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Abstract

In the present paper, we investigate the local p-ranks of coverings of stable curves.
Let G be a finite p-group, f : Y −→ X a morphism of stable curves over a complete
discrete valuation ring with algebraically closed residue field of characteristic p > 0,
x a singular point of the special fiber Xs of X. Suppose that the generic fiber Xη of
X is smooth, and the morphism of generic fibers fη is a Galois étale covering with
Galois group G. Write Y ′ for the normalization of X in the function field of Y ,
ψ : Y ′ −→ X for the resulting normalization morphism. Let y′ ∈ ψ−1(x) be a point
of the inverse image of x. Suppose that the inertia group Iy′ ⊆ G of y′ is an abelian
p-group. Then we give an explicit formula for the p-rank of a connected component
of f−1(x). Furthermore, we prove that the p-rank is bounded by ♯Iy′ − 1 under
certain assumptions, where ♯Iy′ denotes the order of Iy′ . These results generalize
the results of M. Säıdi concerning local p-ranks of coverings of curves to the case
where Iy′ is an arbitrary abelian p-group.
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1 Introduction and ideas

Let R be a complete valuation ring with algebraically closed residue field k of characteristic
p > 0, K the quotient field of R, and K an algebraic closure of K. We use the notation
S to denote the spectrum of R. Write η, η and s for the generic point, the geometric
generic point, and the closed point corresponding to the natural morphisms SpecK −→ S,
SpecK −→ S, and Spec k −→ S, respectively. Let X be a stable curve of genus gX over
S. Write Xη, Xη, and Xs for the generic fiber, the geometric generic fiber, and the special
fiber, respectively. Moreover, we suppose that Xη is smooth over η.

Let Yη be a geometrically connected curve over η, fη : Yη −→ Xη a finite Galois étale
covering over η with Galois group G. By replacing S by a finite extension of S, we may
assume that Yη admits a stable model over S. Then fη extends uniquely to a G-stable
covering (cf. Definition 3.3) f : Y −→ X over S (cf. [L2, Theorem 0.2] or Remark 3.3.1 of
the present paper). We are interested in understanding the structure of the special fiber
Ys of Y . If the order ♯G of G is prime to p, then by the specialization theorem for log étale
fundamental groups, fs is an admissible covering (cf. [Y1]); thus, Ys may be obtained by
gluing together tame coverings of the irreducible components of Xs. On the other hand,
if p|♯G, then fs is not a finite morphism in general. For example, if char(K) = 0 and
char(k) = p > 0, then there exists a Zariski dense subset Z of the set of closed points of
X, which may in fact be taken to be X when k is an algebraic closure of Fp, such that
for any x ∈ Z, after possibly replacing K by a finite extension of K, there exist a finite
group H and an H-stable covering fW : W −→ X such that the fiber (fW )−1(x) is not
finite (cf. [T], [Y2]).

If f−1(x) is not finite, we shall call x a vertical point associated to f and call f−1(x) the
vertical fiber associated to x (cf. Definition 3.4). In order to investigate the properties of
Ys, we focus on a geometric invariant σ(Ys) which is called the p-rank of Ys (cf. Definition
3.1 and Remark 3.1.1). By the definition of the p-rank of a stable curve, to calculate
σ(Ys), it suffices to calculate the rank of H1(ΓYs ,Z) (where ΓYs denotes the dual graph
of Ys), the p-ranks of the irreducible components of Ys which are finite over Xs, and the
p-ranks of the vertical fibers of f . In the present paper, we study the p-rank of a vertical
fiber and consider the following problem:

Problem 1.1. Let G be a finite p-group, x be a vertical point associated to the G-stable
covering f : Y −→ X, f−1(x) the vertical fiber associated to x.

(a) Does there exist a minimal bound on the p-rank σ(f−1(x)) (note that σ(f−1(x)) is
always bounded by the genus of Ys)?

(b) Does there exist an explicit formula for the p-rank σ(f−1(x))?

We will answer Problem 1.1 under certain assumptions (cf. Theorem 1.5 and Theorem
1.10). First, let us review some well-known results concerning Problem 1.1.

If x is a nonsingular point, M. Raynaud proved the following result (cf. [R, Théorème
1]):

Theorem 1.2. If x is a non-singular point of Xs, and G is an arbitrary p-group, then
the p-rank σ(f−1(x)) is equal to 0.
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By Theorem 1.2, in order to resolve Problem 1.1, it is sufficient to consider the case
where x is a singular point of Xs. In order to explain the results obtained in the present
paper, let us introduce some notations. Write X1 and X2 for the irreducible components
of Xs which contain x, ψ : Y ′ −→ X for the normalization of X in the function field of Y .
Let y′ ∈ ψ−1(x) be a point in the inverse image of x. Write Iy′ ⊆ G for the inertia group
of y′. In order to calculate the p-rank of f−1(x), since Y/Iy′ −→ X is finite étale over x,
by replacing X by the stable model of the quotient Y/Iy′ (note that Y/Iy′ is a semi-stable
curve over S (cf. [R, Appendice, Corollaire])), we may assume that G is equal to Iy′ .

Thus, from the point of view of resolving Problem 1.1, we may assume without loss
of generality that G = Iy′ . In the remainder of this section, we shall assume that G = Iy′
is of order pr for some positive integer r. Then f−1(x) is connected. With regard to
Problem 1.1 (a), M. Säıdi proved the following result (cf. [S, Theorem 1]), by applying
Theorem 1.2:

Theorem 1.3. If G is a cyclic p-group, then we have σ(f−1(x)) ≤ ♯G − 1, where ♯G
denotes the order of G.

Furthermore, there is an open problem posed by Säıdi as follows (cf. [S, Question]):

Problem 1.4. If G is an arbitrary p-group, does there exist a minimal bound on the
p-rank σ(f−1(x)) that depends only on the order ♯G?

Let us introduce some notations. Suppose that G is an abelian p-group. Let

Φ : {1} = Gr ⊂ Gr−1 ⊂ · · · ⊂ G0 = G

be a maximal filtration of G (i.e., Gi/Gi+1
∼= Z/pZ for i = 0, . . . , r − 1). It follows from

[R, Appendice, Corollaire], that for i = 0, . . . , r, Yi := Y/Gi is a semi-stable curve over S.
Write Xsst for Y/G and g for the resulting morphism g : Xsst −→ X induced by f . Then
we obtain a sequence of Z/pZ-semi-stable coverings (cf. Definition 3.3)

Φf : Y = Yr
dr−−−→ Yr−1

dr−1−−−→ . . .
d1−−−→ Y0 = Xsst g−−−→ X.

In the following, we use the subscript “red” to denote the reduced induced closed sub-
scheme associated to a scheme. For each i = 1, . . . , r, write ϕi : Yi −→ Y0 for the composite
morphism d1◦· · ·◦di. For simplicity, we suppose that C := g−1(x)red = ∪n

j=1Pj, where, for
each j = 1, . . . , n, Pj is isomorphic to P1 and meets the other irreducible components of
the special fiber Xsst

s of Xsst at precisely two points (i.e., a chain of P1). Thus, the p-rank
σ(f−1(x)) is equal to σ(ϕ−1

r (C)). For each i = 1, . . . , r, we define a set of subcurves of C
associated to Φf , which plays a key role in the present paper, as follows: ♦

E
Φf

i := ϕi(the étale locus of di|ϕ−1
i (C)red

: ϕ−1
i (C)red −→ ϕ−1

i−1(C)red) ⊂ C.

We shall call E
Φf

i the i-th étale-chain associated to Φf and call the disjoint union

E Φf :=
⨿
i

E
Φf

i
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the étale-chain associated to Φf . For each connected component E of E
Φf

i , we use the
notation l(E) to denote the cardinality of the set of the irreducible components of E and
call l(E) the length of E.

We generalize Säıdi’s result as follows (see also Theorem 3.15):

Theorem 1.5. If G is an arbitrary abelian p-group, and Ei is connected for each i =
1, . . . , n, then we have σ(f−1(x)) ≤ ♯G− 1.

Remark 1.5.1. If ♯G is equal to p, then we may construct a Z/pZ-stable covering f :
Y −→ X such that there exists a singular vertical point x such that the p-rank of σ(f−1(x))
is equal to p− 1 (cf. [Y4, Section 4]). Thus, at least in the case where ♯G = p, ♯G− 1 is
the minimal bound for σ(f−1(x)).

Next, let us consider Problem 1.1 (b). Let {Vi}n+1
i=0 be a set of irreducible components

of the special fiber Ys of Y such that the following conditions are satisfied: (i) ϕr(Vi) = Pi

if i = 1, . . . , n; (ii) ϕr(V0) = X1 and ϕr(Vn+1) = X2; (iii) the union ∪n+1
i=0 Vi is a connected

semi-stable subcurve of the special fiber Ys of Y . Write IPi
⊆ G for the inertia subgroup

of Vi. Note that since G is an abelian p-group, IPi
does not depend on the choices of Vi.

If G is a cyclic p-group, Säıdi obtained an explicit formula of the p-rank σ(f−1(x)) as
follows (cf. [S, Proposition 1]):

Theorem 1.6. If G is a cyclic p-group, and IP0 is equal to G, then we have

σ(f−1(x)) = ♯(G/Imin)− ♯(G/IPn+1),

where Imin denotes the group ∩n+1
i=0 IPi

.

For a G-covering of semi-graphs with p-rank, we develop a general method to compute
the p-rank (cf. Theorem 2.8). As an application, we generalize Säıdi’s formula to the case
where G is an arbitrary abelian p-group as follows (cf. Theorem 3.9 and Remark 3.9.1):

Theorem 1.7. If G is an arbitrary abelian p-group, then we have

σ(f−1(x)) =
n∑

i=1

♯(G/IPi
)−

n+1∑
i=1

♯(G/(IPi−1
+ IPi

)) + 1.

Finally, I would mention that by using the theory of semi-graphs with p-rank, we can
generalize Theorem 1.8 to the case where G is an arbitrary p-group. Furthermore, we can
obtain a global p-rank formula for the special fiber Ys (cf. [Y5]).

The present paper contains two parts. In Section 2, we develop the theory of semi-
graphs with p-rank and calculate the p-ranks of G-coverings. In Section 3, we construct a
semi-graph with p-rank from a vertical fiber of a G-stable covering in a natural way and
apply the results of Section 2 to prove Theorem 1.5 and Theorem 1.8.

2 Semi-graphs with p-rank

In this section, we develop the theory of semi-graphs with p-rank. We always assume that
G is an abelian p-group with order pr.
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2.1 Definitions

We begin with some general remarks concerning semi-graphs (cf. [M]). A semi-graph G
consists of the following data: (i) A set VG whose elements we refer to as vertices; (ii) A
set EG whose elements we refer to as edges. Any element e ∈ EG is a set of cardinality 2
satisfying the following property: For any e ̸= e′ ∈ EG, we have e ∩ e′ = Ø; (iii) A set of
maps {ζGe }e∈EG such that ζe : e −→ V ∪ {V} is a map from the set e to the set V ∪ {V}.
For an edge e ∈ EG, we shall refer to an element b ∈ e as a branch of the edge e. An
edge e ∈ EG is called closed (resp. open) if ζ−1

e ({VG}) = Ø (resp. ζ−1
e ({VG}) ̸= Ø). A

semi-graph will be called finite if both its set of vertices and its set of edges are finite.
In the present paper, we only consider finite semi-graphs. Since a semi-graph can be
regarded as a topological space, we shall call G a connected semi-graph if G is connected
as a topological space.

Let G be a semi-graph. Write v(G) for the set of vertices of G, e(G) for the set of closed
edges of G, and e′(G) for the set of open edges of G. For any element v ∈ v(G), write
b(v) for the set of branches ∪e∈e(G)∪e′(G)ζ

−1
e (v). For any element e ∈ e(G) ∪ e′(G)), write

v(e)for the set which consists of the elements of v(G) which are abutted by e. A morphism
between semi-graphs G −→ H is a collection of maps v(G) −→ v(H); e(G) ∪ e′(G) −→
e(H) ∪ e′(H); and for each eG ∈ e(G) ∪ e′(G) mapping to eH ∈ e(H) ∪ e′(H), a bijection
eG

∼→ eH; all of which are compatible with the {ζGe }e∈e(G)∪e′(G) and {ζHe }e∈e(H)∪e′(H).
A sub-semi-graph G′ of G is a semi-graph satisfying the following properties: (i) v(G′)

(resp. e(G′) ∪ e′(G′)) is a subset of v(G) (resp. e(G) ∪ e′(G)); (ii) If e ∈ e(G′), then we
have ζG

′
e (e) = ζGe (e); (iii) If e = {b1, b2} is an element of e′(G′) such that ζGe (b1) ∈ v(G′)

and ζGe (b2) ̸∈ v(G′), then we have ζG
′

e (b1) = ζGe (b1) and ζ
G′
e (b2) = {v(G′)}.

Definition 2.1. Let G′ be a sub-semi-graph of a semi-graph G. We define a semi-graph
G\G′ as follows: (i) The set of vertices v(G\G′) is v(G)\v(G′); (ii) The set of closed edges
e(G\G′) is e(G)\e(G′); (iii) The set of open edges e′(G\G′) is {e ∈ e(G) | v(e)∩v(G\G′) ̸=
Ø in G}; (iv) For any e = {bi}i={1,2} ∈ e(G \G′) ∪ e′(G \G′), we have ζ

G\G′
e (bi) = ζGe (bi)

(resp. ζ
G\G′
e (bi) = {v(G \G′)}) if ζGe (bi) ̸∈ v(G′) (resp. ζGe (bi) ∈ v(G′)).

Definition 2.2. (a) Let n be a positive natural number and Pn a semi-graph such that
the following conditions hold: (i) v(Pn) = {p1, . . . , pn}, e(Pn) = {e1,2, . . . , en,n−1} and
e′(Pn) = {e0,1, en,n+1}; (ii) v(ei,i+1) = {pi, pi+1}; (iii) v(e0,1) = {p1} and v(en,n+1) = {pn}.
We define G to be a triple (G, σG, βG) which consists of a semi-graph G, a map σG :
v(G) −→ Z and a morphism of semi-graphs βG : G −→ Pn. We shall call G a n-semi-
graph with p-rank. We shall refer to G as the underlying semi-graph of G, σG as the p-rank
map of G, βG as the base morphism of G, respectively. We define Pn := (Pn, σPn , βPn) as
follows: σPn(pi) is equal to 0 for each i = 1, . . . , n, and βPn = idPn is an identity morphism
of semi-graph Pn. We shall call Pn a n-chain.

