)-group with order \(p^r \), \(\Phi^i \) a maximal filtration of \(G_i \), \(\mathcal{G}^i := (G^i, \sigma^{G_i}, \beta^{G_i}) \) a \(G_i \)-covering over \(\mathcal{P}_n \). Write
\[
\Phi^{G_i}_e : \mathcal{G}^i = \mathcal{G}^i \rightarrow \mathcal{G}^i_{r-1} \rightarrow \mathcal{G}^i_{r-2} \rightarrow \cdots \rightarrow \mathcal{G}^i_0 = \mathcal{P}_n
\]
for the sequence of \(p \)-coverings of \(n \)-semi-graphs with \(p \)-rank induced by \(\Phi^i \), and \(\mathcal{E}^{\Phi^{G_i}_e} \) for the \(\epsilon \)-chain associated to \(\Phi^{G_i}_e \). Suppose that \(\mathcal{E}^{\Phi^{G_i}_e} = \mathcal{E}^{\Phi^{G_i}_e} \) holds. Then we have \(\sigma(\mathcal{G}^1) = \sigma(\mathcal{G}^2) \).

Proof. Since \(\mathcal{E}^{\Phi^{G_i}_e} = \mathcal{E}^{\Phi^{G_i}_e} \) holds, we see that \(\mathcal{E}^{\Phi^{G_i}_e} = \mathcal{E}^{\Phi^{G_i}_e} = \mathcal{E}^{\Phi^{G_i}_e} \), and \(\mathcal{E}^{\Phi^{G_i}_e} = \mathcal{E}^{\Phi^{G_i}_e} \) for all \(j \). Thus, by Theorem 2.8, we obtain \(\sigma(\mathcal{G}^1) = \sigma(\mathcal{G}^2) \). This completes the proof of the corollary.

Theorem 2.10. Let \(G \) be an abelian \(p \)-group with order \(p^r \), \(\Phi_G \) a maximal filtration of \(G \), and \(\mathcal{G} \) a \(G \)-covering over \(\mathcal{P}_n \). Write
\[
\Phi^{\mathcal{G}} : \mathcal{G} = \mathcal{G}_r \rightarrow \mathcal{G}_{r-1} \rightarrow \mathcal{G}_{r-2} \rightarrow \cdots \rightarrow \mathcal{G}_0 = \mathcal{P}_n
\]
for the sequence of \(p \)-coverings of \(n \)-semi-graphs with \(p \)-rank induced by \(\Phi_G \), and \(\{E^{\Phi^{\mathcal{G}}}_j\}_{j \in J} \) for the set of \(j \)-th \(\epsilon \)-chains associated to \(\Phi^{\mathcal{G}} \). Let \(I := \{i_1, \ldots, i_r\} \) be a new index set. For each \(i = 1, \ldots, r \), write \(\mathcal{E}_i \) for \(\mathcal{E}^{\Phi^{\mathcal{G}}}_j \). Then there exist an elementary abelian group \(A \) with order \(p^r \), a maximal filtration \(\Phi_A \) of \(A \), and an \(A \)-covering \(\mathcal{F} \) over \(\mathcal{P}_n \) such that the \(i \)-th \(\epsilon \)-chain \(\mathcal{E}^{\Phi^{\mathcal{G}}}_i \) associated to the sequence of \(p \)-coverings of \(n \)-semi-graphs with \(p \)-rank \(\Phi^{\mathcal{G}}_A \) induced by \(\Phi_A \) is equal to \(\mathcal{E}_i \) for each \(i = 1, \ldots, r \).

Proof. Since the operator \(\Rightarrow^I H \) does not change the \(\epsilon \)-chain \(\mathcal{E}^{\Phi^{\mathcal{G}}}_e \), we may assume that \(b_i \) do not have \(\epsilon \)-Type-I for all \(i \). Let \(A_i, i \in \{1, \ldots, r\} \), be a cyclic abelian \(p \)-group with order \(p \). We construct a semi-graph with \(p \)-rank \(\mathcal{F} \) step by step.

\(\mathcal{F}_1 := (\mathcal{v}(\mathcal{F}_1), e(\mathcal{F}_1) \cup e'(\mathcal{F}_1), \{c^{\mathcal{F}_1}_e\}_e) \) is a semi-graph as follows:

(i) \(\mathcal{v}(\mathcal{F}_1) := \{v^1_1, \ldots, v^1_n\} \),
(ii) $e(F) \cup e'(F)$ consists of the following elements:

(a) $\{e_{i;i+1} := \{b_t(e_{i;i+1}^1), b_r(e_{i;i+1}^1)\}\}_{r \in A_1}$ is a set associated to $e_{i;i+1} \in e(E_1) \cup e'(E_1)$;

(b) $e_{i;i+1}^1 := \{b_t(e_{i;i+1}^1), b_r(e_{i;i+1}^1)\}$ is a set associated to $e_{i;i+1}$ if $e_{i;i+1} \not\in e(E_1) \cup e'(E_1)$;

(iii) $\zeta_e^F(b_t(e_{i;i+1}^1)) + v_{e+1}^i$ (resp. $\zeta_e^F(b_t(e_{i;i+1}^1)) = v_{e+1}^i$) if $i \neq 0$ and $\zeta_e^F(b_t(e_{i;i+1}^1)) = v(F)$ (resp. $\zeta_e^F(b_t(e_{i;i+1}^1)) = v(F_1)$) if $i = 0$;

(iv) $\zeta_e^F(b_r(e_{i;i+1}^1)) = v_{e+1}^i$ (resp. $\zeta_e^F(b_r(e_{i;i+1}^1)) = v_{e+1}^i$) if $i \neq n$ and $\zeta_e(b_r(e_{i;i+1}^1)) = v(F)$ (resp. $\zeta_e^F(b_r(e_{i;i+1}^1)) = v(F_1)$) if $i = n$.

We have a natural morphism $\beta_{\tilde{S}_1} : F_1 \rightarrow F_n$ defined as follows: (i) $\beta_{\tilde{S}_1}(v_1^i) = \rho_1$; (ii) $\beta_{\tilde{S}_1}(e_{i;i+1}^1) = e_{i;i+1}$ (resp. $\beta_{\tilde{S}_1}(b_t(e_{i;i+1}^1)) = e_{i;i+1}$).

Next, we define a p-rank map $\sigma_{\tilde{S}_1} : v(F_1) \rightarrow \mathbb{Z}$ as follows: (i) If $p_i \in v(E_1)$ and $\beta_{\tilde{S}_1}(b_i^t) = \beta_{\tilde{S}_1}^{-1}(b_i^r) = 1$, then we have

$$\sigma_{\tilde{S}_1}(v_1^i) = -p + p - 1 + p - 1 + 1 = p - 1;$$

(ii) If $p_i \not\in v(E_1)$, $\beta_{\tilde{S}_1}^{-1}(b_i^t) = 1$, and $\beta_{\tilde{S}_1}^{-1}(b_i^r) = p$, then we have

$$\sigma_{\tilde{S}_1}(v_1^i) = -p + p - 1 + 0 = 0;$$

(iii) If $p_i \not\in v(E_1)$, $\beta_{\tilde{S}_1}^{-1}(b_i^t) = p$, and $\beta_{\tilde{S}_1}^{-1}(b_i^r) = 1$, then we have

$$\sigma_{\tilde{S}_1}(v_1^i) = -p + p - 1 + 0 = 0;$$

(iv) If $p_i \not\in v(E_1)$ and $\beta_{\tilde{S}_1}^{-1}(b_i^t) = \beta_{\tilde{S}_1}^{-1}(b_i^r) = p$, then we have

$$\sigma_{\tilde{S}_1}(v_1^i) = -p + 1;$$

(v) If $p_i \not\in v(E_1)$, then we have

$$\sigma_{\tilde{S}_1}(v_1^i) = 0.$$

Moreover, \tilde{S}_1 admits a natural action of A_1 as follows: (i) The action of A_1 on $v(F_1)$ is trivial; (ii) For any $e \in e(F_1) \cup e'(F_1)$ and any element $\tau \in A_1$, $\tau e_{i;i+1} = e_{i;i+1}$ and $\tau(e_{i;i+1}^1) = e_{i;i+1}^1$ for all $\tau_1 \in A_1$.

Thus, with the action of A_1, $\tilde{S}_1 := (F_1, \sigma_{\tilde{S}_1}, \beta_{\tilde{S}_1})$ is an A_1-covering over \mathcal{F}_n. Next, let us construct \mathcal{F}_2.

$\mathcal{F}_2 := (v(F_2), e(F_2) \cup e'(F_2), \{e_{2}^F\}_e)$ is a semi-graph as follows:

(i) $v(F_2) := \{v_1^2, \ldots, v_n^2\}$;

(ii) $e(F_2) \cup e'(F_2)$ consists of the following elements:

(a) $\{e_{i;i+1}^2 := \{b_t(e_{i;i+1}^{1,2}), b_r(e_{i;i+1}^{1,2})\}\}_{r \in A_2}$ is a set associated to $e_{i;i+1}^1$ if $\beta_{\tilde{S}_1}(e_{i;i+1}^1) \in e(E_2) \cup e'(E_2)$;

(b) $\{e_{i;i+1}^2 := \{b_t(e_{i;i+1}^{1,2}), b_r(e_{i;i+1}^{1,2})\}\}_{r \in A_2}$ is a set associated to $e_{i;i+1}^1$ if $\beta_{\tilde{S}_1}(e_{i;i+1}^1) \in e(E_2) \cup e'(E_2)$;

(c) $e_{i;i+1}^{1,2} := \{b_t(e_{i;i+1}^{1,2}), b_r(e_{i;i+1}^{1,2})\}$ is a set associated to $e_{i;i+1}^1$ if $\beta_{\tilde{S}_1}(e_{i;i+1}^1) \not\in e(E_2) \cup e'(E_2)$;

(d) $\{e_{i;i+1}^{1,2} := \{b_t(e_{i;i+1}^{1,2}), b_r(e_{i;i+1}^{1,2})\}\}_{r \in A_2}$ is a set associated to $e_{i;i+1}^1$ if $\beta_{\tilde{S}_1}(e_{i;i+1}^1) \not\in e(E_2) \cup e'(E_2)$;
(iii) $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v_t^2$ (resp. $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v_t^2$, $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v_t^2$, $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v_t^2$) if $i \neq 0$ and $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v(F_2)$ (resp. $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v(F_2)$, $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v(F_2)$, $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v(F_2)$) if $i = 0$.

(iv) $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v_t^2$ (resp. $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v_t^2$, $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v_t^2$, $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v_t^2$) if $i \neq n$ and $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v(F_2)$ (resp. $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v(F_2)$, $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v(F_2)$, $\zeta^2_e(b_t(e_{i,i+1}^{1,2})) = v(F_2)$) if $i = n$.

We have a natural morphism $\alpha_2 : F_2 \rightarrow F_1$ as follows: (i) $\alpha_2(v_t^2) = v_t^2$; (ii) $\alpha_2((e_{i,i+1}^{1,2})) = e_{i,i+1}^1$ (resp. $\alpha_2((e_{i,i+1}^{1,2})) = e_{i,i+1}^{1,2}$, $\alpha_2((e_{i,i+1}^{1,2})) = e_{i,i+1}^{1,2}$, $\alpha_2((e_{i,i+1}^{1,2})) = e_{i,i+1}^1$).

We define $\beta_{\tilde{\mathcal{S}}}$ to be the composite morphism $\beta_{\tilde{\mathcal{S}}} \circ \alpha_2$.