(b) We define the p-rank σ(G) of G as follows:

σ(G) :=
∑

v∈v(G)

σ(v) +
∑

Gi∈π0(G)

rankZH
1(Gi,Z),

where π0(−) denotes the set of connected components of (−).
(c) G is called connected if the underlying semi-graph G is a connected semi-graph.
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From now on, we only consider connected n-semi-graphs with p-rank. Let G1 :=
(G1, σG1 , βG1) and G2 := (G2, σG2 , βG2) be two n-semi-graphs with p-rank. A morphism
between G1 and G2 is defined by a morphism of the underlying semi-graphs β : G1 −→ G2

such that βG2 ◦ β = βG1 . We use the notation b : G1 −→ G2 to denotes the morphism
of semi-graphs with p-rank determined by β : G1 −→ G2 and call β the underlying
morphism of b. Note that for any n-semi-graph with p-rank G := (G, σG, βG), there is a
natural morphism bG : G −→ Pn determined by the morphism of underlying semi-graphs
βG : G −→ Pn.

Write bil (resp. b
i
r) for ζ

−1
ei−1,i

(pi) (resp. ζ
−1
ei,i+1

(pi)). For any element vi ∈ β−1
G (pi), write

bl(vi) (resp. br(vi)) for the set

{b ∈ b(vi) | βG(b) = bil}

(resp. {b ∈ b(vi) | βG(b) = bir}).

Definition 2.3. Let b : G1 := (G1, σG1 , βG1) −→ G2 := (G2, σG2 , βG2) be a morphism of
n-semi-graphs with p-rank, β the underlying morphism of b, e ∈ e(G1) ∪ e′(G1) an edge,
v1 a vertex of G1 contained in β−1

G1 (pi), and v2 := β(v1) ∈ β−1
G2 (pi) the image of v1.

(a) We shall call b p-étale (resp. p-purely inseparable) at e if ♯β−1(β(e)) = p (resp.
♯β−1(β(e)) = 1). We shall call b p-generically étale at v1 ∈ β−1

G1 (pi) if one of the following
étale types holds:

(Type-I) ♯β−1(v2) = p and σG1(v1) = σG2(v2);
(Type-II) ♯β−1(v2) = 1, ♯bl(v1) = p♯bl(v2), ♯br(v1) = p♯br(v2), and

σG1(v1)− 1 = p(σG2(v2)− 1);

(Type-III) If ♯β−1(v2) = 1, ♯bl(v1) = ♯bl(v2), ♯br(v1) = p♯br(v2), and

σG1(v1)− 1 = p(σG2(v2)− 1) + (♯bl(v1))(p− 1);

(Type-IV) ♯β−1(v2) = 1, ♯bl(v1) = p♯bl(v2), ♯br(v1) = ♯br(v2), and

σG1(v1)− 1 = p(σG2(v2)− 1) + (♯br(v1))(p− 1);

(Type-V) ♯β−1(v2) = 1, ♯bl(v1) = ♯bl(v2), ♯br(v1) = ♯br(v2), and

σG1(v1)− 1 = p(σG2(v2)− 1) + (♯bl(v1) + ♯br(v1))(p− 1).

(b) We shall call b purely inseparable at v1 ∈ β−1
G1 (pi) if ♯β

−1(v2) = 1, ♯bl(v1) = ♯bl(v2),
♯br(v1) = ♯br(v2), and σG1(v1) = σG2(v2) hold.

(c) We shall call b a p-covering if the following conditions hold: (i) There exists a
Z/pZ-action (which may be trivial) on G1 (resp. a trivial Z/pZ-action on G2), and the
underlying morphism β of b is compatible with the Z/pZ-actions. Then the natural
morphism G1/Z/pZ −→ G2 induced by b is an isomorphism; (ii) For any v ∈ v(G1), b is
either p-generically étale or purely inseparable at v; (iii) Let e ∈ e(G1) and v(e) = {v, v′}.
If b is p-generically étale at v and v′, then b is p-étale at e; (iv) For any v ∈ v(G1), then
σG1(v) = σG1(τ(v)) holds for each τ ∈ Z/pZ.
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Note that by the definition of p-covering, the identity morphism of a semi-graph with
p-rank is a p-covering.

(d) We shall call b a covering if b is a composite of p-coverings.
(e) We shall call

Φ : {1} = Gr ⊂ Gr−1 ⊂ · · · ⊂ G1 ⊂ G0 = G

an maximal filtration of G if Gj/Gj+1
∼= Z/pZ for each j = 1, . . . , r − 1. Suppose that

G1 (resp. G2) admits a (resp. trivial) G-action (which may be trivial). Then for any
maximal filtration Φ of G, there is a sequence of semi-graphs induced by Φ:

G1 = Gr
βr−−−→ Gr−1

βr−1−−−→ . . .
β1−−−→ G0,

where Gj denotes the quotient of G1 by Gj. We shall call b a G-covering if for any maximal
filtration Φ of G, there exists a set of p-coverings {bj : Gj −→ Gj−1, j = 1, . . . , r} such
that the following conditions hold: (i) the underlying morphism β of b is compatible with
the G-actions, and the natural morphism G1/G −→ G2 induced by β is an isomorphism;
(ii) The underlying graph of Gj is equal to Gj for each j = 0, . . . , r; (iii) The underlying
morphism Gj −→ Gj−1 of bj is equal to βj for each j = 1, . . . , r; (iv) The composite
morphism b1 ◦ · · · ◦ br is equal to b. Then we obtain a sequence of p-coverings:

ΦG1 : G1 = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = G2.

We shall call ΦG1 a sequence of p-coverings induced by Φ.
(f) Let G be a n-semi-graph with p-rank. We shall call G a covering (resp. G-covering)

over Pn if bG is a covering (resp. G-covering).
(g) Let b : G1 −→ G2 be a G-covering, v ∈ v(G) a vertex, and e ∈ e(G) ∪ e′(G) an

edge. For any subgroup H ⊆ G, by Definition 2.3 (e), there exists a maximal filtration
ΦH and the sequence of p-coverings

ΦH
G1 : G1 = Gr

bHr−−−→ Gr−1

bHr−1−−−→ . . .
bH1−−−→ G0 = G2

induced by ΦH such that there exists i such that the underlying graph of Gi is isomorphic
to G1/H. We write G1/H for Gi. Thus, the natural morphism bH1 ◦· · ·◦bHi : G1/H −→ G2

is a covering. Then we define five subgroups of G as follows:

Dv := {τ ∈ G | τ(v) = v},

Iv := the maximal element of {H ⊆ G | G1 −→ G1/H is purely inseparable at v},

I lv(b) := {τ ∈ Dv | τ(b) = b for a branch b ∈ bl(v)}/Iv,

Irv (b) := {τ ∈ Dv | τ(b) = b for a branch b ∈ br(v)}/Iv,

Ie := {τ ∈ G | τ(e) = e}.

We shall call Dv (resp. Iv, I
l
v(b), I

r
v (b), Ie) the decomposition group of v (resp. the inertia

group of v, the inertia group of a left branch b, the inertia group of a right branch b, the
inertia group of e). Moreover, since G is an abelian p-group, the group I lv(b) (resp. I

r
v (b))
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does not depend on the choice of b ∈ bl(v) (resp. b ∈ br(v)), then we denote this group
briefly by I lv (resp. Irv ). Define

De
v = Dv/(I

l
v/(I

l
v ∩ Irv )⊕ Irv/(I

l
v ∩ Irv )⊕ I lv ∩ Irv ⊕ Iv).

Then we have the following exact sequence

0 −→ I lv/(I
l
v ∩ Irv )⊕ Irv/(I

l
v ∩ Irv )⊕ I lv ∩ Irv ⊕ Iv −→ Dv −→ De

v −→ 0.

Remark 2.3.1. LetG be aG-covering overPn and vi ∈ β−1
G (pi) a vertex of the underlying

graph ofG. Then we have the following Deuring-Shafarevich type formula (cf. Proposition
3.2 for the Deuring-Shafarevich formula for curves)

σG(vi)− 1 = −♯Dvi/Ivi + ♯((Dvi/Ivi)/I
l
vi
)(♯I lvi − 1) + ♯((Dvi/Ivi)/I

r
vi
)(♯Irvi − 1).

Let G be a G-covering over Pn. By the definition of G-coverings, for any maximal
filtration Φ of G, we have a sequence of p-coverings of n-semi-graphs with p-rank

ΦG : G = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = Pn

induced by Φ. For each j = 1, . . . , r, we write V ét
j for the set

{v ∈ v(Gj) | bj is étale at v},

E ét
j for the set

{e ∈ e(Gj) ∪ e′(Gj) | bj is étale at e}.

Since (V ét
j , E ét

j ) admits a natural structure of semi-graph induced by Gj, we may regard
(V ét

j , E ét
j ) as a sub-semi-graph of Gj. Thus, the image βGj

((V ét
j , E ét

j )) can be regarded as
a sub-semi-graph of Pn.

Definition 2.4. We shall call EΦG
j := βGj

((V ét
j , E ét

j )) (resp. the disjoint union EΦG :=⨿
j E

ΦG
j ) the j-th étale-chain (resp. the étale-chain) associated to ΦG.

2.2 p-ranks and étale-chains of abelian coverings

Let G := (G, σG, βG) be a G-covering over Pn. We introduce two operators for G.

Operator I: First, let us define a G-covering G∗[pi] over Pn. For any pi ∈ v(Pn), let vi
be an element of β−1

G (pi).
If ♯β−1

G (pi) = 1 (i.e., Dvi = G), then we define G∗[pi] to be G; If ♯β−1
G (pi) ̸= 1, we

define a new semi-graph G∗[pi] as follows.
Define v(G∗[pi]) (resp. e(G∗[pi])∪e′(G∗[pi])) to be the disjoint union (v(G)\β−1

G (pi))
⨿
{v∗}

(resp. e(G) ∪ e′(G)).

The collection of maps {ζG
∗[pi]

e }e is as follows: (i) For any branch b ̸∈ ∪v∈β−1
G (pi)

b(v),

ζ
G∗[pi]
e (b) = ζGe (b) if b ∈ e and ζ

G∗[pi]
e (b) = Ø if b ̸∈ e; (ii) For any v ∈ β−1

G (pi) and any

branch b ∈ b(v), ζ
G∗[pi]
e (b) = v∗ if b ∈ e and ζ

G∗[pi]
e (b) = Ø if b ̸∈ e.
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We define a map σG∗[pi] : v(G∗[pi]) −→ Z as follows: (i) If v∗ ̸= v ∈ v(G∗[pi]), then we
have σG∗[pi](v) := σG(v); (ii) If v = v∗, then we have

σG∗[pi](v
∗) := −♯(G/Ivi) +

∑
v∈β−1

G (pi)

∑
b∈bl(v)

(♯I lv(b)− 1) +
∑

v∈β−1
G (pi)

∑
b∈br(v)

(♯Irv (b)− 1) + 1

= −♯(G/Ivi) + ♯((G/Ivi)/I
l
vi
)(♯I lvi − 1) + ♯((G/Ivi)/I

r
vi
)(♯Irvi − 1) + 1.

We define a morphism of semi-graphs βG∗[pi] : G∗[pi] −→ Pn as follows: (i) For any
v ∈ v(G∗[pi]), βG∗[pi](v) = pi if v = v∗ and βG∗[pi](v) = βG(v) if v ̸∈ β−1

G (pi); (ii) If
e ∈ e(G∗[pi]) ∪ e′(G∗[pi]), then we have βG∗[pi](e) = βG(e).

Thus, the triple G∗[pi] := (G∗[pi], σG∗[pi], βG∗[pi]) is a n-semi-graph with p-rank.
Moreover, G∗[pi] admits a natural G-action as follows: (i) the action of G on v(G∗[pi])\

{v∗} (resp. e(G∗[pi])∪e′(G∗[pi])) is the action of G on v(G)\β−1
G (pi) (resp. e(G)∪e′(G));

(ii) For any τ ∈ G, we have τ(v∗) = v∗.
Let us explain that with the G-action defined above, G∗[pi] is a G-covering over Pn.

Let
Φ : {1} = Gr ⊂ Gr−1 ⊂ · · · ⊂ G1 ⊂ G0 = G

be an arbitrary maximal filtration of G. Write

ΦG : G = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = Pn

for the sequence of p-coverings of n-semi-graphs with p-rank induced by Φ. Note that for
each j = 0, . . . , r, Gj is a G/Gj-covering over Pn. By the construction of G∗

j [pi], we have

ΦG∗[pi] : G
∗[pi] = G∗

r[pi]
b∗r [pi]−−−→ G∗

r−1[pi]
b∗r−1[pi]−−−−→ . . .

b∗1[pi]−−−→ Pn.

is a sequence of p-coverings of n-semi-graphs with p-rank. Thus, G∗[pi] can be regarded
as a G-covering over Pn.

Note that by the construction ofG∗[pi], we see that EΦG
j = EΦG∗[pi]

j for each j = 1, . . . , r.

Operator II: Let us define a G-covering G⋆[pi] over Pn. For any pi ∈ v(Pn), let vi be an
element of β−1

G (pi), Ivi the inertia group of vi. Since G is a abelian group, we may write
{vui }u∈G/Dvi

for β−1
G (pi), and {vui }u∈G/Dvi

admits an natural action of G on the index set

G/Dvi . We define a new semi-graph G⋆[pi] as follows. If ♯β−1
G (pi) = ♯(G/Ivi), we define

G⋆[pi] to be G. If ♯β−1
G (pi) ̸= ♯(G/Ivi), we have β

−1
G (bil) = {bi,u,s,tl }u∈G/Dvi ,s∈Irvi/I

l
vi
∩Irvi ,t∈D

e
vi
.