We define a p-rank map $\sigma_{\tilde{\mathcal{S}}} : v(F_2) \rightarrow \mathbb{Z}$ as follows: (i) If $\not\exists b_t(v_t^2) = p\not\exists b_t(v_t^1)$ and $\not\exists b_t(v_t^2) = p\not\exists b_t(v_t^1)$, then we have

$$\sigma_{\tilde{\mathcal{S}}}(v_t^2) - 1 = p(\sigma_{\tilde{\mathcal{S}}}(v_t^1) - 1);$$

(ii) If $\not\exists b_t(v_t^2) = p\not\exists b_t(v_t^1)$ and $\not\exists b_t(v_t^2) = p\not\exists b_t(v_t^1)$, we have

$$\sigma_{\tilde{\mathcal{S}}}(v_t^2) - 1 = p(\sigma_{\tilde{\mathcal{S}}}(v_t^1) - 1) + (\not\exists b_t(v_t^1))(p - 1);$$

(iii) If $\not\exists b_t(v_t^2) = p\not\exists b_t(v_t^1)$ and $\not\exists b_t(v_t^2) = p\not\exists b_t(v_t^1)$, we have

$$\sigma_{\tilde{\mathcal{S}}}(v_t^2) - 1 = p(\sigma_{\tilde{\mathcal{S}}}(v_t^1) - 1) + (\not\exists b_t(v_t^1))(p - 1);$$

(iv) If $\not\exists b_t(v_t^2) = p\not\exists b_t(v_t^1)$ and $\not\exists b_t(v_t^2) = p\not\exists b_t(v_t^1)$, we have

$$\sigma_{\tilde{\mathcal{S}}}(v_t^2) - 1 = p(\sigma_{\tilde{\mathcal{S}}}(v_t^1) - 1) + (\not\exists b_t(v_t^1) + \not\exists b_t(v_t^1))(p - 1).$$

Moreover, there is a natural $A_1 \oplus A_2$-action on $\tilde{\mathcal{S}}$ defined as follows: (i) The action of $A_1 \oplus A_2$ on $v(F_2)$ is trivial; (ii) For any $e \in e(F_2) \cup e'(F_2)$ and any element $(\tau, \tau') \in A_1 \oplus A_2$, $(\tau, \tau').e_{i,i+1}^{1,2} = e_{i,i+1}^{1,2}$, $(\tau, \tau').e_{i,i+1}^{1,2} = e_{i,i+1}^{1,2}$, $(\tau, \tau').e_{i,i+1}^{1,2} = e_{i,i+1}^{1,2}$, and $(\tau, \tau').e_{i,i+1}^{1,2} = e_{i,i+1}^{1,2}$.

Thus, with the action of $A_1 \oplus A_2$, $\tilde{\mathcal{S}} := (F_2, \sigma_{\tilde{\mathcal{S}}}, \beta_{\tilde{\mathcal{S}}})$ is an $A_1 \oplus A_2$-covering over \mathcal{P}_n.

The maximal filtration

$$0 \subset A_2 \subset A_1 \oplus A_2$$

determines a sequence of p-coverings of n-semi-graphs with p-rank

$$\Phi_{\tilde{\mathcal{S}}} : \tilde{\mathcal{S}} \xrightarrow{a_2} \tilde{\mathcal{S}}_1 \xrightarrow{a_1} \tilde{\mathcal{S}}_0 = \mathcal{P}_n.$$

Furthermore, by the construction, we have $E_2^{\Phi_{\tilde{\mathcal{S}}} \circ \alpha_2} = E_2$ and $E_1^{\Phi_{\tilde{\mathcal{S}}} \circ \alpha_2} = E_1$.

By repeating the process above, we obtain an $A := \oplus_{i=1}^r A_i$-covering $\tilde{\mathcal{S}}_r$ over \mathcal{P}_n and a maximal filtration

$$\Phi_A : 0 \subset A_n \subset A_n \oplus A_{n-1} \subset \cdots \subset \oplus_{i=1}^r A_i = A.$$

Then Φ_A induces a sequence of p-coverings of n-semi-graphs with p-rank

$$\Phi_{\tilde{\mathcal{S}}} : \tilde{\mathcal{S}} := \tilde{\mathcal{S}} \xrightarrow{a_r} \tilde{\mathcal{S}}_{r-1} \xrightarrow{a_{r-1}} \cdots \xrightarrow{a_1} \tilde{\mathcal{S}}_0 = \mathcal{P}_n.$$

By the construction, we have the i-th étale-chain $E_i^{\Phi_{\tilde{\mathcal{S}}} \circ \alpha_2}$ associated to $\Phi_{\tilde{\mathcal{S}}}$ is equal to E_i for each $i = 1, \ldots, r$. We complete the proof of the theorem. □
Remark 2.10.1. For the sequence
\[
\Phi_\mathfrak{f} : \mathfrak{f} = \mathfrak{f}_r \xrightarrow{a_r} \mathfrak{f}_{r-1} \xrightarrow{a_{r-1}} \cdots \xrightarrow{a_1} \mathfrak{f}_0 = \mathfrak{P}_n
\]
constructed in Theorem 2.10, by Remark 2.7.1, we may assume that \(a_i \) do not have étale Type-II for all \(i \). Furthermore, by Corollary 2.9, we have \(\sigma(\mathfrak{S}) = \sigma(\mathfrak{f}) \).

2.3 Bounds of \(p \)-ranks of abelian coverings

Let \(G \) be a finite abelian \(p \)-group with order \(p^r \). In this subsection, we calculate a bound of \(p \)-rank of a \(G \)-covering over \(\mathfrak{P}_n \).

First, let us fix some notations. Let \(\mathfrak{G} \) be a \(G \)-covering over \(\mathfrak{P}_n \) and \(\Phi \) a maximal filtration of \(G \). Write

\[
\Phi_\mathfrak{G} : \mathfrak{G} = \mathfrak{G}_r \xrightarrow{b_r} \mathfrak{G}_{r-1} \xrightarrow{b_{r-1}} \cdots \xrightarrow{b_1} \mathfrak{G}_0 = \mathfrak{P}_n
\]

for the sequence of \(p \)-coverings of \(n \)-semi-graphs with \(p \)-rank induced by \(\Phi \) and \(\{ E_j^{\Phi_\mathfrak{G}} \}_j \) for the set of \(j \)-th étale-chains associated to \(\Phi_\mathfrak{G} \). If \(E_j^{\Phi_\mathfrak{G}} \) is empty, we have \(\sigma(\mathfrak{G}_j) = \sigma(\mathfrak{G}_{j-1}) \); thus, for calculating the bound of the \(p \)-rank \(\sigma(\mathfrak{G}) \), we may assume that \(E_j^{\Phi_\mathfrak{G}} \) are not empty for all \(j \). Moreover, by Remark 2.10.1, we may assume that for each \(j = 1, \ldots, r \) and each \(v \in v(\mathfrak{G}_j) \), \(b_j \) is not étale Type-II at \(v \).

Let \(e_0 \in \beta_0^{-1}(e_{0,1}) \) (resp. \(e_{n+1} \in \beta_0^{-1}(e_{n,n+1}) \)). Write \(I_{e_0} \) (resp. \(I_{e_{n+1}} \)) for the inertia group of \(e_0 \) (resp. \(e_{n+1} \)). Note that since \(G \) is an abelian group, the group \(I_{e_0} \) (resp. \(I_{e_{n+1}} \)) does not depend on the choice of the elements of \(\beta_0^{-1}(e_{0,1}) \) (resp. \(\beta_0^{-1}(e_{n,n+1}) \)). Moreover, according to Definition 2.3 (c-iii), \(G \) is generated by \(I_{e_0} \) and \(I_{e_{n+1}} \).

For each \(j = 1, \ldots, r \), since \(E_j^{\Phi_\mathfrak{G}} \) is a sub-semi-graph of \(\mathfrak{P}_n \), \(v(\mathfrak{E}_j^{\Phi_\mathfrak{G}}) \subseteq \{ p_1, \ldots, p_n \} = v(\mathfrak{P}_n) \) admits a natural order which is induced by the order of natural number \(\mathbb{N} \); then we may define the initial vertex and the terminal vertex for \(E_j^{\Phi_\mathfrak{G}} \). Write \(t(E_j^{\Phi_\mathfrak{G}}) \) (resp. \(t(E_j^{\Phi_\mathfrak{G}}) \)) for the initial (resp. the terminal) vertex of \(v(E_j^{\Phi_\mathfrak{G}}) \), \(l(E_j^{\Phi_\mathfrak{G}}) \) for \(v(E_j^{\Phi_\mathfrak{G}}) \). For an element \(p_i \in v(\mathfrak{P}_n) \), we shall say that \(p_i \) is \(\mathbb{A}_1 \)-type (resp. \(\mathbb{A}_1 \)-type; \(\mathbb{G}_m \)-type; \(\mathbb{P} \)-type; \(\mathbb{P} \)-type) at \(E_j^{\Phi_\mathfrak{G}} \) if \(p_i \) is equal to \(t(E_j^{\Phi_\mathfrak{G}}) \) (resp. \(l(E_j^{\Phi_\mathfrak{G}}) \)) (resp. \(t(E_j^{\Phi_\mathfrak{G}}) \)). Moreover, by Remark 2.10.1, we may assume that \(E_j^{\Phi_\mathfrak{G}} \) are not empty for all \(j \).

Lemma 2.11. Suppose that \(\pi_0(\mathfrak{E}_j^{\Phi_\mathfrak{G}}) = 1 \) for all \(j \), and either \(I_{e_0} \) or \(I_{e_{n+1}} \) is trivial. Then the \(p \)-rank \(\sigma(\mathfrak{G}) \) is equal to 0.
Proof. For each \(j = 1, \ldots, r \), write \(v^j_i \) for an element \(\beta_{G_j}^{-1}(p_i) \). Since \(\sharp \pi_0(\mathbb{E}_j^{\psi}) = 1 \) hold for all \(j \), and \(I_{c_0,1} \) (resp. \(I_{c_{n+1},1} \)) is trivial, \(b^i_j \) is not étale Type-III (resp. étale Type-IV) and étale Type-V at \(v^j_i \). Then we obtain \(\sigma_{G_j}(v^j_i) = 0 \) by applying Remark 2.3.1. Moreover, the underlying semi-graph of \(G_j \) is an tree. Thus, we obtain \(\sigma(\mathcal{G}_j) = 0 \). In particular, we have \(\sigma(\mathcal{G}) = 0 \). We complete the proof of the lemma.

Lemma 2.12. Let \(G_i \), \(i \in \{1, 2\} \) be an abelian \(p \)-group with order \(p^r \), \(\Phi^i \) a maximal filtration of \(G_i \), and \(\mathcal{G}^i := (\mathcal{G}^i, \sigma_{\Phi^i}, \beta_{\Phi^i}) \) a \(G_i \)-covering over \(\mathbb{P}_n \). Write

\[
\Phi_{\Phi^i} : \mathcal{G}^i = \mathcal{G}^i_0 \xrightarrow{b^i_0} \mathcal{G}^i_1 \xrightarrow{b^i_1} \cdots \xrightarrow{b^i_{r-1}} \mathcal{G}^i_r = \mathcal{G}
\]

for the sequence of \(p \)-coverings of \(n \)-semi-graphs with \(p \)-rank induced by \(\Phi^i \), and \(\mathbb{E}_j^{\Phi^i} \) for the étale-chain associated to \(\Phi_{\Phi^i} \). Suppose that for each \(j = 1, \ldots, r \), \(\sharp \pi_0(\mathbb{E}_j^{\Phi^i}) = 1 \), \(i(\mathbb{E}_j^{\Phi^i}) = i(\mathbb{E}_j^{\Phi^i-2}) \), and \(t(\mathbb{E}_j^{\Phi^i}) = t(\mathbb{E}_j^{\Phi^i-2}) \). Moreover, we suppose that \(\mathbb{E}_j^{\Phi^i} \) is equal to \(\mathbb{E}_j^{\Phi^i-2} \) if \(i(\mathbb{E}_j^{\Phi^i}) \neq 1 \) and \(t(\mathbb{E}_j^{\Phi^i}) \neq n \). Let \(e_0^1 \in \beta_{\Phi^1}^{-1}\mathcal{G}_0 \in \beta_{\Phi^2}^{-1}(e_0) \) (resp. \(e^1_{n+1} \in \beta_{\Phi^1}^{-1}(e_{n+1}) \) and \(e^2_{n+1} \in \beta_{\Phi^2}^{-1}(e_{n+1}) \)). Write \(I_{c_0} \) and \(I_{c_0} \) (resp. \(I_{c_{n+1},1} \) and \(I_{c_{n+1},1} \)) for the inertia groups of \(e^1_0 \) and \(e^2_0 \), respectively (resp. \(e^1_{n+1} \) and \(e^2_{n+1} \), respectively), \(D^1_{n+1} \) (resp. \(D^1_{n+1} \)) for \(G_1/I_{c_0} \) (resp. \(G_1/I_{c_{n+1},1} \)). Furthermore, we suppose that \(I_{c_0} \) and \(I_{c_{n+1},1} \) are equal to \(G_2 \). Then we have

\[
\sigma(\mathcal{G}^1) + \sharp D^0_1 - 1 + \sharp D^1_{n+1} - 1 = \sigma(\mathcal{G}^2).
\]

Proof. By Remark 2.7.1, we may assume that \(b^i_0 \) do not have étale Type-I. For any \(p_u \in v(\mathcal{P}_n) \), write \(v^j_i \) for the unique element of \(\beta_{G_j}^{-1}(p_u) \). Then \(D_{v^j_i} \) is equal to \(G_i \).

If \(n = 1 \), note that since \(\mathbb{E}_j^{\Phi^i} \) are not empty for all \(j \), both \(I_{c_0} \) and \(I_{c_{n+1},1} \) are trivial. Then we have

\[
\sigma(\mathcal{G}^1) = \sigma_{\Phi^1}(v^1_i) = -\sharp G_1 + \sharp D^1_1(\sharp I_{c_0} - 1) + \sharp D^1_{n+1}(\sharp I_{c_{n+1},1} - 1) + 1.
\]

On the other hand, since both \(I_{c_0} \) and \(I_{c_{n+1},1} \) are equal to \(G_2 \), we obtain

\[
\sigma(\mathcal{G}^2) = \sigma_{\Phi^2}(v^2_i) = -\sharp G_2 + \sharp G_2 - 1 + \sharp G_2 - 1 + 1 = \sharp G_2 - 1.
\]

Thus, we have

\[
\sigma(\mathcal{G}^1) + \sharp D^0_1 - 1 + \sharp D^1_{n+1} - 1 = \sigma(\mathcal{G}^2).
\]

If \(n > 1 \), by the assumptions of \(\mathbb{E}_j^{\Phi^i} \) and \(\mathbb{E}_j^{\Phi^i-2} \), we obtain

\[
\sum_{v \in v(\mathcal{G}^1) \setminus \{v^1_i, v^2_i\}} \sigma_{\Phi^1}(v) = \sum_{v \in v(\mathcal{G}^2) \setminus \{v^2_i, v^2_i\}} \sigma_{\Phi^2}(v)
\]

and

\[
\text{rank}_\mathbb{Z} H^1(\mathbb{G}^1, \mathbb{Z}) = \text{rank}_\mathbb{Z} H^1(\mathbb{G}^2, \mathbb{Z}).
\]

On the other hand, since both \(I_{c_0} \) and \(I_{c_{n+1},1} \) are equal to \(G_2 \), we have

\[
\sigma_{\Phi^2}(v^2_i) - \sigma_{\Phi^1}(v^1_i) = \sharp G_2 - 1 - \sharp D^0_1(\sharp I_{c_0} - 1) = \sharp G_1 - 1 - \sharp D^0_1(\sharp I_{c_0} - 1) = \sharp D^0_1 - 1
\]

19
Thus, we obtain
\[\sigma(\mathcal{G}^l) + \sharp D_0^1 - 1 + \sharp D_{n+1}^1 = \sum_{v \in \mathcal{G}(v^1) \setminus \{v_i, v_j\}} \sigma_{\mathcal{G}^l}(v) + \text{rank}_Z H^1(\mathcal{G}^l, \mathbb{Z}) + \sigma_{\mathcal{G}^l}(v_i^1) + \sigma_{\mathcal{G}^l}(v_j^1) + \sharp D_0^1 - 1 + \sharp D_{n+1}^1 - 1 = \sigma(\mathcal{G}^2). \]

We have the following theorem.

Theorem 2.13. Let \mathcal{G} be a G-covering over \mathfrak{P}_n and Φ a maximal filtration of G. Write

\[\Phi_{\mathcal{G}} : \mathcal{G} = \mathcal{G}_0 \rightarrow \mathcal{G}_1 \rightarrow \mathcal{G}_{r-1} \rightarrow \cdots \rightarrow \mathcal{G}_{r-1} \rightarrow \mathcal{G}_0 = \mathfrak{P}_n \]

for the sequence of p-coverings of n-semi-graphs with p-rank induced by Φ, and \{\mathcal{E}_j^{\mathcal{G}}\}_j for the set of j-th etale-chains associated to $\Phi_{\mathcal{G}}$. Suppose that $\sharp \pi_0(\mathcal{E}_j^{\mathcal{G}}) = 1$ hold for all j. Then we have

\[\sigma(\mathcal{G}) \leq p^r - 1. \]

Proof. We prove the theorem by induction. If $r = 1$, since $\pi_0(\mathcal{E}_1^{\mathcal{G}}) = 1$, let us check the theorem case by case. If either I_{e_0} or $I_{e_{n+1}}$ is trivial, then by Lemma 2.11, we have $\sigma(\mathcal{G}) = 0$. If Both I_{e_0} and $I_{e_{n+1}}$ are non-trivial, and $\ell(\mathcal{E}_1^{\mathcal{G}})$ is 1, we obtain rank$_Z H^1(\mathcal{G}, \mathbb{Z})$ is equal to 0; for each $v \in \mathcal{G}_1$, $\sigma(v)$ is equal to 0 if $\beta_{\mathcal{G}}(v)$ is not contained in $v(\mathcal{E}_1^{\mathcal{G}})$, and $\sigma(v)$ is equal to $p - 1$ if $\beta_{\mathcal{G}}(v)$ is contained in $v(\mathcal{E}_1^{\mathcal{G}})$; thus, we obtain $\sigma(\mathcal{G}) = p - 1$. If Both I_{e_0} and $I_{e_{n+1}}$ are non-trivial, and $\ell(\mathcal{E}_1^{\mathcal{G}})$ is ≥ 2, we have rank$_Z H^1(\mathcal{G}, \mathbb{Z})$ is equal to $p - 1$, and $\sigma(v)$ is equal to 0 for all $v \in \mathcal{G}$. Thus, we have $\sigma(\mathcal{G}) = p - 1$. This completes the proof of the theorem if $r = 1$. From now on, we assume that $r \geq 2$.

For each $i = 1, \ldots, n$, let v_i be an element of $\beta_{\mathcal{G}}^{-1}(p_i) \subseteq v(\mathcal{G})$, I_{v_i} the inertia group of v_i. Write d for min\{i \mid I_{v_i} \neq G\}. If $d \neq 1$, then we have $\beta_{\mathcal{G}}|_{\beta_{\mathcal{G}}^{-1}(p_n \setminus \mathcal{P}_{d,n})} : \beta_{\mathcal{G}}^{-1}(P_n \setminus \mathcal{P}_{d,n}) \rightarrow \mathcal{P}_{d,n}$ is an isomorphism of semi-graphs. Then we have $\mathcal{G}' := (\mathcal{G} \setminus \beta_{\mathcal{G}}^{-1}(P_n \setminus \mathcal{P}_{d,n}), \mathcal{G}|_{\mathcal{G} \setminus \beta_{\mathcal{G}}^{-1}(P_n \setminus \mathcal{P}_{d,n})}, \beta_{\mathcal{G}}|_{\mathcal{G} \setminus \beta_{\mathcal{G}}^{-1}(P_n \setminus \mathcal{P}_{d,n})})$ is a $(n - d + 1)$-semi-graph with p-rank. Furthermore, $\mathcal{G} \setminus \beta_{\mathcal{G}}^{-1}(P_n \setminus \mathcal{P}_{d,n})$ admits a natural action of G induced by the action of G on \mathcal{G}. Thus, we may regard \mathcal{G}' is a G-covering over $\mathfrak{P}_{d,n}$. Note that we have $\sigma(\mathcal{G}(v_i)) = 0$ for $i \leq d - 1$ and rank$_Z H^1(\beta_{\mathcal{G}}^{-1}(P_n \setminus \mathcal{P}_{d,n}), \mathbb{Z}) = 0$. Then $\sigma(\mathcal{G}')$ is equal to $\sigma(\mathcal{G})$. Thus, by replacing \mathcal{G} (resp. \mathfrak{P}_n) by \mathcal{G}' (resp. $\mathfrak{P}_{d,n}$), we may assume that I_{v_i} is not equal to G. Similar arguments to the arguments given above imply that we may assume that I_{v_i} is not equal to G.

Write S_1 (resp. S_2, S_3, S_4, S_5) for the set

\[\{\mathcal{E}_j^{\mathcal{G}} \mid p_1 \text{ is } A_{v_i}^1 \text{-type at } \mathcal{E}_j^{\mathcal{G}}\} \text{ (resp. } \{\mathcal{E}_j^{\mathcal{G}} \mid p_1 \text{ is } A_{v_i}^1 \text{-type at } \mathcal{E}_j^{\mathcal{G}}\}) \]
\{E^\Phi_0 | p_1 \text{ is } G^1_m\text{-type at } E^\Phi_0, \} \quad \{E^\Phi_0 | p_1 \text{ is } P^1\text{-type at } E^\Phi_0 \}.

Write \(t \) for \(\max \{ t(E^\Phi_0) | i(E^\Phi_0) \in S_1 \cup S_2 \cup S_3 \cup S_5 \}, \) \(T_1 \) (resp. \(T_2, T_3, T_4, T_5 \)) for

\{E^\Phi_0 | p_t \text{ is } A^1_t\text{-type at } E^\Phi_0 \} \quad \{E^\Phi_0 | p_t \text{ is } A^1_t\text{-type at } E^\Phi_0 \},

\{E^\Phi_0 | p_t \text{ is } G^1_m\text{-type at } E^\Phi_0 \}, \{E^\Phi_0 | p_t \text{ is } P\text{-type at } E^\Phi_0 \},

\{E^\Phi_0 | p_t \text{ is } P^1\text{-type at } E^\Phi_0 \}).

For \(i \in \{1, 2, 3, 4, 5\} \), write \(n_i \) for \(\sharp S_i \). Write \(m_1 \) for \(\sharp T_1 \), \(m_2 \) for \(\sharp (S_1 \cap T_2) \), \(m_3 \) for \(\sharp T_3, m_4 \) for \(\sharp (S_4 \cap T_4) \), \(m_5 \) for \(\sharp T_5 \), \(a_1 \) for \(\sharp (S_1 \cap T_2) \), and \(a_2 \) for \(\sharp (S_1 \cap T_4) \). Write \(b_1 \) (resp. \(b_2 \)) for

\(\sharp \{E^\Phi_0 | S_4 \cap T_4 | i(E^\Phi_0) \geq 2 \text{ and } t(E^\Phi_0) \leq t - 1 \}

(\text{resp. } \sharp \{E^\Phi_0 | S_4 \cap T_4 | i(E^\Phi_0) \geq t + 1 \}).

Note that we have \(\sum_{i=1}^5 n_i = r \) and \(b_1 + b_2 = m_4 \). Since \(t \) is the maximal element of \(\{t(E^\Phi_0) | i(E^\Phi_0) \in S_1 \cup S_2 \} \) and \(\sharp \pi_0(E^\Phi_0) = 1 \), we obtain \(\sum_{i=1}^5 m_i = n_4 \) and \(a_1 + a_2 = n_1 \).

Let \(\{E_1, \ldots, E_r\} \) be a set of étale-chains associated to \(\Phi_0 \) with a new index set such that the following conditions: (i) \(T_5 = \{E_1, \ldots, E_{m_2}\} \); (ii) \(S_4 \cap T_4 = \{E_{m_5+1}, \ldots, E_{m_5+m_4}\} \); (iii) \(T_1 = \{E_{m_5+m_4+1}, \ldots, E_{m_5+m_4+m_1}\} \); (iv) \(S_1 \cap T_2 = \{E_{m_5+m_4+m_1+1}, \ldots, E_{m_5+m_4+m_1+m_2}\} \); (v) \(S_1 \cap T_2 = \{E_{m_5+m_4+m_1+m_2+1}, \ldots, E_{m_5+m_4+m_1+m_2+m_1}\} \); (vi) \(S_1 \cap T_4 = \{E_{m_5+m_4+m_1+m_2+1}, \ldots, E_{m_5+m_4+m_1+m_2+m_1}\} \); (vii) \(T_3 = \{E_{m_5+m_4+m_1+m_2+1}, \ldots, E_{m_5+m_4+m_1+m_2+m_1}\} \); (viii) \(S_2 = \{E_{m_5+m_1+1}, \ldots, E_{m_5+m_1}\} \); (ix) \(S_3 = \{E_{m_5+m_4+m_1+m_2+1}, \ldots, E_{m_5+m_4+m_1+m_2+m_1}\} \); (x) \(S_5 = \{E_{m_5+m_4+m_1+m_2+1}, \ldots, E_{m_5+m_4+m_1+m_2+m_1}\} \).