Then β−1
G (bil) = {bi,u,s,tl }u∈G/Dvi ,s∈Irvi/I

l
vi
∩Irvi ,t∈D

e
vi

admits a natural action of G as follows:

for τ ∈ G, τ(bi,u,s,tl ) = bi,τ◦u,s,tl if τ ̸∈ Dvi , where τ denotes the image of τ under the
quotient G −→ G/Dvi , τ(b

i,u,s,t
l ) = bi,u,τ◦s,tl if τ ∈ Irvi/I

l
vi
∩ Irvi , τ(b

i,u,s,t
l ) = bi,u,s,τ◦tl if

τ ̸∈ I lvi + Irvi + Ivi , where τ denotes the image of τ under the quotient Dvi −→ De
vi
, and

τ(bi,u,s,tl ) = bi,u,s,tl if τ ∈ Ivi + I
l
vi
. Similarly, β−1

G (bir) := {bi,u,s,tr }u∈G/Dvi ,s∈Ilvi/I
l
vi
∩Irvi ,t∈D

e
vi
also

admits a natural action of G.
Define v(G⋆[pi]) (resp. e(G⋆[pi])∪ e′(G⋆[pi])) to be the disjoint union (v(G) \ β−1

G (pi))⨿
{v⋆u,t}u∈G/Dvi ,t∈De

vi
(resp. e(G) ∪ e′(G)). {v⋆u,t}u∈G/Dvi ,t∈De

vi
admits a natural G-action
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as follows: For each τ ∈ G, τ(v⋆u,t) = v⋆τ◦u,t if τ ̸∈ Dvi , τ(v
⋆
u,t) = v⋆u,τ◦t if τ ∈ De

vi
, and

τ(v⋆u,t) = v⋆u,t if τ ∈ I lvi + Irvi + Ivi .

The collection of maps {ζG
⋆[pi]

e }e is as follows: (i) For any branch b ̸∈ ∪v ̸=v1b(v),

ζ
G⋆[pi]
e (b) = ζGe (b) if b ∈ e and ζ

G⋆[pi]
e (b) = Ø if b ̸∈ e; (ii) ζ

G⋆[pi]
e (b) = v⋆u,t if b = bi,u,s,tl ∈ e

(resp. ζ
G⋆[pi]
e (b) = v⋆u,t if b = bi,u,s,tr ∈ e) and ζ

G⋆[pi]
e (b) = Ø if b ̸∈ e.

We define a map σG⋆[pi] : v(G⋆[pi]) −→ Z as follows: If v⋆u,t ̸= v ∈ v(G⋆[pi]), then we
have σG⋆[pi](v) := σG(v); If v = v⋆u,t, then we have

σG⋆[pi](v
⋆
u,t) := −♯(I lvi + Irvi) + ♯((Irvi + I lvi)/I

l
vi
)(♯I lvi − 1) + ♯((Irvi + I lvi)/I

r
vi
)(♯Irvi − 1) + 1.

We define a morphism of semi-graphs βG⋆[pi] : G⋆[pi] −→ Pn as follows: (i) For any
v ∈ v(G⋆[pi]), then βG⋆[pi](v) = pi if v ∈ {v⋆u,t}u∈G/Dvi ,t∈De

vi
and βG⋆[pi](v) = βG(v) if

v ̸∈ {v⋆u,t}u∈G/Dvi ,t∈De
vi
; (ii) If e ∈ e(G⋆[pi]) ∪ e′(G⋆[pi]), then we have βG⋆[pi](e) = βG(e).

Thus, the triple G⋆[pi] := (G⋆[pi], σG⋆[pi], βG⋆[pi]) is a n-semi-graph with p-rank.
Moreover, G admits a natural G-action as follows: (i) the action of G on v(G⋆[pi]) \

{v⋆u,t}u∈G/Dvi ,t∈De
vi
(resp. e(G⋆[pi])∪ e′(G⋆[pi])) is the action of G on v(G) \ β−1

G (pi) (resp.

e(G) ∪ e′(G)); (ii) The action of G on {v⋆u,t}u∈G/Dvi ,t∈De
vi
is the action defined above.

Let us explain that with the G-action defined above, G⋆[pi] is a G-covering over Pn.
Let

Φ : {1} = Gr ⊂ Gr−1 ⊂ · · · ⊂ G1 ⊂ G0 = G

be an arbitrary maximal filtration of G. Write

ΦG : G = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = Pn

for the sequence of p-coverings of n-semi-graphs with p-rank induced by Φ. Note that for
each j = 0, . . . , r, Gj is a G/Gj-covering over Pn. By the construction of G⋆

j [pi], we have

ΦG⋆[pi] : G
⋆[pi] = G⋆

r[pi]
b⋆r [pi]−−−→ G⋆

r−1[pi]
b⋆r−1[pi]−−−−→ . . .

b⋆1[pi]−−−→ Pn.

is a sequence of p-coverings of n-semi-graphs with p-rank. Thus, G⋆[pi] can be regarded
as a G-covering over Pn.

Note that by the construction ofG⋆[pi], we see that EΦG
j = EΦG⋆[pi]

j for each j = 1, . . . , r.

Definition 2.5. Let G := (G, σG, βG) be a G-covering over Pn, pi a vertex of v(Pn). We
define an operator ⇌I

II (resp. ⇌II
I ) from a G-covering to a G-covering to be

⇌I
II (pi)(G) = G∗[pi]

(resp. ⇌II
I (pi)(G) := G⋆[pi]).

Lemma 2.6. Let G be a G-covering over Pn and G the underlying semi-graph of G.
Let Gc be a semi-graph defined as follows: (i) v(Gc) = v(G) ∪ {v0, vn+1}; (ii) e(Gc) =
e(G) ∪ e(G) and e′(Gc) = Ø; (iii) ζG

c

e = ζGe if βG(e) ̸∈ {e0,1, en,n+1}; (iv) If e = {bl, br}
such that the image βG(e) = e0,1 and ζ

G
e (b

l) = {v(G)} (resp. the image βG(e) = en,n+1 and
ζGe (b

r) = {v(G)}), we have ζG
c

e (bl) = v0 (resp. ζG
c

e (br) = vn+1). Let Ie0,1 (resp. Ien,n+1)
be the inertia group of an element of β−1

G (e0,1) (resp. β−1
G (en,n+1)). Note that since G is
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an abelian group, Ie0,1 (resp. Ien,n+1) does not depend on the choice of the elements of
β−1
G (e0,1) (resp. β

−1
G (en,n+1)). Then we have

rankZH
1(Gc,Z)− rankZH

1(G,Z) = ♯G/Ie0,1 − 1 + ♯G/Ien,n+1 − 1.

Proof. The lemma follows from the construction of Gc immediately.

Proposition 2.7. Let G := (G, σG, βG) be a G-covering over Pn and pi a vertex of v(Pn).
Then we have σ(G) = σ(G∗[pi]) and σ(G) = σ(G⋆[pi]).

Proof. Let vi ∈ β−1
G (pi). If ♯β−1

G (pi) = 1 (resp. ♯β−1
G (pi) = ♯G/Ivi), by the definition

of Operator I (resp. Operator II), the proposition is trivial. Then we may assume that
♯β−1

G (pi) ̸= 1 (resp. ♯β−1
G (pi) ̸= ♯G/Ivi). Write Ie0,1 (resp. Ien,n+1) for the inertia group of

an element of β−1
G (e0,1) (resp. β

−1
G (en,n+1)).

First, we will prove the proposition under the assumption that Ie0,1 = Ien,n+1 = G
holds. Write (−) for the rank of a semi-graph (−) (i.e., the rank of H1((−),Z) as a free
Z-module). Thus, we have

σ(G) =
∑

v∈β−1
G (pi)

σG(v) +
∑

v∈v(G\β−1
G (pi))

σG(v) + r(G \ β−1
G (pi))

+r(G)− r(G \ β−1
G (pi)),

σ(G∗[pi]) = σG∗[pi](v
∗) +

∑
v∈v(G∗[pi]\β−1

G∗[pi]
(pi))

σG∗[pi](v) + r(G∗[pi] \ β−1
G∗[pi]

(pi))

+r(G∗[pi])− r(G∗[pi] \ β−1
G∗[pi]

(pi)),

and

σ(G⋆[pi]) =
∑

v∈β−1
G⋆[pi]

(pi)

σG⋆[pi](v) +
∑

v∈v(G⋆[pi]\β−1
G⋆[pi]

(pi))

σG⋆[pi](v) + r(G⋆[pi] \ β−1
G⋆[pi]

(pi))

+r(G⋆[pi])− r(G⋆[pi] \ β−1
G⋆[pi]

(pi)).

Note that we have r(G\β−1
G (pi)) = r(G∗[pi]\β−1

G (pi)) = r(G⋆[pi]\β−1
G (pi)) and

∑
v∈v(G\β−1

G (pi))
σG(v)

=
∑

v∈v(G∗[pi]\β−1
G∗[pi]

(pi))
σG∗[pi](v) =

∑
v∈v(G⋆[pi]\β−1

G⋆[pi]
(pi))

σG⋆[pi](v).

First, let us prove σ(G) = σ(G∗[pi]). We follow the notations of Operator I. We have

σ(G) =
∑

v∈β−1
G (pi)

σG(v) +
∑

v∈v(G\β−1
G (pi))

σG(v) + r(G \ β−1
G (pi))

+♯G/Dvi(♯((Dvi/Ivi)/I
l
vi
)− 1 + ♯((Dvi/Ivi)/I

r
vi
)− 1) + ♯G/Dvi − 1

= ♯G/Dvi(−♯Dvi/Ivi + ♯((Dvi/Ivi)/I
l
vi
)(♯I lvi − 1) + ♯((Dvi/Ivi)/I

r
vi
)(♯Irvi − 1) + 1)
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+
∑

v∈v(G\β−1
G (pi))

σG(v) + r(G \ β−1
G (pi))

+♯G/Dvi(♯((Dvi/Ivi)/I
l
vi
)− 1 + ♯((Dvi/Ivi)/I

r
vi
)− 1) + ♯G/Dvi − 1

= ♯G/Ivi − 1 +
∑

v∈v(G\β−1
G (pi))

σG(v) + r(G \ β−1
G (pi)).

On the other hand, we have

σ(G∗[pi]) = σG∗[pi](v
∗) + ♯((G/Ivi)/I

l
vi
)− 1 + ♯((G/Ivi)/I

r
vi
)− 1

+
∑

v∈v(G\β−1
G (pi))

σG∗[pi](v) + r(G \ β−1
G (pi))

= −♯(G/Ivi) + ♯((G/Ivi)/I
l
vi
)(♯I lvi − 1) + ♯((G/Ivi)/I

r
vi
)(♯Irv − 1) + 1

+♯((G/Ivi)/I
l
vi
)− 1 + ♯((G/Ivi)/I

r
vi
)− 1

+
∑

v∈v(G\β−1
G (pi))

σG∗[pi](v) + r(G \ β−1
G (pi))

= ♯G/Ivi − 1 +
∑

v∈v(G\β−1
G (pi))

σG∗[pi](v) + r(G \ β−1
G (pi)).

Thus, σ(G) = σ(G∗[pi]) holds.
Suppose that either Ie0,1 or Ien,n+1 is not equal to G. By Lemma 2.6, we have

σ(G) =
∑

v∈β−1
G (pi)

σG(v) +
∑

v∈v(G\β−1
G (pi))

σG(v) + r(G \ β−1
G (pi))

+♯G/Dvi(♯((Dvi/Ivi)/I
l
vi
)− 1 + ♯((Dvi/Ivi)/I

r
vi
)− 1) + ♯G/Dvi − 1− ♯G/Ie0,1 − ♯G/Ien,n+1

= ♯G/Dvi(−♯Dvi/Ivi + ♯((Dvi/Ivi)/I
l
vi
)(♯I lvi − 1) + ♯((Dvi/Ivi)/I

r
vi
)(♯Irvi − 1) + 1)

+
∑

v∈v(G\β−1
G (pi))

σG(v) + r(G \ β−1
G (pi))

+♯G/Dvi(♯((Dvi/Ivi)/I
l
vi
)−1+♯((Dvi/Ivi)/I

r
vi
)−1)+♯G/Dvi−1−♯G/Ie0,1+1−♯G/Ien,n+1+1

= ♯G/Ivi +
∑

v∈v(G\β−1
G (pi))

σG(v) + r(G \ β−1
G (pi))− ♯G/Ie0,1 − ♯G/Ien,n+1 + 1.

On the other hand, we have

σ(G∗[pi]) = σG∗[pi](v
∗) + ♯((G/Ivi)/I

l
vi
)− 1 + ♯((G/Ivi)/I

r
vi
)− 1
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+
∑

v∈v(G\β−1
G (pi))

σG∗[pi](v) + r(G \ β−1
G (pi))− ♯G/Ie0,1 + 1− ♯G/Ien,n+1 + 1

= −♯(G/Ivi) + ♯((G/Ivi)/I
l
vi
)(♯I lvi − 1) + ♯((G/Ivi)/I

r
vi
)(♯Irv − 1) + 1

+♯((G/Ivi)/I
l
vi
)− 1 + ♯((G/Ivi)/I

r
vi
)− 1

+
∑

v∈v(G\β−1
G (pi))

σG∗[pi](v) + r(G \ β−1
G (pi))− ♯G/Ie0,1 + 1− ♯G/Ien,n+1 + 1

= ♯G/Ivi +
∑

v∈v(G\β−1
G (pi))

σG∗[pi](v) + r(G \ β−1
G (pi))− ♯G/Ie0,1 − ♯G/Ien,n+1 + 1.

Thus, σ(G) = σ(G∗[pi]) holds.
Next, let us compute σ(G⋆[pi]). First, suppose that Ie0,1 = Ien,n+1 = G holds. Write

W for the group
(G/Ivi)/(I

l
vi
+ Irvi).

We have

σ(G⋆[pi]) =
∑

v∈β−1
G⋆[pi]

(pi)

σG⋆[pi](v)+ ♯W −1+ ♯W (♯((Irvi + I
l
vi
)/I lvi)−1+ ♯((Irvi + I

l
vi
)/Irvi)−1)

+
∑

v∈v(G\β−1
G (pi))

σG⋆[pi](v) + r(G \ β−1
G (pi))

= ♯W (−♯(I lvi + Irvi) + ♯((Irvi + I lvi)/I
l
vi
)(♯I lvi − 1) + ♯((Irvi + I lvi)/I

r
vi
)(♯Irvi − 1) + 1)

+♯W − 1 + ♯W (♯((Irvi + I lvi)/I
l
vi
)− 1 + ♯((Irvi + I lvi)/I

r
vi
)− 1)

+
∑

v∈v(G\β−1
G (pi))

σG⋆[pi](v) + r(G \ β−1
G (pi))

= ♯G/Ivi − 1 +
∑

v∈v(G\β−1
G (pi))

σG⋆[pi](v) + r(G \ β−1
G (pi)).