By Theorem 2.10, there exist an elementary abelian \(p \)-group \(A \), a maximal filtration \(\Phi_A \) of \(A \), an \(A \)-covering \(\mathcal{F} := (\mathbb{F}, \sigma_\mathcal{F}, \beta_\mathcal{F}) \) over \(\mathcal{P}_n \), and the sequence of \(p \)-coverings of \(n \)-semigraphs with \(p \)-rank induced by \(\Phi_A \)

\[\Phi_\mathcal{F} : \mathcal{F} = \mathcal{F}_r \rightarrow \mathcal{F}_{r-1} \rightarrow \cdots \rightarrow \mathcal{F}_0 = \mathcal{P}_n \]

such that the \(j \)-th étale-chain \(E^\Phi_{j, \mathcal{F}} \) associated to \(\Phi_\mathcal{F} \) is equal to \(E_j \) for each \(j = 1, \ldots, r \).

Since \(\sigma(\mathcal{G}) \) is equal to \(\sigma(\mathcal{F}) \), in order to prove the theorem, it is sufficient to calculate the bound of \(\sigma(\mathcal{F}) \). Let \(u_1 \) be an element of \(\beta_\mathcal{F}^{-1}(p_1) \), \(e_0 \) (resp. \(e_{n+1} \)) be an element of \(\beta_\mathcal{F}^{-1}(e_{0,1}) \). Moreover, by Lemma 2.12, for calculating the bound of \(\sigma(\mathcal{F}) \), we may assume that \(G = I_{e_0} = I_{e_{n+1}} \) hold. Then we have \(n_2 = 0 \) and \(n_5 = 0 \). In particular, we have \(\sharp \beta_\mathcal{F}^{-1}(p_1) = \sharp \beta_\mathcal{F}^{-1}(p_n) = 1 \).

Case 1: If \(t = 1 \) and \(n = 1 \), since \(G = I_{e_0} = I_{e_{n+1}} \) hold, we obtain \(n_3 = r \) and

\[\sigma(\mathcal{F}) = \sigma_\mathcal{F}(u_1) = (-1)p^{n_3} + 2(p^{n_3} - 1) + 1 = p^{n_3} - 1 = p^r - 1. \]

Thus, the theorem follows.

Case 2: If \(t = 1 \) and \(n \neq 1 \), since \(I_{e_0} \) is not trivial, \(\beta_\mathcal{F}|_{\beta_\mathcal{F}^{-1}(\mathbb{P}_{2,n})} : \beta_\mathcal{F}^{-1}(\mathbb{P}_{2,n}) \rightarrow \mathbb{P}_{2,n} \) is not an isomorphism. Write \(\mathcal{F}^{1,1} \) (resp. \(\mathcal{F}^{2,n} \)) for \((\mathbb{F} \setminus \beta_\mathcal{F}^{-1}(\mathbb{F}_1), \sigma_\mathcal{F}|_{(\mathbb{F} \setminus \beta_\mathcal{F}^{-1}(\mathbb{F}_1))}, \beta_\mathcal{F}|_{\beta_\mathcal{F}^{-1}(\mathbb{F}_1)}) \).
(β_{\overline{1}}^{-1}(P_{2,n}), σ_{\overline{1}}|_{(β_{\overline{1}}^{-1}(P_{2,n}))}, β_{\overline{1}}|_{β^{-1}_0(P_{2,n}))}). \ 3^{1,1} (\text{resp. } 3^{2,n}) \text{ is a } G\text{-covering over } Ψ_{1,1} (\text{resp. } Ψ_{2,n}). \text{ Since } 3^{1,1}/D_{u_1} → Ψ_{1,1} (\text{resp. } 3^{2,n} → 3^{2,n}/D_{u_1}) \text{ is a composite of } p\text{-coverings which are purely inseparable, we see that } σ(3^{1,1}) = σ(3^{1,1}/D_{u_1}) (\text{resp. } σ(3^{2,n}) = σ(3^{2,n}/D_{u_1})). \text{ Moreover, } 3^{1,1} (\text{resp. } 3^{2,n}) \text{ can be regarded as a } D_{u_1}\text{-covering over } Ψ_{1,1} (\text{resp. } A/D_{u_1}\text{-covering over } Ψ_{2,n}). \text{ Since } σ(3) = σ(3^{1,1}) + σ(3^{2,n}), \#D_{u_1} < p^r, \text{ and } \#A/D_{u_1} < p^r, \text{ by induction, we have}
σ(3) ≤ \#D_{u_1} - 1 + \#A/D_{u_1} - 1 ≤ p^r - 1.

Thus, the theorem follows.

Case 3: If \(t = n \) and \(n \neq 1 \), write \(S' \) for the set \(\{E_j \mid i(E_j) = 1 \} \) and \(t(E_j) = n \), \(S'' \) for the complement \(\{E_1, \ldots, E_r \} \setminus S' \). Note that \(S' \) is not empty. Let \(\{E'_1, \ldots, E'_r \} \) be a set of \(\text{étale-chains} \) associated to \(Φ^r \) such that the following conditions: (i) \(S'' = \{E'_1, \ldots, E'_r, S'' \}; \) (ii) \(S' = \{E''_{S''+1}, \ldots, E'_r \}. \) By Theorem 2.10, there exist an elementary abelian \(p\)-group \(A' \), a maximal filtration \(Φ_{A'} \) of \(A' \), and an \(A'\)-covering \(3' \) over \(Ψ_n \) such that the \(j\)-th \(\text{étale-chain} \) \(E''_{j'} \) associated to the sequence of \(p\)-coverings of \(n\)-semi-graphs with \(p\)-rank induced by \(Φ_{A'} \)

\[
Φ_{E'} : 3' = 3'_r → 3'_r → \cdots → 3'_0 = Ψ_n
\]
is equal to \(E'_j \) for each \(j = 1, \ldots, r \). Then since \(S'' \) is \(\leq r - 1 \), by induction, we have \(σ(3''_{E''}) ≤ p^{r/2} - 1 \). Note that since both \(I_{e_0} \) and \(I_{e_{n+1}} \) are equal to \(A' \), we write \(u'_{1}, (\text{resp. } u''_{1}, u'''_{1}) \) for the unique element of \(β_{\overline{1}}(p_1) \) (resp. \(β_{\overline{1}}^{-1}(p_1), β_{\overline{1}}^{-1}(p_1), β_{\overline{1}}^{-1}(p_1) \)). Then we have
\[
σ(3''_{E''_1}) = p^{r}σ_{3''_{E''_1}}(u''_{1}) + p^{r} - 1 + 1 = p^{r}σ_{3''_{E''_1}}(u''_{1})
\]
and
\[
σ(3''_{E''_1}) = p^{r}σ_{3''_{E''_1}}(u''_{1}) + p^{r} - 1 + 1 = p^{r}σ_{3''_{E''_1}}(u''_{1}).
\]
Thus, we have
\[
σ(3) = σ(3') = p^{r}σ(3''_{E''_1}) - σ_{3''_{E''_1}}(u''_{1}) + σ_{3''_{E''_1}}(u''_{1}) + σ_{3''_{E''_1}}(u''_{1}) + p^{r} - 1 ≤ p^r - 1.
\]
Thus, the theorem follows.

Case 4: If \(n \neq 1 \) and \(t \notin \{1, n\} \), we write \(3[a_2] \) for \(3_{m+m_4+m_1+m_2+n_1}, 3^{1,t-1}[a_2] \) (resp. \(3^{t+1,n}[a_2] \)) for the \((t-1)\)-semi-graph with \(p\)-rank \((β_{\overline{1}}^{-1}[a_2](P_{1,t-1}), σ_{\overline{1}}[a_2]|_{β^{-1}_{\overline{1}}[a_2](P_{1,t-1})}] \), \(β_{\overline{1}}^{-1}(a_2)(P_{t+1,n}) \) (resp. the \((n-t)\)-semi-graph with \(p\)-rank \((β_{\overline{1}}^{-1}(a_2)(P_{t+1,n}), σ_{\overline{1}}[a_2]|_{β^{-1}_{\overline{1}}[a_2](P_{t+1,n})}] \), \(β_{\overline{1}}^{-1}(a_2)(P_{t+1,n}) \)). Similar arguments to the arguments given in the proof of Case 3 imply that
\[
σ(3^{1,t-1}[a_2]) ≤ p^{m_1+m_2+b_1+m_5} - 1
\]
(resp. \(σ(3^{t+1,n}[a_2]) ≤ p^{m_1+b_2+m_5} - 1 \)).

Moreover, by Lemma 2.12, we obtain
\[
σ(3^{1,t-1}[a_2]) ≤ p^{m_1+m_2+b_1+m_5} - p^{m_5+n_1} - m_2
\]
(resp. \(σ(3^{t+1,n}[a_2]) ≤ p^{m_1+b_2+m_5} - p^{m_5+n_1} \)).
Thus, we obtain
\[
\sigma(\mathcal{F}[a_2]) = \sigma(\mathcal{F}^{1,-1}[a_2]) + \sigma(\mathcal{F}^{1,n}[a_2]) + \sum_{v \in \beta^{-1}_{\mathcal{F}[a_2]}(p_1)} \sigma_{\mathcal{F}[a_2]}(v) + p^{m_5}(p^{m_2+n_1}-1+p^{m_1}-1)+p^{m_5}-1
\leq p^{n_1+m_2+b_1+m_5} + p^{m_1+b_2+m_5} - p^{m_5} - 1 + \sum_{v \in \beta^{-1}_{\mathcal{F}[a_2]}(p_1)} \sigma_{\mathcal{F}[a_2]}(v).
\]
Write \(v_1[a_2]\) for the unique element of \(\beta^{-1}_{\mathcal{F}[a_2]}(p_1)\). Note that \(\sigma_{\mathcal{F}[a_2]}(v_1[a_2])\) is equal to 0.

Write \(v_1\) (resp. \(v_t\)) for the unique (resp. an element) element of \(\beta^{-1}_{\mathcal{F}}(p_1)\) (\(\beta^{-1}_{\mathcal{F}}(p_t)\)). We have
\[
\sigma_{\mathcal{F}}(v_1) = -p^{n_1+n_3} + p^{n_1}(p^{n_3} - 1) + p^{n_1+n_3} - 1 + 1 = p^{n_1+n_3} - p^{n_1}
\]
and
\[
\sigma_{\mathcal{F}}(v_t) = -p^{m_1+m_2+m_3+a_1} + p^{a_1+m_2}(p^{m_1+m_3} - 1) + p^{m_1}(p^{a_1+m_2+m_3} - 1) + 1
= p^{m_1+m_2+m_3+a_1} - p^{m_2+a_1} - p^{m_1} + 1.
\]

Since we have
\[
\sigma(\mathcal{F}) - \sigma(\mathcal{F}) - \sum_{v \in \beta^{-1}_{\mathcal{F}[a_2]}(p_1)} \sigma_{\mathcal{F}}(v) = \sigma(\mathcal{F}[a_2]) - \sigma_{\mathcal{F}[a_2]}(v_1[a_2]) - \sum_{v \in \beta^{-1}_{\mathcal{F}[a_2]}(p_1)} \sigma_{\mathcal{F}[a_2]}(v)
\leq p^{n_1+m_2+b_1+m_5} + p^{m_1+b_2+m_5} - p^{m_5} - 1
\]
and \(\beta^{-1}_{\mathcal{F}}(p_t) = p^{m_5}\), we obtain
\[
\sigma(\mathcal{F}) \leq p^{n_1+m_2+b_1+m_5} + p^{m_1+b_2+m_5} - p^{m_5} - 1 + p^{n_1+n_3} - p^{n_1}
+ p^{m_5}(p^{m_1+m_2+m_3+a_1} - p^{m_2+a_1} - p^{m_1} + 1)
= p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3}
- p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1.
\]

By Lemma 4.1 in Appendix, we obtain
\[
\sigma(\mathcal{F}) \leq p^r - 1.
\]
Thus, we complete the proof of the theorem. \(\square\)

3 \(p \)-ranks of vertical fibers of abelian stable coverings

3.1 \(p \)-ranks and stable coverings

Definition 3.1. Let \(C\) be a disjoint union of projective curves over an algebraically closed field of characteristic \(p > 0\). We define the \(p \)-rank of \(C\) as follows:
\[
\sigma(C) := \dim_{\mathbb{F}_p} H^1_{\text{et}}(C, \mathbb{F}_p).
\]
Remark 3.1.1. Let C be a semi-stable curve over an algebraically closed field of characteristic $p > 0$. Write Γ_C for the dual graph of C, $v(\Gamma_C)$ for the set of vertices of Γ_C. Then we have

$$\sigma(C) = \sum_{v \in v(\Gamma_C)} \sigma(\tilde{C}_v) + \text{rank}_\mathbb{Z} H^1(\Gamma_C, \mathbb{Z}),$$

where for $v \in v(\Gamma)$, \tilde{C}_v denotes the normalization of the irreducible component of C corresponding to v.