Thus, we have σ(G) = σ(G⋆[pi]).
Suppose that either Ie0,1 or Ien,n+1 is not equal to G. By Lemma 2.6, we have

σ(G⋆[pi]) =
∑

v∈β−1
G⋆[pi]

(pi)

σG⋆[pi](v)+ ♯W −1+ ♯W (♯((Irvi + I
l
vi
)/I lvi)−1+ ♯((Irvi + I

l
vi
)/Irvi)−1)

+
∑

v∈v(G\β−1
G (pi))

σG⋆[pi](v) + r(G \ β−1
G (pi))− ♯G/Ie0,1 + 1− ♯G/Ien,n+1 + 1

13



= ♯W (−♯(I lvi + Irvi) + ♯((Irvi + I lvi)/I
l
vi
)(♯I lvi − 1) + ♯((Irvi + I lvi)/I

r
vi
)(♯Irvi − 1) + 1)

+♯W − 1 + ♯W (♯((Irvi + I lvi)/I
l
vi
)− 1 + ♯((Irvi + I lvi)/I

r
vi
)− 1)

+
∑

v∈v(G\β−1
G (pi))

σG⋆[pi](v) + r(G \ β−1
G (pi))− ♯G/Ie0,1 + 1− ♯G/Ien,n+1 + 1

= ♯G/Ivi +
∑

v∈v(G\β−1
G (pi))

σG⋆[pi](v) + r(G \ β−1
G (pi))− ♯G/Ie0,1 − ♯G/Ien,n+1 + 1.

Thus, we have σ(G) = σ(G⋆[pi]).
We complete the proof of the proposition.

Remark 2.7.1. Let G be a G-covering over Pn. By the definition of coverings, for any
maximal filtration of G, there exists a sequence of p-coverings induced by the maximal
filtration of G:

G = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = Pn.

By Proposition 2.7, for calculating the p-rank σ(G), we may assume that bi do not have
either étale Type-I for all i or Type-II for all i.

Theorem 2.8. Let G be an abelian p-group with order pr, Φ a maximal filtration of G,
and G := (G, σG, βG) a G-covering over Pn. Write

ΦG : G = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = Pn

for the sequence of p-coverings of n-semi-graphs with p-rank induced by Φ and EΦG for
the étale-chain associated to ΦG. For each j = 1, . . . , n, write EΦG(pj) (resp. EΦG(blj),
EΦG(brj)) for the disjoint union⨿

s s.t. pj∈v(E
ΦG
s )

EΦG
s (resp.

⨿
s s.t. blj∈e(E

ΦG
s )∪e′(EΦG

s )

EΦG
s ,

⨿
s s.t. brj∈e(E

ΦG
s )∪e′(EΦG

s )

EΦG
s ).

Then we have

σ(G) =
n∑

j=1

(p♯E
ΦG (pj) − p♯E

ΦG (blj) − p♯E
ΦG (brj ) + 1) +

n−1∑
j=1

(p♯E
ΦG (brj ) − 1).

=
n∑

j=1

(p♯E
ΦG (pj) − p♯E

ΦG (blj) − p♯E
ΦG (brj ) + 1) +

n∑
j=2

(p♯E
ΦG (blj) − 1).

Proof. By Remark 2.7.1, we may assume that bj do not have étale Type-I for all j. Thus,
we obtain v(G) = {v1, . . . , vn}, where for each j, vj denotes the unique vertex β−1

G (pj).
Then for each j = 1, . . . , n, we have

σGi
(vj) = −p♯EΦG (pj) + p♯E

ΦG (blj)(p♯E
ΦG (pj)−♯EΦG (blj) − 1) + p♯E

ΦG (brj )(p♯E
ΦG (pj)−♯EΦG (brj ) − 1) + 1
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= p♯E
ΦG (pj) − p♯E

ΦG (blj) − p♯E
ΦG (brj ) + 1.

On the other hand, the rank of H1(G,Z) as a free Z-module is

n−1∑
j=1

(p♯E
ΦG (brj ) − 1) =

n∑
j=2

(p♯E
ΦG (blj) − 1).

Then we have

σ(G) =
n∑

j=1

(p♯E
ΦG (pj) − p♯E

ΦG (blj) − p♯E
ΦG (brj ) + 1) +

n−1∑
j=1

(p♯E
ΦG (brj ) − 1)

=
n∑

j=1

(p♯E
ΦG (pj) − p♯E

ΦG (blj) − p♯E
ΦG (brj ) + 1) +

n∑
j=2

(p♯E
ΦG (blj) − 1).

This completes the proof of the theorem.

Corollary 2.9. Let Gi, i ∈ {1, 2} be an abelian p-group with order pr, Φi a maximal
filtration of Gi, G

i := (Gi, σGi , βGi) a Gi-covering over Pn. Write

Φi
Gi : Gi = Gi

r

bir−−−→ Gi
r−1

bir−1−−−→ . . .
bi1−−−→ Gi

0 = Pn

for the sequence of p-coverings of n-semi-graphs with p-rank induced by Φi, and EΦGi

for the étale-chain associated to ΦGi. Suppose that EΦG1 = EΦG2 holds. Then we have
σ(G1) = σ(G2).

Proof. Since EΦ1
G1 = EΦ2

G2 holds, we see that ♯EΦ1
G1 (pj) = ♯EΦ2

G2 (pj), ♯EΦ1
G1 (blj) = ♯EΦ2

G2 (blj),

and ♯EΦ1
G1 (brj) = ♯EΦ2

G2 (brj) for all j. Thus, by Theorem 2.8, we obtain σ(G1) = σ(G2).
This completes the proof of the corollary.

Theorem 2.10. Let G be an abelian p-group with order pr, ΦG a maximal filtration of
G, and G a G-covering over Pn. Write

ΦG : G = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = Pn

for the sequence of p-coverings of n-semi-graphs with p-rank induced by ΦG, and {EΦG
j }j∈J

for the set of j-th étale-chains associated to ΦG. Let I := {j1, . . . , jr} be a new index set.
For each i = 1, . . . , r, write Ei for EΦG

ji
. Then there exist an elementary abelian group

A with order pr, a maximal filtration ΦA of A, and an A-covering F over Pn such that
the i-th étale-chain EΦF

i associated to the sequence of p-coverings of n-semi-graphs with
p-rank ΦF induced by ΦA is equal to Ei for each i = 1, . . . , r.

Proof. Since the operator ⇌I
II does not change the étale-chain EΦG , we may assume that

bi do not have étale Type-I for all i. Let Ai, i ∈ {1, . . . , r}, be a cyclic abelian p-group
with order p. We construct a semi-graph with p-rank F step by step.

F1 := (v(F1), e(F1) ∪ e′(F1), {ζF1
e }e) is a semi-graph as follows:

(i) v(F1) := {v11, . . . , v1n};
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(ii) e(F) ∪ e′(F) consists of the following elements:
(a) {eτ1i,i+1 := {bl(eτ1i,i+1), br(e

τ1
i,i+1)}}τ1∈A1 is a set associated to ei,i+1 if ei,i+1 ∈ e(E1) ∪

e′(E1);
(b) e1i,i+1 := {bl(e1i,i+1), br(e

1
i,i+1)} is a set associated to ei,i+1 if ei,i+1 ̸∈ e(E1) ∪ e′(E1);

(iii) ζF1
e (bl(e

1
i,i+1)) = v1i (resp. ζF1

e (bl(e
τ1
i,i+1)) = v1i ) if i ̸= 0 and ζF1

e (bl(e
1
i,i+1)) = v(F)

(resp. ζF1
e (bl(e

τ1
i,i+1)) = v(F1)) if i = 0;

(iv) ζF1
e (br(e

1
i,i+1)) = v1i+1 (resp. ζ

F1
e (br(e

τ1
i,i+1)) = v1i+1) if i ̸= n and ζe(br(e

1
i,i+1)) = v(F)

(resp. ζF1
e (br(e

τ1
i,i+1)) = v(F1)) if i = n.

We have a natural morphism βF1 : F1 −→ Pn defined as follows: (i) βF1(v
1
i ) = pi; (ii)

βF1((e
1
i,i+1)) = ei,i+1 (resp. βF1(bl(e

τ1
i,i+1)) = ei,i+1).

Next, we define a p-rank map σF1 : v(F1) −→ Z as follows: (i) If pi ∈ v(E1) and
♯β−1

F1
(bil) = ♯β−1

F1
(bir) = 1, then we have

σF1(v
1
i ) = −p+ p− 1 + p− 1 + 1 = p− 1;

(ii) If pi ∈ v(E1), ♯β
−1
F1

(bil) = 1, and ♯β−1
F1

(bir) = p, then we have

σF1(v
1
i ) = −p+ p− 1 + 1 = 0;

(iii) If pi ∈ v(E1), ♯β
−1
F1

(bil) = p, and ♯β−1
F1

(bir) = 1, then we have

σF1(v
1
i ) = −p+ p− 1 + 1 = 0;

(iv) If pi ∈ v(E1) and ♯β
−1
F1

(bil) = ♯β−1
F1

(bir) = p, then we have

σF1(v
1
i ) = −p+ 1;

(v) If pi ̸∈ v(E1), then we have
σF1(v

1
i ) = 0.

Moreover, F1 admits a natural action of A1 as follows: (i) The action of A1 on v(F1)
is trivial; (ii) For any e ∈ e(F1) ∪ e′(F1) and any element τ ∈ A1, τ.e

1
i,i+1 = e1i,i+1 and

τ(eτ1i,i+1) = eτ◦τ1i,i+1 for all τ1 ∈ A1.
Thus, with the action of A1, F1 := (F1, σF1 , βF1) is an A1-covering over Pn. Next, let

us construct F2.
F2 := (v(F2), e(F2) ∪ e′(F2), {ζF2

e }e) is a semi-graph as follows:
(i) v(F2) := {v21, . . . , v2n};
(ii) e(F2) ∪ e′(F2) consists of the following elements:
(a) {e1,τ2i,i+1 := {bl(e1,τ2i,i+1), br(e

1,τ2
i,i+1)}}τ2∈A2 is a set associated to e1i,i+1 if βF1(e

1
i,i+1) ∈

e(E2) ∪ e′(E2);
(b) {eτ1,τ2i,i+1 :={bl(eτ1,τ2i,i+1),br(e

τ1,τ2
i,i+1)}τ2∈A2}τ1∈A1 is a set associated to eτ1i,i+1 if βF1(e

τ1
i,i+1) ∈

e(E2) ∪ e′(E2);
(c) e1,2i,i+1 := {bl(e1,2i,i+1), br(e

1,2
i,i+1)} is a set associated to e1i,i+1 if βF1(e

1
i,i+1) ̸∈ e(E2) ∪

e′(E2);
(d) {eτ1,2i,i+1 := {bl(eτ1,2i,i+1), br(e

τ1,2
i,i+1)}}τ1∈A1 is a set associated to eτ1i,i+1 if βF1(e

τ1
i,i+1) ̸∈

e(E2) ∪ e′(E2);
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(iii) ζF2
e (bl(e

1,2
i,i+1)) = v2i (resp. ζF2

e (bl(e
τ1,2
i,i+1)) = v2i , ζ

F2
e (bl(e

1,τ2
i,i+1)) = v2i , ζ

F2
e (bl(e

τ1,τ2
i,i+1)) =

v2i ) if i ̸= 0 and ζF2
e (bl(e

1,2
i,i+1)) = v(F2) (resp. ζ

F2
e (bl(e

τ1,2
i,i+1)) = v(F2), ζ

F2
e (bl(e

1,τ2
i,i+1)) = v(F2),

ζF2
e (bl(e

τ1,τ2
i,i+1)) = v(F2)) if i = 0;

(iv) ζF2
e (br(e

1,2
i,i+1)) = v2i (resp. ζ

F2
e (br(e

τ1,2
i,i+1)) = v2i , ζ

F2
e (br(e

1,τ2
i,i+1)) = v2i , ζ

F2
e (br(e

τ1,τ2
i,i+1)) =

v2i ) if i ̸= n and ζF2
e (br(e

1,2
i,i+1)) = v(F2) (resp. ζF2

e (br(e
τ1,2
i,i+1)) = v(F2), ζ

F2
e (br(e

1,τ2
i,i+1)) =

v(F2), ζ
F2
e (br(e

τ1,τ2
i,i+1)) = v(F2)) if i = n.

We have a natural morphism α2 : F2 −→ F1 as follows: (i) α2(v
2
i ) = v1i ; (ii)

α2((e
1,2
i,i+1)) = e1i,i+1 (resp. α2((e

τ1,2
i,i+1)) = eτ1i,i+1, α2((e

1,τ2
i,i+1)) = e1i,i+1, α2((e

τ1,τ2
i,i+1)) = eτ1i,i+1).

We define βF2 to be the composite morphism βF1 ◦ α2.
We define a p-rank map σF2 : v(F2) −→ Z as follows: (i) If ♯bl(v

2
i ) = p♯bl(v

1
i ) and

♯br(v
2
i ) = p♯br(v

1
i ), then we have

σF2(v
2
i )− 1 = p(σF1(v

1
i )− 1);

(ii) If ♯bl(v
2
i ) = ♯bl(v

1
i ) and ♯br(v

2
i ) = p♯br(v

1
i ), we have

σF2(v
2
i )− 1 = p(σF1(v

1
i )− 1) + (♯bl(v

1
i ))(p− 1);

(iii) If ♯bl(v
2
i ) = p♯bl(v

1
i ) and ♯br(v

2
i ) = ♯br(v

1
i ), we have

σF2(v
2
i )− 1 = p(σF1(v

1
i )− 1) + (♯br(v

1
i ))(p− 1);

(iv) If ♯bl(v
2
i ) = ♯bl(v

2
i ) and ♯br(v

2
i ) = ♯br(v

2
i ), we have

σF2(v
2
i )− 1 = p(σF1(v

1
i )− 1) + (♯bl(v

1
i ) + ♯br(v

1
i ))(p− 1).

Moreover, there is a natural A1⊕A2-action on F2 defined as follows: (i) The action of
A1 ⊕A2 on v(F2) is trivial; (ii) For any e ∈ e(F2) ∪ e′(F2) and any element (τ, τ ′) ∈ A1 ⊕
A2, (τ, τ

′).e1,2i,i+1 = e1,2i,i+1, (τ, τ
′).eτ1,2i,i+1 = eτ◦τ1,2i,i+1 , (τ, τ ′).e1,τ2i,i+1 = e1,τ

′◦τ2
i,i+1 and (τ, τ ′).eτ1,τ2i,i+1 =

eτ◦τ1,τ
′◦τ2

i,i+1 .
Thus, with the action of A1 ⊕A2, F2 := (F2, σF2 , βF2) is an A1 ⊕A2-covering over Pn.

The maximal filtration
0 ⊂ A2 ⊂ A1 ⊕ A2

determines a sequence of p-coverings of n-semi-graphs with p-rank

ΦF2 : F2
a2−−−→ F1

a1−−−→ F0 = Pn.