The p-rank of a p-Galois covering (i.e., the extension of function fields induced by the morphism of curves is a Galois extension, and the Galois group is a p-group) of a smooth projective curve can be calculated by the Deuring-Shafarevich formula as follows (cf. [C]):

Proposition 3.2. Let $h : C' \to C$ be a Galois covering (possibly ramified) of smooth projective curves over an algebraically closed field of characteristic $p > 0$, whose Galois group is a finite p-group G. Then we have

$$\sigma(C') - 1 = \sharp G(\sigma(C) - 1) + \sum_{c' \in (C')^{\text{cl}}} (e_{c'} - 1),$$

where $(C')^{\text{cl}}$ denotes the set of closed points of C', $e_{c'}$ denotes the ramification index at c', and $\sharp G$ denotes the order of G.

In the following of this subsection, let R be a complete discrete valuation ring with algebraically closed residue field k of characteristic $p > 0$, K the quotient field, and \overline{K} an algebraic closure of K. We use the notation S to denote the spectrum of R, $\eta, \overline{\eta}$ and s stand for the generic point, the geometric generic point, the closed point corresponding to the natural morphisms $\text{Spec} K \to S$, $\text{Spec} \overline{K} \to S$ and $\text{Spec} k \to S$, respectively. Let X be a semi-stable curve over S. Write X_η, $X_{\overline{\eta}}$ and X_η for the generic fiber, the geometric generic fiber and the special fiber, respectively. Moreover, we suppose that X_η is smooth over η and the genus $g_{X_\overline{\eta}}$ of $X_\overline{\eta}$ is ≥ 2.

Definition 3.3. Let $f : Y \to X$ be a morphism of semi-stable curves over S, G a finite group. Then f is called a semi-stable covering (resp. G-semi-stable covering) over S if the morphism of generic fibers f_η is an étale covering (resp. an étale covering with Galois group G), and the following universal property is satisfied: if $g : Z \to X$ is a morphism of semi-stable curves over S such that $Z_\eta = Y_\eta$ and $g_\eta = f_\eta$, then there exists a unique morphism $h : Z \to Y$ such that $f = g \circ h$ (cf. Remark 3.3.1 for the existence of Y). We call f a stable covering (resp. G-stable covering) over S if f is a semi-stable covering, and X is a stable curve. Note that by the construction of semi-stable coverings in Remark 3.3.1, if f is a stable covering over S, then Y is a stable curve over S.

Remark 3.3.1. Let W be a semi-stable curve over s. We shall call a semi-stable subcurve $C \subseteq W$ a chain if all the irreducible components of C are isomorphic to \mathbb{P}^1, the dual graph of C is a tree, and for each irreducible component $C_i \subseteq C$, C_i meets the other irreducible components of W at at most two points.

Let $f_\eta : Y_\eta \to X_\eta$ be an étale covering. Suppose that Y_η admits a semi-stable reduction over S. Write Y' for the normalization of X in the function field $K(Y)$, Y'.

24
for the unique minimal desingularization over \(S \) (cf. [L1, Proposition 9.3.32]) which is a semi-stable curve over \(S \). Then \(Y' \) (resp. \(Y' \)) admits an \(G \)-action induced by the action of \(G \) on \(Y_\eta \). We denote by \(f^1 : Y^1 \rightarrow X \) the composite of \(Y^1 \rightarrow Y' \) and the normalization morphism \(Y' \rightarrow X \). Write \(C^1_X \) for the set of the maximal elements (under the relationship “\(\subseteq \)”) of

\[
\{ C \text{ a chain of the special fiber } Y^1_s \text{ of } Y^1 \mid f^1(C) \text{ is a closed point of } X_s \}\text{.}
\]

Contracting \(C^1_X \), we obtain a semi-stable curve \(Y^2 \) over \(S \) (cf. [L1, Lemma 10. 3.31]). Moreover, we have a natural morphism \(f^2 : Y^2 \rightarrow X \) induced by \(f^1 \). Write \(C^2_X \) for the set of the maximal elements (under the relationship “\(\subseteq \)”) of

\[
\{ C \text{ a chain of the special fiber } Y^2_s \text{ of } Y^2 \mid f^2(C) \text{ is a closed point of } X_s \}\text{.}
\]

Contracting \(C^2_X \), we obtain a semi-stable curve \(Y^3 \) over \(S \) (cf. [L1, Lemma 10. 3.31]). Moreover, we have a natural morphism \(f^3 : Y^3 \rightarrow X \) induced by \(f^2 \). Repeating the process above, we obtain a contracting morphism \(c_Y : Y^1 \rightarrow Y \), and \(f_\eta \) extends to a morphism \(f : Y \rightarrow X \) over \(S \).

Next, let us prove that \(Y \) satisfies the universal property defined in Definition 3.3. Let \(Z \) be a semi-stable curve over \(S \) and \(g : Z \rightarrow X \) a morphism of semi-stable curves over \(S \) such that \(g_\eta = f_\eta \). If \(Z \) is regular, since \(Y^1 \) is the minimal desingularization over \(S \), we obtain a morphism \(Z \rightarrow Y^1 \). Thus, we have \(g \) factors through \(f \). If \(Z \) is not regular, write \(Z^{\text{reg}} \) for the minimal desingularization of \(Z \) over \(S \). Then we obtain a commutative diagram as follows:

\[
\begin{array}{ccc}
Z^{\text{reg}} & \xrightarrow{b} & Y^1 \\
\downarrow{r} & & \downarrow{}
\end{array}
\]

Write \(C_{Z^{\text{reg}}} \) for the set of \((-1)\)-curves of \(Z^{\text{reg}} \) whose images under the morphism \(b \) are closed points of \(Y^1_s \). Contracting \(r(C_{Z^{\text{reg}}}) \), we obtain a semi-stable curve \(Z' \) over \(S \), a morphism \(Y^1 \rightarrow Z' \), and the following commutative diagram:

\[
\begin{array}{ccc}
Z^{\text{reg}} & \xrightarrow{h} & Y^1 \\
\downarrow{r} & & \downarrow{r'} \\
Z & \xrightarrow{c_Z} & Z'.
\end{array}
\]

Write \(V_{c_Y} \) (resp. \(V_{r'} \)) for the set of irreducible components of \(Y^1_s \) such that for each element \(E \in V_{c_Y} \) (resp. \(E \in V_{r'} \)), \(c_Y(E) \) (resp. \(r'(E) \)) is a closed point of \(Y_s \) (resp. the special fiber \(Z'_s \) of \(Z' \)). By the constructions of \(Y \) and \(Z' \), we have \(V_{r'} \subseteq V_{c_Y} \). Then there is contracting morphism \(Z' \rightarrow Y \), and the following commutative diagram holds:

\[
\begin{array}{ccc}
Y^1 & \xrightarrow{c_Y} & Y^1 \\
\downarrow{r'} & & \downarrow{c_{Z'}} \\
Z' & \xrightarrow{c_{Z'}} & Y.
\end{array}
\]

25
Then g factors through f. Note that the uniqueness of contracting implies that the uniqueness of the morphism $h := c_{g'} \circ c_Z : Z \rightarrow Y$.

Note that if $f : Y \rightarrow X$ is a finite morphism of semi-stable curves over S, and the morphism of generic fibers f_η is étale, then f is a semi-stable covering.

Definition 3.4. Let $f : Y \rightarrow X$ be a semi-stable covering over S. Suppose that the morphism of special fibers $f_s : Y_s \rightarrow X_s$ is not finite. A closed point $x \in X$ is called a *vertical point associated to f*, or for simplicity, a *vertical point* when there is no fear of confusion, if $f^{-1}(x)$ is not a finite set. The inverse image $f^{-1}(x)$ is called the *vertical fiber associated to x*.

If a vertical point x is nonsingular, the following result was proved by Raynaud (cf. [R, Théorème 1 and Proposition 1]).

Proposition 3.5. Let G be a finite p-group, $f : Y \rightarrow X$ a G-semi-stable covering and x a vertical point associated to f. If x is a smooth point of X_s, then the p-rank of each connected component of the vertical fiber $f^{-1}(x)$ is equal to 0. On the other hand, by contracting the vertical fibers $f^{-1}(x)$, we obtain a curve Y_c over S. Write $c : Y \rightarrow Y_c$ for the contracting morphism. Then the points $c(f^{-1}(x))$ are geometrically unibranch.

Proposition 3.6. Let G be a finite group, $f : Y \rightarrow X$ a G-semi-stable covering, and x a vertical point associated to f. If x is a smooth point or a node which is contained in only one irreducible component (resp. a node which is contained in two different irreducible components), we use the notation X_v (resp. X_{v_1} and X_{v_2}) to denote the irreducible component which contains x (resp. the irreducible components which contain x). Write $\psi : Y' \rightarrow X$ for the normalization of X in the function field of Y. Let $y' \in \psi^{-1}(x)$ be a point of the inverse image of x, Y'_v (resp. Y'_{v_1} and Y'_{v_2}) for an irreducible component (resp. two irreducible components) of Y'_v such that $\psi_s(Y'_v) = X_v$ and $y' \in Y'_v$ (resp. (i) $\psi_s(Y'_{v_1}) = X_{v_1}$ and $\psi_s(Y'_{v_2}) = X_{v_2}$; (ii) $y' \in Y'_{v_1}$ and $y' \in Y'_{v_2}$). Write $I_v \subseteq G$ (resp. $I_{v_1} \subseteq G$ and $I_{v_2} \subseteq G$) for the inertia subgroup of Y'_v (resp. the inertia subgroups of Y'_{v_1} and Y'_{v_2}, respectively).

Suppose that G is a p-group (resp. an abelian group). Then we have $I_v \neq \{1\}$ (resp. $I_{v_1} \neq \{1\}$ or $I_{v_2} \neq \{1\}$). Moreover, write $I_{y'} \subseteq G$ for the inertia subgroup of y', then $I_{y'}$ is equal to I_v (resp. $I_{y'}$ is generated by I_{v_1} and I_{v_2}).

Proof. Since Y is normal, we obtain a natural morphism $\phi : Y \rightarrow Y'$. By using [BLR, 6.7 Proposition 4], we may contract the connected component of $f_s^{-1}(x)$ whose image under the morphism ϕ is y'. Thus, we obtain a contraction morphism $c : Y \rightarrow Y''$. Since Y'' is a blowing-up of Y', Y'' is a fiber surface over S (i.e., normal and flat over S) and there is natural commutative diagram as follows:

$$
\begin{array}{ccc}
Y_\eta & \longrightarrow & Y \\
\downarrow c_\eta & & \downarrow c \\
Y''_\eta & \longrightarrow & Y'' \\
\downarrow f''_\eta & & \downarrow f'' \\
X_\eta & \longrightarrow & X
\end{array}
$$
where c_v is an identity morphism.

Write Y'' (resp. Y''_1 and Y''_2) for the unique irreducible component whose image under the natural morphism $Y'' \to Y'$ is Y'_i (resp. Y'_v, Y'_v'), y'' for the image $c(\phi^{-1}(y'))$. Note that the inertia group of Y''_v (resp. Y''_v') is equal to I_v (resp. I_{v_1}, I_{v_2}).

If x is a smooth point, G is a p-group, and I_v is trivial, then $f''|_{Y''}$ is generically étale. By Proposition 3.5, we have y'' is geometrically unibranch. Thus, y'' is contained in only one irreducible component of Y''. By applying Zariski-Nagata purity, we have $f''|_{Y''}$ is étale at y''. Thus, y'' is a smooth point. Then Y'' is a semi-stable curve. This contradicts to the minimal properties of semi-stable coverings.