Furthermore, by the construction, we have EΦF2
2 = E2 and EΦF1

1 = E1.
By repeating the process above, we obtain an A := ⊕r

i=1Ai-covering Fr over Pn and a
maximal filtration

ΦA : 0 ⊂ An ⊂ An ⊕ An−1 ⊂ . · · · ⊂ ⊕r
i=1Ai = A.

Then ΦA induces a sequence of p-coverings of n-semi-graphs with p-rank

ΦFr : F := Fr
ar−−−→ Fr−1

ar−1−−−→ . . .
a1−−−→ F0 = Pn.

By the construction, we have the i-th étale-chain EΦF

i associated to ΦFr is equal to Ei for
each i = 1, . . . , r. We complete the proof of the theorem.
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Remark 2.10.1. For the sequence

ΦF : F = Fr
ar−−−→ Fr−1

ar−1−−−→ . . .
a1−−−→ F0 = Pn

constructed in Theorem 2.10, by Remark 2.7.1, we may assume that ai do not have étale
Type-II for all i. Furthermore, by Corollary 2.9, we have σ(G) = σ(F).

2.3 Bounds of p-ranks of abelian coverings

Let G be a finite abelian p-group with order pr. In this subsection, we calculate a bound
of p-rank of a G-covering over Pn.

First, let us fix some notations. Let G be a G-covering over Pn and Φ a maximal
filtration of G. Write

ΦG : G = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = Pn

for the sequence of p-coverings of n-semi-graphs with p-rank induced by Φ and {EΦG
j }j for

the set of j-th étale-chains associated to ΦG. If EΦG
j is empty, we have σ(Gj) = σ(Gj−1);

thus, for calculating the bound of the p-rank σ(G), we may assume that EΦG
j are not

empty for all j. Moreover, by Remark 2.10.1, we may assume that for each j = 1, . . . , r
and each v ∈ v(Gj), bj is not étale Type-II at v.

Let e0 ∈ β−1
G (e0,1) (resp. en+1 ∈ β−1

G (en,n+1)). Write Ie0 (resp. Ien+1) for the inertia
group of e0 (resp. en+1). Note that since G is an abelian group, the group Ie0 (resp. Ien+1)
does not depend on the choice of the elements of β−1

G (e0,1) (resp. β
−1
G (en,n+1)). Moreover,

according to Definition 2.3 (c-iii), G is generated by Ie0 and Ien+1 .

For each j = 1, . . . , r, since EΦG
j is a sub-semi-graph of Pn, v(EΦG

j ) ⊆ {p1, . . . , pn} =
v(Pn) admits a natural order which is induced by the order of natural number N; then
we may define the initial vertex and the terminal vertex for EΦG

j . Write i(EΦG
j ) (resp.

t(EΦG
j )) for the initial (resp. the terminal) vertex of v(EΦG

j ), l(EΦG
j ) for ♯v(EΦG

j ). For
an element pi ∈ v(Pn), we shall say that pi is A1

r-type (resp. A1
l -type; G1

m-type; P-type;
P1-type) at EΦG

j if pi is equal to i(EΦG
j ), and bj is étale at β−1

Gj
(pi) with Type-III (resp. pi

is equal to t(EΦG
j ), and bj is étale at β−1

Gj
(pi) with Type-IV; v(EΦG

j ) is equal to {pi}, and
bj is étale at β−1

Gj
(pi) with Type-V; bj is purely inseparable at β−1

Gj
(pi); pi is contained in

v(EΦG
j ), and bj is étale at β

−1
Gj

(pi) with Type-I). Write ♯π0(EΦG
j ) for the cardinality of the

connected components of EΦG
j . Note that since we assume that EΦG

j is not empty for each

j = 1, . . . , r, we have ♯π0(EΦG
j ) ≥ 1.

We define a sub-semi-graph Px,y of Pn as follows: (i) v(Px,y) = {px, . . . , py}; (ii)

e(Px,y) = {ex,x+1, . . . , ey−1,y} and e′(Px,y) = {ex−1,x, ey,y+1}; (iii) ζ
Px,y
ei,i+1(bl(ei,i+1)) = pi

and ζ
Px,y
ei,i+1(br(ei,i+1)) = pi+1 if i ̸∈ {x − 1, y} (iv) ζ

Px,y
ex−1,x(bl(ex−1,x)) = v(Px,y) (resp.

ζ
Px,y
ey,y+1(br(ey,y+1)) = v(Px,y)) and ζ

Px,y
ex−1,x(br(ex−1,x)) = px (resp. ζ

Px,y
ey,y+1(br(ey,y+1)) = py).

Note that Px,y is a sub-semi-graph of Pn, and the semi-graph with p-rank Px,y :=
(Px,y, σPn|v(Px,y), idPx,y) can be regarded as a (y − x+ 1)-chain.

Lemma 2.11. Suppose that ♯π0(EΦG
j ) = 1 for all j, and either Ie0,1 or Ien,n+1 is trivial.

Then the p-rank σ(G) is equal to 0.
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Proof. For each j = 1, . . . , r, write vji for an element β−1
Gj

(pi). Since ♯π0(EΦG
j ) = 1 hold for

all j, and Ie0,1 (resp. Ien,n+1) is trivial, bj is not étale Type-III (resp. étale Type-IV) and

étale Type-V at vji . Then we obtain σGj
(vji ) = 0 by applying Remark 2.3.1. Moreover,

the underlying semi-graph of Gj is an tree. Thus, we obtain σ(Gj) = 0. In particular, we
have σ(G) = 0. We complete the proof of the lemma.

Lemma 2.12. Let Gi, i ∈ {1, 2} be an abelian p-group with order pr, Φi a maximal
filtration of Gi, and Gi := (Gi, σGi , βGi) a Gi-covering over Pn. Write

ΦGi : Gi = Gi
r

bir−−−→ Gi
r−1

bir−1−−−→ . . .
bi1−−−→ Gi

0 = Pn

for the sequence of p-coverings of n-semi-graphs with p-rank induced by Φi, and EΦGi for

the étale-chain associated to ΦGi. Suppose that for each j = 1, . . . , r, ♯π0(E
ΦGi

j ) = 1,

i(EΦG1

j ) = i(EΦG2

j ), and t(EΦG1

j ) = t(EΦG2

j ). Moreover, we suppose that EΦG1

j is equal

to EΦG2

j if i(EΦG1

j ) ̸= 1 and t(EΦG1

j ) ̸= n. Let e10 ∈ β−1
G1 (e0,1) and e20 ∈ β−1

G2 (e0,1) (resp.

e1n+1 ∈ β−1
G1 (en,n+1) and e

2
n+1 ∈ β−1

G2 (en,n+1)). Write Ie10 and Ie20 (resp. Ie1n+1
and Ie2n+1

) for

the inertia groups of e10 and e20, respectively (resp. e1n+1 and e2n+1, respectively), D
1
0 (resp.

D1
n+1) for G1/Ie10 (resp. G1/Ie1n+1

). Furthermore, we suppose that Ie20 and Ie2n+1
are equal

to G2. Then we have

σ(G1) + ♯D1
0 − 1 + ♯D1

n+1 − 1 = σ(G2).

Proof. By Remark 2.7.1, we may assume that bij do not have étale Type-I. For any

pu ∈ v(Pn), write v
i
u for the unique element of β−1

Gi (pu). Then Dviu
is equal to Gi.

If n = 1, note that since EΦG
j are not empty for all j, both Iv11 and Iv21 are trivial. Then

we have

σ(G1) = σG1(v11) = −♯G1 + ♯D1
0(♯Ie10 − 1) + ♯D1

n+1(♯Ie1n+1
− 1) + 1.

On the other hand, since both Ie20 and Ie2n+1
are equal to G2, we obtain

σ(G2) = σG1(v21) = −♯G2 + ♯G2 − 1 + ♯G2 − 1 + 1 = ♯G2 − 1.

Thus, we have
σ(G1) + ♯D1

0 − 1 + ♯D1
n+1 − 1 = σ(G2).

If n > 1, by the assumptions of {EΦG1

j }j and {EΦG2

j }j, we obtain∑
v∈v(G1)\{v11 ,v1n}

σG1(v) =
∑

v∈v(G1)\{v21 ,v2n}

σG2(v)

and
rankZH

1(G1,Z) = rankZH
1(G2,Z).

On the other hand, since both Ie20 and Ie2n+1
are equal to G2, we have

σG2(v21)− σG1(v11) = ♯G2 − 1− ♯D1
0(♯Ie10 − 1) = ♯G1 − 1− ♯D1

0(♯Ie10 − 1) = ♯D1
0 − 1
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and

σG2(v2n)−σG1(v1n) = ♯G2−1−♯D1
n+1(♯Ie1n+1

−1) = ♯G1−1−♯D1
n+1(♯Ie1n+1

−1) = ♯D1
n+1−1.

Thus, we obtain
σ(G1) + ♯D1

0 − 1 + ♯D1
n+1 − 1

=
∑

v∈v(G1)\{v11 ,v1n}

σG1(v) + rankZH
1(G1,Z) + σG1(v11) + σG1(v1n) + ♯D1

0 − 1 + ♯D1
n+1 − 1

=
∑

v∈v(G2)\{v21 ,v2n}

σG2(v) + rankZH
1(G2,Z) + σG2(v21) + σG2(v2n) = σ(G2).

We have the following theorem.

Theorem 2.13. Let G be a G-covering over Pn and Φ a maximal filtration of G. Write

ΦG : G = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = Pn

for the sequence of p-coverings of n-semi-graphs with p-rank induced by Φ, and {EΦG
j }j

for the set of j-th étale-chains associated to ΦG. Suppose that ♯π0(EΦG
j ) = 1 hold for all

j. Then we have
σ(G) ≤ pr − 1.

Proof. We prove the theorem by induction. If r = 1, since π0(EΦ1
1 ) = 1, let us check

the theorem case by case. If either Ie0 or Ien+1 is trivial, then by Lemma 2.11, we have
σ(G) = 0. If Both Ie0 and Ien+1 are non-trivial, and l(EΦ1

1 ) is 1, we obtain rankZH
1(G,Z)

is equal to 0; for each v ∈ v(G), σG(v) is equal to 0 if βG(v) is not contained in v(EΦG
1 ),

and σG(v) is equal to p− 1 if βG(v) is contained in v(EΦG
1 ); thus, we obtain σ(G) = p− 1.

If Both Ie0 and Ien+1 are non-trivial, and l(EΦ1
1 ) is ≥ 2, we have rankZH

1(G,Z) is equal
to p − 1, and σG(v) are equal to 0 for all v ∈ v(G). Thus, we have σ(G) = p − 1. This
completes the proof of the theorem if r = 1. From now on, we assume that r is ≥ 2.

For each i = 1, . . . , n, let vi be an element of β−1
G (pi) ⊆ v(G), Ivi the inertia group

of vi. Write d for min{i | Ivi ̸= G}. If d ̸= 1, then we have βG|β−1
G (Pn\Pd,n)

: β−1
G (Pn \

Pd,n) −→ Pd,n is an isomorphism of semi-graphs. Then we have G′ := (G \ β−1
G (Pn \

Pd,n), σG|v(G\β−1
G (Pn\Pd,n))

, βG|G\β−1
G (Pn\Pd,n)

) is a (n − d + 1)-semi-graph with p-rank. Fur-

thermore, G \ β−1
G (Pn \ Pd,n) admits a natural action of G induced by the action of G on

G. Thus, we may regard G′ is a G-covering over Pd,n. Note that we have σG(vi) = 0 for
i ≤ d − 1 and rankZH

1(β−1
G (Pn \ Pd,n),Z) = 0. Then σ(G′) is equal to σ(G). Thus, by

replacing G (resp. Pn) by G′ (resp. Pd,n), we may assume that Iv1 is not equal to G.
Similar arguments to the arguments given above imply that we may assume that Ivn is
not equal to G.

Write S1 (resp. S2, S3, S4, S5) for the set

{EΦG
j | p1 is A1

r-type at EΦG
j } (resp. {EΦG

j | p1 is A1
l -type at EΦG

j },

20



{EΦG
j | p1 is G1

m-type at EΦG
j }, {EΦG

j | p1 is P-type at EΦG
j },

{EΦG
j | p1 is P1-type at EΦG

j }).

Write t for max{t(EΦG
j ) | i(EΦG

j ) ∈ S1 ∪ S2 ∪ S3 ∪ S5}, T1 (resp. T2, T3, T4, T5) for

{EΦG
j | pt is A1

r-type at EΦG
j } (resp. {EΦG

j | pt is A1
l -type at EΦG

j },

{EΦG
j | pt is G1

m-type at EΦG
j }, {EΦG

j | pt is P-type at EΦG
j },

{EΦG
j | pt is P1-type at EΦG

j }).

For i ∈ {1, 2, 3, 4, 5}, write ni for ♯Si. Write m1 for ♯T1, m2 for ♯(S4 ∩ T2), m3 for ♯T3, m4

for ♯(S4 ∩ T4), m5 for ♯T5, a1 for ♯(S1 ∩ T2), and a2 for ♯(S1 ∩ T4). Write b1 (resp. b2) for

♯{EΦG
j ∈ S4 ∩ T4 | i(EΦG

j ) ≥ 2 and t(EΦG
j ) ≤ t− 1}

(resp. ♯{EΦG
j ∈ S4 ∩ T4 | i(EΦG

j ) ≥ t+ 1}).

Note that we have
∑5

i=1 = r and b1 + b2 = m4. Since t is the maximal element of
{l(EΦG

j ) | i(EΦG
j ) ∈ S1 ∪S2} and ♯π0(EΦG) = 1, we obtain

∑5
i=1mi = n4 and a1+ a2 = n1.

Let {E1, . . . ,Er} be a set of étale-chains associated to ΦG with a new index set such that
the following conditions: (i) T5 = {E1, . . . ,Em5}; (ii) S4∩T4 = {Em5+1, . . . ,Em5+m4}; (iii)
T1 = {Em5+m4+1, . . . ,Em5+m4+m1}; (iv) S4∩T2 = {Em5+m4+m1+1, . . . ,Em5+m4+m1+m2}; (v)
S1∩T2 = {Em5+m4+m1+m2+1, . . . ,Em5+m4+m1+m2+a1}; (vi) S1∩T4 = {Em5+m4+m1+m2+a1+1,
. . . , Em5+m4+m1+m2+n1}; (vii) T3 = {Em5+m4+m1+m2+n1+1, . . . ,En1+n4}; (viii) S2 = {En1+n4+1,
. . . ,En1+n2+n4}; (ix) S3 = {En1+n2+n4 , . . . ,En1+n2+n3+n4}; (x) S5 = {En1+n2+n3+n4+1, . . . ,Er}.
By Theorem 2.10, there exist an elementary abelian p-group A, a maximal filtration ΦA

of A, an A-covering F := (F, σF, βF) over Pn, and the sequence of p-coverings of n-semi-
graphs with p-rank induced by ΦA

ΦF : F = Fr
ar−−−→ Fr−1

ar−1−−−→ . . .
a1−−−→ F0 = Pn

such that the j-th étale-chain EΦF

j associated to ΦF is equal to Ej for each j = 1, . . . , r.
Since σ(G) is equal to σ(F), in order to prove the theorem, it is sufficient to calculate the
bound of σ(F). Let ui be an element of β−1

F (pi), e0 (resp. en+1) an element of β−1
F (e0,1)

(resp. β−1
F (en,n+1)). Moreover, by Lemma 2.12, for calculating the bound of σ(F), we may

assume that G = Ie0 = Ien+1 hold. Then we have n2 = 0 and n5 = 0. In particular, we
have ♯β−1

G (p1) = ♯β−1
G (pn) = 1.

Case 1: If t = 1 and n = 1, since G = Ie0 = Ien+1 hold, we obtain n3 = r and

σ(F) = σF(u1) = (−1)pn3 + 2(pn3 − 1) + 1 = pn3 − 1 = pr − 1.

Thus, the theorem follows.

Case 2: If t = 1 and n ̸= 1, since Ivn is not trivial, βF|β−1
F (P2,n)

: β−1
G (P2,n) −→ P2,n is not

an isomorphism. Write F1,1 (resp. F2,n) for (F \ β−1
F (P1,1), σF|v(F\β−1

F (P1,1))
, βF|F\β−1

F (P1,1)
)
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(β−1
F (P2,n), σF|v(β−1

F (P2,n))
, βF|β−1

F (P2,n)
)). F1,1 (resp. F2,n) is a G-covering over P1,1 (resp.

P2,n). Since F1,1/Du1 −→ P1,1 (resp. F2,n −→ F2,n/Du1) is a composite of p-coverings
which are purely inseparable, we see that σ(F1,1) = σ(F1,1/Du1) (resp. σ(F

2,n) = σ(F2,n/Du1)).
Moreover, F1,1 (resp. F2,n) can be regarded as a Du1-covering over P1,1 (resp. a A/Du1-
covering over P2,n). Since σ(F) = σ(F1,1) + σ(F2,n), ♯Du1 < pr, and ♯A/Du1 < pr, by
induction, we have

σ(F) ≤ ♯Du1 − 1 + ♯A/Du1 − 1 ≤ pr − 1.

Thus, the theorem follows.

Case 3: If t = n and n ̸= 1, write S ′ for the set {Ej | i(Ej) = 1 and t(Ej) = n}, S ′′ for
the complement {E1, . . . ,Er}\S ′. Note that S ′ is not empty. Let {E′

1, . . . ,E′
r} be a set of

étale-chains associated to ΦF such that the following conditions: (i) S ′′ = {E′
1, . . . ,E′

♯S′′};
(ii) S ′ = {E′

♯S′′+1, . . . ,E′
r}. By Theorem 2.10, there exist an elementary abelian p-group

A′, a maximal filtration ΦA′ of A′, and an A′-covering F over Pn such that the j-th étale-

chain EΦF′
j associated to the sequence of p-coverings of n-semi-graphs with p-rank induced

by ΦA′

ΦF′ : F′ = F′
r

a′r−−−→ F′
r−1

a′r−1−−−→ . . .
a′1−−−→ F′

0 = Pn

is equal to E′
j for each j = 1, . . . , r. Then since ♯S ′′ is ≤ r − 1, by induction, we have

σ(F′
♯S′′) ≤ p♯S

′′ − 1. Note that since both Ie0 and Ien+1 are equal to A′, we write u′1 (resp.

u′n, u
′′
1, u

′′
n) for the unique element of β−1

F′ (p1) (resp. β
−1
F′ (pn), β

−1
F′
♯S′′

(p1), β
−1
F′
♯S′′

(pn)). Then

we have
σF′(u′1) = p♯S

′
(σF′

♯S′′ (u
′′
1)− 1) + p♯S

′ − 1 + 1 = p♯S
′
σF′

♯S′′ (u
′′
1)

and
σF′(u′n) = p♯S

′
(σF′

♯S′′ (u
′′
n)− 1) + p♯S

′ − 1 + 1 = p♯S
′
σF′

♯S′′ (u
′′
n).

Thus, we have

σ(F) = σ(F′) = p♯S
′
(σ(F′

♯S′′)−σF′
♯S′′ (u

′′
1)−σF′

♯S′′ (u
′′
n))+σF′(u′1)+σF′(u′n)+p

♯S′ −1 ≤ pr−1.

Thus, the theorem follows.

Case 4: If n ̸= 1 and t ̸∈ {1, n}, we write F[a2] for Fm5+m4+m1+m2+n1 , F1,t−1[a2]
(resp. Ft+1,n[a2]) for the (t− 1)-semi-graph with p-rank (β−1

F[a2]
(P1,t−1), σF[a2]|v(β−1

F[a2]
(P1,t−1))

,

βF[a2]|β−1
F[a2]

(P1,t+1)
) (resp. the (n−t)-semi-graph with p-rank (β−1

F[a2]
(Pt+1,n), σF[a2]|v(β−1

F[a2]
(Pt+1,n))

,

βF[a2]|β−1
F[a2]

(Pt+1,n)
)). Similar arguments to the arguments given in the proof of Case 3 imply

that
σ(F1,t−1[a2]) ≤ pn1+m2+b1+m5 − 1

(resp. σ(Ft+1,n[a2]) ≤ pm1+b2+m5 − 1).

Moreover, by Lemma 2.12, we obtain

σ(F1,t−1[a2]) ≤ pn1+m2+b1+m5 − pm5+n1+m2

(resp. σ(Ft+1,n[a2]) ≤ pm1+b2+m5 − pm5+m1).
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Thus, we obtain

σ(F[a2]) = σ(F1,t−1[a2])+σ(F
t+1,n[a2])+

∑
v∈β−1

F[a2]
(pt)

σF[a2](v)+p
m5(pm2+n1−1+pm1−1)+pm5−1

≤ pn1+m2+b1+m5 + pm1+b2+m5 − pm5 − 1 +
∑

v∈β−1
F[a2]

(pt)

σF[a2](v).

Write v1[a2] for the unique element of β−1
F[a2]

(p1). Note that σF[a2](v1[a2]) is equal to 0.

Write v1 (resp. vt) for the unique (resp. an element) element of β−1
F (p1) (β

−1
F (pt)). We

have
σF(v1) = −pn1+n3 + pn1(pn3 − 1) + pn1+n3 − 1 + 1 = pn1+n3 − pn1

and

σF(vt) = −pm1+m2+m3+a1 + pa1+m2(pm1+m3 − 1) + pm1(pa1+m2+m3 − 1) + 1

= pm1+m2+m3+a1 − pm2+a1 − pm1 + 1.

Since we have

σ(F)− σF(v1)−
∑

v∈β−1
F (pt)

σF(v) = σ(F[a2])− σF[a2](v1[a2])−
∑

v∈β−1
F[a2]

(pt)

σF[a2](v)

≤ pn1+m2+b1+m5 + pm1+b2+m5 − pm5 − 1

and ♯β−1
F (pt) = pm5 , we obtain

σ(F) ≤ pn1+m2+b1+m5 + pm1+b2+m5 − pm5 − 1 + pn1+n3 − pn1

+pm5(pm1+m2+m3+a1 − pm2+a1 − pm1 + 1)

= pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3

−pm5+m2+a1 − pm1+m5 − pn1 − 1.

By Lemma 4.1 in Appendix, we obtain

σ(F) ≤ pr − 1.

Thus, we complete the proof of the theorem.

3 p-ranks of vertical fibers of abelian stable coverings

3.1 p-ranks and stable coverings

Definition 3.1. Let C be a disjoint union of projective curves over an algebraically closed
field of characteristic p > 0. We define the p-rank of C as follows:

σ(C) := dimFpH
1
ét(C,Fp).

23



Remark 3.1.1. Let C be a semi-stable curve over an algebraically closed field of char-
acteristic p > 0. Write ΓC for the dual graph of C, v(ΓC) for the set of vertices of ΓC .
Then we have

σ(C) =
∑

v∈v(ΓC)

σ(C̃v) + rankZH
1(ΓC ,Z),

where for v ∈ v(Γ), C̃v denotes the normalization of the irreducible component of C
corresponding to v.

The p-rank of a p-Galois covering (i.e., the extension of function fields induced by the
morphism of curves is a Galois extension, and the Galois group is a p-group) of a smooth
projective curve can be calculated by the Deuring-Shafarevich formula as follows (cf. [C]):

Proposition 3.2. Let h : C ′ −→ C be a Galois covering (possibly ramified) of smooth
projective curves over an algebraically closed field of characteristic p > 0, whose Galois
group is a finite p-group G. Then we have

σ(C ′)− 1 = ♯G(σ(C)− 1) +
∑

c′∈(C′)cl

(ec′ − 1),

where (C ′)cl denotes the set of closed points of C ′, ec′ denotes the ramification index at c′,
and ♯G denotes the order of G.

In the following of this subsection, let R be a complete discrete valuation ring with
algebraically closed residue field k of characteristic p > 0, K the quotient field, and K an
algebraic closure of K. We use the notation S to denote the spectrum of R, η, η and s
stand for the generic point, the geometric generic point, the closed point corresponding
to the natural morphisms SpecK −→ S, SpecK −→ S and Spec k −→ S, respectively.
Let X be a semi-stable curve over S. Write Xη, Xη and Xs for the generic fiber, the
geometric generic fiber and the special fiber, respectively. Moreover, we suppose that Xη

is smooth over η and the genus gXη
of Xη is ≥ 2.

Definition 3.3. Let f : Y −→ X be a morphism of semi-stable curves over S, G a finite
group. Then f is called a semi-stable covering (resp. G-semi-stable covering) over S if
the morphism of generic fibers fη is an étale covering (resp. an étale covering with Galois
group G), and the following universal property is satisfied: if g : Z −→ X is a morphism
of semi-stable curves over S such that Zη = Yη and gη = fη, then there exists a unique
morphism h : Z −→ Y such that f = g ◦ h (cf. Remark 3.3.1 for the existence of Y ). We
call f a stable covering (resp. G-stable covering) over S if f is a semi-stable covering, and
X is a stable curve. Note that by the construction of semi-stable coverings in Remark
3.3.1, if f is a stable covering over S, then Y is a stable curve over S.

Remark 3.3.1. Let W be a semi-stable curve over s. We shall called a semi-stable
subcurve C ⊆ W a chain if all the irreducible components of C are isomorphic to P1, the
dual graph of C is a tree, and for each irreducible component Ci ⊆ C, Ci meets the other
irreducible components of W at at most two points.

Let fη : Yη −→ Xη be an étale covering. Suppose that Yη admits a semi-stable
reduction over S. Write Y ′ for the normalization of X in the function field K(Y ), Y 1
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for the unique minimal desingularization over S (cf. [L1, Proposition 9.3.32]) which is
a semi-stable curve over S. Then Y ′ (resp. Y 1) admits an G-action induced by the
action of G on Yη. We denote by f 1 : Y 1 −→ X the composite of Y 1 −→ Y ′ and the
normalization morphism Y ′ −→ X. Write C1

X for the set of the maximal elements (under
the relationship “⊆”) of

{C a chain of the special fiber Y 1
s of Y 1 | f 1(C) is a closed point of Xs}.

Contracting C1
X , we obtain a semi-stable curve Y 2 over S (cf. [L1, Lemma 10. 3.31]).

Moreover, we have a natural morphism f 2 : Y 2 −→ X induced by f 1. Write C2
X for the

set of the maximal elements (under the relationship “⊆”) of

{C a chain of the special fiber Y 2
s of Y 2 | f 2(C) is a closed point of Xs}.

Contracting C2
X , we obtain a semi-stable curve Y 3 over S (cf. [L1, Lemma 10. 3.31]).

Moreover, we have a natural morphism f 3 : Y 3 −→ X induced by f 2. Repeating the
process above, we obtain a semi-stable curve of Y over S, a contracting morphism cY :
Y 1 −→ Y , and fη extends to a morphism f : Y −→ X over S.

Netx, let us prove that Y satisfies the universal property defined in Definition 3.3. Let
Z be a semi-stable curve over S and g : Z −→ X a morphism of semi-stable curves over
S such that gη = fη. If Z is regular, since Y 1 is the minimal desingularization over S, we
obtain a morphism Z −→ Y 1. Thus, we have g factors through f . If Z is not regular,
write Zreg for the minimal desingularization of Z over S. Then we obtain a commutative
diagram as follows:

Zreg b−−−→ Y 1

r

y
Z .

Write CZreg for the set of (−1)-curves of Zreg whose images under the morphism b are
closed points of Y 1

s . Contracting r(CZreg), we obtain a semi-stable curve Z ′ over S, a
morphism Y 1 −→ Z ′, and the following commutative diagram:

Zreg h−−−→ Y 1

r

y r′

y
Z

cZ−−−→ Z ′.

Write VcY (resp. Vr′) for the set of irreducible components of Y 1
s such that for each element

E ∈ VcY (resp. E ∈ Vr′), cY (E) (resp. r′(E)) is a closed point of Ys (resp. the special
fiber Z ′

s of Z ′). By the constructions of Y and Z ′, we have Vr′ ⊆ VcY . Then there is
contracting morphism Z ′ −→ Y , and the following commutative diagram holds:

Y 1 Y 1

r′

y cY

y
Z ′ cZ′−−−→ Y.
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Then g factors through f . Note that the uniqueness of contracting implies that the
uniqueness of the morphism h := cZ′ ◦ cZ : Z −→ Y .

Note that if f : Y −→ X is a finite morphism of semi-stable curves over S, and the
morphism of generic fibers fη is étale, then f is a semi-stable covering.

Definition 3.4. Let f : Y −→ X be a semi-stable covering over S. Suppose that the
morphism of special fibers fs : Ys −→ Xs is not finite. A closed point x ∈ X is called a
vertical point associated to f , or for simplicity, a vertical point when there is no fear of
confusion, if f−1(x) is not a finite set. The inverse image f−1(x) is called the vertical fiber
associated to x.