If x is a node and I_v (resp. I_{v_1} and I_{v_2}) is (resp. are) trivial, since G is abelian, f'' is étale over an open neighborhood of x. The completion of the local ring at x is $\hat{\mathcal{O}}_{X,x} \cong \mathbb{R}[[u,v]]/(uv - \pi^{p^e})$, where π denotes an uniformizer of \mathcal{O} and $(n', p) = 1$. Since the étale fundamental group of $\text{Spec} \hat{\mathcal{O}}_{X,x} \setminus \{x\}$ is isomorphic to $\mathbb{Z}/n'\mathbb{Z}$ (cf. [T, Lemma 2.1 (iii)]), where \hat{x} denotes the closed point of $\text{Spec} \hat{\mathcal{O}}_{X,x}$, we have y'' is a node. Then Y'' is a semi-stable model of Y''_v over S in either case, so that this contradicts to the minimal properties of semi-stable coverings. Thus, $I_v \neq \{1\}$ (resp. $I_{v_1} \neq \{1\}$ or $I_{v_2} \neq \{1\}$). This completes the proof of the proposition.

3.2 Semi-graphs with p-rank associated to vertical fibers

In this subsection, we construct a semi-graph with p-rank defined in Section 1 from a vertical fiber, and we apply the theory developed in Section 1 to calculate the bound of the p-rank of the vertical fiber.

First, we fix some notations. Let G be a finite p-group, $f : Y \to X$ a G-stable covering over S, $x \in X_s$ a vertical point. Suppose that x is a node contained in two irreducible components X_1 and X_2 (which may be equal) of X_s. Write $\psi : Y' \to X$ for the normalization of X in the function field of Y. Let $y' \in \psi^{-1}(x)$ be a point of the inverse image of x. Write $I_{y'}$ for the inertia group of y'. Note that the natural morphism $Y/I_{y'} \to X$ induced by f is finite étale over x. Thus, by replacing X by the stable model of $Y/I_{y'}$, in order to calculate the p-rank of the vertical fiber $f^{-1}(x)$, we may assume that $I_{y'}$ is equal to G. From now on, we may assume that $G = I_{y'}$ is a p-group with order p^r. Then $f^{-1}(x)$ is connected.

Let X^{st}_s be the quotient of Y by G. By [R, Appendice, Corollaire], X^{st} is a semi-stable curve with generic fiber X_y. Then we obtain a quotient morphism $h : Y \to X^{\text{st}}$ and a birational morphism $g : X^{\text{st}} \to X$ such that the composite morphism $g \circ h$ is equal to f. We still write X_1 and X_2 for the strict transforms of X_1 and X_2 under the birational morphism g, respectively. By the general theory of semi-stable curves, $g^{-1}(x)$ is a semi-stable subcurve of X^{st} whose irreducible components are isomorphic to \mathbb{P}^1_k. Write C for the semi-stable subcurve of $g^{-1}(x)$ which is a chain of projective lines $\cup_{i=1}^{p^r} P_i$ such that the following conditions: (i) P_i is not equal to P_j if $i \neq j$; (ii) $P_1 \cap X_1$ are $P_n \cap X_2$ are not empty; (iii) P_i meets P_{i+1} at only one point; (iv) $P_i \cap P_j$ is empty if j is not equal to $i - 1, i$ or $i + 1$. Then we have

$$g^{-1}(x) = C \cup B,$$
where B denotes the topological closure of $g^{-1}(x) \setminus C$ in $g^{-1}(x)$. Write B_i for the union of the connected components of B which intersect with P_i are not empty.

Lemma 3.7. Let V_i be an irreducible component of $h^{-1}(P_i)$, $I_{V_i} \subseteq G$ (resp. $D_{V_i} \subseteq G$) the inertia group (the decomposition group) of V_i, and D_i for the image of V_i under the quotient morphism $Y \to Y/I_{V_i}$. Write h_i for the natural morphism $Y/I_{V_i} \to X_{\text{sst}}$. Then the branch locus of $h_i|_{D_i} : D_i \to P_i$ are contained in $P_i \cap (P_i+1 \cup P_i-1)$.

Proof. Write E_i for the image of D_i under the natural morphism $Y/I_{V_i} \to Y/D_{V_i}$. We have the restriction of $Y/D_{V_i} \to X_{\text{sst}}$ to E_i is an identity morphism. Thus, by replacing X_{sst} by Y/D_{V_i}, we may assume that D_{V_i} is equal to G. Then h_i is a G/I_{V_i}-semi-stable covering. Note that it is easy to see that the branch locus of $h_i|_{D_i}$ are contained in $P_i \cap (P_i+1 \cup P_i-1 \cup B_i)$.

By contracting B_i (resp. $h_i^{-1}(B_i)$), we obtain a semi-stable curve $(X_{\text{sst}})'$ and a contraction morphism $c_{X_{\text{sst}}} : X_{\text{sst}} \to (X_{\text{sst}})'$ (resp. a fiber surface $(Y/I_{V_i})'$ and a contraction morphism $c_{Y/I_{V_i}} : Y/I_{V_i} \to (Y/I_{V_i})'$) over S. Moreover, h_i induces a morphism $h_i' : (Y/I_{V_i})' \to (X_{\text{sst}})'$. Then we have the following commutative diagram:

$$
\begin{array}{ccc}
Y/I_{V_i} & \xrightarrow{c_{Y/I_{V_i}}} & (Y/I_{V_i})' \\
\downarrow{h_i} & & \downarrow{h_i'} \\
X_{\text{sst}} & \xrightarrow{c_{X_{\text{sst}}}} & (X_{\text{sst}})'.
\end{array}
$$

Since it follows from Proposition 3.5, $(h_i')^{-1}(c_{X_{\text{sst}}}(P_i \cap B)) \cap c_{Y/I_{V_i}}(D_i)$ are geometrically unibranch, $(h_i')^{-1}(c_{X_{\text{sst}}}(P_i \cap B))$ only are contained in one irreducible component of the special fiber of $(Y/I_{V_i})'$. Moreover, by applying Zariski-Nagata purity to h_i, $h_i'((h_i')^{-1}(c_{X_{\text{sst}}}(P_i))$ is contained in the étale locus of h_i. Thus, the set of branch points of $h_i'((h_i')^{-1}(c_{X_{\text{sst}}}(P_i))$ is contained in the set $c_{X_{\text{sst}}}(P_i \cap (P_i+1 \cup P_i-1))$. Moreover, $c_{Y/I_{V_i}}|_{D_i}$ is an isomorphism. Then we complete the proof of the lemma.\hfill\square

Next, we construct a semi-graph with p-rank from a vertical fiber. From now on, we assume that G is an abelian p-group. Write D_C for the set of points $C \cap (X_1 \cup X_2)$. Thus, we may regard $C := (C, D_C)$ as a pointed semi-stable curve over s. Write \mathbb{P}_n for the dual graph associated to C, $\sigma_{\mathbb{P}_n}$ for the map satisfying the property $\sigma_{\mathbb{P}_n}(p_i) = \sigma(P_i)$. Then $\mathbb{P}_n := (\mathbb{P}_n, \sigma_{\mathbb{P}_n}, \text{id}_{\mathbb{P}_n})$ is a n-chain defined in Section 1.

Let

$$\Phi : \{1\} = G_r \subset G_{r-1} \subset G_{r-2} \subset \cdots \subset G_1 \subset G_0 = G,$$

be a filtration of G such that $G_j/G_{j+1} \cong \mathbb{Z}/p\mathbb{Z}$, $j = 0, \ldots, r - 1$. The filtration Φ induces a sequence of semi-stable coverings Φ_f as follows:

$$Y = Y_r \xrightarrow{d_r} Y_{r-1} \xrightarrow{d_{r-1}} \cdots \xrightarrow{d_1} Y_0 = X_{\text{sst}},$$

where $Y_i, i = 0, \ldots, r$, denotes the semi-stable curve Y/G_i over S.

For each $i = 0, \ldots, r$, write Γ_i for the dual graph of the special fiber of Y_i. First, let us prove that the map $\beta_i : \Gamma_i \to \Gamma_{i-1}, 1 \leq i \leq r$, induced by d_i is a morphism of semi-graphs. To verify β_i is a morphism of semi-graphs, it is sufficient to prove that $\beta_i(e(\Gamma_i)) \subseteq e(\Gamma_{i-1})$,
where $e(-)$ denotes the set of edges of $(-)$. Let y_i be a node of the special fiber $(Y_i)_s$ of Y_i. Write Y^1_i and Y^2_i for the irreducible components of $(Y_i)_s$, which contain y_i. $I_{Y^1_i} \subseteq G_{i-1}/G_i$ (resp. $I_{Y^2_i} \subseteq G_{i-1}/G_i$, $I_{y_i} \subseteq G_{i-1}/G_i$) for the inertia group of Y^1_i (resp. Y^2_i, y_i). Write $I \subseteq G_{i-1}/G_i$ for the group generated by $I_{Y^1_i}$ and $I_{Y^2_i}$, q_y for the quotient morphism $Y_i \to Y/I$. By the definitions, we obtain $I \subseteq I_y$. Applying Zariski-Nagata purity to Spec $\mathcal{O}_{Y/I,q_y}(y_i) \to \text{Spec} \mathcal{O}_{Y_i,d_i(y_i)}$, we have the morphism $Y/I \to Y_{i-1}$ induced by d_i is étale at $q_y(y_i)$. This implies that $I = I_y$. Since for any element $\tau \in I$, we have $\tau(Y^1_i) = Y^1_i$ and $\tau(Y^2_i) = Y^2_i$, the proof of [R, Appendice, Proposition 5] (or [L1, Proposition 10.3.48]) implies that $q_y(y_i)$ is a node of $(Y/I)_s$. Thus, $d_i(y_i)$ is a node of the special fiber $(Y_{i-1})_s$ of Y_{i-1}. This means that β_i is a morphism of semi-graphs.

Write $\phi_i, i = 1, \ldots, r$, for the composite morphism $d_1 \circ d_2 \circ \cdots \circ d_i$. Note that we have $h = \phi_r$. The semi-stable subcurve $\phi_i^{-1}(C) \cap \phi_j^{-1}(D_C)$ may be regarded as a pointed semi-stable curve over s. We use the notation \mathcal{Y}_i to denote the resulting pointed semi-stable curve $(\phi_i^{-1}(C), \phi_i^{-1}(D_C))$. Write \mathcal{G}_i for the dual graph of \mathcal{Y}_i, $\beta_{\mathcal{G}_i}$ for the natural morphism $\mathcal{G}_i \to \mathbb{P}_n$ induced by the morphism $\phi_i|_{\mathcal{Y}_i} : \mathcal{Y}_i \to \mathbb{C}$. For each $v \in v(\mathcal{G}_i)$, write $(\mathcal{Y}_i)_v$ for the irreducible component of \mathcal{Y}_i corresponding to v. We define σ_v to be the map satisfying the property $\sigma_v(v) = \sigma((\mathcal{Y}_i)_v)$ for all $v \in v(\mathcal{G}_i)$. Then $\mathcal{G}_i := (\mathcal{G}_i, \sigma_v, \beta_{\mathcal{G}_i})$ is a n-graph with p-rank. Moreover, $d_i|_{\mathcal{Y}_i}$ induces a natural morphism of semi-graphs with p-rank $b_i : \mathcal{G}_i \to \mathcal{G}_{i-1}$, and \mathcal{G} admits a natural action of G induced by the action of G on \mathcal{Y}_n. Furthermore, Φ induces a sequence of morphisms of semi-graphs with p-rank

$$\Phi_\psi : \mathcal{G} := \mathcal{G}_r \to \mathcal{G}_{r-1} \to \cdots \to \mathcal{G}_1 \to \mathcal{G}_0 = \mathbb{P}_n.$$

On the other hand, by Lemma 3.7 and Zariski-Nagata purity, it is easy to check that for each $i = 1, \ldots, r$, b_i is a p-covering. Thus, \mathcal{G} is a G-covering over \mathbb{P}_n. For each $i = 1, \ldots, r$, we write $E_i^{\Phi_\psi}$ for the i-th étale-chain associated to Φ_ψ.