If a vertical point x is nonsingular, the following result was proved by Raynaud (cf.
[R, Théorème 1 and Proposition 1]).

Proposition 3.5. Let G be a finite p-group, f : Y −→ X a G-semi-stable covering and
x a vertical point associated to f . If x is a smooth point of Xs, then the p-rank of each
connected component of the vertical fiber f−1(x) associated to x is equal to 0. On the
other hand, by contracting the vertical fibers f−1(x), we obtain a curve Y c over S. Write
c : Y −→ Y c for the contracting morphism. Then the points c(f−1(x)) are geometrically
unibranch.

Proposition 3.6. Let G be a finite group, f : Y −→ X a G-semi-stable covering, and
x a vertical point associated to f . If x is a smooth point or a node which is contained
in only one irreducible component (resp. a node which is contained in two different irre-
ducible components), we use the notation Xv (resp. Xv1 and Xv2) to denote the irreducible
component which contains x (resp. the irreducible components which contain x). Write
ψ : Y ′ −→ X for the normalization of X in the function field of Y . Let y′ ∈ ψ−1(x) be
a point of the inverse image of x, Y ′

v (resp. Y ′
v1

and Y ′
v2
) for an irreducible component

(resp. two irreducible components) of Y ′
s such that ψs(Y

′
v) = Xv and y′ ∈ Y ′

v (resp. (i)
ψs(Y

′
v1
) = Xv1 and ψs(Y

′
v2
) = Xv2; (ii) y′ ∈ Y ′

v1
and y′ ∈ Y ′

v2
). Write Iv ⊆ G (resp.

Iv1 ⊆ G and Iv2 ⊆ G) for the inertia subgroup of Y ′
v (resp. the inertia subgroups of Y ′

v1

and Y ′
v2
, respectively).

Suppose that G is a p-group (resp. an abelian group). Then we have Iv ̸= {1} (resp.
Iv1 ̸= {1} or Iv2 ̸= {1}). Moreover, write Iy′ ⊆ G for the inertia subgroup of y′, then Iy′
is equal to Iv (resp. Iy′ is generated by Iv1 and Iv2).

Proof. Since Y is normal, we obtain a natural morphism ϕ : Y −→ Y ′. By using [BLR,
6.7 Proposition 4], we may contract the connected component of f−1

s (x) whose image
under the morphism ϕ is y′. Thus, we obtain a contraction morphism c : Y −→ Y ′′. Since
Y ′′ is a blowing-up of Y ′, Y ′′ is a fiber surface over S (i.e., normal and flat over S) and
there is natural commutative diagram as follows:

Yη −−−→ Y

cη

y c

y
Y ′′
η −−−→ Y ′′

f ′′
η

y f ′′

y
Xη −−−→ X,
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where cη is an identity morphism.
Write Y ′′

v (resp. Y ′′
v1

and Y ′′
v2
) for the unique irreducible component whose image under

the natural morphism Y ′′ −→ Y ′ is Y ′
v (resp. Y ′

v1
, Y ′

v2
), y′′ for the image c(ϕ−1(y′)). Note

that the inertia group of Y ′′
v (resp. Y ′′

v1
, Y ′′

v2
) is equal to Iv (resp. Iv1 , Iv2).

If x is a smooth point, G is a p-group, and Iv is trivial, then f ′′
s |Y ′′

v
is generically étale.

By Proposition 3.5, we have y′′ is geometrically unibranch. Thus, y′′ is contained in only
one irreducible component of Y ′′

s . By applying Zariski-Nagata purity, we have f ′′
s |Y ′′

v
is

étale at y′′. Thus, y′′ is a smooth point. Then Y ′′ is a semi-stable curve. This contradicts
to the minimal properties of semi-stable coverings.

If x is a node and Iv (resp. Iv1 and Iv2) is (resp. are) trivial, since G is abelian,
f ′′
s is étale over an open neighborhood of x. The completion of the local ring at x is
ÔX,x

∼= R[[u, v]]/(uv − πpen′
), where π denotes an uniformizer of R and (n′, p) = 1. Since

the étale fundamental group of Spec ÔX,x \ {x̂} is isomorphic to Z/n′Z (cf. [T, Lemma

2.1 (iii)]), where x̂ denotes the closed point of Spec ÔX,x, we have y′′ is a node. Then Y ′′

is a semi-stable model of Y ′′
η over S in either case, so that this contradicts to the minimal

properties of semi-stable coverings. Thus, Iv ̸= {1} (resp. Iv1 ̸= {1} or Iv2 ̸= {1}). This
completes the proof of the proposition.

3.2 Semi-graphs with p-rank associated to vertical fibers

In this subsection, we construct a semi-graph with p-rank defined in Section 1 from a
vertical fiber, and we apply the theory developed in Section 1 to calculate the bound of
the p-rank of the vertical fiber.

First, we fix some notations. Let G be a finite p-group, f : Y −→ X a G-stable
covering over S, x ∈ Xs a vertical point. Suppose that x is a node contained in two
irreducible components X1 and X2 (which may be equal) of Xs. Write ψ : Y ′ −→ X
for the normalization of X in the function field of Y . Let y′ ∈ ψ−1(x) be a point of the
inverse image of x. Write Iy′ for the inertia group of y′. Note that the natural morphism
Y/Iy′ −→ X induced by f is finite étale over x. Thus, by replacing X by the stable model
of Y/Iy′ , in order to calculate the p-rank of the vertical fiber f−1(x), we may assume that
Iy′ is equal to G. From now on, we may assume that G = Iy′ is a p-group with order pr.
Then f−1(x) is connected.

Let Xsst be the quotient of Y by G. By [R, Appendice, Corollaire], Xsst is a semi-
stable curve with generic fiber Xη. Then we obtain a quotient morphism h : Y −→ Xsst

and a birational morphism g : Xsst −→ X such that the composite morphism g ◦ h is
equal to f . We still write X1 and X2 for the strict transforms of X1 and X2 under the
birational morphism g, respectively. By the general theory of semi-stable curves, g−1(x) is
a semi-stable subcurve of Xsst

s whose irreducible components are isomorphic to P1
k. Write

C for the semi-stable subcurve of g−1(x) which is a chain of projective lines ∪n
i=1Pi such

that the following conditions: (i) Pi is not equal to Pj if i ̸= j; (ii) P1 ∩X1 are Pn ∩X2

are not empty; (iii) Pi meets Pi+1 at only one point; (iv) Pi ∩Pj is empty if j is not equal
to i− 1, i or i+ 1. Then we have

g−1(x) = C ∪B,

27



where B denotes the topological closure of g−1(x) \ C in g−1(x). Write Bi for the union
of the connected components of B which intersect with Pi are not empty.

Lemma 3.7. Let Vi be an irreducible component of h−1(Pi), IVi
⊆ G (resp. DVi

⊆ G)
the inertia group (the decomposition group) of Vi, and Di for the image of Vi under the
quotient morphism Y −→ Y/IVi

. Write hi for the natural morphism Y/IVi
−→ Xsst.

Then the branch locus of hi|Di
: Di −→ Pi are contained in Pi ∩ (Pi+1 ∪ Pi−1).

Proof. Write Ei for the image of Di under the natural morphism Y/IVi
−→ Y/DVi

. We
have the restriction of Y/DVi

−→ Xsst to Ei is an identity morphism. Thus, by replacing
Xsst by Y/DVi

, we may assume that DVi
is equal to G. Then hi is a G/IVi

-semi-stable
covering. Note that it is easy to see that the branch locus of hi|Di

are contained in
Pi ∩ (Pi+1 ∪ Pi−1 ∪Bi)

By contracting Bi (resp. h
−1
i (Bi)), we obtain a semi-stable curve (Xsst)′ and a con-

traction morphism cXsst : Xsst −→ (Xsst)′ (resp. a fiber surface (Y/IVi
)′ and a contrac-

tion morphism cY/IVi : Y/IVi
−→ (Y/IVi

)′ ) over S. Moreover, hi induces a morphism
h′i : (Y/IVi

)′ −→ (Xsst)′. Then we have the following commutative diagram:

Y/IVi

cY/IVi−−−→ (Y/IVi
)′

hi

y h′
i

y
Xsst

cXsst−−−→ (Xsst)′.

Since it follows from Proposition 3.5, (h′i)
−1(cXsst(Pi ∩ B)) ∩ cY/IVi (Di) are geometrically

unibranch, (h′i)
−1(cXsst(Pi∩B)) only are contained in one irreducible component of the spe-

cial fiber of (Y/IVs)
′. Moreover, by applying Zariski-Nagata purity to h′i, h

′
i|(h′

i)
−1(cXsst (Pi))

is contained in the étale locus of h′i. Thus, the set of branch points of h′i|(h′
i)

−1(cXsst (Pi)) is
contained in the set cXsst(Pi∩ (Pi+1∪Pi−1)). Moreover, cY/IVi |Di

is an isomorphism. Then
we complete the proof of the lemma.

Next, we construct a semi-graph with p-rank from a vertical fiber. From now on, we
assume that G is an abelian p-group. Write DC for the set of points C ∩ (X1∪X2). Thus,
we may regard C := (C,DC) as a pointed semi-stable curve over s. Write Pn for the dual
graph associated to C, σPn for the map satisfying the property σPn(pi) = σ(Pi). Then
Pn := (Pn, σPn , idPn) is a n-chain defined in Section 1.

Let
Φ : {1} = Gr ⊂ Gn−1 ⊂ Gn−2 ⊂ · · · ⊂ G1 ⊂ G0 = G,

be a filtration of G such that Gj/Gj+1
∼= Z/pZ, j = 0, . . . , r− 1. The filtration Φ induces

a sequence of semi-stable coverings Φf as follows:

Y = Yr
dr−−−→ Yr−1

dr−1−−−→ . . .
d1−−−→ Y0 = Xsst,

where Yi, i = 0, . . . , r, denotes the semi-stable curve Y/Gi over S.
For each i = 0, . . . , r, write Γi for the dual graph of the special fiber of Yi. First, let us

prove that the map βi : Γi −→ Γi−1, 1 ≤ i ≤ r, induced by di is a morphism of semi-graphs.
To verify βi is a morphism of semi-graphs, it is sufficient to prove that βi(e(Γi)) ⊆ e(Γi−1),
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where e(−) denotes the set of edges of (−). Let yi be a node of the special fiber (Yi)s of Yi.
Write Y 1

i and Y 2
i for the irreducible components of (Yi)s which contain yi, IY 1

i
⊆ Gi−1/Gi

(resp. IY 2
i
⊆ Gi−1/Gi, Iyi ⊆ Gi−1/Gi) for the inertia group of Y 1

i (resp. Y 2
i , yi). Write

I ⊆ Gi−1/Gi for the group generated by IY 1
i

and IY 2
i
, qyi for the quotient morphism

Yi −→ Y/I. By the definitions, we obtain I ⊆ Iy′ . Applying Zariski-Nagata purity to
SpecOY/I,qyi (yi)

−→ SpecOYi−1,di(yi), we have the morphism Y/I −→ Yi−1 induced by di is
étale at qyi(yi). This implies that I = Iy′ . Since for any element τ ∈ I, we have τ(Y 1

i ) = Y 1
i

and τ(Y 2
i ) = Y 2

i , the proof of [R, Appendice, Proposition 5] (or [L1, Proposition 10.3.48])
implies that qyi(yi) is a node of (Yi/I)s. Thus, di(yi) is a node of the special fiber (Yi−1)s
of Yi−1. This means that βi is a morphism of semi-graphs.

Write ϕi, i = 1, . . . , r, for the composite morphism d1 ◦ d2 ◦ · · · ◦ di. Note that we have
h = ϕr. The semi-stable subcurve ϕ−1

i (C) with ϕ−1
i (DC) may be regarded as a pointed

semi-stable curve over s. We use the notation Yi to denote the resulting pointed semi-
stable curve (ϕ−1

i (C), ϕ−1
i (DC)). Write Gi for the dual graph of Yi, βGi

for the natural
morphism Gi −→ Pn induced by the morphism ϕi|Yi

: Yi −→ C. For each v ∈ v(Gi), write
(Yi)v for the irreducible component of Yi corresponding to v. We define σGi

to be the map
satisfying the property σGi

(v) = σ((Yi)v) for all v ∈ v(Gi). Then Gi := (Gi, σGi
, βGi

) is a
n-semi-graph with p-rank. Moreover, di|Yi

induces a natural morphism of n-semi-graphs
with p-rank bi : Gi −→ Gi−1, and G admits a natural action of G induced by the action
of G on Yn. Furthermore, Φ induces a sequence of morphisms of semi-graphs with p-rank

ΦG : G := Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = Pn.

On the other hand, by Lemma 3.7 and Zariski-Nagata purity, it is easy to check that
for each i = 1, . . . , r, bi is a p-covering. Thus, G is a G-covering over Pn. For each
i = 1, . . . , r, we write EΦG

i for the i-th étale-chain associated to ΦG.
On the other hand, write {Y j

i }j for the set of connected components contained in the
étale locus of di such that the image ϕi(Y

j
i ) are contained in g−1(x) for all j, Y ét

i for the

disjoint union
⨿

j Y
j
i . Note that ϕi(Y ét

i ) \B is a disjoint union of semi-stable subcurve

of C. For each connected component E of ϕi(Y ét
i ) \B, with the set of closed points

DE := E ∩ C \ E, we may regard E := (E,DE) as a pointed semi-stable subcurve of C
over s. We define E

Φf

i as the disjoint union⨿
E⊆ϕi(Y ét

i )\B

E .

We shall call E
Φf

i the i-th étale-chain associated to Φf , and write Ei for the disjoint union

of the dual graph of the connected components of E
Φf

i . We define E Φf as the disjoint
union ⨿

i

E
Φf

i ,

and call E Φf the étale-chain associated to Φf . From the construction of Ei, it is easy to
see that Ei are equal to EΦG

i for all i.
Note that C∩B are smooth points of C. By Proposition 3.5, we have the p-ranks of the

connected components of h−1(B) are equal to 0. Thus, we have σ(f−1(x)) = σ(ϕ−1
r (C)).

Moreover, by applying Lemma 3.7, we obtain σ(ϕ−1
r (C)) = σ(G).
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Summarizing the discussion, we obtain the following proposition.

Proposition 3.8. Let G be a finite abelian p-group with order pr, f : Y −→ X a G-stable
covering over S, x ∈ Xs a vertical point. Write ψ : Y ′ −→ X for the normalization of X
in the function field of Y . Let y′ ∈ ψ−1(x) be a point of the inverse image of x. Write
Iy′ for the inertia group of y′. Suppose that G = Iy′. Let Φ be a maximal filtration of G.
Write Φf for the sequence of semi-stable curves induced by Φ which was constructed in

this subsection, E
Φf

i for the i-th étale-chain associated to Φf for each i. Then there exist
a semi-graph with p-rank G and a sequence of p-coverings of semi-graphs with p-rank ΦG

induced by Φ which was constructed in this subsection such that G is a G-covering over
Pn, and for each i = 1, . . . , r, the i-th étale-chain EΦG

i associated to ΦG is equal to the

dual graph of E
Φf

i . Furthermore, we have σ(f−1(x)) = σ(G).

3.3 p-ranks of vertical fibers

We follow the notations of Section 3.2. Let {Zi}n+1
i=0 a subset the set of irreducible compo-

nents of the special fiber Ys of Y such that the following conditions hold: (i) ϕr(Zi) = Pi if
i ̸∈ {0, n+ 1}; (ii) ϕr(Z0) = X1 and ϕr(Zn+1) = X2; (iii) the union ∪n+1

i=0 Zi is a connected
semi-stable subcurve of the special fiber Ys of Y . Write IPi

⊆ G for the inertia subgroup
of Zi. Note that since G is an abelian p-group, IPi

does not depend on the choice of Zi.
By using the theory of étale-chains, we obtain an explicit formula of p-rank of f−1(x)

as follows:

Theorem 3.9. If G is an abelian p-group, then we have

σ(f−1(x)) =
n∑

i=1

♯(G/IPi
)−

n+1∑
i=1

♯(G/(IPi−1
+ IPi

)) + 1.

Proof. We follow the notations of Theorem 2.8. Note that by Zariski-Nagata purity, we
have the inertia group of a point of Zi−1∩Zi (resp. Zi∩Zi+1) is equal to IPi−1

+ IPi
(resp.

IPi
+ IPi+1

). Then we have ♯EΦG(pj) = logp(♯G/IPi
) (resp. ♯EΦG(blvj) = logp(♯G/(IPi−1

+

IPi
)), ♯EΦG(brvj) = logp(♯G/(IPi

+ IPi+1
))). Thus, we have

σ(f−1(x)) =
n∑

i=1

(♯(G/IPi
)−♯(G/(IPi−1

+IPi
))−♯(G/(IPi+1

+IPi
))+1)+

n−1∑
i=1

(♯(G/(IPi+1
+IPi

))−1)

=
n∑

i=1

♯(G/IPi
)−

n+1∑
i=1

♯(G/(IPi−1
+ IPi

)) + 1.

This completes the proof of the theorem.

Remark 3.9.1. If G is a cyclic p-group, since G is generated by IP0 and IPn+1 , we may
assume that IP0 = G. Follows Lemma 3.10 below, there exists u such that

IP0 ⊇ IP1 ⊇ IP2 ⊇ · · · ⊇ IPu ⊆ · · · ⊆ IPn−1 ⊆ IPn ⊆ IPn+1 .
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Then we obtain

♯(G/IPi
)− ♯(G/(IPi−1

+ IPi
))− ♯(G/(IPi+1

+ IPi
)) + 1 = −♯(G/(IPi−1

)) + 1

(resp. ♯(G/(IPi+1
+ IPi

))− 1 = ♯(G/(IPi
))− 1)

if i < u,

♯(G/IPi
)− ♯(G/(IPi−1

+ IPi
))− ♯(G/(IPi+1

+ IPi
)) + 1 = −♯(G/(IPi+1

)) + 1

(resp. ♯(G/(IPi+1
+ IPi

))− 1 = ♯(G/(IPi+1
))− 1)

if i > u and

♯(G/IPi
)−♯(G/(IPi−1

+IPi
))−♯(G/(IPi+1

+IPi
))+1 = ♯(G/IPt)−♯(G/IPt−1)−♯(G/(IPt+1)+1

(resp. ♯(G/(IPi+1
+ IPi

))− 1 = ♯(G/(IPt+1))− 1)

if i = u. Thus, by applying Theorem 3.9, we obtain

σ(f−1(x)) = ♯(G/IPu)− ♯(G/IPn+1).

This formula was first obtained by Säıdi (cf. [S, Proposition 1]).

Lemma 3.10. If G ∼= Z/pnZ is a cyclic group, then there exists 0 ≤ u ≤ n+ 1 such that

IP0 ⊇ IP1 ⊇ IP2 ⊇ · · · ⊇ IPi
⊆ · · · ⊆ IPn−1 ⊆ IPn ⊆ IPn+1 .

In particular, ♯π0(E
Φf

i ) ≤ 1 hold for all i, where ♯π0(−) denotes the cardinality of the
connected components of (−).

Proof. If the lemma is not true, there exist s, t and v such that IPv ̸= IPs , IPv ̸= IPt and
IPs ⊂ IPs+1 = · · · = IPv = · · · = IPt−1 ⊃ IPt . Since G is a cyclic group, we may assume
IPs ⊇ IPt .

Considering the quotient of Y by IPs , we obtain a natural morphism of semi-stable
curves hs : Y/IPs −→ Xsst over S. By contacting Ps+1, Ps+2, . . . , Pt−1, Bs+1, . . . , Bt−1

(resp. h−1
s (Ps+1), h

−1
s (Ps+2), . . . , , h

−1
s (Pt−1), h

−1
s (Bs+1), . . . , h

−1
s (Bt−1)), we obtain a semi-

stable curve (Xsst)′ (resp. a fiber surface (Y/IPs)
′) and a contacting morphism cXsst :

Xsst −→ (Xsst)′ (resp. cY/IPs
: Y/IPs −→ (Y/IPs)

′). The morphism hs induces a morphism
of fiber surfaces h′s : (Y/IPs)

′ −→ (Xsst)′. Then we have the following commutative
diagram as follows:

Y/IPs

cY/IPs−−−−→ (Y/IPs)
′

hs

y h′
s

y
Xsst

cXsst−−−→ (Xsst)′.

Write P ′
s and P

′
t for the images cXsst(Ps) and cXsst(Pt), respectively, and x

′
st for the closed

point P ′
s ∩ P ′

t ∈ (Xsst)′s. By Proposition 3.6, we have (Y/IPs)
′ is a semi-stable curve over

S, moreover, we have h′s is étale over x′st. Then the inertia groups of the closed points
(h′s)

−1(x′st) of the special fiber (Y/IPs)
′
s of (Y/IPs)

′ are trivial.

31



On the other hand, since IPs is a proper subgroup of IPv , we obtain the natural action of
G/IPs on the irreducible components of h−1

s (∪t−1
j=s+1Pj) is trivial. Thus, the inertia groups

of the closed points cY/IPs
(h−1

s (∪t−1
j=s+1Pj)) = (h′s)

−1(x′st) of the special fiber (Y/IPs)
′
s of

(Y/IPs)
′ are not trivial. This is a contradiction. Then we complete the proof of the

lemma.

On the other hand, we obtain a bound of σ(f−1(x)).

Theorem 3.11. If G is an abelian p-group with order pr, and Ei is connected for each
i = 1, . . . , n, then we have σ(f−1(x)) ≤ pr − 1.

Proof. Together with Theorem 2.13 and Proposition 3.8, the theorem follows.

4 Appendix

In this appendix, we prove the following elementary lemma which is used in the proof of
Theorem 2.13.

Lemma 4.1. Following the notations of the proof of Theorem 2.13, then we have

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1.

≤ pr − 1.

Proof. We will check this inequality case by case. We denote by M the maximal number

max{n1 +m2 + b1 +m5,m1 +m2 +m3 + a1 +m5,m1 +m5 + b2, n1 + n3}.

If M = r, we have the following cases.
If n1 +m2 + b1 +m5 = r, then we have n2 = n3 = b2 = m1 = m3 = 0, m4 = b1 and

n4 = m2 + b1 +m5. Thus, we obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pr + pm2+m5+a1 + pm5 + pn1 − pm2+m5+a1 − pm5 − pn1 − 1 = pr − 1.

If m1+m2+m3+a1+m5 = r, then we have n1 = a1 and n2 = n3 = m4 = b1 = b2 = 0.
Thus, we obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pa1+m2+m5 + pr + pm1+m5 + pa1 − pa1+m2+m5 − pm1+m5 − pa1 − 1 = pr − 1.

If m5 + b2 + m2 = r, then we have n1 = a1 = a2 = m1 = m3 = n3 = b1 = 0 and
m4 = b2. Thus, we obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pm2+m5 + pm5 + pr + 1− pm5+m2 − pm5 − 1− 1 = pr − 1.
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If n1 + n3 = r, then we have m1 = m2 = m3 = m4 = m5 = b1 = b2 = n4 = n2 = 0.
Thus, we obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pn1 + pa1 + 1 + pr − pa1 − 1− pn1 − 1 = pr − 1.

Thus, it is sufficient to assume that M ≤ r − 1.
If M ≤ r − 2, then we have

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

≤ 4pr−2 − 4.

Since p is a prime number, we have pr − 1− 4pr−2 + 4 > 0. Thus, we obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

≤ pr − 1.

Thus, we may assume that M = r − 1.
If n1 +m2 + b1 +m5 = r − 1, we obtain n2 + n3 +m1 +m3 + b2 = 1. If n2 = 1, then

we have n3 = m1 = m3 = b2 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pr−1 + pm2+a1+m5 + pm1+m5 + pn1 − pm2+a1+m5 − pm5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If n3 = 1, then we have n2 = m1 = m3 = b2 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pr−1 + pm2+a1+m5 + pm5 + pn1+1 − pm2+m5+a1 − pm5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If m1 = 1, then we have n2 = n3 = m3 = b2 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pr−1 + pm1+m2+a1+m5 + pm5+m1 + pn1 − pm2+m5+a1 − pm5+m1 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If m3 = 1, then we have n2 = n3 = m1 = b2 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pr−1 + pm3+m2+a1+m5 + pm5 + pn1 − pm2+m5+a1 − pm5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.
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If b2 = 1, then we have n2 = n3 = m1 = m3 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pr−1 + pm2+a1+m5 + pm5+b2 + pn1 − pm2+m5+a1 − pm5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If a1 +m1 +m2 +m3 +m5 = r − 1, we obtain a2 + n2 + n3 + b1 + b2 = 1. If a2 = 1,
then we have n2 = n3 = b1 = b2 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pn1+m2+m5 + pr−1 + pm1+m5 + pn1 − pm2+m5+a1 − pm1+m5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If n2 = 1, then we have a2 = n3 = b1 = b2 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pa1+m2+m5 + pr−1 + pm1+m5 + pn1 − pm2+m5+a1 − pm1+m5 − pn1 − 1

= pr−1 − 1 < pr − 1.

If n3 = 1, then we have a2 = n2 = b1 = b2 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pa1+m2+m5 + pr−1 + pm1+m5 + pn1+n3 − pm2+m5+a1 − pm1+m5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If b1 = 1, then we have a2 = n2 = n3 = b2 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pa1+m2+b1+m5 + pr−1 + pm1+m5 + pn1 − pm2+m5+a1 − pm1+m5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If b2 = 1, then we have a2 = n2 = n3 = b1 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pa1+m2+m5 + pr−1 + pm1+m5+b2 + pn1 − pm2+m5+a1 − pm1+m5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If m1 + b2 +m5 = r − 1, we obtain a1 + a2 + n2 + n3 +m2 +m3 + b1 = 1. If a1 = 1,
then we have a2 = n2 = n3 = m2 = m3 = b1 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pa1+m5 + pm1+a1+m5 + pr−1 + pn1 − pa1+m5 − pm1+m5 − pn1 − 1
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≤ 2pr−1 − 1 ≤ pr − 1.

If a2 = 1, then we have a1 = n2 = n3 = m2 = m3 = b1 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pa2+m5 + pm1+m5 + pr−1 + pn1 − pm5 − pm1+m5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If n2 = 1, then we have a1 = a2 = n3 = m2 = m3 = b1 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pm5 + pm1+m5 + pr−1 + pn1 − pm5 − pm1+m5 − pn1 − 1

= pr−1 − 1 < pr − 1.

If n3 = 1, then we have a1 = a2 = n2 = m2 = m3 = b1 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pm5 + pm1+m5 + pr−1 + pn1+n3 − pm5 − pm1+m5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If m2 = 1, then we have a1 = a2 = n2 = n3 = m3 = b1 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pm2+m5 + pm1+m2+m5 + pr−1 + pn1 − pm2+m5 − pm1+m5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If m3 = 1, then we have a1 = a2 = n2 = n3 = m2 = b1 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pm5 + pm1+m3+m5 + pr−1 + pn1 − pm5 − pm1+m5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If b1 = 1, then we have a1 = a2 = n2 = n3 = m2 = m3 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pb1+m5 + pm1+m5 + pr−1 + pn1 − pm5 − pm1+m5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If n1 + n3 = r − 1, we obtain n2 +m1 +m2 +m3 +m4 +m5 = 1. If n2 = 1, then we
have m1 = m2 = m3 = b1 = b2 = m5 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pn1 + pa1 + 1 + pr−1 − pa1 − 1− pn1 − 1
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= pr−1 − 1 < pr − 1.

If m1 = 1, then we have n2 = m2 = m3 = b1 = b2 = m5 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pn1 + pa1+m1 + pm1 + pr−1 − pa1 − pm1 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If m2 = 1, then we have n2 = m1 = m3 = b1 = b2 = m5 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pn1+m2 + pa1+m2 + 1 + pr−1 − pa1+m2 − 1− pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If m3 = 1, then we have n2 = m1 = m2 = b1 = b2 = m5 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pn1 + pa1+m3 + 1 + pr−1 − pa1 − 1− pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If b1 = 1, then we have n2 = m1 = m2 = m3 = b2 = m5 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pn1+b1 + pa1 + 1 + pr−1 − pa1 − 1− pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If b2 = 1, then we have n2 = m1 = m2 = m3 = b1 = m5 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pn1 + pa1 + pb2 + pr−1 − pa1 − 1− pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

If m5 = 1, then we have n2 = m1 = m2 = m3 = b1 = b2 = 0. We obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

= pn1+m5 + pa1+m5 + pm5 + pr−1 − pa1+m5 − pm5 − pn1 − 1

≤ 2pr−1 − 1 ≤ pr − 1.

Thus, we obtain

pn1+m2+b1+m5 + pm1+m2+m3+a1+m5 + pm5+b2+m1 + pn1+n3 − pm5+m2+a1 − pm1+m5 − pn1 − 1

≤ pr − 1.

We complete the proof of the lemma.
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