On the other hand, write $\{Y_i\}_j$ for the set of connected components contained in the étale locus of d_i such that the image $\phi_j(Y_i)$ are contained in $g^{-1}(x)$ for all j, y_i^{et} for the disjoint union $\bigsqcup_j Y_i^j$. Note that $\phi_j(Y_i^{et}) \setminus B$ is a disjoint union of semi-stable subcurve of C. For each connected component E of $\phi_j(Y_i^{et}) \setminus B$, with the set of closed points $D_E := E \cap C \setminus E$, we may regard $E := (E, D_E)$ as a pointed semi-stable subcurve of C over s. We define $E_i^{\Phi_\psi}$ as the disjoint union

$$\bigsqcup_{E \subseteq \phi_j(Y_i^{et}) \setminus B} E.$$

We shall call $E_i^{\Phi_\psi}$ the i-th étale-chain associated to Φ_ψ, and write E_i for the disjoint union of the dual graph of the connected components of $E_i^{\Phi_\psi}$. We define $\check{E}_i^{\Phi_\psi}$ as the disjoint union

$$\bigsqcup_i \check{E}_i^{\Phi_\psi},$$

and call $\check{E}_i^{\Phi_\psi}$ the étale-chain associated to Φ_ψ. From the construction of E_i, it is easy to see that E_i are equal to $E_i^{\Phi_\psi}$ for all i.

Note that $C \cap B$ are smooth points of C. By Proposition 3.5, we have the p-ranks of the connected components of $h^{-1}(B)$ are equal to 0. Thus, we have $\sigma(f^{-1}(x)) = \sigma(\phi_r^{-1}(C))$. Moreover, by applying Lemma 3.7, we obtain $\sigma(\phi_r^{-1}(C)) = \sigma(\mathcal{G})$.
Summarizing the discussion, we obtain the following proposition.

Proposition 3.8. Let G be a finite abelian p-group with order p^r, $f : Y \rightarrow X$ a G-stable covering over S, $x \in X_S$ a vertical point. Write $\psi : Y' \rightarrow X$ for the normalization of X in the function field of Y. Let $y' \in \psi^{-1}(x)$ be a point of the inverse image of x. Write $I_{y'}$ for the inertia group of y'. Suppose that $G = I_{y'}$. Let Φ be a maximal filtration of G. Write Φ_f for the sequence of semi-stable curves induced by Φ which was constructed in this subsection, $\rho_i^{\Phi_f}$ for the i-th étale-chain associated to Φ_f for each i. Then there exist a semi-graph with p-rank \mathfrak{G} and a sequence of p-coverings of semi-graphs with p-rank $\Phi_{\mathfrak{G}}$ induced by Φ which was constructed in this subsection such that \mathfrak{G} is a G-covering over \mathfrak{P}_n, and for each $i = 1, \ldots, r$, the i-th étale-chain $E_i^{\Phi_{\mathfrak{G}}}$ associated to $\Phi_{\mathfrak{G}}$ is equal to the dual graph of $\rho_i^{\Phi_f}$. Furthermore, we have $\sigma(f^{-1}(x)) = \sigma(\mathfrak{G})$.

3.3 p-ranks of vertical fibers

We follow the notations of Section 3.2. Let $\{Z_i\}_{i=0}^{n+1}$ a subset the set of irreducible components of the special fiber Y_s of Y such that the following conditions hold: (i) $\phi_i(Z_i) = P_i$ if $i \not\in \{0, n+1\}$; (ii) $\phi_r(Z_0) = X_1$ and $\phi_r(Z_{n+1}) = X_2$; (iii) the union $\bigcup_{i=0}^{n+1} Z_i$ is a connected semi-stable subcurve of the special fiber Y_s of Y. Write $P_i \subset G$ for the inertia subgroup of Z_i. Note that since G is an abelian p-group, P_i does not depend on the choice of Z_i.

By using the theory of étale-chains, we obtain an explicit formula of p-rank of $f^{-1}(x)$ as follows:

Theorem 3.9. If G is an abelian p-group, then we have

$$\sigma(f^{-1}(x)) = \sum_{i=1}^{n} \sharp(G/I_{P_i}) - \sum_{i=1}^{n+1} \sharp(G/(I_{P_{i-1}} + I_{P_i})) + 1.$$

Proof. We follow the notations of Theorem 2.8. Note that by Zariski-Nagata purity, we have the inertia group of a point of $Z_{i-1} \cap Z_i$ (resp. $Z_i \cap Z_{i+1}$) is equal to $I_{P_{i-1}} + I_{P_i}$ (resp. $I_{P_i} + I_{P_{i+1}}$). Then we have $\sharp E^{\Phi_{\mathfrak{G}}}(P_i) = \log_p(\sharp G/I_{P_i})$ (resp. $\sharp E^{\Phi_{\mathfrak{G}}}(b_{P_i}) = \log_p(\sharp G/(I_{P_{i-1}} + I_{P_i}))$), $\sharp E^{\Phi_{\mathfrak{G}}}(b_{P_i}) = \log_p(\sharp G/(I_{P_i} + I_{P_{i+1}}))$. Thus, we have

$$\sigma(f^{-1}(x)) = \sum_{i=1}^{n} (\sharp(G/I_{P_i}) - \sharp(G/(I_{P_{i-1}} + I_{P_i})) - \sharp(G/(I_{P_{i+1}} + I_{P_i}))) + 1 + \sum_{i=1}^{n+1} (\sharp(G/(I_{P_{i-1}} + I_{P_i})))$$

$$= \sum_{i=1}^{n} \sharp(G/I_{P_i}) - \sum_{i=1}^{n+1} \sharp(G/(I_{P_{i-1}} + I_{P_i}))) + 1.$$

This completes the proof of the theorem. \qed

Remark 3.9.1. If G is a cyclic p-group, since G is generated by P_0 and P_{n+1}, we may assume that $I_{P_n} = G$. Follows Lemma 3.10 below, there exists u such that

$$I_{P_0} \supseteq I_{P_1} \supseteq I_{P_2} \supseteq \cdots \supseteq I_{P_u} \subseteq \cdots \subseteq I_{P_{n-1}} \subseteq I_{P_n} \subseteq I_{P_{n+1}}.$$
Then we obtain
\[\sharp(G/I_{P_1}) - \sharp(G/(I_{P_1} + I_{P_2})) - \sharp(G/(I_{P_1} + I_{P_2} + I_{P_3})) + 1 = -\sharp(G/(I_{P_1})) + 1 \]
(resp. \(\sharp(G/(I_{P_u} + I_{P_{u+1}})) - \sharp(G/(I_{P_{u+1}})) + 1 = -\sharp(G/(I_{P_{u+1}})) + 1 \))
if \(i < u \),
\[\sharp(G/I_{P_1}) - \sharp(G/(I_{P_1} + I_{P_2})) - \sharp(G/(I_{P_1} + I_{P_2} + I_{P_3})) + 1 = -\sharp(G/(I_{P_{u+1}})) + 1 \]
(resp. \(\sharp(G/(I_{P_{u+1}} + I_{P_{u+2}})) - \sharp(G/I_{P_{u+1}})) + 1 = -\sharp(G/(I_{P_{u+1}})) + 1 \))
if \(i > u \) and
\[\sharp(G/I_{P_1}) - \sharp(G/(I_{P_1} + I_{P_2})) - \sharp(G/(I_{P_1} + I_{P_2} + I_{P_3})) + 1 = -\sharp(G/(I_{P_{u+1}})) + 1 \]
(resp. \(\sharp(G/I_{P_{u+1}} + I_{P_{u+2}})) - \sharp(G/I_{P_{u+1}})) + 1 = -\sharp(G/(I_{P_{u+1}})) + 1 \))
if \(i = u \). Thus, by applying Theorem 3.9, we obtain
\[\sigma(f^{-1}(x)) = \sharp(G/I_{P_1}) - \sharp(G/I_{P_{u+1}}). \]
This formula was first obtained by Saüdi (cf. [S, Proposition 1]).

Lemma 3.10. If \(G \cong \mathbb{Z}/p^n\mathbb{Z} \) is a cyclic group, then there exists \(0 \leq u \leq n + 1 \) such that
\[I_{P_0} \supseteq I_{P_1} \supseteq I_{P_2} \supseteq \cdots \supseteq I_{P_u} \subseteq \cdots \subseteq I_{P_{n-1}} \subseteq I_{P_n} \subseteq I_{P_{n+1}}. \]
In particular, \(\sharp \pi_0(\mathcal{E}_s^{\Phi^I}) \leq 1 \) hold for all \(i \), where \(\sharp \pi_0(\cdot) \) denotes the cardinality of the connected components of \(\cdot \).

Proof. If the lemma is not true, there exist \(s, t \) and \(v \) such that \(I_{P_s} \neq I_{P_t}, I_{P_t} \neq I_{P_i} \) and \(I_{P_r} \subseteq I_{P_{r+1}} = \cdots = I_{P_s} = \cdots = I_{P_u-1} \supsetneq I_{P_s} \). Since \(G \) is a cyclic group, we may assume \(I_{P_r} \supseteq I_{P_s} \).

Considering the quotient of \(Y \) by \(I_{P_s} \), we obtain a natural morphism of semi-stable curves \(h_s : Y/I_{P_s} \longrightarrow X^{\text{sst}} \) over \(S \). By contacting \(P_{s+1}, P_{s+2}, \ldots, P_{t-1}, B_{s+1}, \ldots, B_{t-1} \) (resp. \(h_s^{-1}(P_{s+1}), h_s^{-1}(P_{s+2}), \ldots, h_s^{-1}(P_{t-1}), h_s^{-1}(B_{s+1}), \ldots, h_s^{-1}(B_{t-1}) \)), we obtain a semi-stable curve \((X^{\text{sst}})^{\prime} \) (resp. a fiber surface \((Y/I_{P_s})^{\prime} \)) and a contacting morphism \(c_{X^{\text{sst}}} : X^{\text{sst}} \longrightarrow (X^{\text{sst}})^{\prime} \) (resp. \(c_{Y/I_{P_s}} : Y/I_{P_s} \longrightarrow (Y/I_{P_s})^{\prime} \)). The morphism \(h_s \) induces a morphism of fiber surfaces \(h_s^{\prime} : (Y/I_{P_s})^{\prime} \longrightarrow (X^{\text{sst}})^{\prime} \). Then we have the following commutative diagram as follows:

\[
\begin{array}{ccc}
Y/I_{P_s} & \xrightarrow{c_{Y/I_{P_s}}} & (Y/I_{P_s})^{\prime} \\
\downarrow{h_s} & & \downarrow{h_s^{\prime}} \\
X^{\text{sst}} & \xrightarrow{c_{X^{\text{sst}}}} & (X^{\text{sst}})^{\prime}.
\end{array}
\]

Write \(P_s' \) and \(P_s'' \) for the images \(c_{X^{\text{sst}}}(P_s) \) and \(c_{X^{\text{sst}}}(P_i) \), respectively, and \(x_{s,t}' \) for the closed point \(P_s' \cap P_t' \in (X^{\text{sst}})^{\prime} \). By Proposition 3.6, we have \((Y/I_{P_s})^{\prime} \) is a semi-stable curve over \(S \), moreover, we have \(h_s^{\prime} \) is étale over \(x_{s,t}' \). Then the inertia groups of the closed points \((h_s^{\prime})^{-1}(x_{s,t}^{\prime}) \) of the special fiber \((Y/I_{P_s})_s \) of \((Y/I_{P_s})^{\prime} \) are trivial.
On the other hand, since \(I_{P_i} \) is a proper subgroup of \(I_{P_i} \), we obtain the natural action of \(G/I_{P_i} \) on the irreducible components of \(h_{s}^{-1}(\cup_{j=s+1}^{t-1} P_j) \) is trivial. Thus, the inertia groups of the closed points \(c_{Y/I_{P_i}}(h_{s}^{-1}(\cup_{j=s+1}^{t-1} P_j)) = (h_{s}^{-1}(x_{s}')) \) of the special fiber \((Y/I_{P_i})' \) of \((Y/I_{P_i})' \) are not trivial. This is a contradiction. Then we complete the proof of the lemma.

On the other hand, we obtain a bound of \(\sigma(f^{-1}(x)) \).

Theorem 3.11. If \(G \) is an abelian \(p \)-group with order \(p^r \), and \(\mathcal{E}_i \) is connected for each \(i = 1, \ldots, n \), then we have \(\sigma(f^{-1}(x)) \leq p^r - 1 \).

Proof. Together with Theorem 2.13 and Proposition 3.8, the theorem follows.

4 Appendix

In this appendix, we prove the following elementary lemma which is used in the proof of Theorem 2.13.

Lemma 4.1. Following the notations of the proof of Theorem 2.13, then we have

\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1 \\
\leq p^r - 1.
\]

Proof. We will check this inequality case by case. We denote by \(M \) the maximal number

\[
\max\{n_1 + m_2 + b_1 + m_5, m_1 + m_2 + m_3 + a_1 + m_5, m_1 + m_5 + b_2, n_1 + n_3\}.
\]

If \(M = r \), we have the following cases.

If \(n_1 + m_2 + b_1 + m_5 = r \), then we have \(n_2 = n_3 = b_2 = m_1 = m_3 = 0, m_4 = b_1 \) and \(n_4 = m_2 + b_1 + m_5 \). Thus, we obtain

\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1 = p^r + p^{m_5+a_1} + p^{n_1} - p^{m_2+m_5+a_1} - p^{m_5} - p^{n_1} - 1 = p^r - 1.
\]

If \(m_1 + m_2 + m_3 + a_1 + m_5 = r \), then we have \(n_1 = a_1 \) and \(n_2 = n_3 = m_4 = b_1 = b_2 = 0 \). Thus, we obtain

\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1 = p^{n_1+m_2+m_5} + p^r + p^{a_1} - p^{a_1+m_2+m_5} - p^{m_1+m_5} - p^{a_1} - 1 = p^r - 1.
\]

If \(m_5 + b_2 + m_2 = r \), then we have \(n_1 = a_1 = a_2 = m_1 = m_3 = n_3 = b_1 = 0 \) and \(m_4 = b_2 \). Thus, we obtain

\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1 = p^{m_2+m_5} + p^{m_5} + p^r + 1 - p^{m_5+m_2} - p^{m_5} - 1 - 1 = p^r - 1.
\]
If \(n_1 + n_3 = r \), then we have \(m_1 = m_2 = m_3 = m_4 = m_5 = b_1 = b_2 = n_4 = n_2 = 0 \). Thus, we obtain

\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]

\[
= p^{n_1} + p^{a_1} + 1 + p^r - p^{a_1} - 1 - p^{n_1} - 1 = p^r - 1.
\]

Thus, it is sufficient to assume that \(M \leq r - 1 \).

If \(M \leq r - 2 \), then we have

\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1 \leq 4p^{r-2} - 4.
\]

Since \(p \) is a prime number, we have \(p^r - 1 - 4p^{r-2} + 4 > 0 \). Thus, we obtain

\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1 \leq p^r - 1.
\]

Thus, we may assume that \(M = r - 1 \).

If \(n_1 + m_2 + b_1 + m_5 = r - 1 \), we obtain \(n_2 + n_3 + m_1 + m_3 + b_2 = 1 \). If \(n_2 = 1 \), then we have \(n_3 = m_1 = m_3 = b_2 = 0 \). We obtain

\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]

\[
= p^{r-1} + p^{m_2+a_1+m_5} + p^{m_1+m_5} + p^{n_1} - p^{m_2+a_1+m_5} - p^{m_5} - p^{n_1} - 1
\]

\[
\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If \(n_3 = 1 \), then we have \(n_2 = m_1 = m_3 = b_2 = 0 \). We obtain

\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]

\[
= p^{r-1} + p^{m_2+a_1+m_5} + p^{m_5} + p^{n_1+1} - p^{m_2+m_5+a_1} - p^{m_5} - p^{n_1} - 1
\]

\[
\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If \(m_1 = 1 \), then we have \(n_2 = n_3 = m_3 = b_2 = 0 \). We obtain

\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]

\[
= p^{r-1} + p^{m_1+m_2+a_1+m_5} + p^{m_5+m_1} + p^{n_1} - p^{m_2+m_5+a_1} - p^{m_5+m_1} - p^{n_1} - 1
\]

\[
\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If \(m_3 = 1 \), then we have \(n_2 = n_3 = m_1 = b_2 = 0 \). We obtain

\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]

\[
= p^{r-1} + p^{m_3+m_2+a_1+m_5} + p^{m_5} + p^{n_1} - p^{m_2+m_5+a_1} - p^{m_5} - p^{n_1} - 1
\]

\[
\leq 2p^{r-1} - 1 \leq p^r - 1.
\]
If $b_2 = 1$, then we have $n_2 = n_3 = m_1 = m_3 = 0$. We obtain
\[
p^{n_1 + m_2 + b_1 + m_5} + p^{m_3 + m_2 + m_3 + a_1 + m_5} + p^{m_5 + b_2 + m_1} + p^{n_1 + n_3} - p^{m_5 + m_2 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[= p^{r-1} + p^{m_2 + a_1 + m_5} + p^{m_5 + b_2 + p^{n_1} - p^{m_2 + m_5 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1}
\]
\[\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If $a_1 + m_1 + m_2 + m_3 + m_5 = r - 1$, we obtain $a_2 + n_2 + n_3 + b_1 + b_2 = 1$. If $a_2 = 1$, then we have $n_2 = n_3 = b_1 = b_2 = 0$. We obtain
\[
p^{n_1 + m_2 + b_1 + m_5} + p^{m_3 + m_2 + m_3 + a_1 + m_5} + p^{m_5 + b_2 + m_1} + p^{n_1 + n_3} - p^{m_5 + m_2 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[= p^{n_1 + m_2 + m_5} + p^{r-1} + p^{m_1 + m_5} + p^{n_1} - p^{m_2 + m_5 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If $n_2 = 1$, then we have $a_2 = n_3 = b_1 = b_2 = 0$. We obtain
\[
p^{n_1 + m_2 + b_1 + m_5} + p^{m_3 + m_2 + m_3 + a_1 + m_5} + p^{m_5 + b_2 + m_1} + p^{n_1 + n_3} - p^{m_5 + m_2 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[= p^{n_1 + m_2 + m_5} + p^{r-1} + p^{m_1 + m_5} + p^{n_1} - p^{m_2 + m_5 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[= p^{r-1} - 1 < p^r - 1.
\]

If $n_3 = 1$, then we have $a_2 = n_2 = b_1 = b_2 = 0$. We obtain
\[
p^{n_1 + m_2 + b_1 + m_5} + p^{m_3 + m_2 + m_3 + a_1 + m_5} + p^{m_5 + b_2 + m_1} + p^{n_1 + n_3} - p^{m_5 + m_2 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[= p^{n_1 + m_2 + m_5} + p^{r-1} + p^{m_1 + m_5} + p^{n_1} - p^{m_2 + m_5 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If $b_1 = 1$, then we have $a_2 = n_2 = n_3 = b_2 = 0$. We obtain
\[
p^{n_1 + m_2 + b_1 + m_5} + p^{m_3 + m_2 + m_3 + a_1 + m_5} + p^{m_5 + b_2 + m_1} + p^{n_1 + n_3} - p^{m_5 + m_2 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[= p^{n_1 + m_2 + b_1 + m_5} + p^{r-1} + p^{m_1 + m_5} + p^{n_1} - p^{m_2 + m_5 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If $b_3 = 1$, then we have $a_2 = n_2 = n_3 = b_1 = 0$. We obtain
\[
p^{n_1 + m_2 + b_1 + m_5} + p^{m_3 + m_2 + m_3 + a_1 + m_5} + p^{m_5 + b_2 + m_1} + p^{n_1 + n_3} - p^{m_5 + m_2 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[= p^{n_1 + m_2 + b_1 + m_5} + p^{r-1} + p^{m_1 + m_5} + p^{n_1} - p^{m_2 + m_5 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If $m_1 + b_2 + m_5 = r - 1$, we obtain $a_1 + a_2 + n_2 + n_3 + m_2 + m_3 + b_1 = 1$. If $a_1 = 1$, then we have $a_2 = n_2 = n_3 = m_2 = m_3 = b_1 = 0$. We obtain
\[
p^{n_1 + m_2 + b_1 + m_5} + p^{m_3 + m_2 + m_3 + a_1 + m_5} + p^{m_5 + b_2 + m_1} + p^{n_1 + n_3} - p^{m_5 + m_2 + a_1} - p^{m_1 + m_5} - p^{n_1} - 1
\]
\[= p^{n_1 + m_2 + b_1 + m_5} + p^{r-1} + p^{n_1} - p^{a_1 + m_5} - p^{m_1 + m_5} - p^{n_1} - 1
\]

34
If $a_2 = 1$, then we have $a_1 = a_2 = n_3 = m_2 = m_3 = b_1 = 0$. We obtain
\[
\begin{align*}
&\leq 2p^{r-1} - 1 \leq p^r - 1.
\end{align*}
\]

If $n_2 = 1$, then we have $a_1 = a_2 = n_3 = m_2 = m_3 = b_1 = 0$. We obtain
\[
\begin{align*}
&\leq 2p^{r-1} - 1 \leq p^r - 1.
\end{align*}
\]

If $n_3 = 1$, then we have $a_1 = a_2 = n_2 = n_3 = m_3 = b_1 = 0$. We obtain
\[
\begin{align*}
&\leq 2p^{r-1} - 1 \leq p^r - 1.
\end{align*}
\]

If $m_2 = 1$, then we have $a_1 = a_2 = n_2 = n_3 = m_2 = b_1 = 0$. We obtain
\[
\begin{align*}
&\leq 2p^{r-1} - 1 \leq p^r - 1.
\end{align*}
\]

If $m_3 = 1$, then we have $a_1 = a_2 = n_2 = n_3 = m_2 = b_1 = 0$. We obtain
\[
\begin{align*}
&\leq 2p^{r-1} - 1 \leq p^r - 1.
\end{align*}
\]

If $b_1 = 1$, then we have $a_1 = a_2 = n_2 = n_3 = m_2 = m_3 = 0$. We obtain
\[
\begin{align*}
&\leq 2p^{r-1} - 1 \leq p^r - 1.
\end{align*}
\]

If $n_1 + n_3 = r - 1$, we obtain $n_2 + m_1 + m_2 + m_3 + m_4 + m_5 = 1$. If $n_2 = 1$, then we have $m_1 = m_2 = m_3 = b_1 = b_2 = m_5 = 0$. We obtain
\[
\begin{align*}
&\leq 2p^{r-1} - 1 \leq p^r - 1.
\end{align*}
\]
\[= p^{r-1} - 1 < p^r - 1. \]

If \(m_1 = 1 \), then we have \(n_2 = m_2 = m_3 = b_1 = b_2 = m_5 = 0 \). We obtain
\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]
\[
= p^{n_1} + p^{a_1+m_1} + p^{m_1} + p^{r-1} - p^{a_1} - p^{m_1} - p^{n_1} - 1
\]
\[
\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If \(m_2 = 1 \), then we have \(n_2 = m_1 = m_3 = b_1 = b_2 = m_5 = 0 \). We obtain
\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]
\[
= p^{n_1+m_2} + p^{a_1+m_2} + 1 + p^{r-1} - p^{a_1+m_2} - 1 - p^{n_1} - 1
\]
\[
\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If \(m_3 = 1 \), then we have \(n_2 = m_1 = m_2 = b_1 = b_2 = m_5 = 0 \). We obtain
\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]
\[
= p^{n_1} + p^{a_1+m_3} + 1 + p^{r-1} - p^{a_1} - 1 - p^{n_1} - 1
\]
\[
\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If \(b_1 = 1 \), then we have \(n_2 = m_1 = m_2 = m_3 = b_1 = m_5 = 0 \). We obtain
\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]
\[
= p^{n_1+b_1} + p^{a_1} + 1 + p^{r-1} - p^{a_1} - 1 - p^{n_1} - 1
\]
\[
\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If \(b_2 = 1 \), then we have \(n_2 = m_1 = m_2 = m_3 = b_1 = b_2 = 0 \). We obtain
\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]
\[
= p^{n_1} + p^{a_1} + p^{b_2} + p^{r-1} - p^{a_1} - 1 - p^{n_1} - 1
\]
\[
\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

If \(m_5 = 1 \), then we have \(n_2 = m_1 = m_2 = m_3 = b_1 = b_2 = 0 \). We obtain
\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]
\[
= p^{n_1+m_5} + p^{a_1+m_5} + p^{m_5} + p^{r-1} - p^{a_1+m_5} - p^{m_5} - p^{n_1} - 1
\]
\[
\leq 2p^{r-1} - 1 \leq p^r - 1.
\]

Thus, we obtain
\[
p^{n_1+m_2+b_1+m_5} + p^{m_1+m_2+m_3+a_1+m_5} + p^{m_5+b_2+m_1} + p^{n_1+n_3} - p^{m_5+m_2+a_1} - p^{m_1+m_5} - p^{n_1} - 1
\]
\[
\leq p^r - 1.
\]

We complete the proof of the lemma. \(\square \)
References

Yu Yang

Address: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

E-mail: yuyang@kurims.kyoto-u.ac.jp